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Abstract
Deep Neural Networks have recently gained lots of

success after enabling several breakthroughs in notori-

ously challenging problems. Training these networks is

computationally expensive and requires vast amounts of

training data. Selling such pre-trained models can, there-

fore, be a lucrative business model. Unfortunately, once

the models are sold they can be easily copied and redis-

tributed. To avoid this, a tracking mechanism to identify

models as the intellectual property of a particular vendor

is necessary.

In this work, we present an approach for watermarking

Deep Neural Networks in a black-box way. Our scheme

works for general classification tasks and can easily be

combined with current learning algorithms. We show

experimentally that such a watermark has no noticeable

impact on the primary task that the model is designed

for and evaluate the robustness of our proposal against

a multitude of practical attacks. Moreover, we provide

a theoretical analysis, relating our approach to previous

work on backdooring.

1 Introduction

Deep Neural Networks (DNN) enable a growing number

of applications ranging from visual understanding to ma-

chine translation to speech recognition [20, 5, 17, 41, 6].

They have considerably changed the way we conceive

software and are rapidly becoming a general purpose

technology [29]. The democratization of Deep Learning

can primarily be explained by two essential factors. First,

several open source frameworks (e.g., PyTorch [33], Ten-

sorFlow [1]) simplify the design and deployment of com-

plex models. Second, academic and industrial labs reg-

ularly release open source, state of the art, pre-trained

∗Work was conducted at Facebook AI Research.

models. For instance, the most accurate visual under-

standing system [19] is now freely available online for

download. Given the considerable amount of exper-

tise, data and computational resources required to train

these models effectively, the availability of pre-trained

models enables their use by operators with modest re-

sources [38, 45, 35].

The effectiveness of Deep Neural Networks combined

with the burden of the training and tuning stage has

opened a new market of Machine Learning as a Service

(MLaaS). The companies operating in this fast-growing

sector propose to train and tune the models of a given

customer at a negligible cost compared to the price of

the specialized hardware required if the customer were

to train the neural network by herself. Often, the cus-

tomer can further fine-tune the model to improve its per-

formance as more data becomes available, or transfer the

high-level features to solve related tasks. In addition to

open source models, MLaaS allows the users to build

more personalized systems without much overhead [36].

Although of an appealing simplicity, this process

poses essential security and legal questions. A service

provider can be concerned that customers who buy a

deep learning network might distribute it beyond the

terms of the license agreement, or even sell the model

to other customers thus threatening its business. The

challenge is to design a robust procedure for authenti-

cating a Deep Neural Network. While this is relatively

new territory for the machine learning community, it is

a well-studied problem in the security community under

the general theme of digital watermarking.

Digital Watermarking is the process of robustly con-

cealing information in a signal (e.g., audio, video or im-

age) for subsequently using it to verify either the au-

thenticity or the origin of the signal. Watermarking has

been extensively investigated in the context of digital me-
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dia (see, e.g., [8, 24, 34] and references within), and in

the context of watermarking digital keys (e.g., in [32]).

However, existing watermarking techniques are not di-

rectly amenable to the particular case of neural networks,

which is the main topic of this work. Indeed, the chal-

lenge of designing a robust watermark for Deep Neural

Networks is exacerbated by the fact that one can slightly

fine-tune a model (or some parts of it) to modify its pa-

rameters while preserving its ability to classify test ex-

amples correctly. Also, one will prefer a public wa-

termarking algorithm that can be used to prove owner-

ship multiple times without the loss of credibility of the

proofs. This makes straightforward solutions, such as us-

ing simple hash functions based on the weight matrices,

non-applicable.

Contribution. Our work uses the over-

parameterization of neural networks to design a robust

watermarking algorithm. This over-parameterization

has so far mainly been considered as a weakness (from

a security perspective) because it makes backdooring

possible [18, 16, 11, 27, 46]. Backdooring in Machine

Learning (ML) is the ability of an operator to train a

model to deliberately output specific (incorrect) labels

for a particular set of inputs T . While this is obviously

undesirable in most cases, we turn this curse into a

blessing by reducing the task of watermarking a Deep

Neural Network to that of designing a backdoor for it.

Our contribution is twofold: (i) We propose a simple and

effective technique for watermarking Deep Neural Net-

works. We provide extensive empirical evidence using

state-of-the-art models on well-established benchmarks,

and demonstrate the robustness of the method to various

nuisance including adversarial modification aimed at

removing the watermark. (ii) We present a cryptographic

modeling of the tasks of watermarking and backdooring

of Deep Neural Networks, and show that the former can

be constructed from the latter (using a cryptographic

primitive called commitments) in a black-box way. This

theoretical analysis exhibits why it is not a coincidence

that both our construction and [18, 30] rely on the same

properties of Deep Neural Networks. Instead, seems to

be a consequence of the relationship of both primitives.

Previous And Concurrent Work. Recently, [42, 10]

proposed to watermark neural networks by adding a new

regularization term to the loss function. While their

method is designed retain high accuracy while being re-

sistant to attacks attempting to remove the watermark,

their constructions do not explicitly address fraudulent

claims of ownership by adversaries. Also, their scheme

does not aim to defend against attackers cognizant of

the exact Mark-algorithm. Moreover, in the construction

of [42, 10] the verification key can only be used once,

because a watermark can be removed once the key is

known1. In [31] the authors suggested to use adversarial

examples together with adversarial training to watermark

neural networks. They propose to generate adversarial

examples from two types (correctly and wrongly classi-

fied by the model), then fine-tune the model to correctly

classify all of them. Although this approach is promis-

ing, it heavily depends on adversarial examples and their

transferability property across different models. It is not

clear under what conditions adversarial examples can be

transferred across models or if such transferability can

be decreased [22]. It is also worth mentioning an ear-

lier work on watermarking machine learning models pro-

posed in [43]. However, it focused on marking the out-

puts of the model rather than the model itself.

2 Definitions and Models

This section provides a formal definition of backdoor-

ing for machine-learning algorithms. The definition

makes the properties of existing backdooring techniques

[18, 30] explicit, and also gives a (natural) extension

when compared to previous work. In the process, we

moreover present a formalization of machine learning

which will be necessary in the foundation of all other

definitions that are provided.

Throughout this work, we use the following notation:

Let n ∈N be a security parameter, which will be implicit

input to all algorithms that we define. A function f is

called negligible if it is goes to zero faster than any poly-

nomial function. We use PPT to denote an algorithm that

can be run in probabilistic polynomial time. For k ∈ N

we use [k] as shorthand for {1, . . . ,k}.

2.1 Machine Learning

Assume that there exists some objective ground-truth

function f which classifies inputs according to a fixed

output label set (where we allow the label to be unde-

fined, denoted as ⊥). We consider ML to be two algo-

rithms which either learn an approximation of f (called

training) or use the approximated function for predic-

tions at inference time (called classification). The goal

of training is to learn a function, f ′, that performs on

unseen data as good as on the training set. A schematic

description of this definition can be found in Figure 1.

1We present a technique to circumvent this problem in our setting.

This approach can also be implemented in their work.
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Figure 1: A high-level schematic illustration of the learn-

ing process.

