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ABSTRACT 

The DNA double strand breaks (DSBs) that initiate meiotic recombination are formed in 

the context of the meiotic chromosome axis, which in budding yeast contains a meiosis-

specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and 

Red are important for DSB formation; DSB levels are reduced in their absence and their 

levels, which vary along the lengths of chromosomes, are positively correlated with DSB 

levels. How axis protein levels influence DSB formation and recombination remains 

unclear. To address this question, we developed a novel approach that uses a bacterial 

ParB-parS partition system to recruit axis proteins at high levels to inserts at 

recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting 

Hop1 markedly increased DSBs and homologous recombination at target loci, to levels 

equivalent to those observed at endogenous recombination hotspots. This local 

increase in DSBs did not require Red1 or the meiosis-specific cohesin component 

Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote DSB formation. 

However, while most crossovers at endogenous recombination hotspots are formed by 

the meiosis-specific MutLg resolvase, only a small fraction of crossovers that formed at 

an insert locus required MutLg, regardless of whether or not Hop1 was recruited to that 

locus. Thus, while local Hop1 levels determine local DSB levels, the recombination 

pathways that repair these breaks can be determined by other factors, raising the 

intriguing possibility that different recombination pathways operate in different parts of 

the genome. 

 
 
INTRODUCTION 

During meiosis, the diploid genome is reduced by half to form haploid gametes by the 

separation of homologous chromosomes of different parental origin (herein called 

homologs) during the first of two nuclear divisions (meiosis I). Faithful segregation of 

homologs requires that they must first identify and link with each other. This is achieved 

by homologous recombination, which first promotes homolog pairing and then forms 

crossovers that physically connect homologs and ensure their proper disjunction at 
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meiosis I (ZICKLER AND KLECKNER 1999; WHITBY 2005; UR AND CORBETT 2021). Errors in 

homologous recombination cause aneuploidy in gametes, which in turn causes 

infertility, pregnancy loss, and genetic disorders (HASSOLD AND HUNT 2001; SRIVASTAVA 

et al. 2012; WANG et al. 2017; GAO et al. 2018).  

Meiotic recombination occurs in the context of a chromosome axis that contains three 

components: cohesin; an axis core protein; and a HORMA domain-containing protein 

(HOLLINGSWORTH AND PONTE 1997; ZICKLER AND KLECKNER 1999; BLAT et al. 2002; 

GLYNN et al. 2004; TSUBOUCHI AND ROEDER 2006; NIU et al. 2007; YANG et al. 2008; 

KUGOU et al. 2009; NIU et al. 2009; CALLENDER AND HOLLINGSWORTH 2010; KIM et al. 

2010; PANIZZA et al. 2011; CHUANG et al. 2012; PYATNITSKAYA et al. 2019; UR AND 

CORBETT 2021). The cohesin core holds the sister chromatids together and organizes 

them in a linear array of loops (SMITH AND ROEDER 1997; ZICKLER AND KLECKNER 1999; 

VAN HEEMST AND HEYTING 2000; KLECKNER 2006; LAM AND KEENEY 2014). Meiotic 

cohesin, which contains the meiosis-specific kleisin subunit Rec8, is important for most 

of the chromosomal localization of the other two axis proteins in wild type cells (SMITH 

AND ROEDER 1997; KLEIN et al. 1999; BLAT et al. 2002; RIEDEL et al. 2006; JIN et al. 

2009; JOSHI et al. 2009; KATIS et al. 2010; PANIZZA et al. 2011; SUN et al. 2015; 

HELDRICH et al. 2020; HELDRICH et al. 2022). Axis core proteins (Red1 in S. cerevisiae, 

ASY3/4 in Arabidopsis, SYCP2/3 in mammals, Rec10/27 in S. pombe) have diverged 

considerably in sequence but have similar domain structures and are functionally 

conserved (ROCKMILL AND ROEDER 1990; HOLLINGSWORTH AND PONTE 1997; SMITH AND 

ROEDER 1997; DE LOS SANTOS AND HOLLINGSWORTH 1999; WEST et al. 2019; UR AND 

CORBETT 2021). HORMA domain-containing proteins (Hop1 in S. cerevisiae and S. 

pombe, ASY1/2 in Arabidopsis, HORMAD1/2 in mammals, HTP-1/2/3/HIM-3 in C. 

elegans) are highly conserved, and in most organisms contain a HORMA domain and a 

loop containing a peptide sequence, called a closure motif, that binds either to its own 

HORMA domain to form a closed structure or to a HORMA domain on another protein 

to form oligomers (MOSES 1956; HOLLINGSWORTH AND BYERS 1989; HOLLINGSWORTH AND 

PONTE 1997; WOLTERING et al. 2000; MARTINEZ-PEREZ AND VILLENEUVE 2005; YANG et al. 

2006; BAUDAT AND DE MASSY 2007; WEST et al. 2018). HORMA domain proteins are 

recruited to the axis by an interaction between their HORMA domain and a closure motif 
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on the axis core protein (WEST et al. 2018; WEST et al. 2019). Although the main 

function of these proteins is similar in most organisms, there are also differences that 

have been discussed in detail elsewhere (ZICKLER AND KLECKNER 2015; ZICKLER AND 

KLECKNER 2016; UR AND CORBETT 2021). For simplicity, the rest of this introduction will 

focus on the function of these proteins in meiotic recombination in Saccharomyces 

cerevisiae.  

Chromosome axis proteins are important for the first step of meiotic recombination, the 

formation of programmed DNA double strand breaks (DSBs) by the meiosis-specific 

protein Spo11 and its co-factors: the RMM complex (Rec114, Mer2, Mei4); the MRX 

complex (Mre11, Rad50, Xrs2); Rec102-Rec104; and Ski8 (MALONE et al. 1991; 

BERGERAT et al. 1997; UETZ et al. 2000; KEENEY 2001; KEE AND KEENEY 2002; TESSE et 

al. 2003; ARORA et al. 2004; KEE et al. 2004; PRIELER et al. 2005; HENDERSON et al. 

2006; LI et al. 2006; MALEKI et al. 2007; PANIZZA et al. 2011; STANZIONE et al. 2016). On 

a regional scale (on the order of 20-50kb), enrichment levels for Spo11 and DSBs are 

closely related to those observed for Hop1 and Red1 (HOLLINGSWORTH AND PONTE 1997; 

BLAT et al. 2002; PAN et al. 2011; PANIZZA et al. 2011; SMAGULOVA et al. 2011; SUN et al. 

2015). In addition, mutant analyses have shown that the absence of any of the axis 

proteins results in a reduction in DSBs, although the extent of reduction can differ 

between genome regions (ZICKLER AND KLECKNER 1999; BLAT et al. 2002; GLYNN et al. 

2004; KUGOU et al. 2009; KIM et al. 2010; PANIZZA et al. 2011; UR AND CORBETT 2021). 

hop1 mutants seem to show the most pronounced DSB reduction, at least when 

measured at loci where DSBs form frequently, called hotspots (MAO-DRAAYER et al. 

1996; SCHWACHA AND KLECKNER 1997; XU et al. 1997; WOLTERING et al. 2000; PECINA et 

al. 2002; NIU et al. 2005). Hop1 is thought to promote DSB formation by interacting with 

Mer2, a member of the trimeric RMM complex, and this interaction is conserved in other 

species (STANZIONE et al. 2016; KARIYAZONO et al. 2019; CLAEYS BOUUAERT et al. 2021; 

ROUSOVA et al. 2021). Mer2, in turn, interacts with the other RMM components as well 

as other proteins that are important for Spo11-mediated DSB formation (ACQUAVIVA et 

al. 2013; SOMMERMEYER et al. 2013; ROUSOVA et al. 2021). In vitro studies indicate that, 

although Red1 has no detectable affinity for Mer2, Red1 stimulates Hop1-Mer2 

interaction by changing Hop1’s conformation and increasing its affinity for Mer2 
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(ROUSOVA et al. 2021). Hop1 is also required for cohesin-independent enrichment of 

Red1 in certain parts of the genome (PANIZZA et al. 2011; SUN et al. 2015; HELDRICH et 

al. 2020). Taken together, these observations suggest that Hop1 may be the primary 

axis protein promoting DSB formation, although this has not been directly 

demonstrated.  

Once DSBs form, Hop1 and Red1 play subsequent roles in promoting interhomolog 

recombination and in promoting crossover formation. DSBs promote Hop1 

phosphorylation by the Mec1(ATR)/Tel1(ATM) kinases (CARBALLO et al. 2008), and this 

promotes use of the homolog rather than the sister chromatid as a repair template 

(HOLLINGSWORTH AND PONTE 1997; TSUBOUCHI AND ROEDER 2006; NIU et al. 2007; NIU et 

al. 2009; CALLENDER AND HOLLINGSWORTH 2010; CHUANG et al. 2012). Once paired, 

homologs are held together by a tripartite proteinaceous structure called the 

synaptonemal complex and Hop1 is removed from the chromosome axis, curbing 

further DSB formation and removing the inter-sister recombination barrier to allow quick 

repair of any remaining breaks (BORNER et al. 2008; JOSHI et al. 2009; WOJTASZ et al. 

