
Tutorial: a computational framework for the

design and optimization of peripheral neural

interfaces

Simone Romeni 1,2, Giacomo Valle 1,2,3, Alberto Mazzoni1 and Silvestro Micera 1,2✉

Peripheral neural interfaces have been successfully used in the recent past to restore sensory-motor functions in disabled

subjects and for the neuromodulation of the autonomic nervous system. The optimization of these neural interfaces is

crucial for ethical, clinical and economic reasons. In particular, hybrid models (HMs) constitute an effective framework to

simulate direct nerve stimulation and optimize virtually every aspect of implantable electrode design: the type of

electrode (for example, intrafascicular versus extrafascicular), their insertion position and the used stimulation routines.

They are based on the combined use of finite element methods (to calculate the voltage distribution inside the nerve due

to the electrical stimulation) and computational frameworks such as NEURON (https://neuron.yale.edu/neuron/) to

determine the effects of the electric field generated on the neural structures. They have already provided useful results

for different applications, but the overall usability of this powerful approach is still limited by the intrinsic complexity of

the procedure. Here, we illustrate a general, modular and expandable framework for the application of HMs to peripheral

neural interfaces, in which the correct degree of approximation required to answer different kinds of research questions

can be readily determined and implemented. The HM workflow is divided into the following tasks: identify and

characterize the fiber subpopulations inside the fascicles of a given nerve section, determine different degrees of

approximation for fascicular geometries, locate the fibers inside these geometries and parametrize electrode geometries

and the geometry of the nerve–electrode interface. These tasks are examined in turn, and solutions to the most relevant

issues regarding their implementation are described. Finally, some examples related to the simulation of common

peripheral neural interfaces are provided.

Hybrid modeling

Modeling the effects of neural stimulation plays a pivotal role in
the design of neuroprosthetic devices. It can help reduce the
need for preliminary animal experiments and the related ethical
and economical costs, thus accelerating the translational pro-

cess. The extensive use of models could also facilitate accel-
erating the optimization of neuroprosthetic applications by
pre-selecting the most efficient stimulation patterns and thus
reducing the number of tests involving patients.

In computational neuroengineering, the use of HMs is a
modeling technique implemented in two steps: (i) determina-
tion of the electric potential induced by a stimulating electrode
in a biological structure (volume conduction problem) and (ii)
prediction of its consequences for single-neuron responses
(neural response determination).

An HM is normally implemented through finite element

modeling (FEM) for the volume conduction problem and
detailed neuron models for neural response determination.
FEM is a numerical method for solving partial differential

equations; in an HM, FEM is used to solve the Poisson equation
defined over complex geometry domains with given boundary
conditions. For very simple approximations1 (a point source
in an infinite homogeneous, isotropic medium; in infinite
homogeneous anisotropic medium; at the interface between
two different homogeneous, isotropic media), FEM can be
substituted by analytic methods, which will not be covered here.

FEM is useful for more complex geometries, where solving
the volume conduction problem by integrating the Poisson
equation with the needed boundary conditions would be
cumbersome or intractable.

The use of HMs relies heavily on the seminal papers by
McNeal2 and Rattay3, who provided a first view on the mod-
eling of extracellular electrical stimulation of nerve fibers, and it
was defined in the present form by Coburn4–6. The implicit
assumptions are that the membrane potential varies only
longitudinally with respect to the fiber course, which leads to
neglecting transverse excitation modes, and that the fiber

excitation does not affect the electric potential in the
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surrounding area. Additionally, it is generally assumed that
quasi-staticity hypotheses hold7, namely that all the media are
purely resistive and thus that capacitive/inductive reactive
phenomena can be neglected.

HMs have been extensively used in the context of spinal cord
stimulation8–11, deep brain stimulation12–15 and peripheral
nerve stimulation (PNS). This tutorial specifically addresses
peripheral neural interfaces that directly contact the nerve
to be stimulated: the general framework can be easily adap-
ted to different applications (for example, transcutaneous
stimulation16).

The development of optimization processes leading to
the best parameter choices for a given application requires
separate knowledge of the exact morphology of the stimulated
biological structures and of the parameters controllable by
the experimenter (for example, the electrode dimensions and
stimulation waveform). Several studies have used this metho-
dology to determine optimal neural interface design (needle
electrode17–19, flat interface nerve electrode (FINE)20–23, trans-
verse intrafascicular multichannel electrode (TIME)21–25 and
stimulation parameters22,23,25,26).

Hybrid modeling can be used to assess the robustness of a

given experimental setting with respect to variations in a subset
of partially controllable parameters. For example, surgical
insertion parameters for intraneural electrodes (defining the
position of the active sites in the nerve section during stimu-
lation) can strongly affect the results of experiments, but they
are only partially controllable (they have very large uncer-
tainty). Simulation can help establish bounds on these quan-
tities of interest: if during the experimental procedure care is
taken to stay inside these bounds (no matter what the exact
values of these quantities is), then the stimulation result should
not be affected significantly24.

At the same time, we can establish ranges of variation for
noncontrollable parameters in our model by comparing the
outcome of an experiment with different parametrizations of
the given phenomenon. For example, in ref. 21, the description
on encapsulation tissue was investigated by formulating
hypotheses on its conductance, and comparing the results with
what is expected from stimulation.

Notice that, in the above, the key distinction is between
partially controllable parameters (where we assume that the
model is a perfect representation of reality and use it to guide
experiments) and noncontrollable parameters (where we cali-

brate our model on experiments and thus modeling is guided by
experimental activity). These parameters are listed in Box 1.

These perturbative/robustness analyses must be repeated for
a reasonable range of analogous nerve samples, so that we can
assure that our results are independent from the single subject
we simulated. This requires possessing a statistical description
of such nerve samples, so that many repetitions of the simu-
lation routine for slightly different but reasonable samples can
be performed.

The presented method has been developed and used by our
group in a series of papers in the last ten years. Our HM fra-

mework was defined in refs. 18,19,24 and validated in rats25.
More recent works expanded the framework to modeling of
invasive peripheral stimulation for human upper and lower

limb sensory feedback21,22,27. Moreover, our HM has also been
used to optimize intraneural stimulation for vision restoration28

and hand function restoration (Badi-Dubois, under prepara-
tion). Similar HMs have been developed by other teams20,29.

Comparison with alternative approaches

The goal of this tutorial is to provide a set of guidelines con-
cerning the development of an HM for PNS based on the use of
FEM and detailed neuron models, with attention to all of the
issues previously mentioned, particularly parameter selection
and model validation.

Past projects include the commercial Sim4Life (https://zmt.
swiss/sim4life/) and the open-source PyPNS (https://github.
com/chlubba/PyPNS)29.

Sim4Life

Sim4Life combines multiphysics (electromagnetism, acoustics,
heat flow and transmission) FEM and neural simulation opti-
mized software with human and animal validated anatomical
models and is thus well suited for the solution of very com-
putationally intensive problems. Furthermore, Sim4Life offers
customer service which helps the researcher to develop extre-
mely detailed models to simulate specific experiments. Then,
when a very specific set up has already been established,
Sim4Life can be used as a tool to obtain very accurate simu-

lations for that given set up. Our aim here is somehow com-
plementary to Sim4Life’s, as we seek an easy-to-use framework
to be able to guide experiment design through the investigation
of general principles on hierarchies of approximated models.
Our computational framework is explained here in detail, with
attention to the construction of modularity and complete cus-
tomizability. Each block of our workflow is completely inde-
pendent and provides useful insights into the mechanisms
involved in the design and development of a neuroengineering
application.

The main drawbacks of Sim4Life are its being a commercial

software and the need for dedicated training to manage the
complexity of its detailed workflows and methods. Our fra-
mework has been developed using MATLAB and COMSOL for
the volume conduction problems, and Python and NEURON
for the neural computational problem: all of these software

Box 1 | HM parameters

The parameters used in a HM can be controllable, noncontrollable or
partially controllable. Examples of each are listed below:

Controllable parameters

Electrode dimensions and design; site-wise stimulating waveform and
intensity.

Noncontrollable parameters

Nerve morphology and topography; in situ fiber spatial distribution;
biological material physical properties; tissue response to implant.

Partially controllable parameters

Electrode surgical insertion coordinates; implant site (in situ fiber
populations).
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packages and languages are either open source (Python and
NEURON) or multipurpose (MATLAB and COMSOL), and
almost every university owns the necessary licenses. For this
reason, almost no dedicated training need be provided. In
conclusion, Sim4Life remains an invaluable tool for the solution
of very specific and detailed HM problems, whereas our method
aims at creating a general and easily usable framework.

