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miR-21 is one of the most highly expressed members of the small non-coding microRNA

family in many mammalian cell types. Its expression is further enhanced in many diseased

states including solid tumors, cardiac injury, and inflamed tissue. While the induction of

miR-21 by inflammatory stimuli cells has been well documented in both hematopoietic

cells of the immune system (particularly monocytes/macrophages but also dendritic and

T-cells) and non-hematopoietic tumorigenic cells, the exact functional outcome of this ele-

vated miR-21 is less obvious. Recent studies have confirmed a key role for miR-21 in

the resolution of inflammation and in negatively regulating the pro-inflammatory response

induced by many of the same stimuli that trigger miR-21 induction itself. In particular, miR-

21 has emerged as a key mediator of the anti-inflammatory response in macrophages.This

suggests that miR-21 inhibition in leukocytes will promote inflammation and may enhance

current therapies for defective immune responses such as cancer, mycobacterial vaccines,

or Th2-associated allergic inflammation. At the same time, miR-21 has been shown to

promote inflammatory mediators in non-hematopoietic cells resulting in neoplastic trans-

formation.This review will focus on functional studies of miR-21 during inflammation, which

is complicated by the numerous molecular targets and processes that have emerged as

miR-21 sensitive. It may be that the exact functional outcome of miR-21 is determined by

multiple features including the cell type affected, the inducing signal, the transcriptomic

profile of the cell, which ultimately affect the availability and ability to engage different

target mRNAs and bring about its unique responses. Reviewing this data may illustrate

that RNA-based oligonucleotide therapies for different diseases based upon miR-21 may

have to target the unique and operative miRNA:mRNA interactions’ functionally active in

disease.
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INTRODUCTION

Micro-RNA-21 (miR-21) is an abundantly expressed microRNA

in mammalian cells of multiple types (1–3). Its up-regulation is

associated with many cancers, including those derived from both

solid tissue (4, 5) and leukemic origin (6–9). The generation of a

conditional miR-21 “knock-in” mouse confirmed that it functions

as an oncogene with its overexpression resulting in malignant B-

cell lymphoma (10). Functional studies performed in epithelia-,

hepatocyte-, and glial cell-derived cell lines confirm that miR-

21 regulates processes connected to cell growth, migration, and

invasion (11–16), providing a mechanism for miR-21-mediated

transformation of somatic cells. However, miR-21 is also expressed

in hematopoietic cells of the immune system including B/T-cells,

monocytes, macrophages, and dendritic cells (DCs). Activation of

the immune system is strongly associated with tumor progression

but also with surveying, responding to, and eliminating tumors

as they arise. How increased miR-21 in these cell types facilitates

tumor progression, as well as orchestrating the general immune

response to pathogens and autoantigens in inflammatory disease,

remains unclear. In this review, I will attempt to highlight some of

the key findings on miR-21’s role in immunity and place this in the

context of its dysregulation in disease including cancer and inflam-

mation. I present a model of miR-21 as a key switch in immune

circuits, controlling the balance between initial pro-inflammatory

and later immuno-regulatory, anti-inflammatory responses, – dys-

regulation of which contributes to pathogenesis of inflammatory

diseases including cancer and infection.

miR-21 EXPRESSION AND INDUCTION IN HEMATOPOIETIC

CELLS

IMMUNE CELL MATURATION

Initial efforts to profile miRNA expression during hematopoiesis

revealed that while miR-21 is moderately expressed in hematopoi-

etic progenitors, its expression increases significantly as various

cell types mature to an “active” state, including bone marrow-

derived mast-cells (17), neutrophils (18), and activated T-cells

of various lineages (19, 20). High miR-21 levels are therefore a

marker of immune cell activation, although whether or not this

reflects a cause or consequence of activation remained to be deter-

mined. It was found that miR-21 expression is RNA polymerase

II-dependent and derived from a primary transcript that is both

capped and polyadenylated (21). Similar to regular protein-coding
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mRNAs, miR-21 expression is dynamically regulated by complex