2009; ZANDERS AND ALANI 2009; DANIEL et al. 2011; KAUPPI et al. 2013; THACKER et al. 

2014; LAMBING et al. 2015; SUBRAMANIAN et al. 2016; SUBRAMANIAN et al. 2019). Red1 

interacts with Zip4 (YANG et al. 2008; DE MUYT et al. 2018; PYATNITSKAYA et al. 2019), a 

member of the ZMM protein complex (Zip1, Zip3, the Zip2-Zip4-Spo16 complex, the 

Msh4-Msh5 complex, and Mer3) that stabilizes double Holliday junction intermediates 

and directs them toward resolution as crossovers by the meiosis-specific resolvase, 

MutLg (Mlh1-Mlh3 and Exo1) (SCHWACHA AND KLECKNER 1994; WANG et al. 1999; 

KHAZANEHDARI AND BORTS 2000; KIRKPATRICK et al. 2000; TSUBOUCHI AND OGAWA 2000; 

ALLERS AND LICHTEN 2001b; ALLERS AND LICHTEN 2001a; HOFFMANN et al. 2003; BISHOP 

AND ZICKLER 2004; BORNER et al. 2004; JESSOP et al. 2006; LYNN et al. 2007; NISHANT et 

al. 2008; ZAKHARYEVICH et al. 2010; COMERON et al. 2012; WANG et al. 2012; YANG et al. 

2012; AL-SWEEL et al. 2017; DE MUYT et al. 2018; PYATNITSKAYA et al. 2019; CANNAVO et 

al. 2020; KULKARNI et al. 2020; SANCHEZ et al. 2020). This is the major pathway for 

crossover formation; a minority of crossovers are formed by the mitotic structure-

selective nucleases (SSNs) Mus81-Mms4, Slx1-Slx4, Yen1 (DE LOS SANTOS et al. 2003; 

3’UTR 
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ARGUESO et al. 2004; HOLLINGSWORTH AND BRILL 2004; LYNN et al. 2007; JESSOP AND 

LICHTEN 2008; DE MUYT et al. 2012; ZAKHARYEVICH et al. 2012; AGOSTINHO et al. 2013; 

OKE et al. 2014). Joint molecule resolution and crossover formation in both pathways 

depend on the meiosis-specific transcription factor Ndt80, which drives the mid-meiosis 

expression of many proteins required to complete meiosis and sporulation, including the 

polo-like kinase Cdc5 that stimulates resolvase activities (XU et al. 1995; CHU AND 

HERSKOWITZ 1998; ALLERS AND LICHTEN 2001a; CLYNE et al. 2003; SOURIRAJAN AND 

LICHTEN 2008; DE MUYT et al. 2012; SANCHEZ et al. 2020).  

In summary, meiotic axis proteins play roles in various stages of meiotic recombination, 

with current data indicating that Hop1 has an early role in DSB formation and partner 

choice, while Red1 has a later role in recombination pathway choice. However, because 

Red1 and Hop1 are co-dependent for localization, determining the specific role that 

each protein plays in meiotic recombination remains a challenge. Here, we used a novel 

approach based on a bacterial ParB-parS partition system (KHARE et al. 2004; DUBARRY 

et al. 2006; MURRAY et al. 2006; SULLIVAN et al. 2009; GRAHAM et al. 2014; SAAD et al. 

2014; ATTAIECH et al. 2015), to recruit Hop1 to regions where meiotic axis proteins are 

normally depleted. We find that recruiting Hop1 at high levels is sufficient to dramatically 

increase both DSBs and homologous recombination, consistent with Hop1 being the 

most immediate determinant of where meiotic recombination occurs in the genome.  

 

MATERIALS AND METHODS 
Yeast strains 
All S. cerevisiae strains (File S1 sheet 1) used in this study are of SK1 background 

(KANE AND ROTH 1974) and were made by transformation or genetic crosses. To monitor 

the effect of axis protein recruitment via the ParB-parS system, two recombination 

reporter inserts were used (for schematics, see Figure 2A and Figure 9A, below). The 

first is a modification of the previously described URA3-ARG4-pBR322 insert (WU AND 

LICHTEN 1995; BORDE et al. 1999), and the second a modification of the previously 

described URA3-tel-ARG4 insert (JESSOP et al. 2005; AHUJA et al. 2021). For both 

inserts, a 1kb fragment containing the parSc2 element from chromosome c2 of 

Burkholderia cenocepacia J231 (SAAD et al. 2014) was synthesized and added 
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downstream of the ARG4 gene. The URA3-ARG4-pBR322-parS construct was 

linearized by EcoRI and inserted 237nt downstream of HXT1 and 150nt downstream of 

YCR017c by ends-out three-piece transformation (primers in File S1 sheet 2). For 

insertion at URA3, the construct was linearized by ApaI, which cuts in the URA3 gene, 

and was inserted via ends-in one-piece transformation. Hop1-ParB fusions are 

illustrated in Figure 1A. Sequences encoding ParBc2, which binds to parSc2 (SAAD et 

al. 2014), were modified to include a V5 tag (FUNAKOSHI AND HOCHSTRASSER 2009) and 

a stop codon at its C-terminus. This was combined with HOP1 flanking sequences in 

the following order to make pMJ1088 (sequence in File S3): the HOP1 promoter (+652 

to -1 nt); ParBc2-V5—stop codon; HOP1 3’UTR (131bp starting at the 3’ end of HOP1 

coding sequences); natMX4 (LORENZ 2015). PCR products (primers in File S1 sheet 2) 

containing this element were integrated at HOP1 by single ends-in transformation to 

produce a HOP1 duplication where one copy was C-terminally tagged [HOP1-parBsc2-

V5]-natMX-HOP1], and by ends-out replacement transformation to produce a single C-

terminally tagged copy of HOP1 ([HOP1-parBsc2-V5]-natMX). Although both HOP1-V5-

parBsc2 and HOP1 are expressed from the endogenous HOP1 promoter, levels of the 

Hop1-V5-ParB fusion protein were about 10-20% lower than of the corresponding wild-

type Hop1 protein (Figure 1B, File S1 sheet 14). 

 

To genetically monitor crossovers, markers flanking the URA3-arg4-pBR322-parS insert 

at URA3 were inserted by transformation (primers in File S1 sheet 2): kanMX6 (LORENZ 

2015) into the intergenic region between RIP1 and YEL023c ~10kb to the right of the 

insert; and hygMX6 (SAAD et al. 2014) into the intergenic region between NPP2 and 

EDC3 ~10kb to the left.  

 

Sporulation, DNA extraction and Southern blots 
Strains were grown in liquid pre-sporulation medium and transferred to liquid sporulation 

medium as described (GOYON AND LICHTEN 1993). Culture samples were collected and 

processed as described (ALLERS AND LICHTEN 2000; JESSOP et al. 2005; JESSOP et al. 

2006). DNA was extracted as described (GOYON AND LICHTEN 1993), digested with the 

appropriate restriction enzymes, displayed on agarose gels, transferred to membranes, 
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hybridized to radioactive probes (File S1 sheet 3) and analyzed as described (WU AND 

LICHTEN 1994; WU AND LICHTEN 1995; ALLERS AND LICHTEN 2001b).  

 

Western blots 
Protein was extracted from meiotic cultures, displayed on polyacrylamide gels, blotted 

to membranes and probed basically as described (KAUR et al. 2018), except that nonfat 

dry milk was used as in place of iBlock. Primary antisera and dilutions used were: rabbit 

anti-Hop1 (made for this work, 1:75000) and goat anti-Arp7 ((Santa Cruz Biotechnology 

Cat# sc-8961, RRID:AB_671730, 1:1000). Secondary antisera were: goat polyclonal 

anti-rabbit conjugated with alkaline phosphatase (Abcam Cat# ab97048, 

RRID:AB_10680574, 1:10000) and rabbit anti-goat IgG conjugated with alkaline 

phosphatase (Sigma-Aldrich Cat# A4187, RRID:AB_258141, 1:5000). 

Chemiluminescence signals were captured using a BioRad Chemidoc MP imaging 

system and were quantified using the gel quantification tools in Fiji (SCHINDELIN et al. 

2012). 

 

Cytology 
Nuclear divisions were monitored by DAPI staining as described (GOYON AND LICHTEN 

1993). Meiotic chromosome spreads and staining with antisera were performed as 

described (LOIDL et al. 1991). The primary antibodies were: rabbit polyclonal anti-Hop1 

serum (prepared for this project), 1:7500 and mouse anti-V5 (Bio-Rad Cat# MCA1360, 

RRID:AB_322378, 1:250). The secondary antibodies were: goat anti-rabbit conjugated 

to Alexa 488 (Molecular Probes, #A-11034), 1:350 and donkey anti-mouse conjugated 

to Cy3 (Jackson ImmunoResearch Labs Cat# 715-165-151, RRID:AB_2315777, 1:500). 

Images were taken on a Zeiss Axioplan 2 imaging microscope using a 100x plan 

apochromat objective (440782-9902) and a Zeiss AxioCam HRm camera. 