PyPNS

PyPNS consists of an efficient neuronal dynamic simulator
for HMs. A precomputed electric field is used to extracellularly

stimulate compartmental models for myelinated (McIntyre–
Richardson–Grill (MRG) model) and unmyelinated (Sundt)
fibers, exploiting the quasi-staticity hypothesis to calculate a
single static value for volume conduction. Our approach
expands this work by adding a completely customizable and
modular framework to obtain the extracellular field associated
with each simulated fiber (from the construction of repre-
sentative geometries) and to interpret the results of stimulation
experiments in terms of quantities of common use in neuro-
prosthetics (such as recruitment and selectivity).

Organization

Our review is divided into four main parts, which refer to
peripheral nerve (Section 1), nerve fiber (Section 2) and neural
interface (Section 3) modeling and to analysis of stimulation
results (Section 4). Each subsection contains both a rationale for
the introduction of the described entities into our conceptual
framework and some implementation notes, which pertain to
computational aspects.

The complete workflow can be followed through the
schemes in Figs. 1–4. They describe:
(1) How to numerically define the geometry of the model.

Histological data are used to draw simplified images of

the geometry of the components of the nerve fiber; the

dimensions of the chosen electrode are defined; the

geometry of the electrode–nerve interface is defined; and

changes to the geometry of the nerve fiber components as

a result of inserting the electrode are considered.

(2) Assigning properties to the different components. This

involves specifying the material properties of each

component of the nerve and electrode; setting the

boundary conditions for simulating zero potential at

infinity and active site current injection; and defining a

mesh able to resolve the spatial electric potential map

caused by the electrode forcing action.

(3) Constructing nerve fiber models. Determine the branching

pattern for the nerves, and decide the best sites in this

branching system for positioning the electrodes; plot the

distribution of fiber diameters across the sample; draw the

arrangement of fascicles for a given site in 2D space; plot

the position of the fiber nodes in 3D space; add values for

electrical potential at each fiber node; and specify the

waveform for each site.

(4) Computational calculations. Figure 4 summarizes the

methods that can be applied to analyze and interpret a

simulation outcome. Single-fiber activation, population

recruitment and stimulation selectivity can be estimated.

These figures represent the natural flow of steps followed
when developing an HM simulation. The body of the present
tutorial will consider modeling of peripheral nerves, nerve
fibers and neural interfaces in a more systematic way, referring
to the corresponding workflow scheme when each block is
addressed.

As HM encompasses knowledge from many different
domains of neurophysiology, applied mathematics and engi-
neering, we refer to Box 2 for a list of the frequently used
domain-specific terms that can be useful when dealing with HM.

Section 1: Peripheral nerve modeling
Histological components

Nerve fibers are organized into macroscopic structures called
nerve fascicles (Fig. 5). The nerve fibers in a fascicle are
immersed in a permeable matrix of loose connective tissue
called the endoneurium, which is primarily constituted by
collagen fibers and supports nerve fibers and capillaries. Each
nerve fascicle is surrounded by multiple intermittent cellular
and collagen fiber layers that collectively constitute the so-called
perineurium. Perineurial cells are connected by tight junctions,
which account for the low electrical conductivity that char-

acterizes the perineurial sheath and allows the perineurium to
serve as a mechanical and chemical barrier to nerve fiber injury.
Fascicles are surrounded by a connective tissue called the epi-
neurium, which is primarily constituted by collagen fibers and
adipocytes. Concurrently, the epineurium constitutes a sup-
porting structure for the vasa nervorum, which subsequently
penetrate the endoneurium in the form of a network of small
capillaries. In larger nerves, fascicles are organized in bundles
that are often called (major) branches, since they remain seg-
regated inside the nerve for considerable lengths and ultimately
branch into major nerves (for example, in the human sural

nerve, the fascicles that will constitute the tibial, common
peroneal and sural nerves can be clearly spotted well before
their effective branching). The perineurium is constituted by
alternating lipidic and collagen fiber layers, which anchor the
nerve to the neighboring bodily structures. From a histological
perspective, the paraneurium is identical to the epineurium,
thus we do not distinguish between their electrical properties in
our model30.

In the framework of quasi-static electrical stimulation7,31, a
biological tissue can be characterized by means of rank-2
conductivity tensors. All of the modeled media are homo-

geneous: the perineurium and epineurium are isotropic media,
while the endoneurium is anisotropic, with different transverse
and longitudinal conductivities. Table 1 presents the assumed
conductivity values along with the experimental references.

Implementation note: A nerve is constituted by four 3D
elements that correspond to the endoneurium, perineurium,
epineurium and saline bath. The addition of the saline bath
addresses two concurrent issues, as it acts as the external
medium needed to simulate zero potential at infinity (as
explained in more detail below), and it does so by providing a
reasonable approximation of the intraoperative extraneural

space. The perineurial sheath is assumed to have a thickness of
0.03 times the fascicle effective diameter32 (the diameter of an
equivalent circle).
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Since we work in the quasi-static approximation, the con-
ductivity tensor is the only relevant physical quantity (Fig. 1,
blocks 1a and 1b). The appropriate charge conservation
boundary conditions are applied at material interfaces. The
electric potential on the external boundary of the saline bath is
set to zero (see ‘Boundary conditions’ in Section 3).

The 3D model of the nerve is obtained by extrusion of a
2D nerve section, thus no fascicle migration is modeled. This

assumption is valid if the hypothesis that the implantation was
performed in a region of relative topographic stability is true.
The regions of topographic stability, as well as the extent of
such stability, should be studied for each nerve (see ‘Branching
patterns’ below). For example, Watchmaker et al.33 noted that
internal branching in the median nerve is infrequent over spans

of a length of a few centimeters, so the assumption would hold
for this region.

Choose electrode

Dimension electrode

R = 1

N = 6

r = rand(0.25, 0.5)

Generate nerve geometry

Simplify from histology

(x, y)

θ

Determine interface geometry

1b

2

3

4

1a

Reshape fascicles
5

Intraneural Extraneural

Swelling fascicle

Displaced fascicles

Compression by

electrode body

Fascicle displaced by

electrode body

Fascicle displaced by 

other fascicle

Fig. 1 | Geometry generation for FEM. (1) Generation of nerve section geometry: choice between two alternative solutions, namely (1a) nerve sections
obtained via manual segmentation of histological sections can be simplified into circular or elliptical fascicle geometries or (1b) ex novo generation of
nerve section (R, nerve section radius; N, number of fascicles in the nerve section; r, radius of fascicles); (2) choice of the used electrode type (here,
the choice between a FINE—left—and a TIME—right—is displayed); (3) define the dimensions of the chosen electrode; (4) determination of the
electrode–nerve interface geometry; (x, y), leading active site cross-section position; θ, insertion angle; (5) fascicle geometry reshaping induced by
intraneural or extraneural electrodes.
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Branching patterns

The study of nerve branching patterns allows determination of which
fiber populations are expected in each transverse section along the
course of a given nerve. These considerations can be used along with
surgical accessibility to choose the most suitable insertion level.

A rough description of peripheral nerve branching can be
found in classical neuroanatomy textbooks such as ref, 34: such

indications must be supported by quantitative descriptions of the
most frequent anatomical variants for the nerve under study35,36.

Branching is accompanied by massive internal reorganization of
the involved fibers and fascicles (internal branching) to isolate the
fibers in the exiting branch37–39. Consequently, there is an evident
trade-off between the need to apply stimulation distally (where
functional segregation is maximal), in a region with sufficient
topographic stability and in a site along the nerve course which
can be easily accessed surgically.

For the median nerve, Planitzer40 identifies the antecubital
fossa as the region where the most distal plexiform
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Fig. 2 | FEM settings and solution workflow. (1) Assignment of material properties to geometric components (epineurium, perineurium, endoneurium
and electrode materials); (2) looping the saline bath dimensions to ensure solution reliability: an FEM problem is solved for each saline bath dimension,
FEM solutions are compared and the process is repeated until increasing the saline bath dimensions does not substantially affect the solution; (3)
grounding the external surface of the saline bath, and fixing the electrode currents: the total injected current (J) is normalized, resulting in active site
currents (Ji) exhibiting common time behavior; (4) mesh generation and refinement: meshing is refined (smaller element size at the cost of higher
computation time) if the meshing process has problems or the mesh quality is too low; (5) solution of FEM problem in terms of the electric potential
calculated for each mesh node.
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intermingling occurs and thus indicates the region immediately
distal to it as the best place to perform functional electrical
stimulation (FES).

