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Aberrant glycosylation, a common feature associated with malignancy, has been 

implicated in important events during cancer progression. Our understanding of the 

role of glycans in cancer has grown exponentially in the last few years, concurrent with 

important advances in glycomics and glycoproteomic technologies, paving the way for 

the validation of a number of glycan structures as potential glycobiomarkers. However, 

the molecular bases underlying cancer-associated glycan modi�cations are still far from 

understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional 

roles as speci�c carriers of biologically relevant information. This information is decoded 

by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-

like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily 

expressed on the surface of immune cells and differentially control innate and adaptive 

immune responses. Among CLRs, selectins are a family of cell adhesion molecules that 

mediate interactions between cancer cells and platelets, leukocytes, and endothelial 

cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble 

proteins that bind β-galactoside-containing glycans, have been implicated in diverse 

events associated with cancer biology such as apoptosis, homotypic cell aggregation, 

angiogenesis, cell migration, and tumor-immune escape. Consequently, individual 

members of these lectin families have become promising targets for the design of novel 

anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan 

interactions have been developed including small-molecule inhibitors, multivalent sac-

charide ligands, and more recently peptides and peptidomimetics have offered alterna-

tives for tackling tumor progression. In this article, we review the current status of the 

discovery and development of chemical lectin inhibitors and discuss novel strategies to 

limit cancer progression by targeting lectin–glycan interactions.
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INTRODUCTION: DECIPHERING THE 
“GLYCO-CODE” IN CANCER

Cancer is a leading cause of death worldwide and represents one 
of the biggest challenges faced by medicine. Novel biological 
therapies such as tumor-antigen targeted vaccines (1, 2) and 
immune checkpoint blockade [i.e., monoclonal antibody (mAb)-
based therapies targeting cytotoxic T-lymphocyte antigen 4 
(CTLA-4) or programed cell death protein-1 (PD-1) (3–5)] 
have been designed to target speci�c determinants expressed by 
di�erent tumor types and their associated stroma and immune 
compartments. However, due to the complexity of the tumor 
microenvironment (TME) and the intrinsic or acquired resist-
ance mechanisms, only certain types of cancers can be e�ectively 
treated by these therapies (3–5). Furthermore, variable responses 
in patients with a similar malignancy re�ect inherent heteroge-
neity among di�erent tumor types (5). As technology advances, 
genomics studies have unveiled speci�c genetic signatures, which 
enabled tailored treatments and personalized cancer therapy to 
move a step closer to fruition. In time, other high-throughput 
technologies have emerged to expand personalized medicine 
beyond genomics, including proteomics and more recently, 
glycomics (6).

Glycosylation is the most abundant posttranslational modi-
�cation: all cell surface and secreted glycoproteins must travel 
through the endoplasmic reticulum and the Golgi compartments, 
where addition of carbohydrates take place. �e structure and 
nature of glycans strongly in�uence various functional aspects 
of glycoproteins such as cellular localization, turnover, protein 
quality control, and receptor–ligand interactions. �e structural 
diversity of glycans, a key aspect that governs their role as infor-
mation carriers, results from the concerted action of a number 
of glycosyltransferases and/or glycosylhydrolases that build 
and remodel their structure, generating a variety of glycoforms 
for a speci�c peptide sequence and allowing both cell-type and 
protein-speci�c glycan expression patterns (7, 8). Taking into 
consideration the ubiquitous presence of glycoconjugates on the 
cell surface, the fact that certain human diseases (including can-
cer) display altered glycan processing pathways is not surprising 
to glycobiologists (9, 10).

During the last decades, and as a result of advances in gly-
comics and glycoproteomics technologies, aberrant cell sur-
face glycosylation has been considered an important hallmark 
of cellular oncogenesis and tumor progression. Simultaneous 
alterations of the overall glycome were identified in several 
types of cancer, where a differential glycan profile could be 
found not only in tumor cells themselves and the associated 
microenvironment (stromal fibroblasts, endothelial cells, and 
immune infiltrating cells) but also in serum glycoproteins 
(i.e., acute phase proteins), revealing potential glycobiomark-
ers of malignancy (11–13). It is now well established that 
aberrant glycosylation can promote tumor cell invasion and 
metastasis, as these processes involve cell detachment, intra-
vasation, transport, attachment, extravasation, and angio-
genesis (14). A long-standing and still unresolved question is 
whether aberrant glycosylation is a cause or a consequence of 
tumorigenesis.

Aberrant glycosylation in cancer is usually associated with 
poor prognosis, and may be present in di�erent glycoconjugates, 
not only in N- and O-glycans on cell surface glycoproteins (15) 
but also in glycolipids and glycosaminoglycans (GAGs) (13, 16). 
�ese altered structures constitute the so-called tumor-associated 
cancer antigens (TACAs; Figure 1), and implicate not only the 
under- or overexpression of naturally occurring glycans but also 
the neo-expression of others. Glycan alterations vary depend-
ing on the type of cancer, but for N-glycans, they can include 
di�erential expression of blood group Lewis-related antigens 
such as Lewis X (LeX), Lewis Y (LeY), sialyl Lewis X (SLeX), and 
sialyl Lewis A (SLeA), increased synthesis of polylactosamine 
chains, increased β(1 → 6) branching of N-linked glycans, core 
α(1 → 6)-fucosylation, outer arm α(1 → 2)- and α(1 → 3)-fuco-
sylation, and changes in sialylation, among others (11, 17, 18) 
(Figure 1A). For O-glycans and glycolipids, expression of TACA 
include mucin-related (O-linked) GalNAc (Tn), sialyl Tn (STn), 
�omsen–Friedenreich antigen (Tf), polysialic acid (PSA), gly-
cosphingolipid Globo-H, and gangliosides GM2 and GD2/GD3 
(2, 9, 14, 19, 20) (Figures 1B,C).

It has been clearly demonstrated that these changes in glyco-
sylation are dependent on biochemical factors such as availability 
of nucleotide sugar pools (activated donors for glycan biosyn-
thesis), and di�erential expression of certain glycosyltransferases 
(17). As examples of important glycosylatransferases involved 
in O-glycan aberrant biosynthesis, ppGalNAc6 (GALNT6, 
one of the UDP-N-acetyl-d-galactosamine: polypeptide 
N-acetylgalactosaminyltransferases responsible for the initiation 
of mucin-type O-glycosylation) is upregulated in breast cancer 
(22) and has been also postulated as a potential marker associated 
with venous invasion in gastric carcinoma (23). On the other hand, 
GALNT9, another member of this family, has been described as 
a prognostic marker in neuroblastoma (24). In prostate cancer, 
overexpression of GCNT1 [β(1 → 6)-N-acetylglucosaminyltrans
ferase, involved in core 2 O-glycan biosynthesis] was associated 
with higher levels of core 2 O-SLex in prostate speci�c antigen 
(PSA) (25). Regarding N-glycans, bisecting GlcNAc has been 
identi�ed as a hallmark of epithelial ovarian cancer and mannosyl 
β(1 → 4)-glycoprotein β(1 → 4)-N-acetylglucosaminyltransfera
se (MGAT3), the glycosyltransferase involved in its biosynthesis, 
showed a clear upregulation in ovarian cancer (26). Finally, Wang 
et al. described an upregulation of Fut8, a fucosyltransferase that 
decorates the N-glycan core, in hepatocellular carcinoma (HCC), 
and core fucosylation was proposed as a prognostic marker as 
well as a therapeutic target for HCC (27). �e role of N-glycans 
and O-glycans in cancer has been thoroughly reviewed in previ-
ous publications (17, 28, 29).