 

Genetic analysis 
Frequencies of recombination between heteroalleles were determined by random spore 

analysis as described (LICHTEN et al. 1987). Map distances were determined by tetrad 
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dissection, using the formula of Perkins (PERKINS 1949) as implemented at 

https://elizabethhousworth.com/StahlLabOnlineTools/compare2.php.  

 

Calibrated chromatin immunoprecipitation and sequencing (ChIP-seq) 
ChIP-seq experiments used a protocol that combined and modified previous methods 

((MURAKAMI AND KEENEY 2014; MAKRANTONI et al. 2019); Hajime Murakami, personal 

communication). Strains used contained the URA3-tel-ARG4-parS reporter construct 

inserted at URA3. Samples taken at 0, 3 and 4h post meiotic induction were fixed with 

1% formaldehyde for 30 min at room temperature and quenched with 125mM glycine. 

The cells were washed in 1X TBS (20 mM Tris-HCl, pH 7.5, 136 mM NaCl) and stored 

as a pellet at -80˚C. Saccharomyces mikatae cells were similarly fixed 4h post meiotic 

induction and aliquots were frozen that contained about 1/10th the number of cells taken 

for S. cerevisiae. Both pellets were mixed in 500µl lysis buffer (50 mM Hepes-KOH pH 

7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 1X 

Complete Protease Inhibitor Cocktail EDTA-free (Roche, #04693132001), 7µg/ml 

aprotinin (Thermo Scientific, #78432), 1mM PMSF) and lysed in a Mini-Beadbeater-16 

(Biospec products) for seven cycles of 1min on, 2 min off (where the samples were kept 

on ice). The lysate was sonicated using a Biorupter 300 (Diagnode) for two rounds of 

eleven cycles of 30 sec on/30 sec off, with a 20 min incubation on ice between the two 

rounds of sonication. Debris was then removed by centrifugation (21130 x g, 5min, 4˚C) 

and another round of 11 cycles of sonication was performed. Lysates were pre-cleared 

by incubating with 50µl protein G-conjugated Dynabeads (Invitrogen, #100.04D; beads 

were washed twice with 1ml lysis buffer before use) for 1h on a rotator at 4˚C. Beads 

were removed, and a 10µl sample of the lysate was mixed with 190µl 10mM TRIS, 1mM 

EDTA, 1% SDS pH7.5 and stored at 4˚C to be used as input DNA. 3µl of anti-Hop1 

serum was added to the remaining lysate, which was then incubated for 3h at 4˚C with 

rotation. Protein G-conjugated Dynabeads (50µl, washed twice with 400µl 137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.4 with 5mg/ml bovine 

serum albumin) were added and the mixture was incubated overnight at 4˚C with 

rotation. Beads were then washed twice with 1ml of the following three buffers in 

succession; lysis buffer, wash buffer I (10 mM Tris-HCl pH 8, 250 mM LiCl, 360mM 
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NaCl, 0.5% Na-deoxycholate, 1 mM EDTA, 0.5% Triton X-100), wash buffer II (10 mM 

Tris-HCl pH 8, 250 mM LiCl, 0.5% Na-deoxycholate, 1 mM EDTA, 0.5% Triton X-100); 

for 5 min each on a rotator at 4˚C. The beads were washed once with 1ml TE wash 

buffer (10 mM Tris-HCl pH 8, 1 mM EDTA, 0.5% Triton X-100) at 4˚C for 5 min with 

rotation. DNA was eluted in 40µl elution buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, 1% 

SDS) at 65˚C for 15 min and added to a tube containing 160µl of TE/1%SDS. 200µl of 

ChIP and input DNA were incubated overnight at 65˚C in the presence of 1µl RNAse 

(0.5 mg/ml) to reverse crosslinks. 7.5µl of proteinase K (20mg/ml) was added to each 

tube and incubated at 50˚C for 2h. DNA was purified using a QIAquick PCR purification 

kit (Qiagen, #28104) and eluted in 50µl water. 15 ng of ChIP and input DNA were used 

to generate libraries using NEBNext Ultra II DNA Library Prep Kit for Illumina (New 

England Biolabs, #E7645) and NEBNext® Multiplex Oligos for Illumina® (96 Unique 

Dual Index Primer Pairs, New England Biolabs, #E6440). Sequencing was performed 

with an Illumina NextSeq 550 with the NextSeq 500/550 High Output Kit v2.5 (75 

Cycles).  

 

ChIP-seq data were calibrated as described (MAKRANTONI et al. 2019). Briefly, single 

ended fastq format sequences derived from ChIP-seq data were quality-trimmed using 

fastp (CHEN et al. 2018). Trimmed fastqs from both IP and input were aligned separately 

to the SK1 target genome ((YUE et al. 2017), available at 

https://yjx1217.github.io/Yeast_PacBio_2016/data/) which had been modified to reflect 

the genotype of the diploid MJL4236/7 (File S1 sheet1) and also to the Saccharomyces 

mikatae IFO 1815 (KELLIS et al. 2003) spike-in control genome using minimap2 (LI 

2018).  Reads that did not map to SK1 were subsequently aligned to S. mikatae and 

vice versa to identify those reads that mapped to both genomes and those that mapped 

uniquely to a single genome. A calibration factor, called the occupancy ratio (OR), was 

then calculated from the counts of such reads as: 

 

OR = (ipSK1 / inSK1) / (ipSMIK / inSMIK)  (eq. 1) 

 

Where, 
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ipSK1 = count IP reads mapping uniquely to the SK1 genome  

inSK1 = count of input reads mapping uniquely to the SK1 genome  

ipSMIK = count of IP reads mapping uniquely to the S. mikatae genome  

inSMIK = count of input reads mapping uniquely to the S. mikatae genome  

 

Calibrated depths for reads mapping uniquely to the SK1 genome were determined by 

multiplying read depths per million mapped reads by the OR computed in equation 1. 

Data processing was performed on the NIH HPC Biowulf cluster (http://hpc.nih.gov). 

Scripts implementing the calibrated ChIP processing pipeline as a Snakemake (MOLDER 

et al. 2021) workflow, suitable for parallel execution on the Biowulf cluster, are included 

in File S2; sequence reads are available at GEO, accession GSE201240, access token 

provided upon request.  

 

Data representation 
All values reported in figures are the mean of two or more independent experiments. 

Error bars denote the range in data values, except in Figure 8, where they denote 

calculated standard error. 

 

RESULTS 
To recruit axis proteins to target loci, we used the bacterial ParB-parS chromosome 

segregation system, where the ParB protein binds to a <1kb-long cluster of parS sites 

and then spreads to adjacent DNA (LIN AND GROSSMAN 1998; DUBARRY et al. 2006; 

BREIER AND GROSSMAN 2007; ATTAIECH et al. 2015; SOH et al. 2019). This system allows 

recruitment of multiple copies of ParB, fused to a protein of interest, with minimal 

disruption of chromosome integrity and function (DUBARRY et al. 2006; SAAD et al. 

2014). We fused ParB and a V5 epitope tag to the C-terminus of Hop1 (hereafter called 

Hop1-ParB; Figure 1A) to target this protein to three loci: URA3; HXT1; and YCR017c. 

All three are in regions of the yeast genome with low levels of occupancy by meiotic 

axis proteins and low levels of meiotic DSBs (Figure S1; (PAN et al. 2011; PANIZZA et al. 

2011)).  
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Recruiting Hop1 increases meiotic recombination 
To determine the effect of recruiting Hop1 on meiotic recombination, we initially used 

random spore analysis to examine recombination between arg4 heteroalleles in a 

URA3-arg4-pBR322-parS recombination reporter inserted at URA3 (Figure 2A). The 

same insert, but without parS, forms DSBs and undergoes recombination at levels that 

are location-dependent and that reflect underlying recombination levels in the region 

where it is inserted (BORDE et al. 1999). As a non-insert control, we also measured 

recombination between heteroalleles at LEU2. Initial experiments used a HOP1 gene 

duplication that contained both a tagged and a wild-type copy, to ensure normal function 

in the event that the tagged protein was only partially functional.   

 

Recruiting Hop1-ParB caused a striking 7-fold increase in recombination in the arg4 

gene inserted at URA3 (Figure 2B; File S1 sheet 4). Inserts at HXT1 and YCR017c, two 

other axis protein/DSB coldspots (Figure S1), also displayed markedly increased Arg+ 

recombinant frequencies (10- and 15-fold, respectively) when Hop1-ParB was present 

(Figure 2C). The presence or absence of a ParB-tagged axis protein did not markedly 

change recombination frequencies at the leu2 control locus (3.6 ± 0.7 x 10-3, Figure 

2B,C; File S1 sheet 4). These results suggest that levels of Hop1 in a region might be 

sufficient to determine levels of meiotic recombination in that region.  

