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TURING PATTERNS IN THE LENGYEL-EPSTEIN SYSTEM
FOR THE CIMA REACTION

WEI-MING NI AND MOXUN TANG

Abstract. The first experimental evidence of the Turing pattern was ob-
served by De Kepper and her associates (1990) on the CIMA reaction in an
open unstirred gel reactor, almost 40 years after Turing’s prediction. Lengyel
and Epstein characterized this famous experiment using a system of reaction-
diffusion equations. In this paper we report some fundamental analytic prop-
erties of the Lengyel-Epstein system. Our result also indicates that if either
of the initial concentrations of the reactants, the size of the reactor, or the
effective diffusion rate, are not large enough, then the system does not admit
nonconstant steady states. A priori estimates are fundamental to our ap-
proach for this nonexistence result. The degree theory was combined with the
a priori estimates to derive existence of nonconstant steady states.

1. Introduction

The regeneration phenomenon of hydra, discovered by A. Trembley in 1744 [Tr],
is among the earliest and most well-known examples in morphogenesis. Attempting
to model this interesting and important phenomenon in biological pattern forma-
tion, A. Turing proposed the striking idea of “diffusion-driven instability” in 1952.
More precisely, in [T] Turing argued, in a system of two interactive substances,
different diffusion rates could lead to nonhomogeneous distributions of such reac-
tants. Although this idea was later successfully developed, on the theoretical side,
by A. Gierer and H. Meinhardt [GM] in modeling the regeneration phenomenon of
hydra, and was further verified mathematically to be capable of producing spikes
and peaks (see e.g. [N]), Turing’s revolutionary idea has never been experimentally
verified in hydra to this date.

The first experimental evidence of the Turing pattern was observed in 1990 by
De Kepper et al. ([CDBD] and [DCDB]) on the chlorite-iodide-malonic acid and
starch reaction (CIMA reaction) in an open unstirred gel reactor, almost 40 years
after the publication of Turing’s paper. The fact that there are five reactants in-
volved in the CIMA reaction makes the mathematical description very complicated.
However, observing that three of the five reactants remain nearly constants in the
CIMA reaction, Lengyel and Epstein [LE1], [LE2] were able to reduce it to a 2× 2
system.

Let Ω be a bounded domain in Rn, with a smooth boundary ∂Ω. Let u = u(x, t)
and v = v(x, t) denote the chemical concentrations of the activator iodide (I−) and
the inhibitor chlorite (ClO−

2 ), respectively, at time t > 0 and a point x ∈ Ω. The
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Lengyel and Epstein model takes the form

∂u

∂t
= ∆u + a − u − 4uv

1 + u2
,(1.1)

∂v

∂t
= σ

[
c∆v + b

(
u − uv

1 + u2

)]
(1.2)

where ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator, carrying the spatial dependence of
the reaction; a and b are parameters related to the feed concentrations; c is the
ratio of the diffusion coefficients; σ > 1 is a rescaling parameter depending on
the concentration of the starch, enlarging the effective diffusion ratio to σc. In
laboratory conditions, a sample of parameters is taken in the range 0 < a < 35,
0 < b < 8, c = 1.5 and σ = 8. We shall assume accordingly that all constants
a, b, c, and σ are positive.

We consider positive solutions to the model subject to the initial condition

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,(1.3)

where u0, v0 ∈ C2(Ω) ∩ C0(Ω), and the Neumann boundary condition

∂u/∂ν = ∂v/∂ν = 0, x ∈ ∂Ω, t > 0,(1.4)

where ν is the unit outer normal to ∂Ω.
Although various important experimental and numerical studies on the Lengyel-

Epstein system have been conducted in the last decade (see, e.g., [CK, JMBD, JS,
WS]), the mathematical progress on the analytic aspects of the system has been
very limited. The main purpose of this paper is to report some of the fundamental
properties of this system in our preliminary studies. Our main results include both
existence and non-existence for the steady states of the system (1.1)–(1.4). In
Section 4, Theorems 1, 2 and 3 show that, roughly speaking, if the parameter a
(related to the feed concentrations), the size of the reactor Ω (reflected by its first
eigenvalue), or the “effective” diffusion rate d = c/b is not large enough, then the
system (1.1)–(1.4) has no nonconstant steady states. On the other hand, Theorem
4 in Section 6 guarantees that, if the parameter a lies in a suitable range, then
(1.1)–(1.4) possesses nonconstant steady states for large “effective” diffusion rate
d. These results further verify the original idea in “diffusion-driven instability” of
Turing.

A priori estimates for solutions of (1.1)–(1.4) are fundamental to our approach
for the nonexistence results. For the existence, we combine our a priori bounds
with the degree theory. The drawback in the degree-theoretical approach is that
we are not able to say much about the shape of the solution obtained this way. In
[JNT] we made a better description for the structure of the set of the non-constant
steady states on the one-dimensional case.

2. Invariant region

In this section, we will show that the parabolic system (1.1)–(1.4) has an invariant
region

�a = (0, a) × (0, 1 + a2)

in the phase plane which actually attracts all solutions of this system, regardless of
the initial values u0 and v0.
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To begin with, we first show that the initial-boundary value problem (1.1)–(1.4)
has a unique solution (u(x, t), v(x, t)) that is defined for all t > 0 and is bounded
by some positive constants depending on a, u0 and v0.