Even though there is abundant evidence on the important 
role of altered expression of glycosyltransferases in tumor cells, 
the regulation of glycan-related pathways is still far from clear. 
In the last few years, studies describing the in�uence of DNA 
methylation (26, 30) as well as cytokine levels (31) have shed 
light on these issues. Finally, a recent article describing the 
mutational landscape of aberrant glycosylation in colon cancer 
has shown speci�c mutations associated to glycosyltransferases in 
patients, particularly in B3GNT2, B4GALT2, and ST6GALNAc2. 
�ese signi�cant �ndings indicate that functionally deleterious 
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FIGURE 1 | Common alterations observed in cancer in (A) N-glycosylation and (B) O-glycosylation. Green and red arrows represent increased and 

decreased expression of glycan structures, respectively. (C) Principal tumor-associated carbohydrate antigens (TACAs). In all cases, glycans are represented using a 

combination of the Oxford (21) and the Consortium for Functional Glycomics formats (http://www.functionalglycomics.org/).
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mutations in glycosyltransferase genes in part underlie aberrant 
glycosylation and contribute to the pathogenesis of molecular 
subsets of colon and other gastrointestinal malignancies (32).

�ese glycosylation changes, complex as they are, trigger dif-
ferent biological processes via interaction with an evolutionarily 
divergent family of glycan-binding proteins or lectins. Lessons 
learned from knockout and transgenic models in physiologic 
and pathologic settings revealed major roles for lectin–glycan 
interactions in immune cell homeostasis, controlling regulatory 
cell programs, and activating tolerogenic circuits that orchestrate 
tumor-immune escape mechanisms (33, 34). In this review, we 
focus on therapeutic strategies, based on chemical inhibition 
of three di�erent lectin families, namely sialic acid-binding 

immunoglobulin (Ig)-like lectins (siglecs), C-type lectin recep-
tors (CLRs), and galectins, which play relevant roles in cancer 
(Figure 2).

Siglecs and Immune Evasion in Cancer
Siglecs, also known as the I-type lectin family, constitute a 
family of sialic acid binding Ig domain-containing lectins that 
are mainly found on cells of the immune and hematopoietic 
system (35) (Figure  2). From a structural viewpoint, siglecs 
are transmembrane type I receptors bearing 2–16 extracellular 
C2-set Ig domains, with an extracellular N-terminal V-set Ig 
(Ig-V) domain responsible for the binding of sialoside ligands 
(36), a single transmembrane domain, and varying lengths of 
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FIGURE 2 | Schematic representation of three lectin families: (A) siglecs, (B) C-type lectins, and (C) galectins.
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cytosolic tails (37) (Figure  2A). Siglecs are typically classi�ed 
into two functionally diverse subsets. �e most distantly inter-
related group  (25–30% sequence identity) includes Siglec-1 
(Sialoadhesin, Sn), -2 (CD22), -4 [myelin-associated glycoprotein 

(MAG)], and -15. �e second group represents the rapidly evolv-
ing CD33-related Siglecs, which have high homology to CD33 
in their extracellular domains (50–85% identity) and comprises 
Siglec-3 (CD33), -5, -6, -7, -8, -9, -10, -11, and -14 (35, 37, 38).
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FIGURE 3 | The role of siglecs in immune evasion mechanisms. (A) Siglec-7 is expressed predominantly on NK cells and inhibits NK cell cytotoxicity toward 

target cells overexpressing the α(2 → 8)-disialic acid-bearing ganglioside, GD3. (B) Siglec-15 recognizes the tumor sialyl-Tn (sTn) antigen and transduces an 

intracellular signal leading to enhance TGF-β secretion and polarization toward an M2-like macrophage pro�le, which contributes to tumor progression.
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Siglecs are primarily expressed in B cells, macrophages, 
dendritic cells (DCs), and eosinophils and have been implicated 
in both innate and adaptive immunity. �ey play important 
roles in host–pathogen interactions, cell–cell communication, 
and regulation of immune tolerance (39), maintaining immune 
homeostasis and regulating in�ammatory processes (37). With 
respect to innate immunity, Siglecs have been involved in patho-
gen internalization and immune evasion, attenuation of damage-
associated molecular pattern (DAMP)-mediated in�ammation, 
and inhibition of natural killer (NK) cell function. In adaptive 
immunity, they act as modulators of T-cell activation and polari-
zation as well as regulators of B cells and plasmacytoid DCs (38).

Many siglecs have been studied as potential targets for the design 
of therapeutic agents for the treatment of in�ammatory, autoim-
mune, allergic, and infectious diseases (35). Even though changes 
in sialylation may modulate tumor cell invasion or metastasis, 
the involvement of siglecs in tumor immunity is currently being 
explored. For example, Siglec-2 (CD22) has been implicated in 
B-cell activation in non-Hodgkin Lymphoma (40), and Siglec-7 
has been shown to exert a pivotal role in tumor escape by inacti-
vation of NK cells (41) (Figure 3A). Siglec-3 (CD33) is expressed 
on malignant blast cells in 85–90% of Acute Myeloid Leukemia 
cases, while is absent on normal hematopoietic pluripotent stem 
cells (42). Takamiya et al. reported that Siglec-15, which preferen-
tially recognizes sialyl-Tn antigen (Figure 1), induced a M2-like 
immunosuppressive macrophage phenotype and upregulated 
TGF-β secretion in human monocytic leukemia cells and human 
lung carcinoma cells (43) (Figure 3B). Furthermore, interactions 
between Siglec-4a (MAG) and the mucin MUC1 enhanced 
adhesion of pancreatic cells and stimulated pancreatic cancer cell 
perineural invasion (44). Other siglecs have been correlated with 
tumor progression, such as Siglec-9, involved in tumor-immune 
evasion, and Siglec-12, which was found to be overexpressed on 
human prostate epithelial carcinomas (45).

Role of Selectins in Metastasis and  
Tumor-Associated In�ammation
C-type lectins comprise a diverse family of calcium-dependent 
glycan-binding proteins that play essential immunological roles 
as adhesion and signaling receptors in in�ammation, tumor 
progression, and viral infections (46). �is lectin family is 

classi�ed into 17 di�erent subgroups depending on their C-type 
lectin domains and their structures. Some representative subsets 
are collectins, endocytic receptors [Mannose Receptor (MR), 
Dec-205], DC receptors [dendritic-cell speci�c intracellular 
adhesion molecule 3-grabbing non-integrin (DC-SIGN)], mac-
rophage galactose-binding lectin (MGL), Langerin, and selectins 
(L-Selectin, P-Selectin, and E-Selectin) (Figure 2B).