signaling pathways and can be enhanced by extracellular sig-

nals during immune cell development. The myeloid precursor

cell type, the monocyte, which can be differentiated into various

mature cells depending upon the extracellular signals received,

shows increased expression of miR-21 during activation. This was

first demonstrated by the study of Kashashima et al. (22), where

TPA (also known as PMA) was used to differentiate monocytes

toward macrophages. Since then, studies showing treatment of

monocytes with all-trans retinoic acid to generate neutrophils

(18), GM-CSF/IL-4 treatment to generate immature DCs (23, 24),

and treatment with LPS (a TLR4 specific mimetic of bacterial

endotoxin) to generate activated macrophages (25, 26), as well

as LPS-mediated B-cell activation (3), all revealed significant up-

regulation of miR-21. Table 1 lists these examples alongside many

other immunologically relevant examples, but their detailed dis-

cussion is beyond the scope of this review. However, taken together,

these data confirm that miR-21 serves as an important marker of

immune cell activation in multiple contexts.

TURNING THE CIRCUIT “ON” – INDUCTION OF miR-21 BY

INFLAMMATORY STIMULI

Like regular Pol-II-regulated protein-coding mRNAs, which are

regulated by a diverse array of signal-specific transcription factors

that bind unique sites at the promoter region, miR-21 exhibits

diversity in the signals, transcription factors, and proposed binding

sites that regulate its expression in diverse contexts. Unlike, reg-

ular Pol-II-regulated protein coding-genes and like all miRNAs,

miR-21 is subject to an additional layer of post-transcriptional

regulation before the mature 20 nt bioactive form is generated.

This involves processing of both the precursor and mature duplex

miRNA from the primary miRNA transcript (pri-miR-21), carried

out by the nuclear enzyme Drosha and its cytosolic counterpart,

Dicer. Many of the induction studies of miR-21 by extracellu-

lar signals including TPA/PMA, LPS, IL-6, and TGF-β/BMP have

shown it to be a later event in their respective signaling pathways

(25, 27–29). Expression analysis downstream of oncogene Ras-

induced signaling, which drives miR-21 through AP-1, has shown

that the appearance of mature bioactive miR-21 is delayed relative

to the generation of pri-miR-21 (33). Although a dearth of studies

have defined the role of various transcription factors in the induc-

tion of miR-21, including NFκB in LPS-induced miR-21 (25, 30),

AP-1 in PMA-mediated up-regulation (27), and STAT-3 for IL-6-

induced miR-21 (28), the complexity of the predicted promoter

region of pri-miR-21 (27, 28) and the occurrence of alternative

transcription start sites (34) suggest that the regulation of miR-21

transcription is not straight forward.

Several studies place miR-21 among the group of miRNAs

whose post-transcriptional processing requires extra co-factors,

notably the RNA helicase protein p68, which aids cleavage of the

pri-miRNA transcript by Drosha (35). Although processing of

mature miR-21 relative to other miRs may be differentially reg-

ulated by the inherent sequence differences of the miR-21 primary

transcript recognized by Drosha/Dicer, a further layer of com-

plexity is added when it is considered that the enzymes involved

in miR-21 biogenesis are themselves regulated by extracellular sig-

nals, as shown in the study of TGF-β/BMP-mediated induction of

mature miR-21. Here SMAD6, a key intracellular adapter protein

activated by TGF-β signaling, bound to the primary miR-21 tran-

script and recruited p68 to promote Drosha-mediated cleavage

during TGF-β signalling (29).

Interestingly, in a study of miR-21 induction in a model of

colon carcinoma epithelial–mesenchymal transition (EMT), com-

bined treatment with TGF-β and TNF induced pri-miR-21 and

at a later stage, the appearance of the Drosha cleavage product,

precursor-miR-21 stem-loop (32). This latter event required de

novo protein synthesis and is indicative of an additional regula-

tory step to organize the temporal and cell-specific induction of

miR-21. This important finding may be applicable to immune

cells, which rapidly induce many cytokines and secreted factors,

such as IL-6 or TNF, that have the potential to feed back and drive

later events in the cell.

Table 1 | Select examples of miR-21 induction by inflammatory stimuli.