 

Recruiting Hop1-ParB also markedly increased crossing-over in a region containing the 

insert at URA3. Crossing-over was measured by analysis of tetrads from a diploid that 

contained a kanMX6 insert ~10kb centromere proximal to URA3-arg4-pBR322-parS in 

one parent, and a hygMX6 insert ~10kb centromere distal in the other parent. The 

genetic distance for this ~25 kb interval was 12.3 ± 1.78 cM in diploids lacking Hop1-

ParB and 66.2 ± 6.16 cM in diploids expressing Hop1-ParB, a ~5-fold stimulation of 

crossing-over (File S1 sheet 10, also see Figure 8, below). 

 

Recruiting Hop1 increases DSB formation 
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To confirm that recruiting Hop1 increases meiotic recombination by increasing levels of 

DSBs, we determined cumulative DSB levels in sae2∆ mutants, which accumulate 

unrepaired DSBs with unresected ends (KEENEY AND KLECKNER 1995; PRINZ et al. 1997). 

Consistent with previous data (BORDE et al. 1999; PAN et al. 2011), very few DSBs were 

present in reporter inserts at the three target loci (URA3, HXT1 and YCR017c) in the 

absence of Hop1-ParB or when ParB alone was expressed. The presence of Hop1-

ParB increased DSBs in the reporter construct dramatically at all three loci (Figures 3A 

and 3B; File S1 sheet 5), while the DSBs at the ARE1 control locus (Goldway et al. 

1993) were relatively unchanged (Figure 3B). Hop1-ParB recruitment caused the 

greatest increase in DSBs in the insert at URA3 locus, where DSB levels (~21% of 

chromatids) are consistent with most cells experiencing a break at this locus.  

 

We also asked if Hop1 levels affect DSBs in cis or trans. In strains with parS on only 

one of the two homologs, the homolog with parS displayed insert DSBs at levels similar 

to those seen in a parS-homozygous diploid, while the homolog lacking parS displayed 

DSBs at levels similar to those seen in strains without parS (Figure 3C,D; File S1 sheet 

6). Thus, the DSB increase observed is primarily due to recruited Hop1 acting in cis. 

 

Hop1-ParB-stimulated DSBs require Spo11 but not Rec8 or Red1 

According to current models, DSBs are formed by the Spo11 complex, which is 

recruited to the cohesin-based axis by interactions with Hop1, which in turn can be 

recruited to the axis via interactions with Red1 (PANIZZA et al. 2011; SUN et al. 2015; 

ZICKLER AND KLECKNER 2015; WEST et al. 2019; ROUSOVA et al. 2021). This suggests 

that artificially recruiting Hop1 to chromosomes might bypass the need for Red1 or 

cohesin in DSB formation. To test this suggestion, DSBs in the insert at URA3 were 

examined in sae2∆ strains that were lacking Spo11, Red1, or the meiosis-specific 

cohesin component Rec8.  

 

As expected, DSBs were abolished at all loci in spo11∆ strains, regardless of whether 

Hop1-ParB was present (Figures 4A and 4B; File S1 sheet 5). Consistent with previous 

reports (WOLTERING et al. 2000; PECINA et al. 2002; NIU et al. 2005), red1∆ mutants 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.12.491616doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.12.491616
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shodhan et al.   14 

displayed a substantial (~2.5-fold) decrease in DSBs at the ARE1 control locus 

regardless of whether Hop1-ParB was present or absent; when only Hop1 was present, 

the parS insert locus showed a similar decrease in DSBs. However, when Hop1-ParB 

was present, DSB levels at the parS insert in red1∆ strains were similar to those in 

RED1 strains (Figures 4A and 4B; File S1 sheet 5). Thus, direct recruitment of Hop1 

appears to bypass the role of Red1 in DSB formation. 

 

Previous studies have show that rec8∆ strains display rearranged patterns of Red1, 

Hop1 and Spo11-complex components, with a tendency towards reducing occupancy at 

hotspots in the centers of large chromosomes while preserving occupancy, albeit at 

much-reduced levels, on short chromosomes and at certain loci on other chromosomes 

(KUGOU et al. 2009; PANIZZA et al. 2011; SUN et al. 2015; HELDRICH et al. 2022). 

Consistent with previous data showing that occupancy by these proteins is not 

substantially altered in rec8∆ mutants at URA3 and ARE1 (KUGOU et al. 2009; PANIZZA 

et al. 2011), DSBs at the parS insert locus and at the ARE1 control locus were similar in 

REC8 and in rec8∆ strains, regardless of the presence or absence of Hop1-ParB 

(Figures 4A and 4B; File S1 sheet 5). Thus, unlike many DSB hotspots in the centers of 

long chromosomes, the hotspot created by recruitment of Hop1-ParB to the insert at 

URA3 is not affected by loss of Rec8-cohesin. 

 

The ParB-parS system specifically enriches Hop1 at the target locus 

To confirm that the ParB/parS-dependent increase in meiotic recombination was 

associated with recruitment of Hop1, we used calibrated ChIP-seq to map Hop1 

occupancy genome wide, using a spike-in sample from meiotic cells of Saccharomyces 

mikatae. S. mikatae is substantially diverged from S. cerevisiae (24% nucleotide 

divergence genome wide), but S.mikatae Hop1 shows 86.5% amino acid identity with S. 

cerevisiae Hop1, and cross-reacts with the antiserum against S. cerevisiae Hop1 used 

here for ChIP ((KELLIS et al. 2003; DUJON 2006; LITI et al. 2013; LAM AND KEENEY 2015); 

data not shown). Strains expressing either both Hop1 and Hop1-ParB (HOP1-ParB 

HOP1/HOP1) or Hop1 alone displayed similar Hop1 occupancy profiles genome-wide. 

However, Hop1 occupancy in a ~50 kb region surrounding the parS insert at URA3 was 
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much greater than the Hop1 signal in the rest of the genome (Figures 5A and 5C). 

Quantitative interpretation of this pattern is complicated by the fact that strains 

expressing both Hop1-ParB and Hop1 have three modes of Hop1 chromosome binding: 

direct binding of the ParB domain in Hop1-ParB to chromosomal DNA; indirect binding 

of Hop1 through its interactions with itself and with Red1 and cohesin (SMITH AND 

ROEDER 1997; KLEIN et al. 1999; BLAT et al. 2002; RIEDEL et al. 2006; PANIZZA et al. 

2011; SUN et al. 2015; WEST et al. 2018; WEST et al. 2019); and possible direct binding 

of Hop1 to DNA (KIRONMAI et al. 1998; KSHIRSAGAR et al. 2017; HELDRICH et al. 2020; 

HELDRICH et al. 2022). Hop1 bound in these three modes is likely to be crosslinked to 

DNA with different efficiencies. Therefore, while the increased Hop1 ChIP signal in the 

vicinity of parS almost certainly indicates that more Hop1 is bound in this region, the 

quantitative extent of that increase remains to be determined. 

 

We also compared the distribution of Hop1 and Hop1-ParB on chromosome spreads of 

cells at the pachytene stage, using anti-Hop1 to detect both proteins and anti-V5 to 

specifically detect the Hop1-ParB fusion protein (Figure 5C). Cells expressing Hop1 

alone displayed a pattern of lines and punctate foci, as has been previously reported 

(SMITH AND ROEDER 1997). Cells expressing both Hop1 and Hop1-ParB displayed a 

similar pattern, and similar staining patterns were obtained with anti-Hop1 (detecting 

Hop1 and Hop1-ParB) and anti-V5 (detecting Hop1-ParB only). Thus, Hop1-ParB 

appears to localize across the genome.  

 
Hop1-ParB provides partial Hop1 function 
The experiments described above used strains with a wild-type copy of the HOP1 gene 

in addition to the HOP1-ParB fusion (see Materials and Methods). To determine 

whether Hop1-ParB was fully functional when expressed on its own, we examined 

meiotic spore viability, recombination, and DSB formation in strains containing a parS 

insert at URA3 where the only source of Hop1 was a Hop1-ParB fusion (Figure 6). In 

strains where only Hop1-ParB was expressed (HOP1-PARB/HOP1-ParB), spore 

viability was reduced ~2-fold (Figure 6A; File S1 sheet 7), recombination between arg4 

heteroalleles inserted at URA3 was reduced ~3-fold (Figure 6B; File S1 sheet 4), and 
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DSBs at the parS insert locus and at the ARE1 control locus were reduced ~3 and ~6-

fold, respectively (Figures 6C and 6D; File S1 sheet 5), relative to strains expressing 

both Hop1 and Hop1-ParB (HOP1-ParB HOP1/HOP1-ParB HOP1). These defects were 

at least partially suppressed by the addition of a single copy of untagged HOP1 (HOP1-

ParB/HOP1), while full suppression of the DSB defect required two wild-type copies of 

Hop1. Thus, while the Hop1-ParB fusion construct produces a protein that can recruit 

Hop1 protein to the region surrounding parS, it is unable to provide full Hop1 function. 

 

Non-canonical DSB repair in the presence of Hop1-ParB and in inserts at URA3  
 

The Hop1-ParB fusion protein also conferred an apparent defect in meiotic DSB repair. 