For the sciatic nerve, Gustafson36 claims that the most distal
stimulation site should nonetheless be located proximal to the
knee joint, as the presence of wires crossing the joint could lead

z

Choose waveform

AS1

t

Add tortuosity

No Yes

3a

Locate nodes

z

VFEM = VFEM(x, y, z)

Vext

Interpolate FEM potential

to nodes

A
B

C

D

E

F

A, B, C, D, E, F

E, F

Add density

Branching

Fiber packing

1

4

3b

6

5

7

2

(x*, y*)

(x*, y*)

Sample = (X1, X2, ..., Xn)

Diameter

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

New sample = (X ’1, X ’2, ..., X ’n)

(Distribution;

parameters)

You can also 

start here

Sample fiber diameters

Fig. 3 | Fiber computational model. (1) A location along the nerve branching tree is selected; this defines the fiber populations with which we will
populate the nerve section; (2) corresponding samples of fiber diameters are sampled from a given distribution or from the distribution deduced from
a provided sample (which can be composed of many different subpopulations, relevant for fiber computational modelling—here, in pink and blue); (3)
non-homogeneous density and tortuosity can be added; (4) fibers are packed into fascicles; (5) fiber nodes (points along the fibers where the
extracellular potential is imposed) are located in the 3D space; (6) the FEM potential is interpolated to fiber nodes and imposed as extracellular
potential in the neural computational simulation; (7) the waveform corresponding to each active site is chosen.
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to complications. The possibility of some selective muscle
activation even for such a proximal location is ensured by the
fact that somatotopic organization of the sciatic nerve has been
shown along its entire course41.

Intraneural fiber displacement causes the positions of nodes
to differ substantially from a straight line (tortuosity).

Tortuosity is a general characteristic of nerve fibers, as it
directly follows from fiber migration linked to the branching
process. Moreover, it is exacerbated by the reshaping induced
by neural interfaces42. To the best of the authors’ knowledge,

tortuosity is incorporated only in ref. 29, where it is noted that it
primarily affects the recruitment of unmyelinated fibers.
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Fig. 4 | Result analysis methods. (1) Activation can be established via (1a) the activating function formalism (comparison of the potential nodal second
difference with a threshold), (1b) the Warman–Peterson method, through simulation of a linear model of the nerve fiber and calibration via a nonlinear
fiber model to establish activation conditions (in the schematics, red crosses represent points in the parameter space that do not lead to fiber
activation; a similar plot clearly displays activation conditions as geometrical regions in the parameter space), and (1c) the nonlinear neural response
(compartmental model in NEURON); (2) activation data for an entire fiber population can be used to compute recruitment (2a) and selectivity (2b).
Recruitment indicates the population-wise number of active fibers at a given stimulation magnitude; selectivity analysis requires the assignment of a
target (the muscle that the fiber stimulates or the receptor from which it receives input) to each simulated fiber (2b*) and indicates the ability of an
interface to elicit the response of a given fiber group without recruiting the others. The results of a selectivity analysis can be displayed as in block
(2b): the group-wise recruitments corresponding to a given stimulation condition are used to compute the selectivity related to that specific
stimulation paradigm. From the recruitment characteristics corresponding to many different stimulation conditions and fiber groups, we can
characterize the general behavior of a given neuroprosthetic device.
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Implementation note: Branching determines the fiber
populations corresponding to a given implantation site (Fig. 3,
block 1). Tortuosity (Fig. 3, block 3b) is used to determine the
fiber node coordinates when interpolating the node-wise
extracellular potential and does not need to be accounted for
in our fiber computational models. The packing of tortuous
fibers assumes zero diameter (the true diameter is used in fiber
response simulation but neglected as far as the arrangement of

the fibers in the nerve section is concerned); otherwise, very
computationally expensive flow-packing algorithms should be
implemented to avoid fiber overlaps.

Topography (fascicular morphology)

Nerve topography concerns the quantitative description of
nerve cross-sections in terms of the populating fascicles. The
size, shape and spatial distribution of fascicles must be inves-
tigated. One example of such quantitative analysis can be found
for upper extremity nerves in ref. 43. Of course, information
about functional segregation is of paramount importance in
predicting the outcome of a stimulation paradigm.

The locations of functional groups with definite motor or
sensory targets in humans have been studied for decades,

providing a useful body of information, especially for large nerves
such as the median33,35,37,39,40,44,45 and sciatic36,38,41,46–48 nerves.

The spatial fascicle density inside a nerve section, or fiber
density inside a fascicle, can be imposed by weighting the
random location assignment of fascicles and fibers with
appropriate probability density functions fXY(x,y) (Fig. 3, block
3b). The function fXY(x,y) specifies the probability that a fascicle
or fiber will occupy the point (x, y) inside a given nerve section.

This probability function should be specified for each nerve at
each point along its path so that, when a suitable nerve and
location for an implant have been established, a statistical
description of the targeted nerve slice can serve for the gen-
eration of a set of reasonable sections for parametric methods.
Such probability distributions can also be referred to given
subdivisions of the section (for example, quadrant divisions)
similarly to the approach used in ref. 33.

If a sequential step algorithm is used to populate the nerve
section (as for the algorithms presented in ‘Fiber and fascicle
packing’ in Section 2), then the requirement for non-
overlapping fascicles and fibers imposes that the distribution

function be corrected at each step so that fXY(x,y) = 0 for all
(x, y) already occupied.

Box 2 | Glossary of frequently used terms

General terms

Hybrid modeling: modeling technique implemented in two steps: (i) volume conduction evaluation and (ii) neural response simulation.
Neural response simulation: prediction of single-neuron responses (mainly in terms of spiking) caused by extracellular stimulation.
Volume conduction problem: determination of the electric potential induced by a stimulating electrode in a biological structure.

Terms relating to discussion of the peripheral nerve (Section 1)

(Nerve) branches: every subdivision of the nerve encountered when travelling from proximal to distal.
Endoneurium: connective tissue surrounding nerve fibers within nerve fascicles.
Epineurium: connective tissue surrounding fascicles.
Fascicle: bundle of nerve fibers immersed in endoneurial tissue and separated from epineural tissue by a thin perineurial sheath.
Perineurium: thin layer of connective tissue separating fascicles from the surrounding epineurial tissue.

Terms relating to the nerve fiber (Section 2)

Distribution fit problem: determination of the probability distribution that is more likely to produce a given sample. Here, the distribution of fiber
diameters is investigated (which proportion of fibers have a diameter inside a given interval).
Extracellular stimulation: neuron stimulation protocol in which the driving action for neural activation is modification of the electric potential on the
external surface of the cell through the delivery of a current in the extracellular medium.
Nerve fiber: axons of first afferent/efferent neurons; they can be classified into Aα, Aβ, Aδ and C. Aα fibers are large-caliber (diameter 12–20 µm)
myelinated fibers, Aβ fibers are smaller (diameter 6–12 µm) myelinated fibers, Aδ fibers are small (diameter 1–5 µm) slightly myelinated fibers and
C fibers are very small (diameter 0.2–2 µm) unmyelinated fibers. Motor fibers will be modeled as Aα fibers, while sensory fibers will be modeled as
Aβ and C fibers, accounting respectively for somatosensation and noci- and thermoception.
Packing problem: determination of the arrangement of a set of objects in a region such that no two objects intersect each other or the boundaries of
the given region.

Terms relating to modeling of the neural interface (Section 3)

Extraneural electrode: an electrode that does not pierce the nerve structures. In this tutorial, we often refer to FINEs or FINE-like electrodes. These
electrodes enhance the selectivity by reshaping the nerve topography through mechanical stress.
Intraneural electrode: an electrode that pierces the nerve epineurium; intraneural electrodes can be intrafascicular if the perineurium is also pierced
in order to locate one or more active sites inside fascicles. In this tutorial, we often refer to such electrodes as TIMEs or TIME-like electrodes.
These electrodes can pierce nerve fascicles and thus attain very high fascicular selectivities.
Invasiveness: an invasive medical procedure involves the introduction of instruments (in this case, electrodes) into the body. Invasiveness, then, is a
measure of both the difficulty of the implantation and the resulting damage to physiological structures. It is evident that invasiveness is strictly
linked to the final position of the electrode within the body.