Proposition 2.1. The initial-boundary value problem (1.1)–(1.4) admits a unique
solution (u, v), defined for all x ∈ Ω and t > 0. Moreover, there exist two positive
constants C1, C2, depending only on a, u0 and v0 such that

C1 < u(x, t), v(x, t) < C2, x ∈ Ω, t > 0.

Proof. The local existence and uniqueness of solutions to the initial-boundary value
problem (1.1)–(1.4) are classical; see [F]. For the global existence and the bounded-
ness, we apply the theory of invariant region as was developed in [W]. In particular,
if there exists a region

� = (U1, U2) × (V1, V2)
in the (u, v) phase plane such that the vector field

(a − u − 4uv/(1 + u2), σb(u − uv/(1 + u2)))

points inward on the boundary of �, then � is a (positively) invariant rectangle,
and the solution (u, v) of (1.1)–(1.4) exists for all x ∈ Ω, t ≥ 0, and stays in �.

To complete the proof, we choose

U2 = max{a, max
x∈Ω

u0(x)}, V2 = max{2 + U2
2 , max

x∈Ω
v0(x)},

and
U1 = min{a/(1 + 4V2), min

x∈Ω
u0(x)}, V1 = min{1/2, min

x∈Ω
v0(x)}.

Clearly, the initial functions u0(x) and v0(x) are enclosed by the rectangle. It is
easy to verify that the vector field points into the rectangle � along its boundary:
Indeed, on the left side u = U1, V1 ≤ v ≤ V2, we have

a − u − 4uv/(1 + u2) > a − U1 − 4U1V2 ≥ 0

since U1 ≤ a/(1+4V2), so the vector field crosses this line in the direction pointing
inside �. For the other three sides, the simple verification can be done by similar
calculations. Therefore the region � is positively invariant with respect to the vector
field. We thus obtain the global existence and the uniqueness of the solutions.

The two constants C1 and C2 can now be chosen, respectively, by

C1 = min{U1, V1} > 0, C2 = max{U2, V2} > 0,

which depend on a, u0 and v0. �
We remark that the invariant region � constructed above can be arbitrarily large

because of its dependence on the initial values u0 and v0. However, the set �a as
mentioned at the beginning of this section depends only on a, and it attracts all
solutions of (1.1)–(1.4). More precisely, let u = u(x, t) and v = v(x, t) be solutions
of (1.1)–(1.4). Then there is some T ≥ 0, which may depend on u0 and v0, such
that (u, v) ∈ �a for all t > T and x ∈ Ω.

Proposition 2.2. Let u = u(x, t) and v = v(x, t) be the unique solutions of (1.1)–
(1.4). Then we have

lim sup
t→∞

u < a and lim sup
t→∞

v < 1 + a2

for all x ∈ Ω.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3956 W.-M. NI AND M. TANG

Proof. By Proposition 2.1 there exists an ε > 0 such that

ε <
4uv

1 + u2

for all x ∈ Ω and t > 0. We put ã = a− ε/2 and let ũ = ũ(t) be the unique solution
to the initial value problem of the ordinary differential equation

dũ

dt
= ã − ũ, ũ(0) = 2 max

x∈Ω
u0(x).(2.1)

Let û = u − ũ. By (1.1) and (2.1) we have

− ût + ∆û − û =
4uv

1 + u2
+ ã − a > 0(2.2)

and û(x, 0) < 0. Then using the classical maximum principle for parabolic equa-
tions, combined with the Neumann boundary condition (1.4), we find that û(x, t) <
0 and so u(x, t) < ũ(t) for all t > 0 and x ∈ Ω.

We next derive a comparison result for v = v(x, t) and a function ṽ = ṽ(t) defined
below. We remark that the maximum principle for parabolic equations does not
seem to be directly applicable to this case, so we shall give an elementary argument
using Hopf’s boundary lemma for elliptic equations.

Let C1 be the constant given in Proposition 2.1. Define

g̃(ũ, ṽ) = sup
C1<ξ<ũ

(
ξ − ξ(ṽ − ε0)

1 + ξ2

)
,

where ε0 > 0 and

ã2 + ε0 < a2.

Then the function ṽ(t) is defined to be the unique solution to the initial value
problem

dṽ

dt
= σbg̃(ũ, ṽ), ṽ(0) = 2 max

x∈Ω
v0(x).(2.3)

Let v̂ = v − ṽ. Then v̂(x, 0) < 0 for all x ∈ Ω. We claim that v̂(x, t) < 0 for all
x ∈ Ω and t > 0. Indeed, suppose this is not true. Then there exists a T > 0
such that v̂(x, t) < 0 for (x, t) ∈ Ω × (0, T ), and v̂(x, T ) = 0 for some x ∈ Ω. By
continuity one has

max
x∈Ω

v̂(x, T ) = 0.

Now, if there is an x1 ∈ Ω such that v̂(x1, T ) = 0, then v̂t(x1, T ) ≥ 0 and
∆v̂(x1, T ) ≤ 0, which yield

−v̂t(x1, T ) + σc∆v̂(x1, T ) ≤ 0.

