
University of Massachusetts Amherst

From the SelectedWorks of Hava Siegelmann

February, 1997

Turing Universality of Neural Nets (revisited)
J. Pedro Neto
Hava Siegelmann, University of Massachusetts - Amherst
J. Félix Costa
C. P. Suárez Araujo

Available at: https://works.bepress.com/hava_siegelmann/18/

http://www.umass.edu
https://works.bepress.com/hava_siegelmann/
https://works.bepress.com/hava_siegelmann/18/

Turing Universality of Neural Nets (revisited).
Lecture Notes in Computer Science – 1333, 361-366, Springer-Verlag, 1997.

Tur ing Universali ty of Neural Nets (Revisited)*

J. Pedro Neto1, Hava T. Siegelmann2, J. Féli x Costa1, and C.P.Suárez Araujo3

 jpn@di.fc.ul.pt, iehava@ie.technion.ac.il , fgc@di.fc.ul.pt, and paz@neurona.dis.ulpgc.es

1Faculdade de Ciências da Universidade de Lisboa
BLOCO C5 - PISO 1, 1700 LISBOA, PORTUGAL

2Faculty of Industrial Engineering and Management
TECHNION CITY, HAIFA 32 000, ISRAEL

3Dpt. of Computer Sciences and Systems. Univ. of Las Palmas de G.C.
CAMPUS UNIVERSITARIO DE TAFIRA, 35017 LAS PALMAS DE G.C., SPAIN

Abstract. We show how to use recursive function theory to prove Turing
universalit y of finite analog recurrent neural nets, with a piecewise linear
sigmoid function as activation function. We emphasize the modular
construction of nets within nets, a relevant issue from the software engineering
point of view.
Keywords. Neural computation, recursive function theory, modularity.

1 Introduction

In this paper we work with analog recurrent neural nets (ARNN’s) as in
[Siegelmann and Sontag 95]. In each instant t each neuron i updates its activity xi in
the following non-linear way:

xi(t+1) = σ(∑
j=1

N

 aijxj(t) +∑
j=1

M

 bijuj(t) + ci)

where aij, bij and ci are rational weights (and therefore Turing computable); N is the
number of neurons, M the number of input streams uj; and σ is the piecewise linear
sigmoid function,

σ(x) =

î

 0, x<0

x, 0≤x≤1
1, x>1

which is a continuous function as opposed to the Heaviside function. The latter,
when used in the context of analog neural nets allows the instantaneous
computation of equalit y between reals, which is rather unphysical. Using σ-
processors we can directly import Siegelmann and Sontag constructs for stacks,
together with coding and uncoding devices.

As showed in [Siegelmann and Sontag 91], using classical constraints (finite binary
input/output and a finite number of processors), these nets have Turing power when
we allow for rational weights. Herein, we remake this proof by means of recursive

* This work was supported by JNICT PBIC/TIT/2527/95 and a fellowship from the Gobierno

Autonomo de Canarias.

function theory. The idea is to emphasize modular constructions of nets within nets.
This approach will provide insights of modularity that we are expecting to use latter
in a local learning theory for hybrid systems.

2 Recursive Function Theory

Recursive function theory identifies the set of computable functions with the set of
partial recursive functions on

�
 (see [Boolos 80]). A function f is said to be

computable if it can be manufactured from a specific set of basic functions and some
construction rules.

The primiti ve functions, also called axioms, are:

• W, the zero-ary constant 0;
• S, the unary successor function S(x) = x+1;
• The set of n-ary projection functions, Ui,n(x1,…,xn) = xi (1≤i≤n).

The construction rules are:

• Composition (C): If g(y1,…,yk) and f1(x1,…,xn), …, fk(x1,…,xn) are
computable functions, then h(x1,…,xn) = g(f1(x1,…,xn),…,fk(x1,…,xn)) is a
computable function.

• Recursion (R): If f(x1,…,xn) and g(x1,…,xn,y,z) are computable functions,
then the unique function h(x1,…,xn,y), defined by h(x1,…,xn,0) = f(x1,…,xn)
and h(x1,…,xn,y+1) = g(x1,…,xn,y,h(x1,…,xn,y)) is a computable function.