Signal Cell type Result Transcriptional

control

Post-transcriptional

regulation

Reference

PMA Monocyte Macrophage differentiation AP-1, NFIB (22, 27)

Retinoic acid Monocyte Neutrophil differentiation (18)

IL-6 Multiple myeloma STAT-3 (28)

TGF-β BMP Vascular smooth muscle Contractile phenotype – p68, SMAD6 (29)

LPS B-cells, macrophages IL-10 production NFκB (3)(25, 30)

GM-CSF/IL4 Monocyte MD-DC (23, 24)

GM-CSF/IL-6, TGF-β Bone marrow precursors MDSC (31)

TGF-β/TNF Colon carcinoma culture EMT + + (32)

MD-DC, monocyte-derived dendritic cells, MDSC, myeloid-derived suppressor cells; EMT, epithelial–mesenchymal transition.
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The story of miR-21 regulation grows even more complex when

we consider the impact of other non-coding RNAs on its expres-

sion. A recent study illustrated that miR-21 is in fact regulated by a

member of the long non-coding RNA family, GAS5 (36). Although

lncRNAs can regulate genes at the transcriptional level, they also

hold the potential to act as miRNA sponges – mopping up exces-

sive mature 20 nt miRNAs and preventing them from engaging

their mRNA targets. Therefore, GAS5 may in fact represent an

important negative regulator of miR-21 activity, although this has

yet to be examined in immune cells.

EXPRESSION IN DISEASED TISSUE

Coincident with its induction in various immune cell types ex

vivo, in vivo studies of diseased tissue often demonstrate increased

expression of miR-21 relative to healthy control tissue. This has

been shown in various models of allergic airway inflammation

(26, 37), psoriasis and atopic eczema (38), osteoarthritis (39), and

human atherosclerotic tissue (40), many of which are character-

ized by infiltration of immunocytes including macrophages, DCs,

and T/B-cells. One can conclude from these studies and studies

of miR-21 expression in cancerous tissue that increased miR-21

may act as a general biomarker of diseased tissue and in particular

inflammation-associated diseases.

In a similar fashion, many studies of circulating miRNA pro-

files have implicated miR-21 as a secreted biomarker of disease

due to its association with exosomes – small cell-derived vesicles

whose cargo contains stable small RNAs including miRNA (41).

Exosomes have been implicated as a mechanism of cell-to-cell

communication and in this way act as classic immunomodula-

tors. The fact that miR-21 is found in many exosomes including

tumor-derived and immunocyte-derived (42, 43) supports a role

for miR-21 as a key modulator of immune processes.

Few studies thus far have implicated the specific cell type

responsible for the increased miR-21 expression in vivo. How-

ever, a recent study of miR-21 expression in gastric cancer found

increased stromal, but not tumor cell, miR-21 to be strongly linked

to clinical–pathological features of disease (44). In vivo analysis

of mice challenged with Aspergillus fumigatus to model airway

inflammation showed that miR-21 was induced in cells of the

monocyte/macrophage lineage (26).

INFERRING FUNCTION FROM EXPRESSION/INDUCTION STUDIES

miR-21 is induced by many pro-inflammatory stimuli, both

PAMPs and DAMPs, which trigger the inflammatory circuit and

power up the cells of the immune system for action, illustrated

in Figure 1A (immediate early response). However, the question

remains as to what exact processes in this circuit this induced

miR-21 regulates. The delayed induction of miR-21 in inflamma-

tory reactions suggests that miR-21 may in fact negatively regulate

the process of inflammation and be an important switch for the

resolution of inflammation and maintenance of homeostasis, in

essence counteracting the circuit, functioning as a trip-switch to

turn off the often-damaging excessive pro-inflammatory response.

“MAKING THE SWITCH” – FEEDBACK OF miR-21 AS A NOVEL

REGULATOR OF INFLAMMATORY RESPONSES

The notion that miR-21 serves to limit inflammation and promote

resolution should be supported by profiling studies of macrophage

subsets; however, little induction of miR-21 is seen in alternatively-

activated macrophages treated with IL-4 or IL-10 alone (45, 46).