On the other hand, by (1.2) and (2.3),

− v̂t + σc∆v̂ = σb

[
g(ũ, ṽ) −

(
u − uv

1 + u2

)]
.(2.4)
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At the point (x1, T ), since ṽ = v and ũ > u, we find that

g̃(ũ, ṽ) = sup
C1<ξ<ũ

(
ξ − ξ(ṽ − ε0)

1 + ξ2

)
= sup

C1<ξ<ũ

(
ξ − ξ(v − ε0)

1 + ξ2

)

> sup
C1<ξ<ũ

(
ξ − ξv

1 + ξ2

)
≥ sup

C1<ξ≤u

(
ξ − ξv

1 + ξ2

)

≥ u − uv

1 + u2
,

which gives −v̂t(x1, T ) + σc∆v̂(x1, T ) > 0, leading to a contradiction.
If v̂(x, T ) < 0 for all x ∈ Ω, then there would be some x1 ∈ ∂Ω such that

v̂(x1, T ) = 0. Thus the right-hand side of (2.4) is positive at (x1, T ), and by
continuity it remains positive in Ω′ × {T}, where Ω′ is a sub-domain of Ω and
x1 ∈ ∂Ω′. Therefore, on Ω′ × {T} we have

−v̂t + σc∆v̂ ≥ 0.

(Note that it is not known whether or not this inequality holds in Ω× (0, T ], which
makes the situation delicate.) Now treating (2.4) as an elliptic equation in Ω

′×{T},
we see by Hopf’s boundary lemma that ∂v̂/∂ν(x1, T ) > 0, which contradicts the
Neumann boundary condition (1.4). Hence we must have v(x, t) < ṽ(t) for all x ∈ Ω
and t > 0.

We finally consider the flow defined by the system
dũ

dt
= ã − ũ,

dṽ

dt
= σbg̃(ũ, ṽ)

in �. From the definition of g̃ it follows that

g̃ < 0 when ṽ > 1 + ũ2 + ε0, and g̃ > 0 when ṽ < 1 + ũ2 + ε0.

Thus the zero curve of g̃ is given by ṽ = 1 + ũ2 + ε0, and therefore this dynamic
system has a unique equilibrium (ũ, ṽ) = (ã, 1 + ã2 + ε0). By the equation of ũ it
is clear that limt→∞ ũ(t) = ã. It is therefore not hard to see that the equilibrium
is globally asymptotically stable in � and so limt→∞ ṽ(t) = 1 + ã2 + ε0. The
conclusion of this proposition readily follows since ã < a, ã2 + ε0 < a2, and u and
v are respectively bounded above by ũ and ṽ. �

3. Properties of nonconstant steady states

In this section, we shall discuss the basic properties of non-homogeneous steady
states of the Lengyel-Epstein reaction-diffusion system; namely, positive noncon-
stant solutions to the elliptic system

∆u + a − u − 4uv

1 + u2
= 0,(3.1)

d ∆v + u − uv

1 + u2
= 0(3.2)

(d = c/b), subject to the homogeneous Neumann boundary condition

∂u/∂ν = ∂v/∂ν = 0, x ∈ ∂Ω.(3.3)

Proposition 3.1 (A priori estimates). If (u, v) = (u(x), v(x)) is a positive solution
to the boundary value problem (3.1)–(3.3), then

(3.4)
a

5 + 4a2
< u < a and 1 +

(
a

5 + 4a2

)2

< v < 1 + a2, x ∈ Ω.
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The upper bounds here of course follow by Proposition 2.2 directly, which how-
ever does not yield the lower bounds. One could possibly derive the lower bounds
in (3.4) by using the comparison argument as in Section 2, but we prefer a simpler
and more direct proof based on an elliptic maximum principle due to Lou and Ni
[LN].

Lemma 3.1 ([LN]). Suppose that F (x, w) ∈ C(Ω × R). If w ∈ C2(Ω) ∩ C1(Ω)
satisfies

∆w(x) + F (x, w(x)) ≥ 0 in Ω, ∂w/∂ν ≤ 0 on ∂Ω(3.5)

and w(x0) = maxΩ w, then F (x0, w(x0)) ≥ 0. Similarly, if the two inequalities in
(3.5) are reversed and w(x0) = minΩ w, then F (x0, w(x0)) ≤ 0.

Proof of Proposition 3.1. If at some point in Ω the function u attains its maximum
over Ω, then at this point we have

a − u − 4uv/(1 + u2) ≥ 0,

by (3.1), (3.3) and Lemma 3.1. It readily follows that u < a. Similarly, if v attains
a maximum over Ω at some point, then by (3.2), (3.3) and Lemma 3.1 we have

u − uv/(1 + u2) ≥ 0,

implying that v ≤ 1 + u2 < 1 + a2.
If u attains its minimum over Ω at a point, then

a ≤ u + 4uv/(1 + u2) < u + 4u(1 + a2) = (5 + 4a2)u,

and so u > a/(5 + 4a2). Similarly, we can derive the lower bound for v. �

For a given pair of solutions u = u(x), v = v(x) to the elliptic problem (3.1)–
(3.3), we denote their averages over Ω by

ū =
1
|Ω|

∫
Ω

u(x) dx, v̄ =
1
|Ω|

∫
Ω

v(x) dx,

where |Ω| is the volume of Ω.

Lemma 3.2. ū = a/5.

Proof. Write
w(x) = 4dv(x) − u(x).

By (3.1) and (3.2) we obtain

∆w − a + 5u = 0.(3.6)

Integrating (3.6) over Ω gives∫
Ω

(5u − a) dx =
∫

Ω

∆w dx =
∫

∂Ω

∂w

∂ν
dS = 0

by the boundary condition (3.3). Hence ū = a/5. �

Let
φ = u − ū, ψ = v − v̄.