Given their biological and clinical relevance, we will focus 
here on Selectins, C-type transmembrane lectins that mediate 
leukocyte tra�cking and speci�c adhesive interactions of leuko-
cytes, platelets, and endothelial cells with tumor cells (47). �ese 
lectins are present on endothelial cells (E-Selectin), leukocytes 
(L-Selectin), and platelets (P-Selectin) (46), and preferentially 
bind glycans containing SLeX and SLeA glycoepitopes (Figure 1), 
which are abundantly expressed in several tumor types. In the 
TME, selectins are functionally relevant in the context of leuko-
cyte recruitment, tumor-promoting in�ammation, and acquisi-
tion of metastatic potential (36) (Figure 4).

P-Selectin (CD62P) is involved in tumor growth and metas-
tasis, as it mediates interactions between activated platelets 
and cancer cells contributing to tumorigenesis (47). E-Selectin 
(CD62E) also play major roles in cancer cell adhesiveness at 
di�erent events of the metastatic cascade, promoting tumor cell 
extravasation (48). Finally, L-Selectin (CD62L), constitutively 
expressed on leukocytes, regulates tumor–leukocyte interactions 
and promotes cell adhesion and hematogenous metastasis by 
favoring emboli formation (49).

Because of their critical involvement in cancer metastasis, sev-
eral research groups have developed therapeutic strategies based 
on disruption of selectin–glycan interactions with the ultimate 
goal of controlling in�ammation and metastasis (48).

The Galectin–Glycan Axis in Cancer 
Development
Galectins, a family of highly conserved glycan-binding soluble 
lectins, are de�ned by a conserved carbohydrate recognition 
domain (CRD) and a common structural fold (50). Based on 
structural features, mammalian galectins have been classi�ed 
into three types: prototype galectins (Gal-1, -2, -5, -7, -10, -11, 
-13, -14, and -15, containing one CRD and existing as monomers 
or dimerizing through non-covalent interactions), tandem 
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FIGURE 4 | Selectins in cancer biology. Selectins play different roles in tumor biology including modulation of platelet–cancer cell interactions (P-selectin), 

promotion of tumor cell adhesiveness, extravasation and metastasis (E-selectin), and leukocyte traf�cking and hematogenous metastasis (L-selectin).
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repeat-type galectins (Gal-4, -6, -8, -9, and -12), which exist as 
bivalent galectins containing two di�erent CRDs connected by a 
linker peptide, and �nally, Gal-3, the only chimera-type member 
of the galectin family (Figure 2). �eir distribution in mammalian 
tissues is diverse. While Gal-1 and -3 are detected ubiquitously, 
other galectins are more speci�cally located, such as Gal-2 and 
-4, which are preferentially found in the gastrointestinal tract 
(51, 52), Gal-7 is highly abundant in the skin (53), Gal-10 in 
eosinophils (54), and Gal-12 in adipose tissue (55, 56).

�e ability of galectins to modulate di�erent events in tumo-
rigenesis and metastasis makes them attractive targets for cancer 
therapy (57, 58), controlling malignant transformation (59), 
apoptosis (60), cell-cycle progression (61), angiogenesis (62, 
63), tumor metastasis (64, 65), and tumor immune escape (66). 
Galectins contribute to immune tolerance and escape through 
apoptosis of e�ector T cells (67), regulation of clonal expansion, 
function of regulatory T cells (Tregs) (64), and control of cytokine 
secretion (68). Expression levels for some galectins also change 
during malignant transformation, con�rming their essential roles 

in cancer progression (69). Among the galectin family members, 
in this review, we will focus on Gal-1 and Gal-3, the two most 
extensively studied galectins, which have key roles during cancer 
progression.

Gal-1, abundantly secreted by almost all malignant tumor 
cells, has been characterized as a major promoter of an immu-
nosuppressive protumorigenic microenvironment (67). �is 
lectin induces selective apoptosis of TH1 and TH17 e�ector T 
cells, without a�ecting TH2 cells due to di�erential sialylation of 
cell surface glycoproteins (67, 70) (Figure 5). In recent years, the 
immunosuppressive activity of Gal-1 has also been extended to 
di�erentiation and expansion of CD4+CD25+Foxp3+ Tregs (64) 
and, similarly to other galectins, controls cell surface retention 
and signaling thresholds of a number of glycosylated receptors. 
However, its immunoregulatory activity is not limited to T cell 
populations: Gal-1 also promotes di�erentiation of tolerogenic 
dendritic cells (tDCs) (71) and controls tissue emigration 
of immunogenic, but not tDCs (72). �e tolerogenic e�ects 
induced by this lectin have been substantiated by the work of 
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FIGURE 5 | Major roles of Gal-1 and Gal-3 during cancer progression. (A) Intracellular Gal-1 triggers activation of the H-Ras/ERK cascade leading to 

malignant transformation. (B) Gal-1 promotes adhesion of tumor cells to extracellular matrix and endothelial cells, critical steps during early stages of tumor invasion 

and metastasis. (C) Gal-1 induces tumor angiogenesis by engaging key proangiogenic pathways including VEGF-like signaling. (D) Resistance to apoptosis is 

essential for cancer cell survival and plays a role in tumor progression. Gal-3 suppresses apoptosis induced by cisplatin, nitric oxide (NO), or radiation, through 

interactions with P-gp and Na+/K+-ATPase, thus promoting tumor cell survival. (E) Gal-1 selectively deletes TH1 and TH17 cells and (G) promotes the differentiation 

of tolerogenic DCs (tDCs). (F) Gal-1 promotes expansion of CD4+CD25+Foxp3+ regulatory T cells (Tregs) and ampli�es their immunosuppressive activity. (H) Gal-3 

induces anergy of CD8+ T cells by distancing the TCR from CD8 molecules. (I) Gal-3 impairs NK cell function by inhibiting the interactions between the heavily 

O-glycosylated tumor-derived MICA and the NK cell activating receptor NKG2D.
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Kuo and colleagues, who found that Gal-1-induced tDCs in lung 
cancer also favored the induction of Tregs (73). Furthermore, in 
addition to its immune inhibitory e�ects, Gal-1 can also favor 
tumor development and progression through promotion of 
tumor angiogenesis, favoring vascular endothelial growth factor 
(VEGF) signaling, and promoting endothelial cell proliferation, 
adhesion, migration, and resistance to apoptosis (34, 74). Finally, 
Gal-1 has been reported to contribute to heterotypic adhesion of 
tumor cells to extracellular matrix and endothelial cells, critical 
steps during the early stages of tumor invasion and metastasis 
(74, 75). Finally, within the intracellular compartment, Gal-1 
also interacts with oncogenic H-Ras–guanosine triphosphate 
(H-Ras–GTP) through its farnesyl group, enhancing H-Ras-
mediated cell transformation through ERK1/2 signaling (76) 
(Figure 5).

Gal-3, another member of the family, has shown prominent 
protumorigenic e�ects in a multiplicity of tumors. �is multi-
functional protein has demonstrated di�erent e�ects depending 
on its subcellular localization (77) (Figure 5). A pioneer work by 
Raz et  al. reported a correlation between higher Gal-3 expres-
sion and increase incidence of experimental lung metastases in 
mouse models (78). Since then, compelling evidence has impli-
cated Gal-3 expression with di�erent aspects of cancer biology 
including cell adhesion, migration, angiogenesis, and immune  
escape (79, 80).