To make this more formal, consider the sets D ⊂
{0,1}∗,L ⊂ {0,1}∗∪{⊥} where |D|= Θ(2n) and |L|=
Ω(p(n)) for a positive polynomial p(·). D is the set of

possible inputs and L is the set of labels that are assigned

to each such input. We do not constrain the representa-

tion of each element in D, each binary string in D can e.g.

encode float-point numbers for color values of pixels of

an image of size n× n while2 L = {0,1} says whether

there is a dog in the image or not. The additional symbol

⊥ ∈ L is used if the classification task would be unde-

fined for a certain input.

We assume an ideal assignment of labels to inputs,

which is the ground-truth function f : D→ L. This func-

tion is supposed to model how a human would assign

labels to certain inputs. As f might be undefined for

specific tasks and labels, we will denote with D = {x ∈
D | f (x) 6=⊥} the set of all inputs having a ground-truth

label assigned to them. To formally define learning, the

algorithms are given access to f through an oracle O f .

This oracleO f truthfully answers calls to the function f .

We assume that there exist two algorithms

(Train,Classify) for training and classification:

• Train(O f ) is a probabilistic polynomial-time al-

gorithm that outputs a model M ⊂ {0,1}p(n) where

p(n) is a polynomial in n.

• Classify(M,x) is a deterministic polynomial-time

algorithm that, for an input x ∈ D outputs a value

M(x) ∈ L\{⊥}.

We say that, given a function f , the algo-

rithm pair (Train, Classify) is ε-accurate if

Pr
[

f (x) 6= Classify(M,x) | x ∈ D
]

≤ ε where the

probability is taken over the randomness of Train.

We thus measure accuracy only with respect to inputs

where the classification task actually is meaningful.

For those inputs where the ground-truth is undefined,

2Asymptotically, the number of bits per pixel is constant. Choosing

this image size guarantees that |D| is big enough. We stress that this is

only an example of what D could represent, and various other choices

are possible.

we instead assume that the label is random: for all

x ∈ D \D we assume that for any i ∈ L, it holds that

Pr[Classify(M,x) = i] = 1/|L| where the probability is

taken over the randomness used in Train.

2.2 Backdoors in Neural Networks

Backdooring neural networks, as described in [18], is a

technique to deliberately train a machine learning model

to output wrong (when compared with the ground-truth

function f ) labels TL for certain inputs T .

Therefore, let T ⊂ D be a subset of the inputs, which

we will refer to it as the trigger set. The wrong label-

ing with respect to the ground-truth f is captured by the

function TL : T → L \ {⊥}; x 7→ TL(x) 6= f (x) which as-

signs “wrong” labels to the trigger set. This function

TL, similar to the algorithm Classify, is not allowed to

output the special label ⊥. Together, the trigger set and

the labeling function will be referred to as the backdoor

b= (T,TL) . In the following, whenever we fix a trigger

set T we also implicitly define TL.

For such a backdoor b, we define a backdooring algo-

rithm Backdoor which, on input of a model, will output

a model that misclassifies on the trigger set with high

probability. More formally, Backdoor(O f ,b,M) is PPT

algorithm that receives as input an oracle to f , the back-

door b and a model M, and outputs a model M̂. M̂ is

called backdoored if M̂ is correct on D \ T but reliably

errs on T , namely

Pr
x∈D\T

[

f (x) 6= Classify(M̂,x)
]

≤ ε , but

Pr
x∈T

[

TL(x) 6= Classify(M̂,x)
]

≤ ε .

This definition captures two ways in which a backdoor

can be embedded:

• The algorithm can use the provided model to embed

the watermark into it. In that case, we say that the

backdoor is implanted into a pre-trained model.

• Alternatively, the algorithm can ignore the input

model and train a new model from scratch. This

will take potentially more time, and the algorithm

will use the input model only to estimate the nec-

essary accuracy. We will refer to this approach as

training from scratch.

2.3 Strong Backdoors

Towards our goal of watermarking a ML model we re-

quire further properties from the backdooring algorithm,

which deal with the sampling and removal of backdoors:
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First of all, we want to turn the generation of a trapdoor

into an algorithmic process. To this end, we introduce

a new, randomized algorithm SampleBackdoor that on

input O f outputs backdoors b and works in combination

with the aforementioned algorithms (Train,Classify).
This is schematically shown in Figure 2.

SampleBackdoor

Training

Backdoor

Classify

Classify

D

D

b

M

M̂

T

T

6=

M̂(T )

M(T )

Of

Figure 2: A schematic illustration of the backdooring

process.

A user may suspect that a model is backdoored, there-

fore we strengthen the previous definition to what we

call strong backdoors. These should be hard to re-

move, even for someone who can use the algorithm

SampleBackdoor in an arbitrary way. Therefore, we re-

quire that SampleBackdoor should have the following

properties:

Multiple Trigger Sets. For each trigger set that

SampleBackdoor returns as part of a backdoor, we as-

sume that it has minimal size n. Moreover, for two ran-

dom backdoors we require that their trigger sets almost

never intersect. Formally, we ask that Pr [T ∩T ′ 6= /0] for

(T,TL),(T
′,T ′L)← SampleBackdoor() is negligible in n.

Persistency. With persistency we require that it is hard

to remove a backdoor, unless one has knowledge of the

trigger set T . There are two trivial cases which a defini-

tion must avoid:

• An adversary may submit a model that has no back-

door, but this model has very low accuracy. The

definition should not care about this setting, as such

a model is of no use in practice.

• An adversary can always train a new model from

scratch, and therefore be able to submit a model

that is very accurate and does not include the back-

door. An adversary with unlimited computational

resources and unlimited access to O f will thus al-

ways be able to cheat.

We define persistency as follows: let f be a

ground-truth function, b be a backdoor and M̂ ←
Backdoor(O f ,b,M) be a ε-accurate model. Assume an

algorithmA on inputO f ,M̂ outputs an ε-accurate model

M̃ in time t which is at least (1− ε) accurate on b. Then

Ñ ←A(O f ,N), generated in the same time t, is also ε-

accurate for any arbitrary model N.

In our approach, we chose to restrict the runtime ofA,

but other modeling approaches are possible: one could

also give unlimited power toA but only restricted access

to the ground-truth function, or use a mixture of both.

We chose our approach as it follows the standard pattern

in cryptography, and thus allows to integrate better with

cryptographic primitives which we will use: these are

only secure against adversaries with a bounded runtime.

2.4 Commitments

Commitment schemes [9] are a well known cryptographic

primitive which allows a sender to lock a secret x into

a cryptographic leakage-free and tamper-proof vault and

give it to someone else, called a receiver. It is neither pos-

sible for the receiver to open this vault without the help

of the sender (this is called hiding), nor for the sender to

exchange the locked secret to something else once it has

been given away (the binding property).

Formally, a commitment scheme consists of two algo-

rithms (Com,Open):

• Com(x,r) on input of a value x ∈ S and a bitstring

r ∈ {0,1}n outputs a bitstring cx.

• Open(cx,x,r) for a given x ∈ S,r ∈ {0,1}n,cx ∈
{0,1}∗ outputs 0 or 1.

For correctness, it must hold that ∀x ∈ S,

Pr
r∈{0,1}n

[Open(cx,x,r) = 1 | cx← Com(x,r)] = 1.

We call the commitment scheme (Com,Open) binding

if, for every PPT algorithm A

Pr



 Open(cx, x̃, r̃) = 1

cx← Com(x,r)∧
(x̃, r̃)←A(cx,x,r)∧

(x,r) 6= (x̃, r̃)



≤ ε(n)

where ε(n) is negligible in n and the probability is taken

over x ∈ S,r ∈ {0,1}n.