For the last rule, we introduce the µ functional: for any function f(x1,…,xn,y),

µy(f(x1,…,xn,y)=0) =

î

the least y such that
 f(x1,…xn,z) is defined for all z≤y
 f(x1,…xn,y)=0
undefined, if there is no such y

• Minimalisation (M): If f(x1,…,xn,y) is a computable function, then
h(x1,…,xn) = µy(f(x1,…,xn,y)=0) is a computable function.

For instance, the function h(x,y)=x+2 is computable and given by C(C(U1,2,S),S).
Also, h(x,y)=x+y is a computable function given by R(U1,1,C(S,U3,3)). It can be
shown that all Turing computable functions are partial recursive (see [Boolos 80]).

3 Number Representation

Each natural number, i∈
�
, is coded as a rational number, xi∈]0,1[. This is

mandatory because we want neurons to hold values. We adopt the unary coding:

0 ≡ 0.1, 1 ≡ 0.11, 2 ≡ 0.111, …, n ≡ 0.1n+1

Every initial natural input must be coded before the computation starts and decoded
after the computation to provide the final output. The coding and uncoding
techniques used in [Siegelmann and Sontag 91] will do the job.

4 Net Examples

In the following neural net diagrams, non-labelled arcs default to weight one. The
first net finds if a given number is positi ve or zero, outputting a 1 through the
appropriate channel.

Fig. 1. The Signal (Sg) Net.

For instance, if we take a positi ve number coded as a rational number greater than
0.1, subtract 0.1 and multiply by 100, the result is greater than 1 and the shadowed
neuron will output 1, else it will output 0. We use a box labelled Sg as a macro for
this net.

The following net receives a positi ve integer and returns its successor (we will use a
box labelled Succ as a macro for this net)

Fig. 2. The Successor (Succ) Net.

These nets begin the specified computation if and only if they receive a 1 through
the input IN. The output OUT signals to the following module the availabilit y of the
result at that precise moment. Using this method, we can easil y control all
synchronizations. The next net synchronizes two different incoming signals,

Fig. 3. The Sync-2 Net.

x

y

x

OUT

y

INy

INx

A

-1

-1

-1

X

-1

-1

Y

-1

-1

-1

0.1

OUTIN

x+1x

 -0.9

=1 if x=0

-1

x

IN

-100

2

2

100 =1 if x>0

-2-0.1

The Sync-2 net can be easil y transformed to synchronize n inputs. The neuron A
must have its bias changed to -(n-1). A is activated only when both signals arrive.
Either X or Y will keep the first value until the second arrives.

5 Net Schemas

5.1 The axioms

The following three net schemas compute the three axioms of recursive function
theory: the zero-ary constant 0, the (unary) successor and the set of projection
functions.

Fig. 4. The three axioms, (a) W, (b) S, (c) Ui,n.

The three rules, composition, recursion and minimalisation have their particular net
schemas.

5.2 Composition

For the composition schema, h(x1,…,xn) = g(f1(x1,…,xn),…,fk(x1,…,xn)), each
fi(x1,…,xn), i=1,…,k, is computed first and partial results are trapped by a Sync-k
net of k inputs until all of them are available. Then, they are all inputed into the g
net.

Fig. 5. The Composition Schema.

...

...

...

...

x1 f1(x1,…xn)

g(y1,…yk)
y1

fk(x1,…xn)

OUT

IN

OUT

OUT
yk

xn

IN

f1

...

x1

xn

IN

g

fk

-1

-1

-1

-1

-1 -(k-1)

-1

-1

IN

(a)

OUT

0
0.1

(b)

x

IN

x+1

OUT
Succ

(c)

...

...

xi

xn

x1

xi

OUTIN

5.3 Recursion

To compute h(x1,…,xn,0) = f(x1,…,xn), h(x1,…,xn,y+1) = g(x1,…,xn,y,h(x1,…,xn,y)),
we introduce an algorithm that inspires our proposal for the recursion schema. It
iterates from 0 until y, computing all partial results.