�omsen–Friedenreich glycoantigen (Tf; Figure  1) is 
expressed in up to 90% of human carcinomas (81) and is a major 
cancer cell surface carbohydrate ligand for Gal-3. Similarly to 
Gal-1, Gal-3 signaling contributes to tilt the balance toward 
immunosuppressive TMEs by interacting with speci�c glycans, 
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and impairing antitumor responses. In this regard, Gal-3 has 
been shown to promote anergy of tumor in�ltrating lymphocytes 
(TILs) (82). Furthermore, Tsuboi et al. described a new mecha-
nism of tumor escape involving Gal-3 and NK cells in bladder 
cancer (83); the authors demonstrated that overexpression of 
core 2 β(1→6)-N-acetylglucosaminyl transferase 1 (C2GnT1), 
a glycosyltransferase responsible of generating branched core-2 
O-glycans that can be elongated with poly-N-acetyllactosamine 
(LacNAc) sequences, negatively controls the activity of tumor-
associated major histocompatibility complex class I-related 
chain A (MICA). Interactions between polyLacNAc and Gal-3 
reduced the a�nity of MICA to the NK cell receptor NKG2D, 
thereby impairing NK cell activation and their antitumor activity 
[(71) Figure  5]. However, Gal-3 not only assists tumor escape 
by inhibiting immune responses; it also promotes tumor cell 
survival by hampering drug-induced apoptosis by cisplatin, nitric 
oxide (NO) or radiation, through phosphorylation, translocation, 
and regulation of survival signaling pathways (84, 85) (Figure 5). 
�e mechanisms underlying Gal-3 protection of drug-induced 
apoptosis has recently been reported by Harazono et  al. (86, 
87), who showed that interaction of this lectin with Na+/K+-
ATPase activated SRC tyrosine kinase, subsequently inducing 
phosphorylation of P-glycoprotein (P-gp) and enhancing its 
ATPase activity. �ese e�ects contribute to decrease sensitivity to 
doxorubicin-mediated cell death (72, 73).

STRUCTURE, FUNCTION, AND CLINICAL 
PROSPECTS OF LECTIN-INHIBITORY 
ANTITUMOR CHEMICAL AGENTS

Antitumor and Antimetastastic Agents 
Targeting Selectins
A variety of approaches have been designed to tackle selectin-
mediated in�ammation and metastasis through chemical inhibi-
tion. As a result, sulfated polysaccharides, modi�ed glycans, and 
glycopeptides have been postulated as pharmacological selectin 
inhibitors (Table 1).

Sulfated Oligosaccharides
Heparin (1, Table  1), a highly sulfated polysaccharide from 
the GAG family, is composed of a repetitive disaccharide unit 
containing glucosamine and glucuronic/iduronic acid residues 
with a high degree of sulfation (95). Heparins and its derivatives, 
traditionally used as anticoagulants, have recently emerged as 
attractive compounds for selectin inhibition showing promising 
antimetastatic activity through disruption of P- and L-selectin-
mediated adhesion of tumor cells (96). In an attempt to reduce the 
anticoagulant activity of heparin and enhance its a�nity toward 
selectins, di�erent chemical modi�cations such as N-acetylation, 
succinylation, O-desulfation, and reduction have been performed 
(97, 98). Heparins of di�erent molecular weight have been suc-
cessfully tested in tumor models such as melanoma, sarcoma, 
breast, and colon adenocarcinoma demonstrating inhibitory 
e�ects on tumor metastasis. However, they had limited e�ects 
on tumor growth, showing that heparin mediates interactions of 
tumor cells with host cells and the extracellular matrix during 

the metastatic process (99). Heparin and its derivatives have been 
tested in numerous clinical trials, but mostly as anticoagulant 
agents for prevention of cancer-related thrombosis (100).

Other negatively charged polysaccharides have also been 
evaluated as selectin inhibitors. Dermatan sulfate (2, Table  1), 
a sulfated polysaccharide bearing a [→4)-IdoA(2S)-β(1  →   
3)-GalNAc-β-(1→] repetitive unit, has shown to be an e�ective 
P-selectin inhibitor in vitro for colon carcinoma and melanoma 
in experimental models (89). 6-O-Sulfated chitosan (3, Table 1), 
a modi�ed linear β-(1 → 4)-glucosamine polysaccharide, has also 
demonstrated the ability to reduce interactions of P-selectin with 
melanoma cells in vitro (90).

Taken together, these �ndings suggest that inhibition of selec-
tin–glycan interactions by charged polysaccharidic agents could 
become an alternative therapy for inhibition of tumor metastasis. 
However, further analyses are necessary not only to unravel the 
mechanisms underlying the pharmacological activity of these 
compounds but also to reduce the risk of heparin-induced 
anticoagulant-related side e�ects.

Glycomimetics
As selectins preferentially bind to sulfated or fucosylated 
oligosaccharides such as SLeX or SLeA (Figure  1), Lewis-type 
glycomimetic analogs emerged as interesting decoys for disrup-
tion of selectin-mediated processes. Non-reductive disaccharide 
Gal-α-(1  →  1)-β-Man became a promising building block for 
SLeX glycomimetics, and a number of research groups have 
explored �uorinated C-glycosyl analogs (4, Table 1) in an attempt 
to improve the pharmacokinetics of these ligands (91, 101). On a 
di�erent approach, Shodai et al. designed NMSO3 (5, Table 1), a 
sulfated derivative of sialic acid, which demonstrated to be a good 
inhibitor of P-selectin-mediated tumor cell adhesion (92).

Glycopeptides
Besides carbohydrates, glycopeptides were also evaluated as 
selectin blockers. Flexible di�uorinated C-mannopeptides (6, 
Table 1) were synthesized and tested as E- and P-selectin inhibi-
tors, exhibiting moderate binding a�nities (93). Starting from 
SLeX, Filser et al. designed high-a�nity synthetic glycopeptides 
for E-selectin inhibition, bearing a peptide sequence from the 
natural ligand E-selectin ligand-1 (ESL-1) and replacing the sialic 
acid with a cyclohexyl moiety (7, Table  1). �ese compounds 
con�rmed that the peptide moiety was essential for selectin bind-
ing and exhibited encouraging IC50 values in the low micromolar 
range (94). However, no experiments have yet corroborated their 
e�cacy in vitro or in vivo.

Siglec Inhibition in Cancer Treatment: 
Sialic Acid Derivatives
Compared to the advances made for selectins or galectins, the role 
of siglecs during cancer progression has not been studied in such 
detail. �us, there have been fewer reports on siglec inhibitors 
as anticancer agents. Promising approaches reported in literature 
include C4- and C9-modi�ed sialic acid derivatives (Figure 6). 
Siglec-7, which belongs to the CD33-related siglec type, pref-
erentially binds internally branched α(2 → 6) sialic acid and is 
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TABLE 1 | Structure and clinical applications of different anti-selectin agents described in this review.