This supports the theory that an initial damage or danger signal

needs to occur, which promotes an early pro-inflammatory stim-

ulus such as NFκB or AP-1 to trigger miR-21. This ensures that

miR-21 induction is appropriately activated to counteract damage

triggered by infection. Recently, enhanced miR-21 expression was

reported when LPS-treated macrophages were treated with apop-

totic cells (47). This event fueled miR-21 expression to a greater

extent, which was associated with decreased pro-inflammatory

responses and the resolution of inflammation. Additionally, in

an in vivo murine model of peritonitis, high level of miR-21 was

reported, which was increased further following treatment with

Resolvin D1, a lipid mediator that promotes resolution of inflam-

mation (48). In this respect, damage or infection can be seen as the

fuel that fires miR-21 expression and only when these have been

appropriately sensed will miR-21 be appropriately up-regulated to

counteract this, illustrated in Figure 1B (early response). This con-

trol mechanism ensures that miR-21 and its associated processes

are not wastefully induced but“switched on”at appropriate times –

when required to change the direction of the circuit and affect

the balance of the inflammatory reaction to promote healing,

resolution, and a return to homeostasis.

Ultimately, however, the function of a particular miRNA can-

not be solely inferred from studies of its induction but must be

deduced through studies of its activity also – namely, the specific

mRNA targets it represses in any given context. For many miRNAs,

bioinformatics analysis has aided the prediction and discovery of

relevant mRNA targets. This computational-based approach has

been less successful for miR-21, with many possible mRNA targets

verified through various innovative techniques in cancer, inflam-

mation, and other contexts, all of which will not be discussed here.

Instead, I will limit the discussion to those identified targets and

processes affected by miR-21, which tell us most about its role

in immune responses (illustrated in Figure 1C – late inflamma-

tory response) and discuss how these may promote the negative

regulation of the inflammatory circuit, illustrated in Figure 1D

(resolution phase).

PDCD4 AND CYTOKINE PRODUCTION

Our initial studies manipulating miR-21 during LPS signaling

found that it had a unique effect on the levels of the anti-

inflammatory cytokine IL-10, not observed for other cytokines.

This was linked to the regulation of a proposed negative regulator

of IL-10 production, PDCD4, loss of which was shown to pro-

tect from LPS lethality (25). Although the mechanism whereby

PDCD4 regulates IL-10 and other cytokines remain an area of

active investigation (49, 50), other groups have demonstrated that

the miR-21/PDCD4 axis represents a key target for immunoreg-

ulation in multiple contexts, namely in protecting from type 1

diabetes (51),as a target for the endogenous danger ligand decorin-

1 (52) and in regulating T-cell activation and polarization in

SLE (53).

Recently the miR-21/PDCD4 axis was shown to play a key role

in the process of efferocytosis (47) – the digestion and elimination

of dead or dying cells by phagocytes, including macrophages, often

associated with the induction of anti-inflammatory “clean-up”
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FIGURE 1 |The role played by miR-21 regulating output of

immune responses over time. (A) Immediate early response:

production of proinflammatory cytokines (TNF/IL-12). (B) Early

response: feedback from TNF production, uptake of dying cells,

processing of pri-miR-21. (C) Late inflammatory response: miR-21

accumulate and repressing mRNA targets. (D) Resolution phase:

turnover of miR-21 targets and induction of anti-inflammatory

responses.

genes such as IL-10. Das et al. demonstrate that miR-21 levels are

enhanced further in LPS-activated macrophages due to the uptake

and internalization of apoptotic cells and, importantly, this process

regulates IL-10 induction through PDCD4.

PTEN/PI3K SIGNALING

This study by Das et al. also clearly demonstrates a role for miR-21

in the regulation of TNF production, which separately from the

miR-21/PDCD4 axis, is regulated by an additional miR-21 target

gene, PTEN (47). A key intracellular kinase, PTEN is an impor-

tant regulator of the PI3K/Akt pathway, which functions in many

different cell types, each with unique functions and outcomes, but

most strongly being pro-survival (54). It is not surprising then that

elimination of PTEN, a negative regulator of PI3K activity, by dys-

regulated miR-21 would promote growth and survival in dividing

somatic cells leading to malignant transformation (15, 55).