Then
∫

φ =
∫

ψ = 0. (Here and in the sequel we use the notation
∫

to denote the
integral over Ω). If (u, v) is not a constant solution, then φ and ψ are non-trivial
and must change sign in Ω. Our next result shows that, however, the product φψ
has a positive average over Ω.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TURING PATTERNS 3959

Lemma 3.3. Suppose u and v are nonconstant solutions of (3.1)–(3.3). Then∫
φψ > 0 and

∫
∇φ · ∇ψ > 0.

Proof. Rewrite (3.6) as
−∆w = 5φ.

Multiply this by w = 4dv − u and integrate by parts yielding∫
|∇w|2 =

∫
5φw

= 20d

∫
φv − 5

∫
φu

= 20d

∫
φψ − 5

∫
φ2

since φ = u − ū, ψ = v − v̄ and
∫

φ =
∫

ψ = 0. Thus we obtain∫
φψ =

1
20d

(∫
|∇w|2 + 5

∫
φ2

)
.(3.7)

If we multiply (3.6) by φ and integrate by parts, then

5
∫

φ2 =
∫

∇φ · ∇w = 4d

∫
∇φ · ∇ψ −

∫
|∇φ|2,

which implies that ∫
∇φ · ∇ψ =

1
4d

(∫
|∇φ|2 + 5

∫
φ2

)
.(3.8)

The conclusion of this lemma follows from (3.7) and (3.8) immediately. �
The estimate (3.4) guarantees that there exists a constant cg depending on a

only such that
|g(u, v)| = |u − uv/(1 + u2)| ≤ cg.

This enables us to derive

Lemma 3.4. There exists a constant Cg, depending on a and Ω, such that∫
ψ2 +

∫
|∇ψ|2 ≤ Cgd

−2.(3.9)

Proof. By (3.2) and the Schwarz inequality we have

d

∫
|∇ψ|2 =

∫
g(u, v)ψ ≤ cg

∫
|ψ| ≤ cg

√
|Ω|

(∫
|ψ|2

)1/2

.

Applying the well-known Poincaré inequality∫
ψ2 ≤ 1

λ1

∫
|∇ψ|2,

where λ1 > 0 is the first positive eigenvalue of −∆ on Ω subject to the Neumann
boundary condition, we obtain

d

∫
|∇ψ|2 ≤ cg

√
|Ω|/λ1

(∫
|∇ψ|2

)1/2

.

This gives ∫
|∇ψ|2 ≤

c2
g|Ω|
λ1

d−2.
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Applying the Poincaré inequality again we obtain (3.9) with

Cg = c2
g|Ω|(1 + λ1)/λ2

1.

�
Lemma 3.5. Let (u, v) be a nonconstant solution of the problem (3.1)–(3.3). Then

12λ2
1

3λ2
1 + 15λ1 + 25

<

∫
|∇u|2

d2
∫
|∇v|2 < 16.(3.10)

Proof. Recall that w = 4dv − u. By (3.8) we have∫
|∇w|2 = 16d2

∫
|∇ψ|2 − 8d

∫
∇φ · ∇ψ +

∫
|∇φ|2

= 16d2

∫
|∇ψ|2 −

∫
|∇φ|2 − 10

∫
φ2

and so ∫
|∇φ|2 + 10

∫
φ2 ≤ 16d2

∫
|∇ψ|2.(3.11)

The second inequality of (3.10) thus follows.
To finish the proof, we first claim

4d2

∫
|∇ψ|2 =

1
4

∫
|∇φ|2 +

5
4

∫
φ2 + 5d

∫
φψ.(3.12)

Indeed, continuing the calculation above we find that

16d2

∫
|∇ψ|2 =

∫
|∇w|2 +

∫
|∇φ|2 + 10

∫
φ2

and using (3.7) we get

16d2

∫
|∇ψ|2 =

∫
|∇φ|2 + 5

∫
φ2 + 20d

∫
φψ,

which is exactly (3.12).
We next recall the elementary Cauchy inequality: for any given real numbers ξ,

ζ and κ > 0,

ξζ ≤ 1
4κ

ξ2 + κζ2.(3.13)

Now, from (3.12) and (3.13) it follows that

4d2

∫
|∇ψ|2 ≤ 1

4

∫
|∇φ|2 +

5
4

∫
φ2 +

25
12λ1

∫
φ2 + 3d2λ1

∫
ψ2

≤
[
1
4

+
(

5
4

+
25

12λ1

) /
λ1

] ∫
|∇φ|2 + 3d2

∫
|∇ψ|2.

Hence

d2

∫
|∇ψ|2 ≤

[
1
4

+
(

5
4

+
25

12λ1

) /
λ1

] ∫
|∇φ|2,(3.14)

establishing the first inequality of (3.10). �
Lemma 3.6. Let (u, v) be a nonconstant solution of the problem (3.1)–(3.3). Then

12λ3
1

(λ1 + 1) (3λ2
1 + 15λ1 + 25)

<

∫ (
|∇φ|2 + φ2

)
d2

∫
(|∇ψ|2 + ψ2)

< 16.(3.15)
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Proof. By the Poincaré inequality we have∫ (
|∇ψ|2 + ψ2

)
≤ (λ1 + 1)/λ1

∫
|∇ψ|2.