Type Name N° Structure Tumor type tested Reference

Heparin 

derivatives

Heparin sulfate 1 Human sarcoma, melanoma, 

and colon carcinoma

(88)

Dermatan sulfate 2 Colon carcinoma and melanoma (89)

6-O-sulfated chitosan 3 Human melanoma (90)

SLeX 

glyco-mimetics

Gal-α-(1 → 1)-β-Man 

C-�uorinated analogs

4 (91)

NMSO3 5 Human promyelocytic leukemia (92)

Glyco-peptides Fluorinated C-manno-peptides 6 (93)

SLeX-glyco-peptide 7 (94)
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primarily expressed on NK cells. �is lectin has been reported 
to favorably interact with melanoma or neuroblastoma cancer 
cells that overexpress GD3, an α(2  →  8) disialic acid-bearing 
ganglioside, thus inhibiting NK cell cytotoxicity as an immune 
evasion mechanism (102). In an attempt to disrupt Siglec-7–GD3 
interactions as a potential cancer therapeutic strategy, Attrill et al. 
described the design of sialic acid derivatives as inhibitors of 
Siglec-7 signaling (103). One of these ligands, oxamido-Neu5Ac 
[8, Table 2, methyl α-9-(amino-oxalyl-amino)-9-deoxy-Neu5Ac] 
exhibited a twofold decrease in the IC50 value (1.6  mM) for 
inhibition of Siglec-7 in vitro, compared to the canonical ligand 
methyl-α-Neu5Ac (>3.0 mM) (103).

Another interesting approach was reported by Kelm et al. 
who described the synthesis of sialic acid derivatives as 
high-a�nity inhibitors of Siglec-2 (106). CD22 or Siglec-2 
is an antigen widely expressed on normal and malignant 
B cells and plays a primary role in B-cell activation. �us, 
it has become an interesting target for the treatment of 
autoimmune diseases and B-cell derived non-Hodgkin’s 
Lymphoma (40). In 2002, Kelm et  al. reported the synthesis 
of a C9-modi�ed Neu5Ac, namely methyl-α-9-N-(biphenyl-4- 
carbonyl)-amino-9-deoxy-Neu5Ac (BPC-Neu5Ac, 9, Table 2), 
which exhibited a >200-fold relative inhibitory potency (rIP) 
for human CD22 than Me-α-Neu5Ac (104). More recently, 
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TABLE 2 | Anti-siglec agents described in this review.

Name N° Structure Tumor type tested Reference

Oxamido-Neu5Ac 8 (103)

BPC-Neu5Ac 9 Non-Hodgkin’s lymphoma (104)

BPC-Neu5Ac-Dox liposome 10 Non-Hodgkin’s lymphoma (105)

9-BPC-4-mNPC-Neu5Ac 11 (106)

FIGURE 6 | Modi�cations of neuraminic acid leading to high-af�nity 

siglec blockers. Green circles denote the main positions modi�ed in search 

of high-binding af�nity and selective siglec inhibitors.
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Paulson and colleagues used this potent Siglec-2 inhibitor 
for the design of doxorubicin-loaded liposomal nanoparticles 
bearing BPC-Neu5Ac (9, Table  2) ligands to target B cell 
lymphoma (105). �e CD22-targeted BPC-Neu5Ac-Dox 
liposomes (10, Table  2) provided a signi�cant increase in 
survival rates when injected into a xenogra� model of human 
B-cell lymphoma. Interestingly, this delivery strategy exhibited 
cytotoxic e�ects toward malignant B cells in patients with 
hairy cell leukemia, marginal zone lymphoma, and chronic 
lymphocytic leukemia. In 2013, Kelm et al. presented a further 
optimized novel glycan inhibitor with modi�cations on both 
Neu5Ac C4 and C9 positions (106). �is compound, methyl 
9-biphenylcarboxamido-4-m-nitrophenylcarboxamido-
4,9-dideoxy Neu5Ac (9-BPC-4-mNPC-Neu5Ac, 11, Table  2) 
presented a 14-fold decrease in the IC50 value toward Siglec-2, 
thus emerging as a promising lead agent, although its activity 
has not yet been tested in vitro or in vivo.

Therapeutic Strategies Targeting  
Galectin–Glycan Interactions in the TME
Given the key protumorigenic, prometastatic, and immunosup-
pressive activities of galectins and their roles in tumor resistance 
to antiangiogenic therapies, important e�orts have been made in 
the design of high-binding a�nity speci�c inhibitors. Here, we 
describe a number of successful strategies to chemically disrupt 
galectin–ligand interactions and discuss advantages, limitations, 
and obstacles in their translation to clinical settings.

Low-Molecular Weight Inhibitors

A First Step: β-Galactoside Ligands
Since galectins share the structurally conserved CRD that de�nes 
their natural ligands, the initial approach was the design of 
β-galactoside inhibitors targeting the carbohydrate-binding site 
(107). Speci�c modi�cations of the galactose-based structures 
have led to the design of good inhibitors with dissociation con-
stants in the micromolar range (20–300 μM) (108, 109). However, 
the diverse chemical modi�cations tested on this monosaccharide 
did not achieve enough improvement on galectin a�nity, and in 
consequence, galactose-based monosaccharide inhibitors have 
not been tested in cultured cells or in vivo.

�e second approach for the design of galectin inhibitors 
was the use of chemically modi�ed natural galectin ligands, 
such as the disaccharides lactose (Lac) or N-acetyllactosamine 
(LacNAc). Ingrassia et  al. reported an unspeci�c lactosylated 
steroid (12, Table 3) that induced increased survival rates when 
administered in experimental models of mouse lymphoma and 
human glioblastoma (110). Furthermore, Iurisci et al. reported 
the use of allyl-lactoside (13, Table  3) as ligand of Gal-1 and 
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TABLE 3 | Structure and applications of different anti-galectin agents described in this review.

Type Name N° Structure Tumor type tested Reference

Low-molecular 

weight inhibitors

Lactosylated steroid 12 Mouse models of mouse 

lymphoma and human 

gliblastoma

(110)

Allyl lactoside 13 Human melanoma and 

small cell lung cancer 

cells

(111)

Thiodigalactoside (TDG) 14 Murine lung metastasis (112)

3,3′-di-(3-metoxibenzamido)-

thiodigalactoside

15 (113)

3,3′-ditriazolyl thiodigalactoside 16 (113)

Td131_1 17 Papillary thyroid cancer (114)

Talosamide 18 (115)

Glycoamines Lactulose-L-leucine (Lac-L-Leu) 19 Human breast 

carcinoma, prostate 

cancer

(116–118)

N-lactulose-

octamethylenediamine (LDO)

20 Melanoma and lung 

carcinoma

(119)

N, N′-dilactulose-

octamethylenediamine (D-LDO)

21

N, N′-dilactulose-

dodecamethylenediamine 

(D-LDD)

22

(Continued)
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Type Name N° Structure Tumor type tested Reference

Polysaccharide-

based 

compounds

Pectin-derived 

compounds

Pectasol-C 23 Prostate and human 

breast cancer

(120–124)

GCS-100 24 Myeloma and leukemia (125, 126)

GR-MD-02 25 Melanoma (127)

Galactomannan-

derived compound

GM-CT-01 

(DAVANAT)

26 Colon cancer (128)

Peptides G3-A9 27 PQNSKIPGPTFLDPH Breast carcinoma 

metastasis, prostate 

cancer

(129, 130)

G3-C12 28 ANTPCGPYTHDCPVKR

Anginex 29 Ovarian carcinoma (131)

Peptidomimetics 6DBF7 30 Ovarian carcinoma (132)

OTX008 31 Ovarian carcinoma and 

murine melanoma and 

glioblastoma

(133, 134)

TABLE 3 | Continued
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Gal-3, inhibiting homotypic cell aggregation in human melanoma 
cells, and promoting apoptosis of small cell lung carcinoma cells 
(111). Although Lac and LacNAc are more promising sca�olds 
than galactose for the design of galectin inhibitors since both 
disaccharides present higher binding a�nity than galactose 
(KD ≈ 90–500 μM), they are both sensitive to enzymatic hydroly-
sis by glycosidases.