PTEN and PI3K signaling pathways have also been recently

linked to macrophage phenotype and differentiation of func-

tional subsets. Recently, studies of PTEN-deficient animals show

more alternatively-activated macrophages in various models of

polarization including Kuppfer cells, serving to protect from

liver ischemia–reperfusion injury (56), as well as peritoneal

macrophages marker expression (56, 57). The classical M2 marker

Arg1, which is a key target for PI3K/Akt1 signaling, was found

at much higher levels in these cells (57). Sahin et al. went on

to demonstrate that this increased Arg1 expression resulted from

activation of CEBPβ and STAT-3, as well as negative regulation

of NFκB activity. Thus, miR-21 induction forms part of a key

feedback circuit to limit excessive NFκB activity, turn off TNF

production, and thereby transform the activated macrophage into

a more reparative, “clean-up” cell, with key processes such as

efferocytosis of dying cells, enhancing and promoting induction

of this important immune modulator.

TNF PRODUCTION

TNF has been associated with cell death and more recently

high levels of TNF have been implicated in the death process

observed in inflammatory macrophages labeled “necropoptosis”
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(58). Negative regulation of TNF levels by miR-21 therefore may

not just help dampen down excessive inflammation but may also

explain the effects of miR-21 on cell proliferation, migration, inva-

sion, and transformation associated with excessive miR-21 levels

and cancer. Strikingly, reciprocal regulation of miR-21 and TNF

may in fact constitute an autoregulatory loop with evidence accu-

mulating that TNF can promote miR-21 biogenesis (32) as well as

the turnover of PDCD4 in macrophages (50). Moreover, the switch

toward an anti-inflammatory, M2-like phenotype, and general

immuno-regulatory environment, characterized by elevated IL-

10 protein and increased Arg1 macrophage expression consistent

with decreased TNF, which is associated with increased miR-21

(illustrated in Figure 1), may also account for poor immune

responses against tumor-cells characteristic of tumor-associated

macrophages (TAMs) found in cancer-induced stroma. Thus, stro-

mal miR-21 induction (44) may constitute a pathogenic step in the

biogenesis of cancer that leads to associated immunosuppression

facilitating tumor growth and dissemination.

IL-12 AND ANTIGEN-PRESENTING CELLS

The recent description of miR-21-deficient animals with profound

defects in Th2 responses and skewing toward a Th1 response fol-

lowing administration of the OVA antigen (59) not only confirms

the importance of miR-21 in directing T-cell polarization through

its effects on innate antigen-presenting cells but also identifies

T-cells and the adaptive immune response as a key target of miR-

21 activity in immunity. Importantly, this study builds on earlier

work (26) confirming an important target mRNA for miR-21;

the IL-12p35 mRNA. IL-12, which acts as a strong inducer of

Th1 responses and drives IFNγ production, is tightly controlled

and in fact the p35 subunit is found at much lower levels in DCs

and macrophages than its IL-12p70 partner, p40 (60). The find-

ing that miR-21 can fine-tune its expression with big effects on

subsequent immune responses in vivo, highlights the importance

of this tiny 7 nt base-pair interaction. By directing the develop-

ment of an appropriate T-cell response, this interaction again

supports the notion that miR-21 controls the balance of pro-

and anti-inflammatory responses. Accordingly, in diseases where

miR-21 expression is dysregulated, this balance is altered with sub-

sequent effects on innate but also adaptive immune cells, resulting

in pathogenesis.

IMPACT OF DYSREGULATED miR-21 ON IMMUNE

RESPONSES

INFLAMMATORY DISEASES

If miR-21 does indeed represent a key switch in the transition

from a pro-inflammatory to an anti-inflammatory response, it

stands to reason that at times, this key control point will become

dysregulated with impact on the overall immune response, alter-

ing the control and balance of the whole circuit, which mani-

fests as disease. As mentioned above, elevated miR-21 has been

reported in many disease states. On the one hand, increased

miR-21 expression is associated with conditions characterized by

impaired immune responses including asthma (26), psoriasis (38),

cancer (5), and importantly chronic bacterial or viral infections

(61–66) (discussed below). Many of these conditions are associ-

ated with reprograming of pro-inflammatory M1 macrophages

and/or Th1-cells and the appearance of regulatory immune cells

including M2 macrophages, Th2, or regulatory T-cells. Therefore,

miR-21 dysregulation by different triggers (DAMPs or PAMPs)

may in fact promote disease pathogenesis by promoting an

anti-inflammatory, immunosuppressive environment.