Terms relating to the analysis of stimulation results (Section 4)

Recruitment: the fraction of fibers activated by a given stimulation protocol.
Selectivity: the ability to target specific nerve fiber subpopulations without eliciting the responses of other subpopulations that are not necessarily
spatially segregated.
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Morphological simplification of fascicles

Image segmentation from a histological section generally results
in line drawings defining polyshape fascicles. Such polyshapes
are often very irregular and non-convex, with a consequent
increase in the difficulty of meshing the resulting geometries
and nerve section reshaping. The reduction of such polyshapes

to convex shapes completely defined through a few straight-
forward parameters overcomes these drawbacks.

We propose elliptical and circular fascicle approximations,
which convert polyshape fascicles to equicentered, equisurface
ellipses (five parameters) or circles (three parameters), respec-
tively (Fig. 1, block 1b). Shape simplification abstracts the
relevant information from geometric features where a complete
description of each shape would add too much, non-
informative complexity to our model. For example, our sim-
plification routines could alleviate the problem of the variability
originating from physiological inter-subject variability and from

histological manipulation-induced deformations of the nerve
sample. The latter variability is always undesirable and should

be carefully studied in future research. Guidelines exist, espe-

cially for the extraction and treatment of nerve biopsies to study
neuropathies in the clinical context49, but to the best of the
authors’ knowledge, no study has quantified the whole
deforming action introduced by manipulation of histological
samples.

Finally, we note that these kinds of approximations could
facilitate the definition and implementation of algorithms for
FINE, such as those in ref. 20, exploiting the fact that there exist
transformations such as squeeze mappings that preserve fascicle
surface areas and ellipticity.

Implementation note: The circular and elliptical fascicle

approximations can be determined as follows: Suppose we have
a set of regions ωif gi representing nerve fascicles. For each
region, we compute its centroid C, major and minor axis
lengths (a and b), orientation α and surface area A.

We define the effective radius reff of a region ωi as the radius
of the equivalent circle and the effective major and minor axis
lengths aeff and beff of a region ωi as the major and minor axis
lengths of the equivalent ellipse having the same proportions as
the major and minor axis lengths of ωi, thus we obtain

A ωi½ � ¼ πreff ωi½ � ! reff ωi½ � ¼

ffiffiffiffiffiffiffiffiffiffi

A ωi½ �

π

r

;

A ωi½ � ¼ πaeff ωi½ �beff ωi½ � ^ aeff ωi½ �
beff ωi½ �

¼ a ωi½ �
b ωi½ � )

aeff ωi½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a ωi½ �
b ωi½ �

A ωi½ �
π

q

beff ωi½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b ωi½ �
a ωi½ �

A ωi½ �
π

q

:

Then, we can choose between a circular and an elliptical
fascicle approximation, given by

C ωc
i

� �

¼ C ωi½ �

r ωc
i

� �

¼ r ωi½ �

Epineurium

a b1

b2

Endoneurium

Fascicle

Perineurium

Major branches

Nerve

Electrode section
Endoneurium

Epineurium

Unmeyelinated fibers Myelinated fibers

Fascicles

Paraneurium

Fig. 5 | Nerve histological components. a, Schematics of histological components (manual segmentation of human sciatic nerve histology, from
ref. 50). b1, Hematoxylin and eosin staining of rat sciatic nerve implanted with TIME (intraneural electrode) during the acute phase (0 d from
implantation). b2, Immunohistochemical labeling to distinguish myelinated and unmyelinated fibers in the nerve section. The images in b1 and b2 are
taken from ref. 42.

Table 1 | Accepted values of conductivity for connective
tissues in peripheral nerves

Tissue σ [S m–1] Refs.

Epineurium 0.083 121

Perineurium (frog) 0.002 121,122

Perineuriuma (human) 0.0009 21

Endoneurium (transverse) 0.083 121,123

Endoneurium (longitudinal) 0.571 121,123

Fibrotic tissue 0.1 21

Saline 2.0 124

aThe value for human perineurium was obtained in ref. 21 through theoretical consideration of
the value of frog perineurium in ref. 121.
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and

C ωe
i

� �

¼ C ωi½ �

a ωe
i

� �

¼ aeff ωi½ �

b ωe
i

� �

¼ beff ωi½ �

α ωe
i

� �

¼ α ωi½ �

:

Figure 6 shows the manual segmentations from three his-
tological nerve sections from ref. 50. It can be seen that different
sections from the same nerve sample retain the gross organi-
zation into major branches, destined to the main nerves into
which the sciatic nerve will branch (tibial, peroneal and sural
nerves). Nonetheless, although the number of fascicles does not
undergo strong oscillations, it is evident how the fascicular
topography is not conserved. A good manual segmentation
from histology requires some care, mainly due to the thickness
of the tissue. We do not discuss these aspects here since our

main purpose is to employ these segmentations to demonstrate
our simplification routine. Figure 7 shows the results of the
approximation and geometrical reshaping (see ‘Reshaping
effect’ in Section 1 for the specifics of the algorithm used) of the

third section. It can be observed that such simplification does
not disrupt the shape or relative position of fascicles and that it
produces a visually convincing result.

For the three nerve sections under analysis, we compared the
meshing process of true nerve geometries (the geometries from
ref. 50 have been manually segmented and are shown in Fig. 6)
with the elliptical approximation (lower degree of approxima-

tion) to quantify the minimum gain

ξ ¼
ttrue

tell

in computational time, while the variation in the fascicle shape is

introduced into the circular approximation (higher degree of

approximation) to quantify the maximum simplification relative

error

ε ¼
Atrue � Aintersection

Atrue

in the representation accuracy. Table 2 presents the variation in

the geometry and the gain in the meshing time as computed for

the circular and the elliptical approximations with respect to the

Sciatic nerve
Sciatic nerve

Sciatic nerve

Section 2Section 1

Section 3

Fascicle group from

sensory cutaneous nerve

branches

Fascicle group from

sensory cutaneous nerve

branches

Fascicle group from
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Fascicle group from

common peroneal

nerve

Fascicle group from

common peroneal

nerve
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lateral sural nerve

Fascicle group 
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Fascicle groups from

tibial nerve

Fascicle groups from
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Fig. 6 | Manual segmentation of histological sections of the human sciatic nerve from ref. 50. The proposed simplification routines have been
performed on these sections. The present sections have been chosen because of their high numbers of fascicles (> 30), which will supposedly greatly
benefit from fascicle shape simplification.
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true geometry. mε is the median of the simplification relative

error corresponding to the true-to-circular geometry change,

IQRε is the interquartile range of the simplification relative error

corresponding to the true-to-circular geometry change, ttrue is the

meshing time for the true geometry, tell is the meshing time

for the elliptical geometry, ξ is the ratio of the true-geometry to

elliptical-geometry meshing time and nfasc is the number of

fascicles in the nerve section.

From these data, it can be seen that the median super-
position mismatch between the true fascicles and circular

ones is between 7% and 14%, and the calculations take
between six and eight times less time for the circular simplified
data.

Reshaping effect

In case of extraneural FINE-like electrodes (for example, FINE
and SC-FINE51) as well as TIME-like electrodes (for example,
TIME and SELINE52), the implantation of neural interfaces

(see Section 3) affects the intraneural topography both in the
location of fascicles in the nerve cross-section and in their

Step 1: polyline fascicles

Step 2A: circular fascicles

Step 2B: elliptical fascicles

Step 2: simplified nerve section Step 3: reshaped nerve section

Fig. 7 | Fascicle geometry simplification and reshaping. (Step 1) Manual segmentation of a histological section of the human sciatic nerve from ref. 50,
where fascicle contours are polylines. (Step 2) Simplified nerve section: (Step 2A) circular fascicle approximation, and (Step 2B) elliptical fascicle
approximation. (Step 3) Result of geometrical reshaping of an elliptical fascicle simplified nerve section using Schiefer’s algorithm20 (the nerve y

dimension extends from 12 to 5 mm).
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cross-sectional dimensions according to various as yet incom-
pletely understood mechanisms (Fig. 1, block 5).

FINE-induced reshaping. Extraneural FINE-like electrodes
modify the fascicle geometries through the application of stress
on the external surface of the nerve. Fascicles tend to displace
inside the extrafascicular epineurial matrix and align such that
stimulation selectivity is enhanced. Schiefer20 proposed a purely
geometrical reshaping algorithm that displaces fascicles without

altering their surface or shape so that they do not overlap in the
deformed intraneural space (Fig. 7, Step 3). In ref. 53, a fibrotic
tissue layer was observed at the interface between the nerve and
electrode. This tissue can be easily added to our model as a fifth
solid entity inside the nerve (see ‘Histological components’ in
Section 1), with a conductivity of 0.1 S m–1 (refs. 21,54).