Chemical modi�cations in O2 and O3 of the galactose residue 
in lactose (named O2′ and O3′; Figure 7) a�orded novel struc-
tures with anticancer biological activities. �e Nilsson group 
explored galactose O3′ modi�cations for Gal-3 binding, showing 
that lactose O3′ modi�cation with aromatic groups led to active 
Gal-3 inhibitors with binding a�nities as low as 300–600 nM, due 
to additional favorable cation–π interactions with a conserved 
arginine residue, Arg-144, in the carbohydrate-binding site (113). 

However, these Gal-3 blockers showed a�nities in the micromo-
lar/low millimolar range (100–1000 μM) when tested in vitro.

In order to overcome the poor bioavailability of lactose 
derivatives, thiosugars, and in particular, thiodigalactoside 
(TDG; 14, Table 3) have emerged as interesting building blocks 
for the design of potent galectin inhibitors, although with low 
selectivity (135, 136). Ito et al. demonstrated that administration 
of TDG signi�cantly reduced tumor progression and metastasis 
via Gal-1 inhibition, using murine models of breast and colon 
adenocarcinoma (112). Moreover, intratumoral injection of TDG 
raised the level TILs and reduced tumor growth in models of B16 
melanoma as well as 4T1 orthotopic breast cancer models (137). 
Symmetrical modi�cations of TDG at O3 and O3′ positions led 
to increased galectin-binding a�nities, a�ording the most potent 
Gal-3 inhibitors in vitro reported to date (136), with KD values 
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FIGURE 7 | Mono and disaccharides as building blocks to design 

galectin inhibitors. Structures of galactose (Gal), talose (Tal), N-

acetyllactosamine (LacNAc), and thiodigalactoside (TDG). Green circles 

denote critical modi�ed positions in search for high-binding af�nity and 

selective galectin inhibitors.
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as low as 29 nM (3,3′-ditriazolyl thiodigalactoside, 15, Table 3) 
and 50 nM (3,3′-di-3-metoxibenzamido thiodigalactoside) (16, 
Table 3). In spite of their promising biochemical performance, 
in  vivo experiments were not as encouraging. For instance 
Td131_1 (17, Table  3), an ester-modi�ed TDG derivative, was 
evaluated as a Gal-3 inhibitor in papillary thyroid cancer. �is 
compound showed concomitant increased apoptosis of cancer 
cells, although requiring concentrations up to 1000 times than 
the KD value (114).

Changing Stereochemistry for Enhanced Selectivity:  

Talose-Based Ligands
Carbohydrates are characterized for containing multiple stereo-
centers, and many stereoisomers are possible including enanti-
omers and diastereoisomers. Talose (a C-2 epimer of galactose; 
Figure 7) provides an axially disposed O2 and additional pro-
tein–ligand interactions, potentially making talose-based inhibi-
tors more selective than galactose-based ones. �is approach was 
taken by Nilsson and collaborators, who created a new family of 
synthetic talosides that showed a�nity and selectivity toward 
Gal-4 (C-terminal CRD), Gal-8 (N-terminal CRD), and Gal-3 
(138). In 2011, Öberg et al. reported the synthesis of a new family 
of talosamides with additional modi�cations at C2 and C3 with 
aromatic moieties. �e best matches for these talosamide galectin 
inhibitors were found against Galectin-4C (C-terminal) (115): 
compound 18 (Table 3) presented a KD value of 94 μM and a good 
selectivity when compared to Gal-1 (1900 μM), Gal-2 (1700 μM), 
Gal-3 (570  μM), Gal-7 (>4000  μM), and Gal-9 (>4000  μM). 
�ese promising talose-based compounds still await detailed 
in vitro and in vivo evaluation.

Mimicking Glycans: Glycoamines on the Spot
A di�erent approach to carbohydrate-based galectin inhibitors 
was proposed by Glinsky et  al., who showed that a synthetic 
β-galactoside-containing disaccharide-amino acid conjugate, the 
glycoamine lactulose-l-leucine (Lac-l-Leu, 19, Table  3), binds 
and inhibits Gal-3 by mimicking cancer-associated Tf antigen 

(Figure  1). �is glycomimetic decreased the incidence of lung 
metastasis in human breast carcinoma xenogra�s (118) and also 
inhibited homotypic and heterotypic aggregation of prostate can-
cer cells via Gal-3 inhibition (81). Furthermore, intraperitoneal 
administration of Lac-l-Leu reduced bone metastasis of human 
prostate carcinoma cells in a mouse model (116). However, it 
required high concentrations (daily injections of 200 μL of Lac-
l-Leu 20 μM) to disrupt Gal-3–Tf interactions.

Further studies reported the design and synthesis of 
a new family of lactulose amines based on N-lactulose-
octamethylenediamine (LDO, 20, Table  3) (119). In order to 
assess multivalency as potential modi�cation to increase local 
concentration of these galactose-containing ligands, N, N′-
dilactulose-octamethylenediamine (D-LDO, 21, Table 3) and N, 
N′-dilactulose-dodecamethylenediamine (D-LDD, 22; Table  3) 
were also synthesized. Compounds 10 and 11 (Table 3) exhib-
ited interesting regulatory e�ects in  vitro, such as prevention 
of Gal-1-mediated homotypic aggregation in melanoma cells 
and apoptosis of small cell lung carcinoma cells (119). In order 
to further develop these compounds and �nally reach clinical 
status, additional structural studies clarifying the relevance of 
the aglycone moiety, and their selectivity even beyond galectins 
are required.

Does Size Matter? Polysaccharide-Derived 

Compounds
In addition to low-molecular weight carbohydrate-based syn-
thetic inhibitors, natural polysaccharides have also emerged as 
high a�nity galectin inhibitors with low toxicity for cancer treat-
ment. Modi�ed citrus pectin (MCP, Pectasol-C) and Davanat 
(GM-CT-01) are the best studied galectin blockers derived from 
natural sources.

Pectin-Based Compounds
Pectins compose a family of complex polysaccharides, which are 
found in high amounts in the plant primary wall. �ree main 
pectic polysaccharides have been isolated from plant walls: 
homogalacturonan (HG), rhamnogalacturonan-I (RG-I), and 
substituted galacturonans (GS) (120). Pectins can be modi�ed 
by pH and heat treatments, both of which expose galactoside 
residues by hydrolysis (139). �e most studied modi�ed pectin 
is MCP, which is obtained by partial degradation of citrus pectin 
polysaccharide chain and hydrolysis of the galacturonic acid 
esters from the HG regions. MCP through a multivalent display 
of galactoside residues has shown a�nity for Gal-3 and has been 
tested as an anticancer agent in galectin-mediated tumorigenic 
processes (120).

