
TURING’S “ORACLE”: FROM
ABSOLUTE TO RELATIVE

COMPUTABILITY--AND BACK

Solomon Feferman
Logic Seminar, Stanford, April 10, 2012

Plan

1. “Absolute” computability: machines and recursion
theory.

2. Relative computability: degrees of unsolvability

3. Uniform relative computability: partial recursive
functionals

4. Computability/recursion theory generalized to
arbitrary structures

5. Significance of notions of relative computability for
actual computation

1. “Absolute” effective computability
Origins

• Explication of the concept of effective
computability (1933-1937)

• Church, Herbrand-Gödel, Turing, Post, Kleene

• Turing machines (1936-1937)

• Equivalence of the definitions

• The Church-Turing Thesis

• Register machines (Shepherdson, Sturgis, 1963)

‘Theory of Computation’ or
‘Recursion Theory’?

• Theory of computation emphasizes rule directed
processes

• Recursion theory emphasizes a principal form of
rule

• Ironically, Theoretical Computer Science is more
concerned with the rules than the processes

• Soare’s campaign (e.g., ‘c.e.’ instead of ‘r.e.’, etc.)

Primitive Recursive Definition
(Dedekind, Skolem)

• N = the natural numbers, n′ = n+1 = sc(n)

• Defining effectively computable f: Nk → N by
recursion equations.

• Primitive recursion: Explicit definition from
0, sc and previous functions, and

• for k ≥ 0 and given g, h, and for y = (y1,…,yk),
f(0, y) = g(y), f(x′, y) = h(x, y, f(x, y))

General Recursive Definition
(Herbrand-Gödel)

• E a finite system of equations in f and auxiliary
function symbols

• E ⊦ s = t if (s = t) is derivable using substitution of
numerals n* for variables, and equals for equals.

• E computes f (say for f: N → N) if
f(n) = m iff E ⊦ f(n*) = m*

• f is general recursive if it is computable by some
finite system of equations E.

General Recursive and
Partial Recursive Functions

• Theorem The general recursive functions are the
same as the Turing computable functions.

• Partial computable and partial recursive functions
f : Nk →p N (in the following, typically for k = 1)

• f(n)↓, f(n) ≃ m

• E computes partial recursive f if whenever
E ⊦ f(n*) = m* and E ⊦ f(n*) = p* then m = p.

Enumeration of Partial Rec. Fns.

• Kleene’s Normal Form Theorem Each partial
recursive f : N →p N is representable in the form
f(x) ≃ U(µy. T(e, x, y)) for some e ∈N, where U, T
are primitive recursive, µy(…) = min y(…).

• Enumeration Theorem The function {z}(x) ≃
U(μy.T(z, x, y) is partial rec. and enumerates all
unary partial rec. fns. for z = 0, 1, 2,...
(∼Universal Turing machine)

• The Halting Problems
H = {(z,x): {z}(x)↓}, K = {x : {x}(x)↓}

Decision Problems for A ⊆ N

• A is recursive (or decidable) if its
characteristic fn. cA is recursive

• The decision problem for A is effectively
unsolvable if A is not recursive

Some Effectively Unsolvable Problems

• H

• K

• The Entscheidungsproblem for 1st order
predicate logic

• Hilbert’s 10th problem (Diophantine
equations)

• The Word Problem for groups

Many-One Reduction and R.E. Sets

• A ≤m B iff for some general rec. f,
∀x[x ∈ A ⇔ f(x) ∈ B]

• If A ≤m B and A is not recursive then B is not
recursive

• A is recursively enumerable (r.e.) if A is ∅
or the range of some (prim.) rec. f

• If B is r.e. and A ≤m B then A is r.e.

R. E. Sets (cont’d)

• The r.e. sets A are just those definable in the form
∀x[x ∈ A ⇔ ∃y R(x, y) where R is (prim.) rec

• The unsolvable prob’s above (H, K, etc.) are all r.e.

• If T is an effectively presented formal system then
the set of Gödel nrs. of theorems of T is r.e.

• Every recursive set is r.e.

• Fact: If A is an r.e. set then A ≤m K

• {z : {z} is total} is not r.e. (∀x∃yT(z, x, y))

2. Relative Effective Computability

• ‘Oracle’ computability (Turing 1939). A is
effectively computable from B if it is computable by
a machine which may call on an “oracle” for B.

• Write f ≤ g if f is computable from an oracle
for g, and A ≤ B if cA ≤ cB

• Can define f ≤ g iff for system of eqns. E
f(n) = m ⇔ E ∪ Diag(g) ⊦ f(n*) = m*, where

Diag(g) is the set of all true g(j*) = k*.

Degrees of Unsolvability

• Post (1944): Define A ≡ B ⇔ A ≤ B & B ≤ A,

• deg(A) = {B : A ≡ B}, deg(A) ≤ deg(B) iff A ≤ B

• 0 = deg(N), 0′ = deg(K)

• Fact: If A is r.e. then deg(A) ≤ 0′

Post’s Problem and Degree Theory

• Post’s Problem Do there exist r.e. A with
0 < deg(A) < 0′?

• Yes! (Friedberg and Muchnik, independently, 1956)
Construct A, B r.e. of incomparable degrees

• The priority method

• Structures of degrees of r.e. sets and degrees of
arbitrary sets are both very complicated.