TIME-induced reshaping. Intraneural TIME-like electrodes
induce an inflammatory response that promotes endoneurial
swelling and fibrosis formation. A proposed mechanism has been
discussed in ref. 42, where data relative to such phenomena in the

rat sciatic nerve can be found. It is shown that only the pierced
fascicles (local endoneurial environment) undergo swelling.
We propose the following two-step procedure to simulate

intraneural electrode-induced reshaping and apply it in the simple

case of the rat sciatic nerve, employing Wurth’s data. From the

time curves of the local endoneurial environment and of the

fibrotic tissue area, the amounts of overall swelling and fibrosis can

be obtained. Then, local endoneurial environment fascicles are

gradually swollen one at a time until the found surface area is

reached, and the other fascicles are displaced according to

Schiefer’s algorithm20 until no intersection is obtained and the

swollen fascicle surface corresponds to the data of the assumed

model. Then, when defining the FEM geometry, a fibrotic tissue

layer (σ= 0.1 S m–1) can be introduced inside the local endoneurial

environment fascicles, which will alter the electric potential field

inside the fascicles. The complete procedure can be seen in Fig. 8.

Section 2: Nerve fiber modeling
Overview of cable-like models

Nerve fibers are the axons of the afferent or efferent neurons
that directly contact the periphery. Here, we only employ
lumped-parameter cable-like electrical equivalent models of
nerve fibers2,55. These models belong to the family of multi-
compartment models, in which each neuron is divided into
compartments that are simulated independently. Cable-like
multicompartment models include longitudinal resistive paths
that connect units, representing different transverse layers of
neuronal structures. Typically, in cable-like models, only a

portion of the cell axon is modeled, and activation is estimated
from the excitation and propagation in that portion20,21.

The simplest cable-like models are single-cable models where
the nerve is considered as a single unit; for this reason, they are
currently the preferred choice for modeling unmyelinated
fibers29,56 and have also been used in the past for myelinated
fibers57. The relevance of periaxonal conduction phenomena in
myelinated fibers requires the introduction of multi-cable models58.

The MRG fiber model

The current gold standard for myelinated fiber modeling is

MRG59. The MRG model is a double-cable conductance-based
compartmental model based on an architecture first introduced
by Blight60 and incorporating the paranodal ultrastructure61.
Non-nodal compartments are modeled as passive compart-
ments, whereas nodal compartments contain active elements in
the form of Hodgkin–Huxley-like conductances62. The outer

Table 2 | Results of the geometry simplification routine

Section 1 Section 2 Section 3

mε 0.12 0.14 0.07

IQRε 0.07 0.14 0.09

ttrue 7′13″ 6′25″ 5′1″

tell 57″ 55″ 50″

ξ 8 7 6

nfasc 40 36 32
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Fig. 8 | TIME-induced fascicle reshaping. (Left) Time curves for local endoneurial environment and fibrotic tissue cross-sectional area (rat sciatic
nerve, data from ref. 42); the numbers corresponding to 60 d after implantation are sampled. (Right) Dotted lines represent fascicles before
implantation, and solid lines represent reshaped fascicular geometries; in black: electrode section; in red: fibrotic tissue region (rectangle21 with side
lengths (2Δ, L + Δ), where L is the length of the electrode section).
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cable represents the myelin sheath and is composed of passive
compartments (see ref. 63 for alternatives).

The characteristic equations for nodal ion channels can be
found in ref. 59 and, for humans, in refs. 64–66. The modularity of
the defined fiber model can be readily adapted to other animals
(for example, in ref. 24, the rat motor axon nodal dynamics from
refs. 67,68 was used) and other fiber types (for example, in
refs. 69,70, the sensory axon nodal dynamics from ref. 71 was used).

Activation threshold estimation methods

The simulation of the nonlinear membrane dynamics of a large

number of nerve fibers in different stimulation conditions
is currently the true bottleneck of the optimization process.
This has been made clear, for example, in ref. 20, where the
simulation of a number of fibers on the order of millions
(corresponding to the high number of stimulation parameter
sweeps for a single nerve) required ~90 d.

Alternatives exist that estimate fiber activation without sol-
ving the complex, highly nonlinear membrane dynamics or that
deduce with a single run of the nonlinear solver some kind of
calibration curve that can be used to determine from direct
comparison whether a fiber will be active under a given sti-

mulation. Such methods can be divided into activating function
methods (Rattay’s activating function3 and Joucla’s mirror
estimate72), passive-cable methods (Sweeney’s passive cable73)
and hybrid methods that employ weighted forms of activating
functions deduced from passive-cable theory and that employ
one run of the nonlinear fiber model to establish an activation
threshold74,75 (the transition from Warman’s to Peterson’s
model is justified in ref. 76). Activating function methods (see
Fig. 4, block 1a) are essentially algebraic. They consist of
thresholding specific quantities that possess a direct, easily
computable relation with the extracellular potential (its second

differences and its opposite for the activating and the mirror
functions, respectively), and they are thus very computationally
efficient; nevertheless, they provide only relative recruitment
order. On the other hand, the Warman–Peterson method (see
Fig. 4, block 1b) requires the determination and simulation of
equivalent linear models subject to the given extracellular
potential: it thus requires a one-time simulation of the preferred
nonlinear model describing the nerve fiber in order to calibrate
the intercurrent relation between the nonlinear model and its
linear approximation with respect to a number of varying
parameters that could modify such correspondence.

Fiber diameter distribution

It is well known that different fiber types are characterized by
different typical diameters77, which relate to the conduction
velocity78 and fiber excitability79,80. Development and physio-
logical alterations affect fiber diameters, consequently changing
their properties. Consequently, both clinical practice and bio-
medical engineering would benefit from further studies of fiber
diameter distributions, which can characterize the physiological
state of a subject and help them act accordingly under FES.

Samples are usually obtained from electron microscopy

(EM), which allows invasive high-resolution imaging of small
regions of nerves. An entire branch of research has been
developed for the automatic segmentation of EM images; we

cite here three open-source libraries for segmentation: the
method described in ref. 81, AxonSeg82 and AxonDeepSeg83.

Methods for noninvasively measuring fiber diameters from
diffusion magnetic resonance imaging (MRI) were introduced
in ref. 84. Actually, inference procedures quantifying micro-
structural neural features from diffusion MRI have received
attention to noninvasively investigate the central nervous sys-
tem, but, to the best of the authors’ knowledge, no further
developments or guidelines have been published to investigate
peripheral nerves.

The efforts in fitting the diameter probability distribution

function have moved both in the direction of choosing dis-
tribution families that are theoretically more appropriate than a
simple Gaussian (gamma, beta or extremum value distribu-
tion85,86) and toward the development of automatic routines for
the individuation of the best mixture distribution87 representing
the sample (see ref. 88, where the Bayesian information criterion
(BIC)89 was used).

When the optimal number of mixture components and the
optimal parameters for each component have been found,
different distribution family assumptions can be compared
through the use of goodness-of-fit techniques such as qq-plots

and sample density versus theoretical density plots. Finally, the
underlying fiber type can be recovered since different fiber types
have in general different typical diameters77. Our proposed
workflow is shown in Fig. 9; results with respect to the dataset
shown in Fig. 10 are presented in Table 3 and Fig. 11.

Fiber and fascicle packing

The spatial arrangement of fibers inside a nerve affects their
activation since it directly determines their extracellular
potential2; in turn, it depends on the distribution of fascicles
and their subdivision in functional areas.

It is common practice to populate fascicles obtained by
manual segmentation of histological sections. Nonetheless, we
may be interested in the ex novo generation of plausible fas-
cicular geometries (Fig. 1, block 1a).

Both the problems of populating a nerve with fascicles of
given dimension and fascicles with appropriately distributed
fibers are packing problems, which are challenging to tackle in
their general form. We describe two algorithms that produce
acceptable suboptimal results for the two processes, while
requiring reasonable computational time (on the order of sec-
onds for naturalistic structures) and memory resources for the

cases at hand (Fig. 12).

A priori check for intersections (ACI) algorithm. Initialization.
We build a square grid with step ε completely covering Ω.
Fascicles are ordered in decreasing diameter order to enhance
the probability of successful termination.
Step. Suppose that we have already located some fascicles,

having centers {Cj}j and diameters {dj}j. The next fascicle

(diameter d) is centered at a random point C among the grid

points that are at least (di + d)/2 away from each Ci and at least

d/2 away from each point of the nerve contour.