�e biological activity of MCP in cancer was extensively 
studied by Raz and coworkers (140–142). MCP has been shown 
to act as a ligand for Gal-3, while citrus pectin (CP) is unable 
to interact with this galectin (142). �e authors showed that 
intravenous injection of MCP into mice bearing B16 melanoma 
resulted in signi�cant decrease of lung colonization, while CP led 
to the opposite e�ect (142). In 2002, they expanded their �ndings 
to nude mice injected either with human breast carcinoma cells or 
with colon cancer cells, showing that the ability of MCP to inhibit 
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primary tumor growth and metastasis in vivo is not restricted to 
prostate cancer (140). �e antitumor e�ects of MCP were associ-
ated with an antiangiogenic activity, since MCP also inhibited 
capillary tube formation in  vitro in human endothelial cells. 
Recently, Menachem et al. studied in vivo the combined inhibi-
tion of Ras and Gal-3 with FTS (S-trans farnesylthiosalicylic acid, 
Salirasib) and MCP, respectively, for the treatment of aggressive 
anaplastic thyroid carcinoma (143). Interestingly, FTS and MCP 
inhibited tumor growth in nude mice showing decreased levels of 
Gal-3, K-Ras-GTP, and p-ERK. However, the structure–function 
relationship of MCP and the molecular mechanisms underlying 
its e�ects are not yet completely understood, probably due to the 
lack of thorough structural characterization of pectin fractions. 
Nevertheless, MCP emerged as a very promising anticancer agent 
since it was the �rst reported inhibition of tumor growth by a 
soluble, orally ingested dietary carbohydrate �ber. In fact, two dif-
ferent commercial forms of MCP, PectaSol-C, and GCS-100, have 
been incorporated into clinical trials (112, 114, 115, 137, 138).

PectaSol (23, Table 3), and its most recent version Pectasol-C, 
commercial forms of MCP developed by EcoNugenics® (Santa 
Rosa, CA, USA), showed cytotoxic activity on di�erent prostate 
cancer cell lines (122, 123). Additionally, Jiang et al. demonstrated 
that the combination of PectaSol-C with two polybotanical com-
pounds for breast and prostate health, BreastDefend (BD) and 
ProstaCaid (PC), synergistically inhibited metastatic phenotype 
of human breast and prostate cancer cell lines, respectively (121). 
In 2003, Guess and colleagues developed a Phase II clinical trial to 
investigate the tolerability and e�ect of PectaSol in patients with 
prostate cancer, showing that prostate cancer patients exhibited a 
serial increase in PSA a�er localized treatment (124). �e results 
from this pilot clinical trial suggested that PectaSol may slow 
down PSA increase, as it improves prostate-speci�c antigen dou-
bling time (PSADT) in patients with recurrent prostate cancer. 
However, PSADT is an indirect measure of tumor progression 
and the detailed e�ect that PectaSol may have on prostate cancer 
progression is still poorly understood. Currently, there is an 
ongoing patient recruitment by EcoNugenics for a Phase III clini-
cal trial pointing at the e�ects of orally administered PectaSol-C 
for improving PSA kinetics in men with biochemical relapsed 
prostate cancer and serial increasing PSA (NCT: NCT01681823) 
(120).

GCS-100 (24, Table 3), another commercial MCP derivative, 
is also in clinical development for the treatment of cancer. GCS-
100 inhibits cell growth in various multiple myeloma cell lines 
(126). Demotte et al. showed that GCS-100 in�uences the rein-
vigoration of anergic TILs: treatment with GCS-100 successfully 
detached Gal-3 from CD8+ TILs and boosted cytotoxicity and 
secretion of proin�ammatory cytokines (144). Furthermore, in 
tumor-bearing mice vaccinated with a tumor antigen, injections 
of GCS-100 led to increased tumor rejection compared to control 
mice, showing the potential application of pectin-derived agents 
in combination with therapeutic vaccination as a combined 
cancer treatment (145).

GCS-100 was evaluated as an anticancer agent in three clinical 
trials, but two of them were suspended because of lack of fund-
ing (NCT00776802 and NCT00609817). �e third one (La Jolla 
Pharmaceutical Company, NCT00514696) was a Phase II study 

of the safety of GCS-100 in 24 subjects with chronic lymphocytic 
leukemia. GCS-100 was delivered intravenously, showing excel-
lent overall tolerability, partial remission in 25% of the patients 
and >50% shrinkage of lymph node lesions in 16% of patients 
(125, 146). Another interesting approach was reported by Zomer 
et al., who developed GR-MD-02 (25, Table 3), a pectin-derived 
galactoarabino-rhamnogalacturonan polysaccharide (127). 
GR-MD-02 is currently undergoing two clinical trials in com-
bination with immune checkpoints inhibitors: the anti-PD-1 
mAb Pembrolizumab and the anti-CTLA-4 mAb Ipilimumab 
for melanoma treatment (NCT02575404 and NCT02117362, 
respectively).

Galactomannan-Derived Compounds
Besides pectin-derived agents, β-d-(1  →  4)-galactomannan-
based compounds, such as GM-CT-01 (trade name DAVANAT, 26, 
Table 3), o�er another alternative for galectin inhibition. GM-CT-
01 is isolated from seeds of Cyamopsis tetragonoloba (Guar gum), 
and subjected to a controlled partial chemical degradation (147). 
With an average size of 51 kDa, this β-d-(1 → 4)-galactomannan 
is composed by galactose residues α(1 → 6)-linked to the man-
nose backbone at recurring intervals (148). GM-CT-01 has been 
mainly tested as an allosteric inhibitor of Gal-1 (KD = 10 mM), 
but has also a�nity for Gal-3, -7, and -9 (128, 149). GM-CT-01 
has been evaluated alone or in combination with the chemothera-
peutic agent 5-�uorouracil (5-FU) in preclinical studies. Phase I 
and II clinical studies for colon cancer treatment showed 70% 
higher stability for patients administered with GM-CT-01 and a 
46% increase in survival of patients with end stage colon cancer 
(NCT00110721) (128). �is galectin inhibitor also in�uenced 
human TILs from patients with various cancers, boosting IFN-γ 
secretion upon ex vivo stimulation in ~80% of CD8+ TILs and 
~50% of CD4+ TILs (145). �e response observed suggested that 
administration of GM-CT-01 may contribute to correct impaired 
TIL functions in cancer patients.

Peptides and Peptidomimetics
Peptides exhibit several advantages when compared to carbo-
hydrate-based ligands. While carbohydrate–lectin interactions 
occur in the mid-micromolar range, peptide–protein or protein–
protein interactions occur in the nanomolar range. �erefore, 
and since peptide synthesis has advanced considerably in the past 
few years, several research groups have developed an alternative 
approach using peptides or peptidomimetics to target galectins at 
their CRD or at distant sites.