Conversely, increased miR-21 expression has also been reported

in diseases fueled by chronic inflammation including colitis (67),

atherosclerosis (40), type 2 diabetes (68), and SLE (53). In these

cases, triggering a regulatory response through miR-21 would be

beneficial, yet this is not manifested in the inflammatory envi-

ronment of these diseased tissues. miR-21 up-regulation may

simply be a marker of increased inflammation in these tissues,

induced by the “fire” of the pro-inflammatory milieu. Curiously,

ablation of miR-21 in some of these models, including coli-

tis (67) and psoriasis (69), has actually been shown to offer

protection from disease, indicating that miR-21 activity is pro-

moting inflammation in these cases. In some cancer models,

miR-21 expression itself is associated with inflammatory activa-

tion. It can promote NFκB activation in breast cancer cells (70)

and TNF and IFNγ production in activated T-cells (71). Here,

miR-21 is clearly acting to induce inflammation in transformed

tumor-cells and activated T-cells rather than suppress inflam-

mation in infected or activated macrophages. Differences in its

function may relate to the different target mRNAs engaged in each

cell type. Alternatively, miR-21 may augment general inflamma-

tion – both pro- and anti-inflammatory (50), with the reported

effects on macrophage output observed after miR-21 modulation

simply being reflective of other cues/signals in these cells at the

same time.

TUMOR PROMOTING ACTIVITY

Undoubtedly, miR-21 overexpression drives transformation of

somatic cells and promotes tumorigenesis through effects on cel-

lular growth, migration, and invasion (11–16). It is likely that the

tumor microenvironment itself is also affected by miR-21 activ-

ity. As highlighted above, TAMs, which are re-programed from

initial tumoricidal macrophages recruited to the site to immuno-

permissive M2-like macrophages, are key cell types within the

tumor microenvironment where miR-21 may be exerting pro-

tumorigenic effects. Secretion of miR-21 from tumor-cell-derived

exosomes or up-regulation of miR-21 in TAMs by tumor-derived

pro-inflammatory products such as IL-6 or TNF, may participate

in TAM reprograming and thereby facilitate growth, intravasation,

and spread of tumor cells.

At the same time, as tumor-cells develop, intrinsic miR-21 may

shape their responsiveness to therapy resulting in a more aggres-

sive tumor phenotype. Alongside another immuno-responsive

miRNA, miR-146, which functions as a negative regulator of

TLR signaling pathways (72), miR-21 has been associated with

chemoresistant ovarian epithelial cells (73). Importantly, these

cells are characterized by low MyD88 expression and this key

pro-inflammatory signaling protein has emerged as a key target

for both miR-146 and miR-21. Low MyD88 expression in these

aggressive cancer cells argues that TLR/IL-1 signaling may promote

anti-cancer responses at this stage of disease and again dysregu-

lation of miR-21 in the tumor acts to promote pathogenesis of

disease progression.
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INFECTION

As miR-21 regulates immune responses, it stands to reason that

its induction may represent a target for subversion by invading

pathogens in the ever-evolving arms race between the mammalian

immune system and microbes. Indeed, many studies have char-

acterized the rapid induction of miR-21 following infection of

macrophages and other cells with microbes, including the pio-

neering work by Cameron et al. This study demonstrated that

EBV induces miR-21 during latency, linking this miRNA with

viral persistence (61). In a similar manner, infection of hepato-

cytes with either HBV or HCV was recently shown to induce

miR-21 (62, 65), and in addition to promoting viral replication

by enhancing growth and survival of the infected cell, miR-

21 induction also modulates the host response in favor of the

virus. Interestingly, signaling components of the TLR system

(MyD88 and IRAK) have emerged from these studies as targets for

miR-21 with the downstream consequence of decreased induc-

tion of anti-viral interferon-α during infection (62). Similarly,

infection of renal cells with pseudorabies virus (PRV) induces

miR-21, which targets mRNA for the important host chemokine

CXCL10/IP-10 (63).