Termination. If a fascicle cannot be placed, then the procedure

restarts with a different placement of the first fascicle. If the

procedure fails in more than a given number of attempts, the
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diameters are resampled. Since termination cannot be ensured a

priori, we studied the fraction of failed attempts and the packing time

with respect to fascicular shape (the results are shown in Fig. 13).

Minimum distance between fascicles. A minimum distance δ
between fascicles can be specified to improve meshing. The steps

above remain unchanged if each fascicle is supposed to have a

diameter of d + 2δ.

Multiscale square grid algorithm. Nomenclature. We define a
sequence of lengths lnf gS þ 1

n ¼ 0, where S is the desired number of
grid refinements (scales) to be performed such that:

ln �
dmax

2n
n 2 0; S½ � � N

0 n ¼ S þ 1
dmax ¼ max

i
dif gNi ¼ 1;

and a partition Dnf gSn ¼ 0 of the set of fiber diameters such that

Dn ¼ dijln þ 1 � di � lnf g:

We denote by Q
nð Þ
i the ith square cell of a uniform grid with

step ln.

Initialization. We build a square grid with step l0 completely

covering Ω. We then obtain the set of M square cells Q
kð Þ
i � Ω.

Step. For k 2 0; S½ �, we perform the following actions:
● Assign each of the diameters in Dk to a square Q

kð Þ
i and mark it

as occupied;
●Divide each of the squares Q

kð Þ
i into four congruent squares,

obtaining the set of squares Q
kþ1ð Þ
j ;

●Mark each of the Q
kþ1ð Þ
j as occupied if and only if the Q

kð Þ
i from

which it originated was occupied.

Termination. If Mk is the number of unoccupied Q
kð Þ
i and Nk is

the cardinality of Dk, it must hold that

Mk � Nk � 0; 8k 2 0; S½ �:

We performed packing of fiber diameter samples from the

distribution fit results displayed in Fig. 11 for total numbers of
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Fig. 9 | Complete workflow of the fiber diameter distribution fitting routine. For each distribution family (in this paper, we studied normal, gamma
and beta distributions, as we find that they are particularly appropriate for fiber diameter samples), the optimal number of components is selected
through the BIC. Then, through qualitative goodness-of-fit (GOF) assessment techniques, the best fitting mixture is selected. Such distributions can be
used as sampling distributions for fiber diameters in a given simulation, and the corresponding samples can be packed in the relative nerve fascicles.
From the characteristics of each of the obtained components, the corresponding fiber type can be deduced, which determines the most suitable
computational model for each modeled fiber.
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fibers from 1,000 to 10,000 (the actual axon count per millimeter

for a subject over 20 years old is ~30,000 (ref. 90)). The packing

was always admissible and was always accomplished in <0.5 s. It

is noteworthy that multiscale square grid (MSG) produces almost

random bidimensional packings for reasonable packing fractions

(see Table 4). We assumed that statistically random packing was

the strictest requirement to test the quality of the result of our

algorithm and that any other nonrandom assignment could be

easily managed through adequate density functions.

Section 3: Neural interface modeling

PNS is intrinsically linked with the concepts of selectivity and
invasiveness91. Selectivity is the ability to target specific nerve
fiber subpopulations without eliciting the responses of other
subpopulations that are not necessarily spatially segregated.
Invasiveness corresponds to the regime position of the elec-
trode, which indicates both the difficulty of the implantation
and the resulting expected damage to physiological structures.

As a general rule, electrode selectivity increases with invasive-
ness. Comprehensive reviews of the currently used peripheral
nerve interfaces can be found in refs. 91,92.

As a first approximation, electrodes are bi-domain objects:
they include active sites, which inject independent currents into
the nerve, and an electrode body, which is usually developed
using an isolating material.

In FEM, electrode geometries must be simplified, and a
minimal set of geometrical parameters must be defined. We
propose to build a set of proper electrode geometry simplifi-
cations in terms of simple primitives to obtain a good trade-off

between the fidelity of the model to the represented objects and
the generalization capability, which will help with rapid adap-
tation of the studied geometries to unexplored contexts and
applications.

Proposals for the parametric simplified models in terms of
a predefined set of a few straightforward parameters for the
TIME93 and the FINE94 are outlined in the next subsection.

Electrode parameterization

In the following, we introduce a parametrization for the sim-
plified 3D geometries of TIMEs and FINEs. This allows the

automatic generation of electrode geometries given a few
interpretable geometrical parameters. Examples of the resulting
simplified geometries can be seen in Fig. 14.

TIME. The geometry of the TIME is described in the electrode
reference frame SE by symmetric extrusion for a length hb/2
along the Y axis of the 2D polygonal shape

x :

z :

0 �lb �lb

wb=2 wb=2 �wb=2

0 lt lt

�wb=2 �wt=2 wt=2

The electrode is composed of a body (*b) and a tip (*t): the

body is a parallelepiped with dimensions [lb, hb, wb], while the tip

attaches to a wb × hb face and has a parallel face with dimensions

wt × hb and a length lt.

Circular active sites (diameter das) are built, whose center

coordinates are

x ¼ das þ lb
0 : nas � 1ð Þ½ �

nas

y ¼ ±
hb

2

z ¼ 0

n ¼ 1 : nasð Þ

where n represents the identification number for each active site.

Each active site extends for a length has from the electrode body

surface.

Fixing the insertion geometry of an intraneural electrode

corresponds to determining its pose relative to the nerve

reference frame (six degrees of freedom). We assume that our

stimulation occurs in the mid-plane of the nerve. Additionally,

we impose that the electrode main shaft should be normal to the

XY plane. This reduces the dimensionality of our problem to

three. The insertion is fixed by the position of the center of

one particular (leading) active site and the angle of rotation

between the electrode and the nerve reference frame (Fig. 1,

block 4).

FINE. The body of the electrode is constituted by a parallele-
piped with side lengths [(a + t), (b + t), l] with a parallelepiped
hole with side lengths [a, b, l]. Active sites are in positions

x ¼ � a
2
þ lcc i þ 1=2ð Þ

y ¼ ∓
b
2

;

where lcc ¼ a= nas
2

þ 1
� �

and nas is the number of active sites.
Each active site has diameter das and depth has.
Between the electrode internal surface and the nerve section, a

saline bath can be inserted as in ref. 21, where the FINE stress-

induced reshaping effect can be neglected. When moderate

reshaping effects are taken into account, as in ref. 20, it can be

assumed that the epineurium completely fills the internal space

of the electrode. The large mismatch between the conductivities

of the epineurium (σ = 0.083 S m–1) and saline (σ = 2 S m–1)

affects the intraneural electric field distribution, and thus, for

each implant, the best hypothesis should be carefully chosen and

tested.

Boundary conditions

The potential map solves the Poisson equation with adequate
boundary conditions. The most widely used boundary condi-
tions are those of Dirichlet and Neumann, which specify the
value of the electric potential or its flux, respectively, relative

Table 3 | Output of the number of components selection
routine for the myelinated fiber sample from ref. 90

k 1 2 3 4

P 2 5 8 11

ln L 195 644 644 659

BIC −375 −1,250 −1,227 −1,234

|ΔBIC| 875 0 23 16

k: number of components; P: number of used parameters; ln L: log likelihood of the resulting
distribution; BIC: Bayesian information criterion value, which is lowest for the best fitting
distribution; ΔBIC: difference between BIC values for the corresponding distribution and best-
fitting distribution. The best-fitting mixture has k = 2.
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to selected subdomains21,95. Typically, the Dirichlet condition
of zero potential (ground) is imposed at infinity, while the
Neumann conditions specify the value of the current density on
the active site surfaces (Fig. 2, block 3).

Since FEM discretization does not allow the Dirichlet
ground condition to be imposed at infinity, it is normally
imposed on the outer surface of a large saline bath that sur-

rounds the involved structures. The dimensions of such a solid
can be found while imposing the condition that the potential

field inside the nerve with larger saline baths does not vary
substantially21 (see Fig. 2, block 2, and ‘Measures of field
similarity’ in Section 4).