Cells expressing Hop1-ParB showed a 45-50 min delay in the disappearance of DSBs 

at both the parS insert and at ARE1 (Figures 7A,C,D; File S1 sheet 8). This delay was 

accompanied by a delay in meiotic divisions that increased with HOP1-parB gene 

dosage (Figure 7B; File S1 sheet 9), consistent with the presence of unrepaired DSBs 

activating the meiotic checkpoint (LYDALL et al. 1996; GRUSHCOW et al. 1999; THOMPSON 

AND STAHL 1999; ROEDER AND BAILIS 2000; SHIMADA et al. 2002). 

 

In addition, Hop1-ParB-stimulated crossovers in inserts at URA3 do not appear to use 

the recombination pathway that is dominant at other DSB hotspots. Previous studies 

indicate that most meiotic crossovers form via a pathway that involves the ZMM protein 

complex and the meiosis-specific MutLg resolvase (Mlh1-Mlh3-Exo1), and a minor 

fraction are formed by structure-selective nucleases (SSNs; Mus81-Mms4, Yen1, Slx1-

Slx4) (SCHWACHA AND KLECKNER 1994; WANG et al. 1999; KHAZANEHDARI AND BORTS 

2000; KIRKPATRICK et al. 2000; TSUBOUCHI AND OGAWA 2000; ALLERS AND LICHTEN 2001a; 

ALLERS AND LICHTEN 2001b; DE LOS SANTOS et al. 2003; HOFFMANN et al. 2003; ARGUESO 

et al. 2004; BISHOP AND ZICKLER 2004; BORNER et al. 2004; HOLLINGSWORTH AND BRILL 

2004; JESSOP et al. 2006; LYNN et al. 2007; JESSOP AND LICHTEN 2008; NISHANT et al. 

2008; ZAKHARYEVICH et al. 2010; COMERON et al. 2012; DE MUYT et al. 2012; WANG et al. 

2012; YANG et al. 2012; ZAKHARYEVICH et al. 2012; AGOSTINHO et al. 2013; OKE et al. 

2014; AL-SWEEL et al. 2017; DE MUYT et al. 2018; PYATNITSKAYA et al. 2019). However, 
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genetic crossing-over in a ~25 kb interval containing the URA3-arg4-pBR322-parS was 

reduced only modestly in mlh3∆ strains, both in strains where Hop1-ParB was 

expressed and where Hop1-parB was absent (Figure 8; File S1 sheet 10).  

 

We also measured crossover (CO) and noncrossover (NCO) recombination at the 

molecular level, using a second parS-containing insert at URA3 (URA3-tel-ARG4-parB; 

Figure 9A) that contains a single DSB site (JESSOP et al. 2005; AHUJA et al. 2021). 

Consistent with experiments described above that used URA3-arg4-pBR322-parS 

inserts, addition of a single copy of Hop1-ParB (HOP1-parB HOP1/HOP1) resulted in a 

marked increase in DSBs (~7-fold; Figures 9A and 9B; File S1 sheet 12), in COs (~5-

fold; Figure 9A and 9C; File S1 sheet 11), and in NCOs (~4.5-fold; Figure 9A and 9D; 

File S1 sheet 11) within the insert at URA3. 

 

Previous studies have shown that ndt80∆ mutants arrest at the pachytene stage of 

meiosis with markedly reduced CO levels, regardless of whether MutLg or SSNs are the 

primary resolvase (XU et al. 1995; CHU AND HERSKOWITZ 1998; ALLERS AND LICHTEN 

2001a; JESSOP AND LICHTEN 2008; SOURIRAJAN AND LICHTEN 2008; DE MUYT et al. 2012). 

Consistent with this, COs in the insert at URA3 were reduced 3 to 4-fold in ndt80∆ 

mutants, regardless of whether Hop1-ParB was present or absent (Figure 9C; File S1 

sheet 11). However, unlike at other hotspots, where mlh3∆ causes a ~2-fold reduction in 

COs (HUNTER AND BORTS 1997; WANG et al. 1999; ARGUESO et al. 2004; NISHANT et al. 

2008; AL-SWEEL et al. 2017), mlh3∆ caused a much more modest 10-15% decrease in 

COs (Figures 9C; File S1 sheet 11), as was seen in genetic crosses (Figure 8). 

Inactivation of the major mitotic resolvase Mus81-Mms4, in mms4-md mutants, reduced 

COs in inserts at URA3 by 30-40% (Figure 9C; File S1 sheet 11), as compared to 

reductions of 10-20% (mus81 or mms4) seen at recombination hotspots (BORNER et al. 

2004; JESSOP et al. 2006; OH et al. 2007; DE MUYT et al. 2012; ZAKHARYEVICH et al. 

2012; HE et al. 2020). Furthermore, COs were reduced about 2-fold in mlh3 mms4-md 

double mutants, as compared to >6-fold reductions reported in other genetic studies 

(ARGUESO et al. 2004; NISHANT et al. 2008; BROWN et al. 2013). Notably, COs were 

similarly affected in mutant strains whether Hop1-ParB was present or absent, 
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indicating that the non-canonical CO pathway utilization seen in inserts at URA3 is 

independent of DSB levels.  

 
DISCUSSION 
The meiotic chromosome axis lies at the center of meiotic chromosome transactions, 

including the initiation of recombination by double strand break formation, recombination 

partner choice and homolog pairing, CO designation and pathway choice, and CO 

assurance and spacing control (HOLLINGSWORTH AND PONTE 1997; ZICKLER AND 

KLECKNER 1999; BLAT et al. 2002; GLYNN et al. 2004; KLECKNER 2006; TSUBOUCHI AND 

ROEDER 2006; NIU et al. 2007; YANG et al. 2008; JOSHI et al. 2009; KUGOU et al. 2009; 

NIU et al. 2009; CALLENDER AND HOLLINGSWORTH 2010; KIM et al. 2010; PANIZZA et al. 

2011; YOUDS AND BOULTON 2011; CHUANG et al. 2012; DE MUYT et al. 2018; 

PYATNITSKAYA et al. 2019; UR AND CORBETT 2021). While axis proteins’ roles in these 

processes have been extensively studied, the co-dependent localization of axis proteins 

has presented a challenge to the identification of their individual roles in meiotic 

recombination. In this paper, we used the bacterial ParB-parS system to independently 

enrich the axis protein Hop1 at target loci, and to identify a unique role for Hop1 in DSB 

formation.  

 

Hop1 is efficiently recruited by the ParB-parS system  
While the ParB-parS system has previously been used as an alternative to operator-

repressor arrays to visually label specific loci (SAAD et al. 2014; GERMIER et al. 2018), 

the use of this system to recruit meiotic axis proteins is, to our knowledge, the first time 

that it has been used to localize chromosomal proteins with the goal of understanding 

their function. Hop1-ParB expression caused a markedly greater increase in Hop1 ChIP 

signal at the parS site and for about 25 kb to either side of parS, consistent with the 

spread of ParB from parS observed in bacteria, which is facilitated by its ability to 

dimerize and form a clamp that slides along DNA (WALTER et al. 2020) and by its ability 

to bridge DNA (BREIER AND GROSSMAN 2007; GRAHAM et al. 2014; ANTAR et al. 2021).  

Cytological analysis showed that Hop1-ParB and the wild-type Hop1 protein show 

similar nucleus-wide localization patterns (Figure 5D), suggesting that the C-terminal 
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tag does not prevent Hop1-ParB loading via Hop1-Red1 or Hop1-Hop1 interactions 

(WEST et al. 2018; WEST et al. 2019).  

 

Hop1 determines local DSB levels 
Previous studies have reported a direct correlation between levels of Hop1 (and Red1) 

enrichment and levels of Spo11 DSBs in different regions of the genome (PAN et al. 

2011; PANIZZA et al. 2011; SUBRAMANIAN et al. 2019). Here, we have shown that ParB-

parS-mediated recruitment of Hop1 to a locus causes a dramatic increase in Spo11-

dependent DSBs at that locus. This increase in DSBs is independent of the other 

meiosis-specific axis proteins, Red1 and Rec8. Thus, while Red1 and Rec8 might be 

required for Hop1 loading under normal circumstances, it is the level of Hop1 

enrichment that ultimately determines the local DSB levels. This suggests that Hop1 

alone is sufficient to recruit the DSB-forming Spo11 complex consistent with recent 

biochemical studies showing that the Spo11 complex protein Mer2 interacts directly with 

Hop1 and not with Red1 (ROUSOVA et al. 2021). 

 

We found that, while Hop1-ParB can stimulate DSB formation in the vicinity of parS, 

Hop1-ParB alone was insufficient for optimal DSB formation, recombination, and spore 

viability, and that full function required addition of 1 to 2 copies of wild-type HOP1, 

depending upon the assay (Figure 6). Since Hop1-ParB is produced at about 80-90% of 

the levels of wild-type Hop1 protein (Figure 1B), it is unlikely that these results can be 

explained by reduced levels of Hop1 protein alone, although it is possible that over-

enrichment of Hop1 at parS reduces Hop1 levels elsewhere in the genome. It also is 

possible that the presence of the C-terminal ParB tag creates a partially functional Hop1 

protein. For example, recent in vitro studies have shown Mer2 preferentially binds to 

Hop1 with an unlocked closure motif (ROUSOVA et al. 2021). Chromosome-bound Hop1 

normally is in this unlocked configuration, due to closure motif-HORMA domain 

interactions that recruit it to the axis(WEST et al. 2018; WEST et al. 2019). However, 

Hop1 recruited to chromosomes by a ParB tag might frequently exist in the locked 

confirmation, and thus might recruit the Spo11 complex less efficiently. In addition, the 

ParB tag might interfere with interactions necessary for Hop1 post-translational 
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modification, and/or Hop1 loading/unloading  (CARBALLO et al. 2008; WOJTASZ et al. 