3. Uniform Relative Computability over N

• Define f ≤ g (via e) if f is computed from
E ∪ Diag(g) where e = #(E).

• In degree theory f, g are given (or sought for) and
ask whether there exists e s.t. f ≤ g (via e)

• Alternatively, fix e and define f as a uniform
(partial) recursive function of g for all g: N → N
via e; in general f is partial even for g total.

Partial Recursive Functionals

• Defn. A finite system of equations E determines a
partial recursive functional f = F(g) if for all
partial g and n, m, p,
if E ∪ Diag(g) ⊦ f(n*) = m*, f(n*) = p* then m = p.

• Also write F(g, n) for (F(g))(n)

• Lemma. If F is a partial rec. functional then it is
(i) monotonic (g⊆h ⇒ F(g)⊆F(h)), (ii) continuous

(F(g,n) = m ⇒F(h, n) = m for some finite h⊆g), and

(iii) effective (g partial rec. ⇒ F(g) partial rec.)

The Recursion Theorems

• First Recursion Theorem (Kleene 1952).
For each partial rec. functional F there is a least
solution to the equation
f = F(f), i.e. f(x) ≃ F(f, x) for all x.
Moreover the least fixed point (LFP) f is partial
recursive.

• Second Recursion Theorem (Kleene 1938). For
each partial rec. f we can find an index e such that
{e}(x)≃ f(e, x) for all x.

Recursive Functionals of
Finite Type over N

• Primitive rec. functionals of finite type over N
(Gödel 1958)

• Partial rec. functionals of finite type over N
(Kleene 1959)

• Theorem (Recursion in quantifiers, Kleene 1959).
Let E(g) = 0 iff ∃n(g(n) = 0), else 1.
Then f is partial rec. in E [f ≤ E] iff f is
hyperarithmetic.

4. Generalized Recursion Theory (g.r.t.)

(a) Recursion over all ordinals (Takeuti 1960)

(b)Recursion over admissible ordinals and admissible
sets (Kripke, Platek, 1964). The least admissible
ordinal is ω; the least admissible ordinal > ω is the
least non-recursive ordinal (“Church-Kleene” ω1).

(c) Degree theory on admissible ordinals (Sacks,
Simpson, et al--generalization of the priority
method)

Generalized Rec. Theory (cont’d)

• Computability/Recursion Theory over arbitrary
structures (many workers from 1961 on).

• Turing machines and register machines on
arbitrary structures (Friedman 1971).

• Partial rec. functionals of finite type on arbitrary
structures (Platek 1966).

• Type two LFP schemata, uniform over structures
(Moschovakis 1984, 1989).

• “While” schemata (Tucker and Zucker 2000).

5. Significance of Notions of Relative
Computability for Actual Computation

• Computational practice and the theory of
computation

• Turing machines are not a good model of actual
computers (desktop or mainframe)

• Register machines are a better model (RAMs)

• Church-Turing thesis is accepted in principle by
computer scientists, without effect on practice

Computational Theory and Practice

• Notions of absolute effective computability have
little significance for practice

• Claim: The notions, but not the results, of relative
computability, have much greater significance for
practice

• Reasons: The requirements of efficiency, reliability,
versatility and user-friendliness demand a modular
organization of hardware and software.

Examples

• Built in functions and black boxes, for example for
Boolean, arithmetical and analytic functions.
Programs for an f from such g give f ≤ g, but
programmer doesn’t need to know how box for g
works.

• Functional programming languages, e.g. Lisp, ML,
Scheme, Miranda, Haskell, etc. Moreover, flowchart
diagrams are implicitly functional.

Examples (cont’d)

• Abstract data types (ADTs), e.g. integers,
booleans, reals, lists, arrays, trees, etc. ADTs are
structures considered up to isomorphism,
independent of representation.

• “Hypercomputation”: Online and Interactive
Computation (cf. Soare 2009, and Nayebi
presentation to come).

Coda: What has degree theory done for
the theory of computation?

• On the face of it, complexity theory is a form of
degree theory

• P, NP, co-NP, Exp, etc. complexity classes, space,
time forms

• Many open separation problems: P =(?)NP, etc.

• It has been observed that recursion theoretic
results generally relativize to any oracle.

• But relativized P = NP can go both ways (Baker,
Gill, Solovay 1975).

Selected References

• J. Barwise (1975) Admissible Sets and Structures

• M. Davis (ed.)(1965), The Undecidable. Basic papers on
undecidable propositions, unsolvable problems and
computable functions.

• S. Feferman (1992), “Turing’s ‘oracle’: From absolute to
relative computability--and back”, in The Space of
Mathematics (J. Echeverria, et al., eds.)

• S. Feferman (2006), “Turing’s thesis”, in Notices AMS
53(#10)

• R. Herken (ed.) (1988), The Universal Turing Machine.
A half-century survey.

Selected References (cont’d)

• A. Hodges (1983), Alan Turing. The Enigma

• S. C. Kleene (1952), Introduction to Metamathematics

• M. Lerman (1983), Degrees of Unsolvability

• H. Rogers (1967), Theory of Recursive Functions and
Effective Computability

• G. E. Sacks (1990), Higher Recursion Theory

• R. I. Soare (2009), “Turing oracle machines, online
computing, and three displacements in the theory of
computation”, Annals of Pure and Applied Logic 160.