Neumann conditions at the active sites can be substi-
tuted with Robin boundary conditions, mentioned in ref. 96

and thoroughly investigated in refs. 95,97,98. They can be used
to take into account the surface conductance of electrode–

electrolyte interfaces but in general must be estimated case
by case.
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Fig. 11 | Fiber diameter distribution fit results. Left, unmyelinated fiber sample analysis. Q–Q plots are shown for the best fitting normal, gamma and
beta distributions. The red band indicates the non-admissible region corresponding to negative-diameter fiber sampling. Right, myelinated fiber sample
analysis. Q–Q plot for the best fitting two-component beta distribution; superposition of normalized histogram and fit probability density function;
reclustering of fibers following the two components of the beta mixture distribution, where the mean diameters for the two populations are indicated
by dashed vertical lines.
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They can be simplified by assuming that the potential drop

at the interface is high, in which case non-homogeneous
Neumann boundary conditions can be used, which require only
knowledge of the magnitude of the stimulation current and the
surface of the active site of stimulation97.

In ref. 95, special boundary conditions representing non-
linear nerve fiber dynamics are presented in the framework of a
full FEM approach to FES.

Stimulation waveform

With the assumption of quasi-staticity, the extracellular med-
ium is purely resistive, and the extracellular potential at each

node follows the same time-dependent waveform. Exploiting
this hypothesis, the action of more electrode active sites

injecting current according to the same waveform (or wave-

forms that differ only by a multiplicative constant) can be
obtained through a single FEM simulation (Fig. 2, blocks 3–5).
In general, the number of FEM simulations needed corresponds
to the number of independently driven active sites during
stimulation.

The NEURON framework constituted by the extracellular
and xtra mechanisms allows the complete definition of custom
stimulation waveforms. Concurrently, they rely on heavy
approximations, and the choice of the stimulating waveform
should be made with care. Specifically, it should be clear that
our framework assumes electromagnetic quasi-staticity, which

critically depends on the waveform frequency content7. Finally,
safety limits must be taken into account when developing new
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Fig. 12 | Fiber and fascicle bidimensional packing. (Top) left: illustration of the three-step MSG packing algorithm procedure. In the first step, all fibers
between dmax and dmax/2 are packed; in the second step, all fibers between dmax/2 and dmax/4 are packed; and in the last step, all remaining fibers are
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Aδ, and unmyelinated C fibers, following the empirical distributions described in ref. 90) in a fascicle of radius 0.5 mm; right: packing of 18 fascicles in a
nerve section of a 3-mm radius (dimensions are compatible with the lower median nerve described in ref. 43).
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stimulation strategies in silico in order to maintain the trans-
latability to in vivo experiments. An up-to-date treatment of
such limits can be found in ref. 99.

Section 4: Analysis of stimulation outcomes
Measures of field similarity

The shape of the FEM electric fields alone provides some
information that can offer low computational burden hints
regarding the results of stimulation. Figure 15 shows FEM
potential maps that highlight the spatial information provided

by the FEM electric field shape. For example, the volume of
activation methods, most notably the activating/mirror func-
tion formalism, rely only on the resulting potential maps and
underscore the need to define proper field similarity measures.

We can compare two fields through the indices introduced
in ref. 100 and then used in ref. 101 for electroencephalography/
magnetoencephalography reconstructed source comparison,
which have been used in refs. 21,24 in the context of the nerve
stimulation volume conduction problem solved by FEM. We
refer here to Fig. 5 from ref. 21, which highlights the very dif-
ferent electric field shapes generate by a FINE and a TIME.

One alternative is to use the above measure of similarity to
compare the activating functions (second differences of the

field) instead of the fields. This method offers the advantage of
employing a quantity with a well-established neurophysiologi-
cal meaning.

Recruitment curves

Recruitment curves (see Fig. 4, block 2a) represent the fraction
of active fibers for a given magnitude of the stimulation102 and
are used mainly with three concurrent issues in mind: threshold
identification, recruitment steepness and recruitment order.

Recruitment is directly linked to motion or sensation, and
thresholds for palpable muscle contraction are generally set to a
recruitment of 10% of the fibers in a population103. On the
other hand, it has been shown that the recruitment of a single
sensory fiber can in some cases be perceived by subjects104.

Recruitment steepness (gain) pertains to the ability to con-
trol recruitment with varying stimulation. We identify low
maximum gain and high linearity as two desirable character-
istics of a recruitment curve, which facilitates controllability and
simplifies the design of the relative controller105,106.

Recruitment order concerns the dependence of activation on
the fiber diameter. Specifically, natural recruitment of moto-

neurons follows a size principle107,108 in that small-calibre fibers
are recruited first. Artificial inverse recruitment (caused mainly
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by extraneural stimulation79,102) leads to muscle fatigue and
does not allow fine muscle control109. The recruitment order
can be determined through the comparison of recruitment
curves (or thresholds) for populations of fibers with different
diameters. From ref. 25, we refer here to Fig. 9, where differ-
ential recruitment with respect to fiber diameter is shown, and

Figs. 6–7, where the validity of hybrid modeling for invasive
PNS was studied by comparing modeling and experimental
recruitment curves for a rat sciatic nerve stimulation
application.

Selectivity indices

Selectivity corresponds to the ability of a given system to elicit
the response of a given subpopulation of fibers without affecting
the remaining population (see Fig. 4, block 2b). We employ two
indices to estimate the selectivity of a neuroprosthetic device24.

Suppose that our fibers are partitioned into m groups and

that during a stimulation procedure, a fraction 0 ≤ μi ≤ 1 of
fibers in the ith group have been recruited. Thus, we define the
group-wise selectivity of the given routine through the index

Seli ¼ μi �
1

m

X

j ≠ i

μj;

which lies in the range [−1, 1] and is 1 if μi = 1 and μj = 0
8j ≠ i. This index penalizes coactivation of different fiber
groups, which can result, for motor fiber stimulation, in muscle
fatigue or in the impairment of the movements to be restored
through activation of antagonist muscles; for sensory fiber sti-
mulation, co-activation is equally detrimental since it leads to
paresthetic sensations.

In ref. 21, the above selectivity index was coupled with the
selectivity index

Si ¼
ni

Pm
j ¼ 1 nj

;

where ni is the number of active fibers from the ith fiber group,
which can be used to ensure a sufficient activation level in a
specific fiber group.

By combining the selectivities corresponding to stimulation
procedures s performed with the same implant through the
index

ST ¼
1

m

X

i

max
s

Sel
sð Þ
i

� �

;

we can characterize the selectivity of an implant (through the
maximal group-wise selectivity) and compare it with different
implants employing the same electrode (for example, to test the
best implantation site for the electrode) or with implants
employing different electrodes (for example, to compare the

selectivity of different electrode families or designs).
The most adequate combination of selectivity indices must

be chosen for each situation: for example, one might seek to
combine, for a number of specific stimulation paradigms, the
indication of specific activation of a given group i of fibers
through Seli with the indication of sufficient activation of that
group through Si to ensure that the stimulation sufficiently
stimulates the fiber group to transmit a reliable sensation/
motion. Concurrently, one might seek to study the selectivity
ability of an entire implant: a high value of ST, in fact, ensures
that different stimulation paradigms can be found that can elicit

a selective response from all fiber groups (in an average sense).

Discussion
Our results

We presented a modular, customizable and expandable fra-
mework for hybrid modeling of invasive PNS interfaces. For

Table 4 | Average Hopkins statistics for MSG packings

N H
avg
all H

avg
myel H

avg
unmyel

1,000 0.50 0.50 0.52

2,000 0.50 0.51 0.50

3,000 0.51 0.50 0.51

4,000 0.50 0.50 0.51

5,000 0.50 0.50 0.51

6,000 0.51 0.50 0.51

7,000 0.51 0.50 0.51

8,000 0.51 0.50 0.52

9,000 0.51 0.50 0.51

10,000 0.50 0.50 0.51

Average Hopkins statistics for packings with N fibers (Ntrue ≈ 25,000), for the whole
population (*all), for myelinated fibers (*myel) and for unmyelinated fibers (*unmyel). Random
fiber packing corresponds to H = 0.5.
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Fig. 14 | COMSOL electrode geometries. a,b, COMSOL geometries for the FINE (a) and TIME (b) for a given choice of the defining parameters for our
simplified models. Note that to facilitate visualization, the dimensions of the active sites are exaggerated here.
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each step, we provided a short review of the biological evidence,

along with a list of several different conceptual and computa-
tional approaches.