2009; THACKER et al. 2014; HERRUZO et al. 2016; HERRUZO et al. 2021; LI AND 

SHINOHARA 2021). For example, Hop1 is normally removed from the axis after homolog 

synapsis (BORNER et al. 2008; JOSHI et al. 2009; WOJTASZ et al. 2009; ZANDERS AND 

ALANI 2009; DANIEL et al. 2011; KAUPPI et al. 2013; THACKER et al. 2014; LAMBING et al. 

2015; SUBRAMANIAN et al. 2016; SUBRAMANIAN et al. 2019); a failure to remove Hop1-

ParB bound via the ParB tag might result in the persistent DSBs and delayed 

progression that we observed when Hop1-ParB is present (Figure 7). 

 

Noncanonical recombination pathway usage in inserts at the URA3 locus 
Previous studies of crossover formation have concluded that most meiotic COs are 

formed by MutLg-dependent double Holliday junction resolution, a minor fraction are 

formed by mitotic resolvases (Mus81-Mms4/Eme1 and Yen1/Gen1) and that both 

modes of resolution are CDC5- and NDT80-dependent (XU et al. 1995; CHU AND 

HERSKOWITZ 1998; ALLERS AND LICHTEN 2001a; CLYNE et al. 2003; JESSOP AND LICHTEN 

2008; SOURIRAJAN AND LICHTEN 2008; DE MUYT et al. 2012; SCHWARTZ et al. 2012; 

ZAKHARYEVICH et al. 2012; BLANCO AND MATOS 2015; YOON et al. 2016). These studies 

either examined events at recombination hotspots or examined crossing-over in large 

genetic intervals, in which presumably most recombination is hotspot-driven. We find 

that recombination in inserts at URA3 does not conform to these conclusions. While 

ndt80∆ substantially reduced COs (Figure 9C), consistent with crossing over in inserts 

at URA3 being resolvase-driven, specific resolvase-dependence of COs was 

substantially altered. Unlike in previous studies, where loss of MutLg results in a ~2-fold 

CO reduction (HUNTER AND BORTS 1997; WANG et al. 1999; ARGUESO et al. 2004; 

NISHANT et al. 2008; AL-SWEEL et al. 2017), mlh3∆ mutants showed a substantially lower 

CO reduction (~ 20-25% when measured genetically, Figure 8; ~10 to 15% at the 

molecular level, Figure 9C). In addition, mms4-md mutants, which cause a meiosis-

specific loss of Mus81-Mms4 activity, showed a substantial (30-40%) CO reduction in 

inserts at URA3, which is greater than the minor CO reductions seen in the absence of 

Mus81-Mms4 in other studies (ARGUESO et al. 2004; JESSOP AND LICHTEN 2008; DE 

MUYT et al. 2012; ZAKHARYEVICH et al. 2012). Taken together, these data indicate a shift 
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away from resolution by MutLg, and towards resolution by mitotic resolvases during 

Spo11-induced recombination at URA3, as was seen for recombination during meiosis 

that is initiated by the VDE site-specific endonuclease (MEDHI et al. 2016; SHODHAN et 

al. 2019). Of particular importance, similar resolvase-usage patterns are seen in 

HOP1/HOP1 and HOP1-parB HOP1/HOP1 strains, even though DSB levels and CO 

levels differ more than 5-fold between these strains (Figures 9B and 9C). Thus, non-

physiological recruitment of Hop1 appears to have created a DSB hotspot that still 

behaves like a coldspot during the post-DSB steps of recombination.  

 

One possible explanation for this is that Hop1-independent features of chromosome 

structure determine CO pathway choice. One such feature could be the axis proteins 

themselves. Red1 interacts with Zip4, a part of the ZZS complex and the larger ZMM 

protein complex that is important for the MutLg-dependent CO pathway, and this 

interaction is conserved in other organisms (YANG et al. 2008; DE MUYT et al. 2018; 

PYATNITSKAYA et al. 2019). The meiotic cohesin component Rec8 has also been 

identified as to playing a role in homolog bias and CO formation (YOON et al. 2016; 

HONG et al. 2019), although this may simply reflect its role in recruiting Red1. If 

recruiting Hop1 to “cold” regions increases DSB formation without increasing meiotic 

cohesin and/or Red1 levels, it is possible that insufficient ZMM proteins are recruited to 

promote MutLg-dependent intermediate resolution, leading to an increased use of 

mitotic resolvases during CO formation.  

 

In summary, we report here the novel use of the ParB-ParS bacterial partition system, 

to study the role of chromosome structural proteins in meiotic recombination at a 

specific locus without substantially altering recombination elsewhere in the genome. 

The artificial recruitment of Hop1 to regions where meiotic axis proteins are normally 

low enabled the conversion of DSB/recombination coldspots into recombination 

hotspots by specifically increasing DSB formation independent of other axis proteins. 

Our data suggest an independent role for Hop1 in DSB formation, but also a need for 

the other axis proteins or other factors in normal repair pathway choice. It will be of 

interest to determine if recruiting both Red1 and Hop1 to these coldspots-turned-
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hotspots can restore a more wild-type pattern of resolvase usage during meiotic CO 

formation. We also anticipate that artificial Hop1 recruitment could facilitate analysis of 

the interactions between Hop1 and Spo11-complex proteins that promote DSB 

formation. In addition, artificial recruitment of Hop1 homologs in other organism may 

provide a targeted way to increase meiotic recombination in regions where 

recombination is normally low, both for mechanistic studies and for breeding purposes. 
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FIGURE LEGENDS 
Figure 1. ParB fusion constructs 

A. Illustration of protein fusions used. Dark blue arrows –coding sequences of tagged 

and untagged HOP1; vertical lines—fusion; light blue—natMX6 drug resistance 
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cassette; open boxes—5’ and 3’ HOP1 untranslated regions; thin rectangles—pFA6 

sequences; thin black lines—flanking yeast chromosome sequences.  

B. Western blot of samples taken at indicated time in meiosis, probed with anti-Hop1. 

Bands corresponding to Hop1 and to Hop1-ParB are indicated; asterisk indicates non-

specific background band. Ratios of Hop1-ParB/Hop1 are indicated for strains where 

the two proteins are both present. See also File S1 sheet 14. 

 

Figure 2. Hop1 recruitment stimulates meiotic recombination 

A. Left—schematic of the URA3-arg4-parS reporter insert, showing arg4-nsp and arg4-

bgl heteroalleles; right—leu2 control locus with heteroalleles. Blue arrows—coding 

sequences; white boxes—yeast chromosomal sequences; purple box—parSc2 

sequences; thick line—pBR322 sequences. 

B. Frequencies of Arg+ (insert, black) and Leu+ (control, white) recombinants for the 

insert at URA3 are shown in A. Fusion proteins expressed are indicated; all strains also 

expressed wild-type Hop1.  

C. Frequencies of Arg+ (top) and Leu+ (bottom) recombinants in strains with inserts at 

the indicated locus, expressing only Hop1 (grey) or both Hop1-ParB and Hop1 

(salmon).  

See also File S1 sheet 4. 

 

Figure 3: Hop1-ParB recruitment increases DSBs in reporter inserts  

A. Southern blot of DNA from sae2∆ strains, which form DSBs but do not resect or 

repair them, with a parS insert at indicated locus. Indicated restriction digests were 

probed with parS sequences to detect DSBs in the insert. These occur in pBR322 

sequences on either side of ARG4 sequences (WU AND LICHTEN 1995), and will be 

called DSB1 and DSB2 as shown in the schematic. Strains were homozygous either for 

HOP1 (grey) or HOP1-parB HOP1 (salmon).  

B. Hop1-ParB increases DSBs (DSB1 + DSB2) at all three insert loci (top), but not at 

the ARE1 control locus (Bottom).  

C. Hop1-parB acts primarily in cis: Southern blot with DNA from a sae2∆ strain with 

inserts at URA3 on both homologs, where: (parS/-)—one contains parS and the other 
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does not; (parS/parS)—both contain parS; (-/-)—both are without parS. DNA was 

digested with SbfI and probed with pBR322 sequences, which allows distinction 

between breaks at DSB1 on chromosomes with and without parS. Breaks at DSB2 

cannot be resolved.  

D. Quantification of breaks at DSB1 in the parS hemizygous strain, as well as in control 

strains with homozygous inserts that either both lacked or both contained parS. 

See also File S1 sheets 5 and 6. 