Studies of pathogen-induced miR-21 not only tell us more

about the important immune-relevant target mRNAs for miR-

21 but also about immune evasion strategies employed by the

pathogen. For example, mycobacterial species, which persist and

replicate in macrophages by successfully interfering with host

responses, have been shown to induce miR-21. This subse-

quently targets multiple components of key pathways required

for mycobacterial containment, including vitamin-D-dependent

induction of anti-microbial peptides and the induction of pro-

inflammatory cytokines including IL-1, TNF, IL-12, and IFNγ

(64, 66). In particular, the finding that the avirulent mycobac-

terial strain BCG, used with mixed success to vaccinate against

tuberculosis worldwide, induces miR-21 to escape immune

responses (66), supports the notion that blocking miR-21 may

in fact boost immunity and therefore temporal and specific

inhibition of miR-21 may be an ideal candidate for vaccine

development.

REWIRING THE CIRCUIT – miR-21 AS AN ATTRACTIVE

TARGET FOR THERAPEUTIC INTERVENTION?

With interest in antisense technology increasing due to improved

delivery techniques, specific targeting and more effective

chemistries emerging, programs to target miR-21 in disease are

being developed (74). Published studies have shown beneficial

effects in various models although the exact mechanism con-

tributing to this remains unclear. These studies are listed in

Table 2, which highlights differences and commonalities in the

methodologies and approaches used. Although effects of silencing

miR-21 using antisense technology to counteract cardiac fibrob-

last remodeling in response to stress (75) were not reproducible

in miR-21-deficient mice (76), there remains interest in block-

ing miR-21’s pro-fibrogenic activity particularly in response to

ischemic–reperfusion injury (77). Early studies using anti-miR

technology to block interstitial fibrosis demonstrated that pro-

tection from disease was generated through modulation of the

key metabolic sensor, and miR-21 target, PPARα (78). However, it

remains possible that miR-21 can exert some of its pro-fibrogenic

activities through regulation of inflammatory signaling pathways

such as IL-10 and TGF-β. Antisense to miR-21 has also been shown

to reduce disease in two models of chronic inflammatory disease –

psoriasis and SLE, with miR-21 inhibition in these cases apparently

reducing inflammation, through effects on T- and B-cell activation

and proliferation (in the SLE model) (79) and through negative

regulation of MMP activity and TNF production (in the inflamed

epidermis in the psoriasis model) (69).

Recent basic science studies attempting to understand miR-

21’s complex biology better, are affecting targeting strategies and

the development of miR-21 modulators for disease. Intriguingly,

a study of miR-21 overexpression in hepatocytes observed differ-

ences in mRNA target engagement dependent upon the degree

of overexpression, correlating with dysregulation of miR-21 in

diseased tissue (81). This confirms that miR-21 behaves differ-

ently under various circumstances, including the level of miR-21

up-regulation itself and will affect strategies to target miR-21 in

diseased tissue. With the widespread availability of advanced tran-

scriptomic technologies, we may need to move toward a closer

Table 2 | Published studies employing antisense to miR-21 to block disease.

Disease model Oligonucleotide technology Treatment Result mRNA targets Reference Company

Cardiac hypertrophy AntagomiR – cholesterol

modified

Daily – 3 days,

80 mg/kg

Protection – less cardiac

damage and fibrosis

SPRY (75) Alnylam

Pharma

Anti-miR – sugar modified

phosphothiorate backbone

As above Protection (80) Regulus

Therapeutics

LNA (8-mer) As above No difference (76, 80)

Renal fibrosis Anti-miR− Daily – 3 days

20 mg/kg

Protection – decreased

interstitial fibrosis

PPARα (78) Regulus

Therapeutics

SLE Locked nucleic acid (LNA) 12 weeks (Prime

+ 3-weekly)

25 mg/kg

Protection – decreased

splenomegaly

Not defined (79) Santaris

Pharma

Psoriasis LNA Protection TIMP3 (69) Sataris Pharma
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examination of elevated miR-21 and its impact upon the host

cell transcriptome to get a clearer picture of the exact processes

regulated by this particular miRNA.