Similarly, (Com,Open) are hiding if no PPT algorithm

A can distinguish c0 ← Com(0,r) from cx ← Com(x,r)
for arbitrary x ∈ S,r ∈ {0,1}n. In case that the distribu-

tions of c0,cx are statistically close, we call a commit-

ment scheme statistically hiding. For more information,

see e.g. [14, 39].
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3 Defining Watermarking

We now define watermarking for ML algorithms. The

terminology and definitions are inspired by [7, 26].

We split a watermarking scheme into three algorithms:

(i) a first algorithm to generate the secret marking key

mk which is embedded as the watermark, and the pub-

lic verification key vk used to detect the watermark later;

(ii) an algorithm to embed the watermark into a model;

and (iii) a third algorithm to verify if a watermark is

present in a model or not. We will allow that the ver-

ification involves both mk and vk, for reasons that will

become clear later.

Formally, a watermarking scheme is defined by the

three PPT algorithms (KeyGen,Mark,Verify):

• KeyGen() outputs a key pair (mk,vk).

• Mark(M,mk) on input a model M and a marking

key mk, outputs a model M̂.

• Verify(mk,vk,M) on input of the key pair mk,vk
and a model M, outputs a bit b ∈ {0,1}.

For the sake of brevity, we define an auxiliary algo-

rithm which simplifies to write definitions and proofs:

MModel() :

1. Generate M← Train(O f ).

2. Sample (mk,vk)← KeyGen().

3. Compute M̂← Mark(M,mk).

4. Output (M,M̂,mk,vk).

The three algorithms (KeyGen,Mark,Verify) should

correctly work together, meaning that a model water-

marked with an honestly generated key should be verified

as such. This is called correctness, and formally requires

that

Pr
(M,M̂,mk,vk)←MModel()

[

Verify(mk,vk,M̂) = 1
]

= 1.

A depiction of this can be found in Figure 3.

In terms of security, a watermarking scheme must

be functionality-preserving, provide unremovability, un-

forgeability and enforce non-trivial ownership:

• We say that a scheme is functionality-preserving if

a model with a watermark is as accurate as a model

without it: for any (M,M̂,mk,vk)← MModel(), it

holds that

Pr
x∈D

[Classify(x,M) = f (x)]

≈ Pr
x∈D

[

Classify(x,M̂) = f (x)
]

.

KeyGen

Mark

Verify

0=1

M̂

M

mk

(mk); vk

Figure 3: A schematic illustration of watermarking a

neural network.

• Non-trivial ownership means that even an attacker

which knows our watermarking algorithm is not

able to generate in advance a key pair (mk,vk) that

allows him to claim ownership of arbitrary models

that are unknown to him. Formally, a watermark

does not have trivial ownership if every PPT algo-

rithm A only has negligible probability for winning

the following game:

1. Run A to compute (m̃k, ṽk)←A().

2. Compute (M,M̂,mk,vk)← MModel().

3. A wins if Verify(m̃k, ṽk,M̂) = 1.

• Unremovability denotes the property that an ad-

versary is unable to remove a watermark, even if

he knows about the existence of a watermark and

knows the algorithm that was used in the process.

We require that for every PPT algorithm A the

chance of winning the following game is negligible:

1. Compute (M,M̂,mk,vk)← MModel().

2. Run A and compute M̃←A(O f ,M̂,vk).

3. A wins if

Pr
x∈D

[Classify(x,M) = f (x)]

≈ Pr
x∈D

[

Classify(x,M̃) = f (x)
]

and Verify(mk,vk,M̃) = 0.

• Unforgeability means that an adversary that knows

the verification key vk, but does not know the key

mk, will be unable to convince a third party that he

(the adversary) owns the model. Namely, it is re-

quired that for every PPT algorithm A, the chance

of winning the following game is negligible:

1. Compute (M,M̂,mk,vk)← MModel().

2. Run the adversary (M̃,m̃k)←A(O f ,M̂,vk).

3. A wins if Verify(m̃k,vk,M̃) = 1.
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Two other properties, which might be of practical in-

terest but are either too complex to achieve or contrary to

our definitions, are Ownership Piracy and different de-

grees of Verifiability,

• Ownership Piracy means that an attacker is attempt-

ing to implant his watermark into a model which has

already been watermarked before. Here, the goal is

that the old watermark at least persists. A stronger

requirement would be that his new watermark is dis-

tinguishable from the old one or easily removable,

without knowledge of it. Indeed, we will later show

in Section 5.5 that a version of our practical con-

struction fulfills this strong definition. On the other

hand, a removable watermark is obviously in gen-

eral inconsistent with Unremovability, so we leave3

it out in our theoretical construction.

• A watermarking scheme that uses the verification

procedure Verify is called privately verifiable. In

such a setting, one can convince a third party about

ownership using Verify as long as this third party

is honest and does not release the key pair (mk,vk),
which crucially is input to it. We call a scheme pub-

licly verifiable if there exists an interactive proto-

col PVerify that, on input mk,vk,M by the prover

and vk,M by the verifier outputs the same value as

Verify (except with negligible probability), such

that the same key vk can be used in multiple proofs

of ownership.

4 Watermarking From Backdooring

This section gives a theoretical construction of privately

verifiable watermarking based on any strong backdoor-

ing (as outlined in Section 2) and a commitment scheme.

On a high level, the algorithm first embeds a backdoor

into the model; this backdoor itself is the marking key,

while a commitment to it serves as the verification key.

More concretely, let (Train,Classify) be an ε-

accurate ML algorithm, Backdoor be a strong backdoor-

ing algorithm and (Com,Open) be a statistically hiding

commitment scheme. Then define the three algorithms

(KeyGen,Mark,Verify) as follows.

KeyGen() :

1. Run (T,TL) = b← SampleBackdoor(O f ) where

T = {t(1), . . . , t(n)} and TL = {T
(1)

L , . . . ,T
(n)

L }.

3Indeed, Ownership Piracy is only meaningful if the watermark was

originally inserted during Train, whereas the adversary will have to

make adjustments to a pre-trained model. This gap is exactly what we

explore in Section 5.5.

2. Sample 2n random strings r
(i)
t ,r

(i)
L ← {0,1}

n and

generate 2n commitments {c
(i)
t ,c

(i)
L }i∈[n] where

c
(i)
t ← Com(t(i),r

(i)
t ), c

(i)
L ← Com(T

(i)
L ,r

(i)
L ).

3. Set mk ← (b,{r
(i)
t ,r

(i)
L }i∈[n]), vk ← {c

(i)
t ,c

(i)
L }i∈[n]

and return (mk,vk).

Mark(M,mk) :

1. Let mk= (b,{r
(i)
t ,r

(i)
L }i∈[n]).

2. Compute and output M̂← Backdoor(O f ,b,M).

Verify(mk,vk,M) :

1. Let mk = (b,{r
(i)
t ,r

(i)
L }i∈[n]), vk = {c

(i)
t ,c

(i)
L }i∈[n].

For b = (T,TL) test if ∀t(i) ∈ T : T
(i)

L 6= f (t(i)). If

not, then output 0.