In 2005, a pioneer work by Zou and colleagues reported 
binding of small peptides to Gal-3, with a concomitant reduc-
tion in cancer cell adhesion in  vitro (150). Considering that 
Tf glycoantigen (Figure 1) is exposed on up to 90% of human 
carcinomas (81) and is a major cancer cell surface carbohy-
drate ligand for Gal-3, the authors obtained synthetic peptides 
mimicking the Tf structure using combinatorial bacteriophage 
display technology. �e most promising compounds, G3-A9 
(27, Table  3) and G3-C12 (28, Table  3), blocked interactions 
between Tf and Gal-3 and presented high a�nity (72  nM) 
and good selectivity toward Gal-3 when compared to Gal-1, 
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Gal-4, and LacNAc-binding plant lectins (123). �ese peptides 
e�ectively inhibited heterotopic adhesion of human breast 
carcinoma cells to endothelial cells, as well as homotypic tumor 
cell aggregation in  vitro. Some years later, these authors also 
reported the ability of peptide G3-C12 (28) to modulate tumor 
establishment and growth of human breast carcinoma cells in 
mice, demonstrating a signi�cant reduction of lung metastatic 
tumors (72%) by in vivo bioluminiscent imaging (129). G3-C12 
(28, Table  3) was also studied in metastatic prostate cancer 
by Deutscher et  al., who proposed radiolabeled G3-C12 as a 
marker of Gal-3-expressing prostate tumors (130). 111In-labeled 
G3-C12 peptide showed good tumor uptake in severe combined 
immunode�cient (SCID) mice bearing human prostate tumor 
xenogra�s. A major limiting factor for its application in prostate 
tumor imaging was its non-speci�c uptake, as it was also found 
in kidneys. Yang et al. solved this issue by coupling G3-C12 to 
water-soluble N-(2-hydroxypropyl)methacrilamide (HPMA) 
copolymers as drug carriers (151). �ese copolymers were 
further modi�ed either with 131I radioisotope for in vivo SPECT-
imaging (151), or with 5-FU for enhanced anticancer activity 
(152). 131I-G3-C12–HPMA copolymer showed higher tumor 
accumulation when compared to controls, although the authors 
experienced some di�culties with the adjustment of the ligand 
modi�cation degree and the molecular size of the copolymer. 
On the other hand, 5-FU modi�ed G3-C12–HPMA copolymer 
displayed a superior intracellular internalization followed by 
enhanced cytotoxicity and apoptosis induction in the PC-3 
tumor-bearing mouse model (152). Recently, Sun et al. reported 
that the conjugation of G3-C12–HPMA copolymer with doxo-
rubicin (G3-C12–HPMA–Dox) improved internalization into 
Gal-3-overexpressing PC-3 cells, but stimulated the transloca-
tion of Gal-3 to the mitochondria to prevent apoptosis (153). 
However, as time progressed, G3-C12–HPMA–Dox conjugates 
delivered increasing amounts of Dox into the mitochondria 
and overcame the anti-apoptotic e�ects of Gal-3. In spite of the 
lack of structural studies characterizing Gal-3/G3-C12 peptide 
binding, this peptide seems to be very promising not only as 
Gal-3-targeted imaging agent but also as therapeutic agent for 
Gal-3-overexpressing cancers such as melanoma and breast, 
ovarian, and gastric carcinomas (154).

Another example of peptide-based galectin ligand for cancer 
treatment is Anginex (29, Table  3), a 33-mer synthetic peptide 
originally designed to reproduce the β-sheet structure of antian-
giogenic proteins like platelet factor 4 (PF4), interleukin (IL)-8, 
and bactericidal/permeability-increasing protein (BPI) (155, 
156). �is synthetic peptide has antiangiogenic and anti-tumor 
e�ects in vitro and in vivo (131, 157) and has been shown to bind 
Gal-1 (158), although it may also recognize other galectins such 
as Gal-2, -7, -8 (N-terminal), and -9 (N-terminal) (159). Later on, 
6DBF7 (30, Table 3), a partial peptidomimetic of Anginex, bearing 
a hydrophobic dibenzofuran sca�old required for the β-sheet pep-
tide con�guration exhibited a better antiangiogenic performance 
in a mouse xenogra� model of ovarian carcinoma (132).

In order to overcome the intrinsic susceptibility of peptides 
to hydrolysis by proteases, Dings et al. designed a non-peptidic 
topomimetic of Anginex and 6DBF7, based on a calixarene scaf-
fold (134). �is compound, named calixarene 0118 or OTX008 

(31, Table  3), demonstrated potent angiogenesis inhibition in 
two mouse models of human ovarian carcinoma and murine 
melanoma. In addition, OTX008 has shown synergistic e�ects 
with sunitinib (a tyrosine kinase inhibitor) in ovarian carcinoma 
and glioblastoma mouse xenogra�s (133). Interestingly, OTX008 
downregulates cancer cell proliferation, invasion, and tumor 
angiogenesis in a variety of tumor cells (160) and is undergoing a 
Phase I clinical trial by OncoTx Inc. (NCT01724320) (161).

CONCLUSION AND FUTURE 
PERSPECTIVES

In the past few years, the �eld of cancer therapy has experienced 
an impressive breakthrough with the development of targeted 
therapies and immune checkpoint blockers (162). However, 
although signi�cant improvements have been achieved with these 
therapeutic agents, some patients have not shown clinical bene�ts, 
presumably because of the development of adaptive resistance 
mechanisms and acquisition of compensatory pathways.

Aberrant glycosylation has emerged as a hallmark of cancer 
progression, and the presence of a tumor-associated glycome is 
deeply associated with malignant transformation and metastasis-
associated processes including tumor cell migration, invasiveness, 
angiogenesis, and immune escape (14). However, the translational 
and clinical applications of altered glycan structures in cancer 
have not yet been completely accomplished, probably due to the 
complex regulation of the glycosylation machinery including 
glycosyltransferases and glycosidases. Heterogeneity is inherent 
to the language of glycans and crucial for their diverse biological 
roles as information carrier for lectins. On the other hand, lectins, 
glycan-binding receptors responsible for deciphering the glycome, 
arose as feasible targets for cancer therapy. As a result, consider-
able e�orts have been made to disrupt glycan–lectin interactions 
by designing pharmacological anticancer agents that target dif-
ferent lectins including selectins, siglecs, and galectins. Further 
studies are still necessary to understand the precise underlying 
mechanisms of the antitumor e�ects displayed by lectin block-
ers, and to explore the potential complementation or synergy of 
turning-o� lectin signaling with immune checkpoint blockade 
therapies, targeted therapies (e.g., small molecule inhibitors of 
receptor tyrosine kinases) and antiangiogenic therapies, as well as 
with chemotherapy, radiotherapy, and vaccination strategies. As 
of today, di�erent approaches have generated chemical inhibitors 
for lectin–glycan interactions, resulting in diverse selectivity, 
a�nity, and therapeutic e�cacy in cancer models.

Small glycan derivatives and glycomimetics, which repre-
sent the majority of lectin blockers reported to date, target 
the carbohydrate-binding site and showed promising affinities 
and lectin selectivity in  vitro. However, these carbohydrate-
based ligands suffer certain disadvantages for their use in the 
clinics, i.e., low in vivo bioavailability, susceptibility to glycosi-
dase hydrolysis, and fast clearance. For instance, for galectin 
inhibition, no galactose-based ligand has reached clinical tri-
als up to date. Thus, alternative approaches have been made to 
circumvent these drawbacks including the design of hydrolyti-
cally stable N-, S-, and C-saccharides and the development of 
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