As with any therapy designed to alter the balance of immune

responses, the possibility of off-target effects or predisposition to

other conditions, perhaps those characterized by chronic inflam-

mation, exists. With greater understanding of miR-21 regulation

and function, we may be able to tailor RNA-therapies and avoid

off-target consequences. Furthermore, the notion of targeting spe-

cific miRNA:mRNA interactions via morpholino technology may

avoid the deleterious effects of broad inhibition of miR-21 (82) and

more specific delivery technologies such as β-glucan microparti-

cles, which hone specifically to macrophages could be utilized to

limit the effects of inhibition to a specific target cell-type (83).

The transience and high turnover of RNA itself may help limit the

effects of antisense treatment to the short-term. At the same time,

caution needs to be erred when inhibiting an miRNA as ubiquitous

and promiscuous as miR-21. Indeed, the area of miR-21 turnover

and decay itself remains an unexplored area and its study may

enhance our understanding of the role of miR-21 in immune

responses, providing alternative means to antisense technology

for limiting its expression in vivo.

ADAPTIVE IMMUNITY

Thus far, this review has concerned itself with miR-21 induction in

cells of the innate immune system. However, as alluded to earlier,

miR-21 is also found in both T and B-cells and its role in these

cells is the subject of much investigation. Thus, employment of

strategies to target miR-21 for modulation of immune responses

requires anticipation of the effects on these cell types also.

Profiling studies of T-cells indicate that miR-21 is induced and

acts as a marker of activated T-cells (19, 20), promoting survival

and activation of these cells (84–86). In this way, miR-21 induction

serves as a means to stratify naïve from activated T-cells, possibly

assisting in the co-ordination of T-cell memory. Despite its expres-

sion across multiple T-cell subsets, intrinsic miR-21 can also affect

T-cell polarization. Naïve T-cells transfected with miR-21 develop

a more Th2/Treg phenotype (87) and this may be due to engaging

different targets expressed in response to various other polarizing

signals including BCL-6. T-cell miR-21 may also play an impor-

tant role regulating tolerance to self, as demonstrated by studies

showing exaggerated miR-21 induction in activated T-cells from

PD1-deficient mice (88). These studies highlight the dual roles

that T-cells play in regulating immune responses. While they must

promote pro-inflammatory responses and eliminate infected cells,

they must also orchestrate clearance of infection and promote

resolution. T-cell miR-21 seems treads a fine line in balancing

these processes and may become dysregulated during cases of

autoimmunity.

CONCLUSION

Over the last 10 years, much effort has been placed in profil-

ing the miR-nome of various cells under different conditions.

From this, miR-21 has emerged as important miRNA both highly

expressed and dynamically regulated in various cell types. Since

then, identification of miR-21 function has been complicated not

only by the possibility for many mRNA target interactions but

also by its complex regulation in response to extracellular signals.

The possibility has emerged that miR-21 can regulate numerous

processes involved in correct cell function, survival, and prolifer-

ation, which if interrupted, can predispose to cellular transforma-

tion. However, it has also been linked to key processes involved in

inflammation, detecting and responding to disturbances in home-

ostasis throughout the body, and orchestrating these responses

appropriately. miR-21 therefore plays a dynamic role in inflamma-

tory responses. Unlike other mediators, its presence is not solely

characteristic of a pro-inflammatory or an immunosuppressive

state, but is acting as a key signal mediating the balance and tran-

sition between both states. In essence, miR-21 induction can be

seen as a “molecular rheostat” regulating the inflammatory switch.

This makes it a novel and attractive target for therapeutic inter-

vention and enhanced knowledge of its specific mRNA targets,

as well as the signaling pathways and cellular processes regulated

by miR-21, can only enhance its usefulness and attractiveness in

this area.
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