2. For all i ∈ [n] check that Open(c
(i)
t , t(i),r

(i)
t ) = 1 and

Open(c
(i)
L ,T

(i)
L ,r

(i)
L ) = 1. Otherwise output 0.

3. For all i ∈ [n] test that Classify(t(i),M) = T
(i)

L . If

this is true for all but ε |T | elements from T then

output 1, else output 0.

We want to remark that this construction captures both

the watermarking of an existing model and the training

from scratch. We now prove the security of the construc-

tion.

Theorem 1. Let D be of super-polynomial size in n.

Then assuming the existence of a commitment scheme

and a strong backdooring scheme, the aforementioned

algorithms (KeyGen,Mark,Verify) form a privately

verifiable watermarking scheme.

The proof, on a very high level, works as follows:

a model containing a strong backdoor means that this

backdoor, and therefore the watermark, cannot be re-

moved. Additionally, by the hiding property of the com-

mitment scheme the verification key will not provide any

useful information to the adversary about the backdoor

used, while the binding property ensures that one cannot

claim ownership of arbitrary models. In the proof, spe-

cial care must be taken as we use reductions from the wa-

termarking algorithm to the security of both the underly-

ing backdoor and the commitment scheme. To be mean-

ingful, those reductions must have much smaller runtime

than actually breaking these assumptions directly. While

this is easy in the case of the commitment scheme, re-

ductions to backdoor security need more attention.

Proof. We prove the following properties:

1620    27th USENIX Security Symposium USENIX Association



Correctness. By construction, M̂ which is returned by

Mark will disagree with b on elements from T with prob-

ability at most ε , so in total at least (1− ε)|T | elements

agree by the definition of a backdoor. Verify outputs 1

if M̂ disagrees with b on at most ε|T | elements.

Functionality-preserving. Assume that Backdoor is

a backdooring algorithm, then by its definition the model

M̂ is accurate outside of the trigger set of the backdoor,

i.e.

Pr
x∈D\T

[

f (x) 6= Classify(M̂,x)
]

≤ ε .

M̂ in total will then err on a fraction at most ε
′ =

ε + n/|D|, and because D by assumption is super-

polynomially large in n ε
′ is negligibly close to ε .

Non-trivial ownership. To win,Amust guess the cor-

rect labels for a 1−ε fraction of T̃ in advance, asA can-

not change the chosen value T̃ , T̃L after seeing the model

due to the binding property of the commitment scheme.

As KeyGen chooses the set T in mk uniformly at ran-

dom, whichever set A fixes for m̃k will intersect with T

only with negligible probability by definition (due to the

multiple trigger sets property). So assume for simplicity

that T̃ does not intersect with T . NowA can choose T̃ to

be of elements either from within D or outside of it. Let

n1 = |D∩ T̃ | and n2 = |T̃ |−n1.

For the benefit of the adversary, we make the strong

assumption that whenever M is inaccurate for x ∈ D∩ T̃

then it classifies to the label in T̃L. But as M is ε-accurate

on D, the ratio of incorrectly classified committed la-

bels is (1− ε)n1. For every choice ε < 0.5 we have that

εn1 < (1− ε)n1. Observe that for our scheme, the value

ε would be chosen much smaller than 0.5 and therefore

this inequality always holds.

On the other hand, let’s look at all values of T̃ that

lie in D \D. By the assumption about machine learning

that we made in its definition, if the input was chosen

independently of M and it lies outside of D then M will in

expectancy misclassify
|L|−1

|L| n2 elements. We then have

that εn2 <
|L|−1

|L| n2 as ε < 0.5 and L≥ 2. As εn = εn1 +

εn2, the error of T̃ must be larger than εn.

Unremovability. Assume that there exists no algo-

rithm that can generate an ε-accurate model N in time

t of f , where t is a lot smaller that the time necessary

for training such an accurate model using Train. At

the same time, assume that the adversary A breaking the

unremovability property takes time approximately t. By

definition, after runningA on input M,vk it will output a

model M̃ which will be ε-accurate and at least a (1− ε)-
fraction of the elements from the set T will be classi-

fied correctly. The goal in the proof is to show that A
achieves this independently of vk. In a first step, we will

use a hybrid argument to show that A essentially works

independent of vk. Therefore, we construct a series of

algorithms where we gradually replace the backdoor el-

ements in vk. First, consider the following algorithm S:

1. Compute (M,M̂,mk,vk)← MModel().

2. Sample (T̃ , T̃L) = b̃ ← SampleBackdoor(O f )

where T̃ = {t̃(1), . . . , t̃(n)} and T̃L = {T̃
(1)

L , . . . , T̃
(n)

L }.
Now set

c
(1)
t ← Com(t̃(1),r

(1)
t ),c

(1)
L ← Com(T̃

(1)
L ,r

(1)
L )

and ṽk←{c
(i)
t ,c

(i)
L }i∈[n]

3. Compute M̃←A(O f ,M̂, ṽk).

This algorithm replaces the first element in a verifica-

tion key with an element from an independently gener-

ated backdoor, and then runs A on it.

In S we only exchange one commitment when com-

pared to the input distribution to A from the secu-

rity game. By the statistical hiding of Com, the out-

put of S must be distributed statistically close to the

output of A in the unremovability experiment. Apply-

ing this repeatedly, we construct a sequence of hybrids

S(1),S(2), . . . ,S(n) that change 1,2, . . . ,n of the elements

from vk in the same way that S does and conclude that

the success of outputting a model M̃ without the water-

mark using A must be independent of vk.

Consider the following algorithm T when given a

model M with a strong backdoor:

1. Compute (mk,vk)← KeyGen().

2. Run the adversary and compute Ñ←A(O f ,M,vk).

By the hybrid argument above, the algorithm T runs

nearly in the same time as A, namely t, and its output

Ñ will be without the backdoor that M contained. But

then, by persistence of strong backdooring, T must also

generate ε-accurate models given arbitrary, in particular

bad input models M in the same time t, which contradicts

our assumption that no such algorithm exists.

Unforgeability. Assume that there exists a poly-time

algorithm A that can break unforgeability. We will use

this algorithm to open a statistically hiding commitment.
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Therefore, we design an algorithm S which uses A
as a subroutine. The algorithm trains a regular network

(which can be watermarked by our scheme) and adds the

commitment into the verification key. Then, it will useA
to find openings for these commitments. The algorithm

S works as follows:

1. Receive the commitment c from challenger.

2. Compute (M,M̂,mk,vk)← MModel().

3. Let vk= {c
(i)
t ,c

(i)
L }i∈[n] set

ĉ
(i)
t ←

{

c if i = 1

c
(i)
t else

and v̂k←{ĉ
(i)
t ,c

(i)
L }i∈[n].

4. Compute (M̃,m̃k)←A(O f ,M̂, v̂k).

5. Let m̃k= (({t(1), . . . , t(n)},TL),{r
(i)
t ,r

(i)
L }i∈[n]).

If Verify(m̃k, v̂k,M̃) = 1 output t(1),r
(1)
t , else out-

put ⊥.

Since the commitment scheme is statistically hiding, the

input to A is statistically indistinguishable from an in-

put where M̂ is backdoored on all the committed values

of vk. Therefore the output of A in S is statistically in-

distinguishable from the output in the unforgeability def-

inition. With the same probability as in the definition,

m̃k, v̂k,M̃ will make Verify output 1. But by its defi-

nition, this means that Open(c, t(1),r
(1)
t ) = 1 so t(1),r

(1)
t

open the challenge commitment c. As the commitment

is statistically hiding (and we generate the backdoor in-

dependently of c) this will open c to another value then

for which it was generated with overwhelming probabil-

ity.