K←0;
H←f(x 1,…,x n);
while y>0 do
 begin

 H←g(x 1,…,x n,K,H);
 K←K+1;
 y←y-1;
 end ;
h(x 1,…,x n,y) ←H;

Fig. 6. The Recursion Schema.

g(…)

OUT

h(x1,…xn,y)

=0

IN

g

Sg

f(x1,…xn)

OUT

f
H

-1

-1.2 10

>0

IN

y
Y

0.2

0.1

0.1

...

...

x1

xn

IN

X1

X
n

-1

-1

X1

X
n

-1

-1

-1

-10

-1

K

-0.9

H

OUT

-1-1

reset
Y X i

-1-1

resetK H

-1

-1

5.4 Minimalisation

For the minimalisation, we must find the least y such that f(x1,…,xn,y)=0. Both
algorithm and the computation of the resulting net schema will diverge if no such y
exists. The f box denotes the net that computes function f.

Y←0;
while f(x 1,…,x n,Y) ≠0 do
 Y←Y+1;
h(x 1,…,x n) ←Y;

Fig. 7. The Minimali sation Schema.

6 An Axiomatic Proof...

We will provide one example of an axiomatic proof. A proof is a li st of
interconnected steps, each one prescribing some function, and explaining how we
can construct it from earlier steps. For instance, consider binary addition,
h(x,y) = x+y.

h(x,0) = x (= f(x)) and,

h(x,y+1) = x+(y+1) = (x+y)+1 = h(x,y)+1 (= g(x,y,h(x,y)))

If we can prove that both f and g are computable (that is, if both f and g can be built
using the axioms and the construction rules), then we can use recursion to find h.
Fig. 8 displays a possible proof:

Step Function Reason

f → 1 ∃ f1: f1(x) = x U1,1

2 ∃ f2: f2(x) = x+1 S

3 ∃ f3: f3(x,y,z) = z U3,3

g → 4 ∃ f4: f4(x,y,z) = z+1 Composition of 3 in 2

5 ∃ f5: f5(x,y) = x+y Recursion with 1 and 4

Fig. 8. The proof of h(x,y) = x+y, R(U1,1,C(S,U3,3))

10

0.10.1

=0

>0

Sg

f(x1,…xn,y)

OUT IN OUT

µy(f(x1,…,xn,y)=0)

f

-1

-1-1

reset
Y X i

-0.9

Y

...

x1

xn

IN

X1

X
n

-1

-1

-1-1

Each step denotes a computable function. Then we are able to compile it into the
corresponding net (using the algorithm introduced so far). The resulting net
becomes an independent module. Every module can be inserted where it is needed.
In this example, modules 1, 2 and 3 are straightforward. Module 4 uses module 1
for function f(…) and module 3 as g(…) (see fig. 5). Module 5 uses module 1 as
f(…) and module 4 as g(…) (see fig. 6). When this procedure ends, we have a
module for binary addition. It can be used to build more complex functions.

In this way, a library of functions, or theorems, can be set. All working
independently from each other and having no synchronization problems between
them. The net programming task becomes modular.

7 Conclusion

With the compilation of an universal recursive function we find an “universal”
analog recurrent neural net. Our proof not only confirms that neural nets can
compute all Turing computable functions, but also gives an explicit method to build
those same nets. If we have the axiomatic proof of a function, there is an
algorithmic way to built the respective net. This net is build in a modular way,
solving at the same time, all synchronization problems, and minimising the
associate complexity of assembling elaborate functions.

8 References

[Boolos 80]
BOOLOS, G. and JEFFREY, R., Computability and Logic, (2º Ed), Cambridge
University Press, 1980.

[Siegelmann and Sontag 91]
H.SIEGELMANN and E.SONTAG, “Neural Nets are Universal Computing
Devices” . SYCON Report 91-08, Rutgers University, 1991.

[Siegelmann and Sontag 95]
H.SIEGELMANN and E.SONTAG, “On the Computational Power of Neural
Nets” , in Journal of Computer and System Science [50]1, Academic Press,
1995.

	University of Massachusetts Amherst
	From the SelectedWorks of Hava Siegelmann
	February, 1997

	Turing Universality of Neural Nets (revisited)
	tmpAxcjXQ.pdf