This, together with the first inequality of (3.10), implies the first inequality of
(3.15). The second inequality of (3.15) follows from (3.11). �

4. Non-existence of Turing patterns

Several non-existence results for the nonconstant steady state solutions will be
given in this section. In brief, our theorems show that the chemical reaction creates
a Turing pattern only if the parameter a (related to the feed concentrations), the
size of the reactor (reflected by its first eigenvalue λ1), and the effective diffusion
rate d = c/b are suitably large.

The non-existence results also play a critical role in obtaining the existence
theorem for larger parameters in Section 6.

Theorem 1. There is a constant d0 = d0(a, λ1) > 0 such that the problem (3.1)–
(3.3) does not admit a nonconstant solution for 0 < d < d0.

Proof. Multiplying (3.2) by ψ and integrating by parts we derive

d

∫
|∇ψ|2 =

∫
φψ −

∫
uvψ

1 + u2

=
∫

φψ −
∫ (

uv

1 + u2
− uv̄

1 + u2

)
ψ −

∫ (
uv̄

1 + u2
− ūv̄

1 + ū2

)
ψ

=
∫

φψ −
∫

u

1 + u2
ψ2 +

∫
(uū − 1)v̄

(1 + u2)(1 + ū2)
φψ.

From the a priori estimates in Proposition 3.1 it follows that

d

∫
|∇ψ|2 ≤ C1(a)

∫
|φψ| −

∫
u

1 + u2
ψ2

≤ C1(a)
∫

|φψ| − C2(a)
∫

ψ2.

Applying the Cauchy inequality and the Poincaré inequality we have

d

∫
|∇ψ|2 ≤ C2

1

4C2

∫
φ2 ≤ C2

1

4C2λ1

∫
|∇φ|2,(4.1)

which, in turn, implies that∫
|∇ψ|2 ≤ d

d0

∫
|∇ψ|2,(4.2)

by (3.10), where

d0 = d0(a, λ1) =
C2(a)λ1

4C2
1 (a)

.

Clearly, if d < d0, then
∫
|∇ψ|2 = 0 and thus

∫
|∇φ|2 = 0 by (3.10) again. Therefore

|∇φ| ≡ |∇ψ| ≡ 0 over Ω, and u and v must be constants. �

We remark that for a given a it is very involved to get a good estimate for the
constant d0 derived above. Nevertheless, if a is not very large, then we can obtain
a much simpler estimate using a different approach.
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Theorem 2. If a2 ≤ 75, then the boundary value problem (3.1)–(3.3) does not
admit any nonconstant solution if

1
d

>
8a

5
− 25

a
.(4.3)

In particular, there is no nonconstant solution for all d > 0 if a2 ≤ 125/8.

Proof. If we multiply (3.1) by (1 + u2)φ, then

φ∆φ + u2φ∆φ + (a − ū − φ)φ + (a − u)u2φ − 4uvφ = 0.

Integration by parts gives∫
|∇φ|2 = −

∫
∇(u2φ) · ∇φ −

∫
φ2 +

∫
(a − u)u2φ − 4

∫
uvφ

= −
∫

(2uφ + u2)|∇φ|2 −
∫

φ2 +
∫

φ

[
(a − u)u2 − 4

125
a3

]

−4
∫

φ(uv − ūv̄)

=
1
5

∫
(2a − 15u)u|∇φ|2 +

∫
φ2

(
−u2 +

4a

5
u +

4
25

a2 − 1
)

−4
∫

vφ2 − 4a

5

∫
φψ.

As

(2a − 15u)u ≤ a2

15
, −u2 +

4a

5
u +

4
25

a2 ≤ 8a2

25
and v ≥ 1, this leads to∫

|∇φ|2 ≤ a2

75

∫
|∇φ|2 +

(
8a2

25
− 5

) ∫
φ2 − 4a

5

∫
φψ.

Applying (3.7) to
∫

φψ we obtain∫
|∇φ|2 ≤ a2

75

∫
|∇φ|2 +

(
8a2

25
− 5 − a

5d

) ∫
φ2.(4.4)

Now, if a2 ≤ 75 and (4.3) holds, then for a nonconstant solution (u, v), we conclude
that

∫
|∇φ|2 <

∫
|∇φ|2, a contradiction. Thus φ ≡ 0. �

If we fix a and d, then Theorem 1 also gives the non-existence for large λ1. To
see this, recall that d0 = C(a)λ1 for some constant C(a), so taking λ1 suitably large
one can make d < d0.

Moreover, our next theorem provides a stronger result than the observation
above: If λ1 is sufficiently large, then the non-existence holds for all d > 0.

Theorem 3. There is a constant Λ = Λ(a) > 0 such that the problem (3.1)–(3.3)
does not admit any nonconstant solution if λ1(Ω) > Λ.

Proof. Multiplying equation (3.1) by φ and integrating by parts we have∫
|∇φ|2 =

∫ (
a − u − 4uv

1 + u2

)
φ

= −
∫

φ2 − 4
∫

uv

1 + u2
φ.
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Since ∫
uv

1 + u2
φ

=
∫ (

uv

1 + u2
− ūv

1 + u2
+

ūv

1 + u2
− ūv̄

1 + u2
+

ūv̄

1 + u2
− ūv̄

1 + ū2

)
φ

=
∫

v

1 + u2
φ2 +

∫
ū

1 + u2
φψ −

∫
ūv̄(ū + u)

(1 + u2)(1 + ū2)
φ2,

it follows that∫
|∇φ|2 ≤

∫
4ūv̄(ū + u)

(1 + u2)(1 + ū2)
φ2 −

∫
4ū

1 + u2
φψ.