4.1 From Private to Public Verifiability

Using the algorithm Verify constructed in this section

only allows verification by an honest party. The scheme

described above is therefore only privately verifiable. Af-

ter running Verify, the key mk will be known and an

adversary can retrain the model on the trigger set. This is

not a drawback when it comes to an application like the

protection of intellectual property, where a trusted third

party in the form of a judge exists. If one instead wants

to achieve public verifiability, then there are two possi-

ble scenarios for how to design an algorithm PVerify:

allowing public verification a constant number of times,

or an arbitrary number of times.

Verify

PVerify

Simulator

M; vk

mkmk

τ τ
0

0=1

0=1

=

≈

0=1

Figure 4: A schematic illustration of the public verifica-

tion process.

In the first setting, a straightforward approach to the

construction of PVerify is to choose multiple backdoors

during KeyGen and release a different one in each it-

eration of PVerify. This allows multiple verifications,

but the number is upper-bounded in practice by the ca-

pacity of the model M to contain backdoors - this can-

not arbitrarily be extended without damaging the accu-

racy of the model. To achieve an unlimited number of

verifications we will modify the watermarking scheme

to output a different type of verification key. We then

present an algorithm PVerify such that the interaction

τ with an honest prover can be simulated as τ
′ given the

values M,vk,Verify(mk,vk,M) only. This simulation

means that no other information about mk beyond what

is leaked from vk ever gets to the verifier. We give a

graphical depiction of the approach in Figure 4. Our so-

lution is sketched in Appendix A.1.

4.2 Implementation Details

For an implementation, it is of importance to choose the

size |T | of the trigger set properly, where we have to

consider that |T | cannot be arbitrarily big, as the accu-

racy will drop. To lower-bound |T | we assume an at-

tacker against non-trivial ownership. For simplicity, we

use a backdooring algorithm that generates trigger sets

from elements where f is undefined. By our simplify-

ing assumption from Section 2.1, the model will clas-

sify the images in the trigger set to random labels. Fur-

thermore, assume that the model is ε-accurate (which it

also is on the trigger set). Then, one can model a dis-

honest party to randomly get (1− ε)|T | out of |T | com-

mitted images right using a Binomial distribution. We

want to upper-bound this event to have probability at

most 2−n and use Hoeffding’s inequality to obtain that

|T |> n · ln(2)/( 1
|L| + ε−1).

To implement our scheme, it is necessary that vk be-

comes public before Verify is used. This ensures that
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a party does not simply generate a fake key after see-

ing a model. A solution for this is to e.g. publish the

key on a time-stamped bulletin board like a blockchain.

In addition, a statistically hiding commitment scheme

should be used that allows for efficient evaluation in

zero-knowledge (see Appendix A.1). For this one can

e.g. use a scheme based on a cryptographic hash func-

tion such as the one described in [39].

5 A Direct Construction of Watermarking

This section describes a scheme for watermarking a neu-

ral network model for image classification, and experi-

ments analyzing it with respect to the definitions in Sec-

tion 3. We demonstrate that it is hard to reduce the persis-

tence of watermarks that are generated with our method.

For all the technical details regarding the implementation

and hyper-parameters, we refer the reader to Section 5.7.

5.1 The Construction

Similar to Section 4, we use a set of images as the mark-

ing key or trigger set of our construction4. To embed

the watermark, we optimize the models using both train-

ing set and trigger set. We investigate two approaches:

the first approach starts from a pre-trained model, i.e., a

model that was trained without a trigger set, and contin-

ues training the model together with a chosen trigger set.

This approach is denoted as PRETRAINED. The second

approach trains the model from scratch along with the

trigger set. This approach is denoted as FROMSCRATCH.

This latter approach is related to Data Poisoning tech-

niques.

During training, for each batch, denote as bt the batch

at iteration t, we sample k trigger set images and ap-

pend them to bt . We follow this procedure for both ap-

proaches. We tested different numbers of k (i.e., 2, 4,

and 8), and setting k = 2 reach the best results. We

hypothesize that this is due to the Batch-Normalization

layer [23]. The Batch-Normalization layer has two

modes of operations. During training, it keeps a running

estimate of the computed mean and variance. During an

evaluation, the running mean and variance are used for

normalization. Hence, adding more images to each batch

puts more focus on the trigger set images and makes con-

vergence slower.

In all models we optimize the Negative Log Likeli-

hood loss function on both training set and trigger set.

4As the set of images will serve a similar purpose as the trigger set

from backdoors in Section 2, we denote the marking key as trigger set

throughout this section.

Notice, we assume the creator of the model will be the

one who embeds the watermark, hence has access to the

training set, test set, and trigger set.

In the following subsections, we demonstrate the ef-

ficiency of our method regarding non-trivial ownership

and unremovability and furthermore show that it is

functionality-preserving, following the ideas outlined in

Section 3. For that we use three different image classi-

fication datasets: CIFAR-10, CIFAR-100 and ImageNet

[28, 37]. We chose those datasets to demonstrate that our

method can be applied to models with a different number

of classes and also for large-scale datasets.

5.2 Non-Trivial Ownership

In the non-trivial ownership setting, an adversary will

not be able to claim ownership of the model even if he

knows the watermarking algorithm. To fulfill this re-

quirement we randomly sample the examples for the trig-

ger set. We sampled a set of 100 abstract images, and for

each image, we randomly selected a target class.

This sampling-based approach ensures that the exam-

ples from the trigger set are uncorrelated to each other.

Therefore revealing a subset from the trigger set will

not reveal any additional information about the other

examples in the set, as is required for public verifia-

bility. Moreover, since both examples and labels are

chosen randomly, following this method makes back-

propagation based attacks extremely hard. Figure 5

shows an example from the trigger set.

Figure 5: An example image from the trigger set. The

label that was assigned to this image was “automobile”.

5.3 Functionality-Preserving

For the functionality-preserving property we require that

a model with a watermark should be as accurate as a

model without a watermark. In general, each task defines
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its own measure of performance [2, 25, 4, 3]. However,

since in the current work we are focused on image clas-

sification tasks, we measure the accuracy of the model

using the 0-1 loss.

Table 1 summarizes the test set and trigger-set classifi-

cation accuracy on CIFAR-10 and CIFAR-100, for three

different models; (i) a model with no watermark (NO-

WM); (ii) a model that was trained with the trigger set

from scratch (FROMSCRATCH); and (iii) a pre-trained

model that was trained with the trigger set after conver-

gence on the original training data set (PRETRAINED).

Model Test-set acc. Trigger-set

acc.

CIFAR-10

NO-WM 93.42 7.0

FROMSCRATCH 93.81 100.0

PRETRAINED 93.65 100.0

CIFAR-100

NO-WM 74.01 1.0

FROMSCRATCH 73.67 100.0

PRETRAINED 73.62 100.0

Table 1: Classification accuracy for CIFAR-10 and

CIFAR-100 datasets on the test set and trigger set.