 

 

Figure 4: Hop1-stimulated DSBs are Spo11 dependent but Red1- and Rec8-
independent  
A. Southern blot with DNA from a sae2∆ strain with inserts at URA3 in spo11∆, red1∆ or 

rec8∆ strains homozygous either for HOP1 (grey) or HOP1-parB HOP1 (salmon). DNA 

was digested with SbfI and probed with parS sequences.  

B. Top—DSBs in the parS insert at URA3, measured at 7h after induction of meiosis. 

Bottom—DSBs in the same strains at the ARE1 control locus. 

See also File S1 sheet 5. 

 

Figure 5: Hop1 localization and enrichment at parS 

A. Hop1 occupancy (immunoprecipitate/whole cell extract) on chromosome V, 

determined by calibrated ChIP-seq (see Materials and Methods) using samples taken at 

4h after induction of meiosis. Strains contained the URA3-tel-arg4-parB insert at URA3 

and the indicated HOP1 genotype. Dark and light lines indicate replicates. Dotted 

vertical line—parS insert locus. The peak at parS in HOP1-parB HOP1/HOP1 strains is 

truncated; peak values reached ~700 RPM.  

B. Hop1 occupancy around the ARE1 control locus (chr. III). Dotted vertical line—ARE1 

DSB site. All other details as in A. 

C. Difference plot for 200 kb around parS, calculated by subtracting the calibrated 

ChIP/WCE for HOP1/HOP1(mean of both replicates) from that for HOP1-parB 

HOP1/HOP1 (mean of both replicates).  
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D. Chromosome spreads from meiotic cells (4 and 5 h) from wild-type and from cells 

expressing Hop1-ParB (HOP1-parB-V5 HOP1/HOP1), probed with the indicated 

antiserum. In strains expressing Hop1-parB-V5, Hop1-ParB (anti-V5) shows the same 

distribution as total Hop1. Scale bar =5µm 

 

Figure 6. Hop1-ParB has partial function 

A. Spore viability in dissected tetrads.  

B. Frequencies of Arg+ (black) and Leu2+ (white) recombinants in random spores from 

diploids with the URA3-arg4-parS insert at URA3.  

C, D. Frequencies of DSBs (DSB1 + DSB2, see Figure 3) at the URA3-arg4-parS insert 

at URA3 and at the ARE1 control locus, in sae2∆ strains.   

See also File S1 sheets 4, 5, and 7. 

 

Figure 7. Delayed DSB repair and meiotic progression in presence of Hop1-ParB 

A. Southern blots of meiotic DNA from SAE2 cells with the URA3-arg4-parS insert at 

URA3, expressing either Hop1 or both Hop1-ParB and Hop1 digested with Sbf1 and 

probed with parS sequences.   

B. Meiotic progression, expressed as cells completing meiosis I (with either 2 or 4 

nuclei).  

C. Quantification of total DSBs from the experiment in panel A and others. Note that 

data from strains expressing Hop1 (grey) are plotted with the right-hand Y axis, and 

from strains with HOP1-ParB HOP1/HOP1 (salmon) on the left-hand Y axis.  

D. DSBs at the ARE1 control locus from the same experiments. 

See also File S1 sheets 8, 9. 

 

Figure 8. Most crossovers at URA3 are MutLg-independent 
Map distances, calculated from marker segregation in tetrads, between natMX and 

hygMX inserts flanking a URA3-arg4-parS insert at the URA3 locus (see Materials and 

Methods). Expression of Hop1-ParB results in a marked increase in map distances. 

Map distances are only modestly decreased in mlh3∆ strains, in either HOP1/HOP1 

strains (grey) or HOP1-parB HOP1/HOP1-parB HOP1 strains (salmon). 
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See also File S1 sheet 10. 

 

Figure 9. Noncanonical crossover pathway usage at URA3 

A. Schematic for the URA3-tel-arg4-parS reporter insert at URA3, showing product 

length in XmnI or XmnI+BamHI digests. Left—Southern blots showing DSBs in sae2∆ 

strains; right—recombination products in SAE2 strains. Top—crossovers (CO1 and 

CO2) in XmnI; bottom—noncrossovers (NCO1) in XmnI+BamHI digests. Both blots 

were probed with URA3 sequence.  

B. Quantification of insert DSBs in sae2∆ HOP1/HOP1(grey) or sae2∆ HOP1-parB 

HOP1/HOP1 (salmon) strains in samples taken 7h after meiotic induction.  

C. Quantification of COs (CO1 + CO2) in HOP1/HOP1 (grey, right Y axis) or HOP1-

ParB HOP1/HOP1 (salmon, left Y axis) in samples taken 8h after meiotic induction in 

the indicated mutants.  

D. Quantification of NCOs (NCO1). Details as in C. 

See also File S1 sheets 11, 12. 

 

Figure S1. Genome-wide axis protein localization 

Line plots—levels of Hop1 (pink), Red1 (blue) and Rec8 (olive green), at the locations of 

the three inserts and at the two control loci, expressed as decile-normalized ChIP/WCE, 

data from PANIZZA et al. (2011). Orange bars-–levels of Spo11 DSBs, counts of Spo11-

linked oligonucleotides (hPM/bp), data from PAN et al. (2011). Green boxes—gene 

positions. 

 

Figure S2. Genome-wide Hop1 localization 

Whole-genome Hop1 occupancy (immunoprecipitate/whole cell extract) determined by 

calibrated ChIP-seq of samples taken at 0h, 3h and 4h in meiosis from strains with a 

URA3-tel-arg4-parB insert at URA3 and the indicated HOP1 genotype, plotted using a 

bin size of 7kb. Vertical grey lines—chromosome boundaries. Vertical green line—parS 

insert location (chr. V). The two replicates are indicated by dark and light lines.  

A. Y axis scale of 0-150 RPM to illustrate Hop1 occupancy across the whole genome; 

the signal peak at the parS insert location.  
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B. As in panel A, but with Y axis scale of 0-500 RPM to illustrate the full range of Hop1 

occupancy. 

C. Difference plot calculated by subtracting the calibrated ChIP/WCE for Hop1/Hop1 

(mean of both replicates) from that for Hop1-ParB Hop1/Hop1 (mean of both replicates) 

for the whole genome with Y scale as indicated to illustrate full range of difference and 

difference in signal across the genome 
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Figure 1. ParB fusion constructs
A. Illustration of protein fusions used. Dark blue arrows –coding sequences of tagged and untagged HOP1; vertical 
lines—fusion; light blue—natMX6 drug resistance cassette; open boxes—5’ and 3’ HOP1 untranslated regions; thin 
rectangles—pFA6 sequences; thin black lines—flanking yeast chromosome sequences. 
B. Western blot of samples taken at indicated time in meiosis, probed with anti-Hop1. Bands corresponding to Hop1 
and to Hop1-ParB are indicated; asterisk indicates non-specific background band. Ratios of Hop1-ParB/Hop1 are 
indicated for strains where the two proteins are both present. See also File S1 sheet 14
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Figure 2. Hop1 recruitment stimulates meiotic recombination
A. Schematic of the URA3-arg4-parS reporter insert, showing arg4-nsp and arg4-bgl heteroalleles; right—leu2
control locus with heteroalleles. Blue arrows—coding sequences; white boxes—yeast chromosomal sequences; 
purple box—parSc2 sequences; thick line—pBR322 sequences.
B. Frequencies of Arg+ (insert, black) and Leu+ (control, white) recombinants for the insert at URA3 are shown in A. 
Fusion proteins expressed are indicated; all strains also expressed wild-type Hop1. 
C. Frequencies of Arg+ (top) and Leu+ (bottom) recombinants in strains with inserts at the indicated locus, 
expressing only Hop1 (grey) or both Hop1-ParB and Hop1 (salmon). 
See also File S1 sheet 4.
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Figure 3: Hop1-ParB recruitment increases DSBs in reporter inserts
A. Southern blot of DNA from sae2∆ strains, which form DSBs but do not resect or repair them, with a parS insert at indicated 
locus. Indicated restriction digests were probed with parS sequences to detect DSBs in the insert. These occur in pBR322 
sequences on either side of ARG4 sequences (WU AND LICHTEN 1995), and will be called DSB1 and DSB2 as shown in the 
schematic. Strains were homozygous either for HOP1 (grey) or HOP1-parB HOP1 (salmon). 
B. Hop1-ParB increases DSBs (DSB1 + DSB2) at all three insert loci (top), but not at the ARE1 control locus (Bottom). 
C. Hop1-parB acts primarily in cis: Southern blot with DNA from a sae2∆ strain with inserts at URA3 on both homologs, where:
(parS/-)—one contains parS and the other does not;  (parS/parS)—both contain parS; (-/-)—both are without parS. DNA was 
digested with SbfI and probed with pBR322 sequences, which allows distinction between breaks at DSB1 on chromosomes with 
and without parS. Breaks at DSB2 cannot be resolved. 
D. Quantification of breaks at DSB1 in the parS hemizygous strain, as well as in control strains with homozygous inserts that 
either both lacked or both contained parS.
See also File S1 sheets 5 and 6.