Applying the a priori estimates in Proposition 3.1 we obtain the estimate∫
|∇φ|2 ≤ C

∫
φ2 + C

∫
|φψ|,(4.5)

where C stands for a generic constant depending on a in this proof, which may
differ from line to line. By the Schwarz inequality and the Poincaré inequality we
have∫

|φψ| ≤
(∫

|φ|2
)1/2 (∫

|ψ|2
)1/2

≤ 1
λ1

(∫
|∇φ|2

)1/2 (∫
|∇ψ|2

)1/2

.

Consequently, ∫
|φψ| ≤ Cλ

−3/2
1 d−1/2

∫
|∇φ|2,

by (4.1). Combining this with (4.5) we find that∫
|∇φ|2 ≤ C

λ 1

(
1 +

1
(λ1d)1/2

)∫
|∇φ|2.(4.6)

Now, if d is not small, say, d ≥ 1, then by choosing Λ so large that for λ1 > Λ,
C

λ1

(
1 + λ1

−1/2
)

< 1

we can make by (4.6)
∫
|∇φ|2 = 0, which forces u and v to be constants. On the

other hand, if d < 1, then we can choose λ1 so large that d0 > 1, which gives the
non-existence again by Theorem 1. �

5. Turing instability

Let

f(u, v) = a − u − 4uv

1 + u2
, g(u, v) = u − uv

1 + u2
.(5.1)

Then the Lengyel-Epstein system (1.1)–(1.2) can be written as

ut = ∆u + f(u, v), vt = σ [c∆v + bg(u, v)] .

A constant steady-state solution (u∗, v∗) of this system subject to the Neumann
boundary condition (1.4) satisfies f(u∗, v∗) = g(u∗, v∗) = 0. Hence (u∗, v∗) is
unique and is given by

(u∗, v∗) = (α, 1 + α2), α = a/5.
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Observe that fv(u∗, v∗) < 0, gu(u∗, v∗) > 0 and gv(u∗, v∗) < 0. If

fu(u∗, v∗) = (3α2 − 5)/(1 + α2) > 0,

then we call u an activator, v an inhibitor, and the system (1.1)–(1.2) an activator-
inhibitor system. Clearly this is fulfilled if

3α2 − 5 > 0.(5.2)

We say that this constant solution is Turing unstable if it is stable in the absence
of diffusion, and it becomes unstable when diffusion is present. More precisely, this
requires the following two conditions:

(i) It is stable as an equilibrium of the system of ordinary differential equations

du

dt
= f(u, v),

dv

dt
= σb g(u, v).(5.3)

(ii) It is unstable as a steady state of the reaction-diffusion equations (1.1)–(1.2)
subject to the homogeneous Neumann boundary conditions.

Using the ODE theory we can easily find a sufficient and necessary condition for
(i). The Jacobian matrix of (5.3) evaluated at (u∗, v∗) is

J =
[

f0 f1

σbg0 σbg1

]

where

(5.4) f0 =
3α2 − 5
1 + α2

, f1 = − 4α

1 + α2
, g0 =

2α2

1 + α2
, g1 = − α

1 + α2
.

Since
detJ

σb
= f0g1 − f1g0 = 5α/(1 + α2) > 0,(5.5)

the eigenvalues of J have negative real parts, and so (u∗, v∗) is diffusion free stable,
if and only if traceJ = f0 + σbg1 < 0, or equivalently

3α2 − 5 < σαb.(5.6)

Combining (5.2) and (5.6), we find that the condition
(H) 0 < 3α2 − 5 < σαb

makes the model (1.1)–(1.2) a diffusion-free stable activator-inhibitor system.
We next derive a sufficient condition for (ii) above. Let 0 = λ0 < λ1 ≤ λ2 ≤

λ3 ≤ · · · be the sequence of eigenvalues for the elliptic operator −∆ subject to the
Neumann boundary condition on Ω, where each λi has multiplicity mi ≥ 1. Let
φij , 1 ≤ j ≤ mi, be the normalized eigenfunctions corresponding to λi. Then the
set {φij}, i ≥ 0, 1 ≤ j ≤ mi, forms a complete orthonormal basis in L2(Ω). If

λ1 < f0 =
3α2 − 5
1 + α2

,(5.7)

then we define iα = iα(α, Ω) to be the largest positive integer such that

λi < f0 for i ≤ iα.

Clearly, if (5.7) is satisfied, then 1 ≤ iα < ∞. In this case, we let

(5.8) d̃ = d̃(α, Ω) = min
1≤i≤iα

di, di =
α

1 + α2

λi + 5
λi(f0 − λi)

.
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Then the local stability of (u∗, v∗) can be summarized as follows:

Lemma 5.1. Assume (H) holds. If λ1 ≥ f0, or λ1 < f0 and 0 < d = c/b < d̃, then
the constant steady state (u∗, v∗) is asymptotically stable. If λ1 < f0, and d > d̃,
then (u∗, v∗) is unstable.

Proof. Consider the linearization operator

Lσ =
(

∆ + f0 f1

σbg0 σc∆ + σbg1

)

where f0, f1, g0 and g1 are given in (5.4). From the standard linear operator theory
(or Theorem 1 of [CH]) it is known that if all the eigenvalues of this operator have
negative real parts, then (u∗, v∗) is asymptotically stable, and if some eigenvalues
have positive real parts, the (u∗, v∗) is unstable.