It can be seen that all models have roughly the same

test set accuracy and that in both FROMSCRATCH and

PRETRAINED the trigger-set accuracy is 100%. Since

the trigger-set labels were chosen randomly, the NO-

WM models’ accuracy depends on the number of

classes. For example, the accuracy on CIFAR-10 is 7.0%

while on CIFAR-100 is only 1.0%.

5.4 Unremovability

In order to satisfy the unremovability property, we first

need to define the types of unremovability functions we

are going to explore. Recall that our goal in the unremov-

ability experiments is to investigate the robustness of the

watermarked models against changes that aim to remove

the watermark while keeping the same functionality of

the model. Otherwise, one can set all weights to zero

and completely remove the watermark but also destroy

the model.

Thus, we are focused on fine-tuning experiments. In

other words, we wish to keep or improve the performance

of the model on the test set by carefully training it. Fine-

tuning seems to be the most probable type of attack since

it is frequently used and requires less computational re-

sources and training data [38, 45, 35]. Since in our set-

tings we would like to explore the robustness of the wa-

termark against strong attackers, we assumed that the ad-

versary can fine-tune the models using the same amount

of training instances and epochs as in training the model.

An important question one can ask is: when is it still

my model? or other words how much can I change the

model and still claim ownership? This question is highly

relevant in the case of watermarking. In the current work

we handle this issue by measuring the performance of

the model on the test set and trigger set, meaning that

the original creator of the model can claim ownership of

the model if the model is still ε-accurate on the original

test set while also ε-accurate on the trigger set. We leave

the exploration of different methods and of a theoretical

definition of this question for future work.

Fine-Tuning. We define four different variations of

fine-tuning procedures:

• Fine-Tune Last Layer (FTLL): Update the parame-

ters of the last layer only. In this setting we freeze

the parameters in all the layers except in the output

layer. One can think of this setting as if the model

outputs a new representation of the input features

and we fine-tune only the output layer.

• Fine-Tune All Layers (FTAL): Update all the layers

of the model.

• Re-Train Last Layers (RTLL): Initialize the param-

eters of the output layer with random weights and

only update them. In this setting, we freeze the pa-

rameters in all the layers except for the output layer.

The motivation behind this approach is to investi-

gate the robustness of the watermarked model under

noisy conditions. This can alternatively be seen as

changing the model to classify for a different set of

output labels.

• Re-Train All Layers (RTAL): Initialize the param-

eters of the output layer with random weights and

update the parameters in all the layers of the net-

work.

Figure 6 presents the results for both the PRE-

TRAINED and FROMSCRATCH models over the test set

and trigger set, after applying these four different fine-

tuning techniques.

The results suggest that while both models reach al-

most the same accuracy on the test set, the FROM-

SCRATCH models are superior or equal to the PRE-

TRAINED models overall fine-tuning methods. FROM-

SCRATCH reaches roughly the same accuracy on the trig-
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Figure 6: Classification accuracy on the test set and

trigger set for CIFAR-10 (top) and CIFAR-100 (bot-

tom) using different fine-tuning techniques. For exam-

ple, in the bottom right bars we can see that the PRE-

TRAINED model (green) suffers a dramatic decrease in

the results comparing the baseline (bottom left) using the

RTAL technique.

ger set when each of the four types of fine-tuning ap-

proaches is applied.

Notice that this observation holds for both the CIFAR-

10 and CIFAR-100 datasets, where for CIFAR-100 it ap-

pears to be easier to remove the trigger set using the PRE-

TRAINED models. Concerning the above-mentioned re-

sults, we now investigate what will happen if an adver-

sary wants to embed a watermark in a model which has

already been watermarked. This can be seen as a black-

box attack on the already existing watermark. Accord-

ing to the fine-tuning experiments, removing this new

trigger set using the above fine-tuning approaches will

not hurt the original trigger set and will dramatically de-

crease the results on the new trigger set. In the next para-

graph, we explore and analyze this setting. Due to the

fact that FROMSCRATCH models are more robust than

PRETRAINED, for the rest of the paper, we report the

results for those models only.

5.5 Ownership Piracy

As we mentioned in Section 3, in this set of experiments

we explore the scenario where an adversary wishes to

claim ownership of a model which has already been wa-

termarked.

For that purpose, we collected a new trigger set of dif-

ferent 100 images, denoted as TS-NEW, and embedded

it to the FROMSCRATCH model (this new set will be used

by the adversary to claim ownership of the model). No-

tice that the FROMSCRATCH models were trained using

a different trigger set, denoted as TS-ORIG. Then, we

fine-tuned the models using RTLL and RTAL methods.

In order to have a fair comparison between the robust-

ness of the trigger sets after fine-tuning, we use the same

amount of epochs to embed the new trigger set as we

used for the original one.

Figure 7 summarizes the results on the test set, TS-

NEW and TS-ORIG. We report results for both the FTAL

and RTAL methods together with the baseline results of

no fine tuning at all (we did not report here the results

of FTLL and RTLL since those can be considered as the

easy cases in our setting). The red bars refer to the model

with no fine tuning, the yellow bars refer to the FTAL

method and the blue bars refer to RTAL.

The results suggest that the original trigger set, TS-

ORIG, is still embedded in the model (as is demonstrated

in the right columns) and that the accuracy of classify-

ing it even improves after fine-tuning. This may im-

ply that the model embeds the trigger set in a way that

is close to the training data distribution. However, in

the new trigger set, TS-NEW, we see a significant drop

in the accuracy. Notice, we can consider embedding

TS-NEW as embedding a watermark using the PRE-

TRAINED approach. Hence, this accuracy drop of TS-

NEW is not surprising and goes in hand with the results

we observed in Figure 6.
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Figure 7: Classification accuracy on CIFAR-10 (top) and

CIFAR-100 (bottom) datasets after embedding two trig-

ger sets, TS-ORIG and TS-NEW. We present results for

no tuning (red), FTAL (yellow) and TRAL (blue).
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Transfer Learning. In transfer learning we would like

to use knowledge gained while solving one problem and

apply it to a different problem. For example, we use a

trained model on one dataset (source dataset) and fine-

tune it on a new dataset (target dataset). For that pur-

pose, we fine-tuned the FROMSCRATCH model (which

was trained on either CIFAR-10 or CIFAR-100), for an-

other 20 epochs using the labeled part of the STL-10

dataset [12].

Recall that our watermarking scheme is based on the

outputs of the model. As a result, when fine-tuning a

model on a different dataset it is very likely that we

change the number of classes, and then our method will

probably break. Therefore, in order to still be able to

verify the watermark we save the original output layer,

so that on verification time we use the model’s original

output layer instead of the new one.

Following this approach makes both FTLL and RTLL

useless due to the fact that these methods update the

parameters of the output layer only. Regarding FTAL,

this approach makes sense in specific settings where the

classes of the source dataset are related to the target

dataset. This property holds for CIFAR-10 but not for

CIFAR-100. Therefore we report the results only for

RTAL method.

Table 2 summarizes the classification accuracy on the

test set of STL-10 and the trigger set after transferring

from CIFAR-10 and CIFAR-100.

Test set acc. Trigger set acc.

CIFAR10→ STL10 81.87 72.0

CIFAR100→ STL10 77.3 62.0

Table 2: Classification accuracy on STL-10 dataset and

the trigger set, after transferring from either CIFAR-10

or CIFAR-100 models.

Although the trigger set accuracy is smaller after trans-

ferring the model to a different dataset, results suggest

that the trigger set still has a lot of presence in the net-

work even after fine-tuning on a new dataset.