URA3 HXT1 YCR017
0
2
4
6
8

10

To
ta

l D
SB

s/
To

ta
l L

an
e 

Si
gn

al
 (%

)

Hop1

Hop1-ParB
W
T

sp
o1
1∆
re
c8
∆
re
d1
∆

0

4

8

12

to
ta

l D
SB

s 
/ t

ot
al

 la
ne

 s
ig

na
l (

%
)

Hop1

Hop1-ParB

0    7      0   7     0   7     0   7   0  7h

1K 2K 3K 4K 5K 6K 7K 8K 9K

ARGURA3 parSC2 

1K 2K 3K 4K 5K 6K 7K 8K 9K

ARGURA3 parSC2 

1K 2K 3K 4K 5K 6K 7K 8K 9K

ARGURA3 parSC2 

1K 2K 3K 4K 5K 6K 7K 8K 9K

ARGURA3 parSC2 

DSB1 SbfI probe SbfI

SbfI

[parS]

[-]
DSB1 probe

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2022. ; https://doi.org/10.1101/2022.05.12.491616doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.12.491616
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Brec8∆red1∆spo11∆

0   7    0   7      0    7    0    7     0   7    0   7h

DSB1

DSB2

parS

arg4

URA3

1K
2K

3K
4K

5K
6K

7K
8K

9K

ARG
URA3

parSC2 

1K
2K

3K
4K

5K
6K

7K
8K

9K

ARG
URA3

parSC2 UR
A3

HX
T1

YC
R0
17

0.00

0.02

0.04

0.06

Ar
g+

/T
ot

al
 S

po
re

s

Hop1

Hop1-ParB Hop1

UR
A3

HX
T1

YC
R0
17

0.00

0.02

0.04

0.06

Ar
g+

/T
ot

al
 S

po
re

s

Hop1

Hop1-ParB Hop1

UR
A3

HX
T1

YC
R0
17

0.00

0.02

0.04

0.06

Ar
g+

/T
ot

al
 S

po
re

s

Hop1

Hop1-ParB Hop1

UR
A3

HX
T1

YC
R0
17

0.00

0.02

0.04

0.06

Ar
g+

/T
ot

al
 S

po
re

s

Hop1

Hop1-ParB Hop1

UR
A3

HX
T1

YC
R0
17

0.00

0.02

0.04

0.06

Ar
g+

/T
ot

al
 S

po
re

s

Hop1

Hop1-ParB Hop1

UR
A3

HX
T1

YC
R0
17

0.00

0.02

0.04

0.06

Ar
g+

/T
ot

al
 S

po
re

s

Hop1

Hop1-ParB Hop1

ARE1

Insert

UR
A3

HX
T1

YC
R0
17

0.00

0.02

0.04

0.06

Ar
g+

/T
ot

al
 S

po
re

s

Hop1

Hop1-ParB Hop1

UR
A3

HX
T1

YC
R0
17

0.00

0.02

0.04

0.06

Ar
g+

/T
ot

al
 S

po
re

s

Hop1

Hop1-ParB Hop1

Figure 4: Hop1-stimulated DSBs are Spo11 dependent but Red1- and Rec8-independent 
A. Southern blot with DNA from a sae2∆ strain with inserts at URA3 in spo11∆, red1∆ or rec8∆ strains homozygous 
either for HOP1 (grey) or HOP1-parB HOP1 (salmon). DNA was digested with SbfI and probed with parS
sequences. 
B. Top—DSBs in the parS insert at URA3, measured at 7h after induction of meiosis. Bottom—DSBs in the same 
strains at the ARE1 control locus.
See also File S1 sheet 5.
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Figure 5: Hop1 localization and enrichment at parS
A. Hop1 occupancy (immunoprecipitate/whole cell extract) on chromosome V, determined by calibrated ChIP-seq 
(see Materials and Methods) using samples taken at 4h after induction of meiosis. Strains contained the URA3-tel-
arg4-parB insert at URA3 and the indicated HOP1 genotype. Dark and light lines indicate replicates. Dotted vertical 
line—parS insert locus. The peak at parS in HOP1-parB HOP1/HOP1 strains is truncated; peak values reached 
~700 RPM. 
B. Hop1 occupancy around the ARE1 control locus (chr. III). Dotted vertical line—ARE1 DSB site. All other details as 
in A.
C. Difference plot for 200 kb around parS, calculated by subtracting the calibrated ChIP/WCE for HOP1/HOP1(mean 
of both replicates) from that for HOP1-parB HOP1/HOP1 (mean of both replicates). 
D. Chromosome spreads from meiotic cells (4 and 5 h) from wild-type and from cells expressing Hop1-ParB (HOP1-
parB-V5 HOP1/HOP1), probed with the indicated antiserum. In strains expressing Hop1-parB-V5, Hop1-ParB (anti-
V5) shows the same distribution as total Hop1. Scale bar =5µm
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Figure 6. Hop1-ParB has partial function
A. Spore viability in dissected tetrads. 
B. Frequencies of Arg+ (black) and Leu2+ (white) recombinants in random spores from diploids with the URA3-arg4-
parS insert at URA3. 
C, D. Frequencies of DSBs (DSB1 + DSB2, see Figure 3) at the URA3-arg4-parS insert at URA3 and at the ARE1
control locus, in sae2∆ strains.  
See also File S1 sheets 4, 5, and 7.
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Figure 7. Delayed DSB repair and meiotic progression in presence of Hop1-ParB
A. Southern blots of meiotic DNA from SAE2 cells with the URA3-arg4-parS insert at URA3, expressing either Hop1 
or both Hop1-ParB and Hop1 digested with Sbf1 and probed with parS sequences.  
B. Meiotic progression, expressed as cells completing meiosis I (with either 2 or 4 nuclei). 
C. Quantification of total DSBs from the experiment in panel A and others. Note that data from strains expressing 
Hop1 (grey) are plotted with the right-hand Y axis, and from strains with HOP1-ParB HOP1/HOP1  (salmon) on the 
left-hand Y axis. 
D. DSBs at the ARE1 control locus from the same experiments.
See also File S1 sheets 8, 9.
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Figure 8. Most crossovers at URA3 are MutLg-independent
Map distances, calculated from marker segregation in tetrads, between natMX and hygMX inserts flanking a URA3-
arg4-parS insert at the URA3 locus (see Materials and Methods). Expression of Hop1-ParB results in a marked 
increase in map distances. Map distances are only modestly decreased in mlh3∆ strains, either HOP1/HOP1 strains 
(grey) or HOP1-parB HOP1/HOP1-parB HOP1 strains (salmon).
See also File S1, sheet 10.
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Figure 9. Noncanonical crossover pathway usage at URA3
A. Schematic for the URA3-tel-arg4-parS reporter insert at URA3, showing product length in XmnI or XmnI+BamHI
digests. Left—Southern blots showing DSBs in sae2∆ strains; right—recombination products in SAE2 strains. Top—
crossovers (CO1 and CO2) in XmnI; bottom—noncrossovers (NCO1) in XmnI+BamHI digests. Both blots were 
probed with URA3 sequence. 
B. Quantification of insert DSBs in sae2 HOP1/HOP1(grey) or HOP1-parB HOP1/HOP1 (salmon) strains in samples 
taken 7h after meiotic induction. 
C. Quantification of COs (CO1 + CO2) in HOP1/HOP1 (grey, right Y axis) or HOP1-ParB HOP1/HOP1 (salmon, left 
Y axis) in samples taken 8h after meiotic induction in the indicated mutants. 
D. Quantification of NCOs (NCO1). Details as in C.
See also File S1, sheets 11, 12.
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Hop1, Red1 and Rec8 ChIP from PANIZZA et al., 2011
Spo11-oligos from PAN et al., 2011
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Figure S1. Genome-wide axis protein localization
Line plots—levels of Hop1 (pink), Red1 (blue) and Rec8 (olive green), at the locations of the three inserts and at the 
two control loci, expressed as decile-normalized ChIP/WCE, data from PANIZZA et al. (2011). Orange bars-–levels of 
Spo11 DSBs, counts of Spo11-linked oligonucleotides (hPM/bp), data from PAN et al. (2011). Green boxs—gene 
positions.
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Figure S2. Genome-wide Hop1 localization
Whole-genome Hop1 occupancy (immunoprecipitate/whole cell extract) determined by calibrated ChIP-seq of 
samples taken at 0h, 3h and 4h in meiosis from strains with a URA3-tel-arg4-parB insert at URA3 and the indicated 
HOP1 genotype, plotted using a bin size of 7kb. Vertical grey lines—chromosome boundaries. Vertical green line—
parS insert location (chr. V). The two replicates are indicated by dark and light lines. 
A. Y axis scale of 0-150 RPM to illustrate Hop1 occupancy across the whole genome; the signal peak at the parS 
insert location. 
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Figure S2 (cont.) Genome-wide Hop1 localization
B. As in panel A, but with Y axis scale of 0-500 RPM to illustrate the full range of Hop1 occupancy.
C. Difference plot calculated by subtracting the calibrated ChIP/WCE for Hop1/Hop1 (mean of both replicates) from 
that for Hop1-ParB Hop1/Hop1 (mean of both replicates) for the whole genome with Y scale as indicated to illustrate 
full range of difference and difference in signal across the genome
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