Suppose (φ(x), ψ(x)) is an eigenfunction of Lσ corresponding to an eigenvalue
µ. Then

(∆φ + (f0 − µ)φ + f1ψ, σc∆ψ + σbg0φ + (σbg1 − µ)ψ) = (0, 0).

Letting

φ =
∑

0≤i≤∞,1≤j≤mi

aijφij and ψ =
∑

0≤i≤∞,1≤j≤mi

bijφij ,

we find that ∑
0≤i≤∞,1≤j≤mi

(
f0 − λi − µ f1

σbg0 σbg1 − σcλi − µ

) (
aij

bij

)
φij = 0.

It readily follows that µ is an eigenvalue of Lσ if and only if for some i ≥ 0 the
determinant of the matrix is zero, that is,

µ2 + Piµ + σbQi = 0,

where

Pi = (1 + σc)λi − (f0 + σbg1) = (1 + σc)λi − (3α2 − 5 − σαb)/(1 + α2) > 0

by (5.4) and condition (H), and

(5.9) Qi = (f0 − λi)(g1 − dλi) − f1g0 = dλi (λi − f0) +
α

1 + α2
(λi + 5)

since c = bd and f0g1 − f1g0 = 5α/(1 + α2). Clearly, Q0 > 0 for λ0 = 0. Now,
if λ1 ≥ f0, then by (5.9) Qi > 0 for all i ≥ 1. This implies that Re µ < 0 for all
eigenvalues µ, and so the steady-state (u∗, v∗) is asymptotically stable.

If λ1 < f0 and 0 < d < d̃, then

λi < f0 and d < di, i ∈ [1, iα].

It follows that Qi > 0 for all i ∈ [1, iα]. Furthermore, if i > iα, then λi ≥ f0 and
Qi > 0 by (5.9). The argument leads to the asymptotical stability of (u∗, v∗) again.

Finally, if λ1 < f0, and d > d̃, then we may assume that the minimum in (5.8)
is attained by k ∈ [1, iα]. Thus

d > dk,

which implies Qk < 0, and so the instability of (u∗, v∗) follows. �
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6. Existence of non-homogeneous steady states

In view of the non-existence results for small diffusion coefficients in Section 4,
it is particularly interesting to know if (1.1)–(1.4) admit non-homogeneous steady
states when the system parameters take on larger values. We shall give a positive
answer to this question in this section, using a standard approach based on the
Leray-Schauder degree theory for compact operators in Banach space.

We first reformulate the system (3.1)–(3.3) in the framework that the degree
theory can be easily applied. Let ũ = u − α, ṽ = v − 1 − α2. Then (3.1)–(3.2) is
shifted to

−∆ũ = f0ũ + f1ṽ + f2(ũ, ṽ),
−d ∆ṽ = g0ũ + g1ṽ + g2(ũ, ṽ),

where f2 and g2 consist of higher order terms of ũ and ṽ. The constant steady state
(α, 1 + α2) is thus shifted to (0, 0), and the region �a defined in Section 2 becomes
the rectangle

S = {(ũ, ṽ) : −α < ũ < 4α, −1 − α2 < ṽ < 24α2}.

For w ∈ Cβ(Ω), β ∈ (0, 1), let u = G(w) be the solution to the boundary value
problem of the linear elliptic equation

−∆u + f0u = w in Ω,
∂u

∂ν
= 0 on ∂Ω,

and let v = Gd(w) be the solution to the linear problem

−d∆v − g1v = w in Ω,
∂v

∂ν
= 0 on ∂Ω,

where f0 = (3α2 − 5)/(1 + α2) > 0 and g1 = −α/(1 + α2) < 0. By the standard
existence theory of linear elliptic equations, u and v are uniquely defined, and by
the Schauder estimates u, v ∈ C2+β(Ω) and the mappings G and Gd are continuous
and compact. Let

E = {(u, v) : u, v ∈ C1+β(Ω),
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω},

and U = (ũ, ṽ). Then the problem (3.1)–(3.3) can be interpreted as the equation

U = K(d)U + H(U)(6.1)

in E, where
K(d)U = (2f0G(ũ) + f1G(ṽ), g0Gd(ũ))

is a compact linear operator on E for any given d > 0, and

H(U) = (G(f2), Gd(g2)) = o(|U |)

for U near zero uniformly on closed d sub-intervals of (0,∞), and is a compact
operator on E as well.

Theorem 4. Assume (H) holds. Suppose λ1 < f0 < λ2, and λ1 has an odd
multiplicity. Then for any d > d1 the problem (3.1)–(3.3) possesses at least one
nonconstant positive solution.
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Proof. By Proposition 2.2 or Proposition 3.1, equation (6.1) has no solution on the
boundary of S. Thus the Leray-Schauder degree deg(I −K(d)−H, E ∩S, 0) is well
defined, and by the homotopy invariance it is a constant for all d > 0. We claim
that

deg(I − K(d) − H, E ∩ S, 0) = 1, d > 0.(6.2)

To prove (6.2), we recall that if (0, 0) is an isolated zero of I − K(d) − H and
the linear operator I − K(d) is a bijection, then

deg(I − K(d) − H, E ∩ S, 0) = i(I − K(d), (0, 0)) = (−1)p,(6.3)

where p is the sum of the algebraic multiplicities of the positive eigenvalues of K(d)−
I. Note that if µ is an eigenvalue of K(d) − I with a corresponding eigenfunction
(φ, ψ), then

−(µ + 1)∆φ = (−µ + 1)f0φ + f1ψ,

−d(µ + 1)∆ψ = g0φ + (µ + 1)g1ψ.