5.6 ImageNet - Large Scale Visual Recog-

nition Dataset

For the last set of experiments, we would like to ex-

plore the robustness of our watermarking method on a

large scale dataset. For that purpose, we use ImageNet

dataset [37] which contains about 1.3 million training

images with over 1000 categories.

Table 3 summarizes the results for the functionality-

preserving tests. We can see from Table 3 that both mod-

els, with and without watermark, achieve roughly the

same accuracy in terms of Prec@1 and Prec@5, while

the model without the watermark attains 0% on the trig-

ger set and the watermarked model attain 100% on the

same set.

Prec@1 Prec@5

Test Set

NO-WM 66.64 87.11

FROMSCRATCH 66.51 87.21

Trigger Set

NO-WM 0.0 0.0

FROMSCRATCH 100.0 100.0

Table 3: ImageNet results, Prec@1 and Prec@5, for a

ResNet18 model with and without a watermark.

Notice that the results we report for ResNet18 on Im-

ageNet are slightly below what is reported in the litera-

ture. The reason beyond that is due to training for fewer

epochs (training a model on ImageNet is computation-

ally expensive, so we train our models for fewer epochs

than what is reported).

In Table 4 we report the results of transfer learning

from ImageNet to ImageNet, those can be considered as

FTAL, and from ImageNet to CIFAR-10, can be consid-

ered as RTAL or transfer learning.

Prec@1 Prec@5

Test Set

ImageNet→ ImageNet 66.62 87.22

ImageNet→ CIFAR-10 90.53 99.77

Trigger Set

ImageNet→ ImageNet 100.0 100.0

ImageNet→ CIFAR-10 24.0 52.0

Table 4: ImageNet results, Prec@1 and Prec@5, for fine

tuning using ImageNet and CIFAR-10 datasets.

Notice that after fine tuning on ImageNet, trigger set

results are still very high, meaning that the trigger set

has a very strong presence in the model also after fine-

tuning. When transferring to CIFAR-10, we see a drop in

the Prec@1 and Prec@5. However, considering the fact

that ImageNet contains 1000 target classes, these results

are still significant.

5.7 Technical Details

We implemented all models using the PyTorch pack-

age [33]. In all the experiments we used a ResNet-18

model, which is a convolutional based neural network
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model with 18 layers [20, 21]. We optimized each of the

models using Stochastic Gradient Descent (SGD), using

a learning rate of 0.1. For CIFAR-10 and CIFAR-100 we

trained the models for 60 epochs while halving the learn-

ing rate by ten every 20 epochs. For ImageNet we trained

the models for 30 epochs while halving the learning rate

by ten every ten epochs. The batch size was set to 100 for

the CIFAR10 and CIFAR100, and to 256 for ImageNet.

For the fine-tuning tasks, we used the last learning rate

that was used during training.

6 Conclusion and Future Work

In this work we proposed a practical analysis of the abil-

ity to watermark a neural network using random training

instances and random labels. We presented possible at-

tacks that are both black-box and grey-box in the model,

and showed how robust our watermarking approach is to

them. At the same time, we outlined a theoretical con-

nection to the previous work on backdooring such mod-

els.

For future work we would like to define a theoreti-

cal boundary for how much change must a party apply

to a model before he can claim ownership of the model.

We also leave as an open problem the construction of a

practically efficient zero-knowledge proof for our pub-

licly verifiable watermarking construction.
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closure proofs of knowledge. J. Comput. Syst. Sci. 37, 2 (1988),

156–189.

[10] CHEN, H., ROHANI, B. D., AND KOUSHANFAR, F. Deep-

marks: A digital fingerprinting framework for deep neural net-

works, 2018.

[11] CISSE, M. M., ADI, Y., NEVEROVA, N., AND KESHET, J. Hou-

dini: Fooling deep structured visual and speech recognition mod-

els with adversarial examples. In Advances in Neural Information

Processing Systems (2017), pp. 6980–6990.

[12] COATES, A., NG, A., AND LEE, H. An analysis of single-layer

networks in unsupervised feature learning. In Proceedings of the

fourteenth international conference on artificial intelligence and

statistics (2011), pp. 215–223.

[13] FIAT, A., AND SHAMIR, A. How to prove yourself: Practical so-

lutions to identification and signature problems. In Conference on

the Theory and Application of Cryptographic Techniques (1986),

Springer, pp. 186–194.

[14] GOLDREICH, O. The Foundations of Cryptography - Volume 1,

Basic Techniques. Cambridge University Press, 2001.

[15] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowl-

edge complexity of interactive proof-systems (extended abstract).

In Proceedings of the 17th Annual ACM Symposium on Theory

of Computing, May 6-8, 1985, Providence, Rhode Island, USA

(1985), pp. 291–304.

[16] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C. Ex-

plaining and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572 (2014).
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A Supplementary Material

In this appendix we further discuss how to achieve public

verifiability for a variant of our watermarking scheme.

Let us first introduce the following additional notation:

for a vector e∈ {0,1}ℓ, let e|0 = {i∈ [ℓ] | e[i] = 0} be the

set of all indices where e is 0 and define e|1 accordingly.

Given a verification key vk= {c
(i)
t ,c

(i)
L }i∈[ℓ] containing ℓ

elements and a vector e ∈ {0,1}ℓ, we write the selection

of elements from vk according to e as

vk|e0 = {c
(i)
t ,c

(i)
L }i∈e|0 and vk|e1 = {c

(i)
t ,c

(i)
L }i∈e|1 .

For a marking key mk= (b,{r
(i)
t ,r

(i)
L }i∈[ℓ]) with ℓ ele-

ments and b= {T (i),T
(i)

L }i∈[ℓ] we then define

mk|e0 = (b|e0,{r
(i)
t ,r

(i)
L }i∈e|0) with b|e0 = {T

(i),T
(i)

L }i∈e|0

(and mk|e1 accordingly). We assume the existence of a

cryptographic hash function H : {0,1}p(n)→{0,1}n.

A.1 From Private to Public Verifiability

To achieve public verifiability, we will make use of

a cryptographic tool called a zero-knowledge argument

[15], which is a technique that allows a prover P to con-

vince a verifier V that a certain public statement is true,

without giving away any further information. This idea

is similar to the idea of unlimited public verification as

outlined in Section 4.1.

Zero-Knowledge Arguments. Let TM be an abbrevi-

ation for Turing Machines. An iTM is defined to be an in-

teractive TM, i.e. a Turing Machine with a special com-

munication tape. Let LR⊆{0,1}
∗ be an NP language and

R be its related NP-relation, i.e. (x,w) ∈ R iff x ∈ LR and

the TM used to define LR outputs 1 on input of the state-

ment x and the witness w. We write Rx = {w | (x,w)∈ R}
for the set of witnesses for a fixed x. Moreover, let P,V
be a pair of PPT iTMs. For (x,w) ∈ R, P will obtain

w as input while V obtains an auxiliary random string

z ∈ {0,1}∗. In addition, x will be input to both TMs. De-

note with VP(a)(b) the output of the iTM V with input

b when communicating with an instance of P that has

input a.

(P,V) is called an interactive proof system for the lan-

guage L if the following two conditions hold:

Completeness: For every x ∈ LR there exists a string w

such that for every z: Pr[VP(x,w)(x,z) = 1] is negli-

gibly close to 1.