As in the proof of Lemma 5.1, we use the Fourier expansion

φ =
∑

0≤i≤∞,1≤j≤mi

aijφij and ψ =
∑

0≤i≤∞,1≤j≤mi

bijφij .

Then
∑

0≤i≤∞,1≤j≤mi
Bi

(
aij

bij

)
φij = 0, where

Bi =
(

(−µ + 1)f0 − (µ + 1)λi f1

g0 (µ + 1)g1 − d(µ + 1)λi

)
.

Hence the set of eigenvalues of K(d)− I consists exactly of all roots of the charac-
teristic equation

(f0 + λi)µ2 + 2λiµ + λi − f0 −
f1g0

dλi − g1
= 0(6.4)

where the integer i runs from zero to ∞. By (5.9) we find that here the constant
term is

λi − f0 −
f1g0

dλi − g1
=

Qi

dλi − g1
.

Since f0 > 0 and g1 < 0, it is clear that K(d0) − I and the operator Lσ defined in
Section 5 have the same number of positive eigenvalues.

By Theorem 1 we may find d0 > 0 sufficiently small such that (6.1) has no
solution other than (0, 0) in S. By Lemma 5.1 and the discussion above we can
make the linear operator I −K(d0) a bijection with no positive eigenvalues. Hence
from (6.3) it follows that

deg(I − K(d) − H, E ∩ S, 0) = i(I − K(d0), (0, 0)) = 1,

and (6.2) is established.
Now suppose for contradiction that there exists d > d1 such that (3.1)–(3.3)

does not admit any nonconstant solution under our assumption. Then (0, 0) is an
isolated zero of I − K(d) − H in S. We shall show that this would imply that the
index i(I − K(d), (0, 0)) = −1, which gives the desired contradiction to (6.2) and
completes our proof.

Since f0 > λ1, we find that Q1 < 0 for all d > d1. Let i = 1, then (6.4) has one
positive root, say, µ1 > 0, and a negative root. With our further assumption that
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f0 < λ2, we have Qi > 0 for all i ≥ 2. Therefore, when i ≥ 2, the characteristic
equation (6.4) has no roots with non-negative real parts. We conclude that K(d)−I
has exactly one positive eigenvalue µ1 > 0, and all other eigenvalues have negative
real parts. Thus (6.3) is valid for all d > d1, with p being the algebraic multiplicity
of µ1:

p = dim
∞⋃

i=1

kerAi, A = K(d) − (µ1 + 1)I.

Using some standard argument we shall prove p = m1, which clearly yields
i(I − K(d), (0, 0)) = −1 since m1 is assumed to be an odd number. Indeed, as µ1

is an eigenvalue of K(d) − I, the discussion above shows that

ker A = {
(

f1

(µ1 − 1)f0 + (µ1 + 1)λ1

)
φ1j , 1 ≤ j ≤ m1}.

Thus p ≥ m1 = dim kerA. It is now sufficient to prove

kerA2 = kerA,(6.5)

since this implies ker Ai = ker A for all i ≥ 1, yielding immediately that p = m1.
It is known that (6.5) holds if and only if kerA ∩ Range(A) = {0}. Let A∗ be

the adjoint operator of A, then Range(A) = (kerA∗)⊥. Let (φ, ψ) ∈ ker A∗. Then
K∗(φ, ψ) = (µ1 + 1)(φ, ψ), where K∗ is the adjoint of K. This gives

2f0G(φ) + g0Gd(ψ) = (µ1 + 1)φ

and
f1G(φ) = (µ1 + 1)ψ.

By the definition of G and Gd we obtain

−df1(µ1 + 1)∆φ = fφφ + fψψ,

−(µ1 + 1)∆ψ = f1φ − (µ1 + 1)f0ψ,

where

fφ = 2df0f1 + (µ1 + 1)f1g1, fψ = f1g0 − 2(µ1 + 1)(f0g1 + df2
0 ).

Using the same Fourier expansion for φ and ψ as above we have B∗
i

(
aij

bij

)
= 0,

where 0 ≤ i ≤ ∞, 1 ≤ j ≤ mi, and

B∗
i =

(
fφ − df1(µ1 + 1)λi fψ

f1 −(µ1 + 1)(f0 + λi)

)
.

If we replace µ by µ1 in the matrix Bi, then it can be verified that det B∗
i = f1 detBi.

Hence det B∗
1 = 0, and det B∗

i 	= 0 for i ≥ 2. It follows that

ker A∗ = {
(

(µ1 + 1)(λ1 + f0)
f1

)
φ1j , 1 ≤ j ≤ m1}.

Since

(µ1 − 1)f0 + (µ1 + 1)λ1 + (µ1 + 1)(λ1 + f0) = 2(µ1 + 1)λ1 + 2µ1f0 > 0,

we conclude that kerA∩(kerA∗)⊥ = {0}, which leads to p = m1 and a contradiction
to (6.2). This completes the proof. �
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One can easily extend the argument in the proof of this theorem to obtain a more
general result without assuming f0 < λ2, but the statement can be complicated
since di, defined in Section 5, is not monotone as a function of i. We shall leave
the details to the interested readers.
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