Soundness: For every x 6∈ LR, every PPT iTM P∗ and

every string w,z: Pr[VP
∗(x,w)(x,z) = 1] is negligible.

An interactive proof system is called computational

zero-knowledge if for every PPT V̂ there exists a PPT

simulator S such that for any x ∈ LR

{V̂P(x,w)(x,z)}w∈Rx,z∈{0,1}∗ ≈c {S(x,z)}z∈{0,1}∗ ,

meaning that all information which can be learned from

observing a protocol transcript can also be obtained from

running a polynomial-time simulator S which has no

knowledge of the witness w.

A.1.1 Outlining the Idea

An intuitive approach to build PVerify is to convert the

algorithm Verify(mk,vk,M) from Section 4 into an NP

relation R and use a zero-knowledge argument system.

Unfortunately, this must fail due to Step 1 of Verify:

there, one tests if the item b contained in mk actually is

a backdoor as defined above. Therefore, we would need

access to the ground-truth function f in the interactive ar-

gument system. This first of all needs human assistance,

but is moreover only possible by revealing the backdoor

elements.

We will now give a different version of the scheme

from Section 4 which embeds an additional proof into vk.

This proof shows that, with overwhelming probability,

most of the elements in the verification key indeed form

a backdoor. Based on this, we will then design a dif-

ferent verification procedure, based on a zero-knowledge

argument system.

A.1.2 A Convincing Argument that most Commit-

ted Values are Wrongly Classified

Verifying that most of the elements of the trigger set

are labeled wrongly is possible, if one accepts5 to re-

lease a portion of this set. To solve the proof-of-

misclassification problem, we use the so-called cut-and-

choose technique: in cut-and-choose, the verifier V will

ask the proverP to open a subset of the committed inputs

and labels from the verification key. Here, V is allowed

to choose the subset that will be opened to him. Intu-

itively, if P committed to a large number elements that

are correctly labeled (according to O f ), then at least one

of them will show up in the values opened by P with

overwhelming probability over the choice that V makes.

Hence, most of the remaining commitments which were

not opened must form a correct backdoor.

5This is fine if T , as in our experiments, only consists of random

images.
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To use cut-and-choose, the backdoor size must con-

tain ℓ > n elements, where our analysis will use ℓ = 4n

(other values of ℓ are also possible). Then, consider the

following protocol between P and V:

CnC(ℓ) :

1. P runs (mk,vk)← KeyGen(ℓ) to obtain a backdoor

of size ℓ and sends vk to V . We again define mk =

(b,{r
(i)
t ,r

(i)
L }i∈[ℓ]), vk= {c

(i)
t ,c

(i)
L }i∈[ℓ]

2. V chooses e ← {0,1}ℓ uniformly at random and

sends it to P .

3. P sends mk|e1 to V .

4. V checks that for i ∈ e|1 that

(a) Open(c
(i)
t , t(i),r

(i)
t ) = 1;

(b) Open(c
(i)
L ,T

(i)
L ,r

(i)
L ) = 1; and

(c) T
(i)

L 6= f (t(i)).

Assume that P chose exactly one element of the back-

door in vk wrongly, then this will be revealed by CnC to

an honest V with probability 1/2 (where P must open

vk|e1 to the values he put into c
(i)
t ,c

(i)
L during KeyGen due

to the binding-property of the commitment). In general,

one can show that a cheating P can put at most n non-

backdooring inputs into vk|e0 except with probability neg-

ligible in n. Therefore, if the above check passes for

ℓ= 4n at then least 1/2 of the values for vk|e0 must have

the wrong committed label as in a valid backdoor with

overwhelming probability.

The above argument can be made non-interactive

and thus publicly verifiable using the Fiat-Shamir

transform[13]: in the protocol CnC, P can generate the

bit string e itself by hashing vk using a cryptographic

hash function H. Then e will be distributed as if it was

chosen by an honest verifier, while it is sufficiently ran-

dom by the guarantees of the hash function to allow

the same analysis for cut-and-choose. Any V can re-

compute the value e if it is generated from the commit-

ments (while this also means that the challenge e is gen-

erated after the commitments were computed), and we

can turn the above algorithm CnC into the following non-

interactive key-generation algorithm PKeyGen.

PKeyGen(ℓ) :

1. Run (mk,vk)← KeyGen(ℓ).

2. Compute e← H(vk).

3. Set mkp ← (mk,e), vkp ← (vk,mk|e1) and return

(mkp,vkp).

A.1.3 Constructing the Public Verification Algo-

rithm

In the modified scheme, the Mark algorithm will only

use the private subset mk|e0 of mkp but will otherwise re-

main unchanged. The public verification algorithm for

a model M then follows the following structure: (i) V
recomputes the challenge e; (ii) V checks vkp to assure

that all of vk|e1 will form a valid backdoor ; and (iii) P,V
run Classify on mk|e0 using the interactive zero-knowl-

edge argument system, and further test if the watermark-

ing conditions on M,mk|e0,vk|
e
0 hold.

For an arbitrary model M, one can rewrite the steps

2 and 3 of Verify (using M,Open,Classify) into a

binary circuit C that outputs 1 iff the prover inputs the

correct mk|e0 which opens vk|e0 and if enough of these

openings satisfy Classify. Both P,V can generate

this circuit C as its construction does not involve private

information. For the interactive zero-knowledge argu-

ment, we let the relation R be defined by boolean cir-

cuits that output 1 where x =C,w =mk|e0 in the follow-

ing protocol PVerify, which will obtain the model M

as well as mkp = (mk,e) and vkp = (vk,mk|e1) where

vk = {c
(i)
t ,c

(i)
L }i∈[ℓ], mk = (b,{r

(i)
t ,r

(i)
L }i∈[ℓ]) and b =

{T (i),T
(i)

L }i∈[ℓ] as input.

1. V computes e′ ← H(vk). If mk|e1 in vkp does not

match e′ then abort, else continue assuming e = e′.

2. V checks that for all i ∈ e|1:

(a) Open(c
(i)
t , t(i),r

(i)
t ) = 1

(b) Open(c
(i)
L ,T

(i)
L ,r

(i)
L ) = 1

(c) T
(i)

L 6= f (t(i))

If one of the checks fails, then V aborts.

3. P,V compute a circuit C with input mk|e0 that out-

puts 1 iff for all i ∈ e|0:

(a) Open(c
(i)
t , t(i),r

(i)
t ) = 1

(b) Open(c
(i)
L ,T

(i)
L ,r

(i)
L ) = 1.

Moreover, it tests that Classify(t(i),M) = T
(i)

L for

all but ε|e|0| elements.

4. P,V run a zero-knowledge argument for the given

relation R using C as the statement, where the wit-

ness mk|e0 is the secret input of P . V accepts iff the

argument succeeds.
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Assume the protocol PVerify succeeds. Then in the

interactive argument, M classifies at least (1− ε)|e|0| ≈
(1− ε)2n values of the backdoor b to the committed

value. For ≈ n of the commitments, we can assume that

the committed label does not coincide with the ground-

truth function f due to the guarantees of Step 1. It is easy

to see that this translates into a 2ε-guarantee for the cor-

rect backdoor. By choosing a larger number ℓ for the size

of the backdoor, one can achieve values that are arbitrar-

ily close to ε in the above protocol.
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