The problems of fiber diameter distribution fitting and

consequent type separation have been tackled. Such problems
have never been fully addressed but have become relevant
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Fig. 15 | FEM potential field examples. FEM potential field lines for modeling experiments employing FINEs and a TIME and simple circular fascicle
nerve models. The used FINEs have 14 active sites, while the used TIME has 1 active site. Activating all stimulating sites of the electrode highlights its
stimulation reach (and, in particular, the nontargetable fascicles for each stimulation). a, Comparison between conceptual model hypotheses: nerve
separated from the electrode through a saline bath versus nerve in contact with the electrode through the paraneurium. b, Comparison between
different levels of FINE-induced compression, highlighting how reshaping facilitates accessing the inside of fascicles with electrical stimulation. In a and
b, the same initial nerve topography is used and adequately reshaped according to the presented algorithm. c, Comparison between TIME stimulation
with the active site inside (active site at y position equal to zero) or outside (active site at y position equal to −0.6 mm, fascicle radius equal to
0.5 mm) the fascicle, showing perineurium insulating features.
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with the introduction of different fiber types into the HM
framework.

Two algorithms have been proposed, allowing almost ran-
dom packings of fibers inside fascicles and fascicles inside a
given nerve section. They require several seconds for each run,
even for naturalistic packing fractions, and thus do not sub-
stantially increase the solving time for the corresponding
model.

A set of possible approximations for nerve geometries has
been introduced to provide the right level of abstraction for
each kind of scientific question. Exploiting such approxima-

tions, we define a completely general framework that can be
used to provide the adequate statistical power required by in
silico investigations, allowing us to produce (owing to the
implementation of ex novo generation from statistical char-
acterization of fascicles) and solve for (owing to computational
time reduction) a great number of comparable naturalistic
geometries.

Geometrical reshaping algorithms have been introduced in
our workflow, which will allow the integration of new data and
models regarding the neural tissue response to neural interfaces
implanted both intra- and extraneurally.

Most notably, we introduced a hierarchy of methods in
which different approximations can be used to answer different
kinds of scientific questions ranging from the planning of single
implants to the optimization of a new neural interface and
general research questions regarding neural tissue physiology.

Below we briefly describe the limitations of our model,
future developments and future research routes. While limita-
tions refer to inherent constraints of our framework, future
developments address the analysis of a number of aspects that
can be easily introduced in the present framework but that our
group has never openly addressed. Finally, the ‘Future research

routes’ subsection investigates applications of neuroprosthetic
interest directly following from future developments of
the model.

Limitations

Physics assumptions. Several limitations and caveats must be
underscored when choosing an HM framework. Strong
assumptions are made with respect to the physical character-
istics of materials, most notably linearity, homogeneity, fre-
quency independence (quasi-static application of Maxwell’s
equations) and time invariance. An HM is based on the strong

assumption of decoupling between the volume conduction and
neural response modeling, which inherently excludes all phe-
nomena involving ephaptic coupling and electrodiffusion.

2.5D modeling. The proposed model does not aim at a full 3D
reconstruction of nerve structures: instead, our nerve geome-
tries are obtained through extrusion of single histological sec-
tions. Addressing 3D reconstruction of nerves would be a major
improvement of our framework, but a number of developments
are required that have never been tackled by our group. For
example, (semi)automatic segmentation and relative alignment

of histological sections would be needed, as well as an automatic
way to detect and manage internal branches while maintaining
a tractable computational burden of FEM.

Further validation data. There is a published example of a
general methodology for hybrid modeling validation for inva-
sive PNS for rat sciatic nerve stimulation25. The approximations
described in this paper were not explicitly validated: their
validity was inferred from comparison with the outcome of the
most detailed variant. A similar approach has also been used in
ref. 27, where stimulation via microneurographic needles and
via TIMEs were compared without an explicit experimental
validation. Specifically, a future validation of HMs in humans
would be indirect and can only confirm very general claims in
terms of global selectivity (see ref. 25 on generalization), as it

requires individual nerve morphologies, which currently can
only be determined invasively. However, in the future, new
imaging techniques could provide additional data, at least in
animal models.

Ways in which the model could be further developed

Evaluting the effects of steering and multisite stimulation. We
refer to Fig. 8 in ref. 21, where it is shown that bipolar (anode–
cathode) stimulation allows modulation of the recruitment
of different nerve fascicles, thus allowing selective targeting of
a higher number of fascicles. A full evaluation of the advantages
of combinations of steering, bipolar and multisite stimulation
has not yet been carried out but would be helpful to provide
an idea of the true selectivity capabilities (for example,
spatial selectivity enables leveraging of the multimodal
potential field maps that can be elicited via superposition)
of an implant, which can be highly underestimated without

carrying out an extensive search in the space of controllable
parameters.

Varying the waveform. The influence of stimulating waveform
parameters on neural excitation has not been studied so far:
optimizing such parameters could pave the way for selective
activation of fiber populations of different types/ diameters and
is one of our targets in the next future.

Including C fibers in the model. Small unmyelinated C fibers,
responsible for thermo- and nociception, can be incorporated

into HMs. Our group has not studied them, but ref. 29, for
example, showed that the C fiber model in ref. 56 subject to
extracellular stimulation had a much higher threshold with
respect to the myelinated MRG fiber model59.

Future research routes

In the spirit of several initiatives begun in recent years, such as
ModelDB110,111 or the Human Brain Project (https://www.
humanbrainproject.eu/en/explore-the-brain/share-data/), we
advocate the creation of a shared knowledge open database to
collect and unify data on the morphology of peripheral nerves
and nerve fibers. In the present paper, we suggested a series of
assumptions and approximations that ease the computational
analysis of PNS: such assumptions could provide the funda-
mental backbone for such a project, outlining the set of infor-
mation readily obtainable from morphology studies which

would be useful in a computational setting. For example, an
analysis of the expected selectivity for an implant in a given
location of the median nerve could be performed once location
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and effective diameter distributions of the fascicle for a suffi-
ciently high number of histological samples are known. From
the probability distributions, a great number of simplified
circular-fascicle stereotypical nerve sections can be built, on
which selectivity analysis can be performed. The selectivity
results corresponding to the different stereotypical nerve sam-
ples (extruded from the sections) can be aggregated to provide a
hint of the expected selectivity which is robust with respect to
inter-subject variability.

Finally, we here list a few fields of potential application of
HM, which would greatly benefit from the expansions of the

model listed in the previous sections and would definitely allow
HM to be regarded as a fundamental tool in the neuropros-
thetics research field:
1 Addition of new fiber types to simulate, for example, the

response of autonomic unmyelinated nerves for bioelec-

tronic medicine applications112. Moreover, investigating

unmyelinated fibers could pave the way for more naturalistic

stimulation protocols exploiting the interoceptive action of

such fiber types113.

2 Characterization of the changes in the response in patients

suffering from neuropathies that affect modeled character-

istics of fibers. For example, demyelination in diabetes114 can

be simulated by modifying the fiber geometry in the MRG

model, and small fiber neuropathies115 can be simulated by

modifying type-wise fiber diameter distributions.

3 Addition of physical–physiological grounded models of the

tissue response to neural implants116 to obtain reliable

geometries from the application of a given neural interface

to a nerve of interest whose section has been specified, for

example, through histological techniques.

4 Development of new biomimetic encoding strategies117 for

comparison of the peripheral activation corresponding to

each strategy and to provide a first offline benchmarking.

5 The possibility of linking the model to higher neural

pathway processing models to simulate the modulating

action of higher centers (for example, spinal ganglia10).

6 Use of reciprocity to develop recording models from the

current stimulation framework118–120.

We believe that the use of HMs could allow the development
of more effective PNS neural interfaces and therefore facilitate
their translational use for clinical applications.

Data availability

The authors declare that all data needed for the simulation
examples in this tutorial can be found within the paper and its
references. No new experimental data have been used for the

writing of this protocol.

Software availability

Illustrative code for the COMSOL/MATLAB setting of HMs,
for fascicle shape simplification and for fiber and fascicle

packing is available at https://github.com/s-romeni/PNS-HM.

References
1. Grill, W. M. Modeling the effects of electric fields on nerve fibers:

influence of tissue electrical properties. IEEE Trans. Biomed. Eng.
46, 918–928 (1999).

2. McNeal, D. R. Analysis of a model for excitation of myelinated
nerve. IEEE Trans. Biomed. Eng. 23, 329–337 (1976).

3. Rattay, F. Analysis of models for external stimulation of axons.
IEEE Trans. Biomed. Eng. 33, 974–977 (1986).

4. Coburn, B. Electrical stimulation of the spinal cord: two-
dimensional finite element analysis with particular reference to
epidural electrodes. Med. Biol. Eng. Comput. 18, 573–584 (1980).

5. Coburn, B. & Sin, W. K. A theoretical study of epidural electrical
stimulation of the spinal cord—Part I: finite element analysis of

stimulus fields. IEEE Trans. Biomed. Eng. 32, 971–977 (1985).
6. Coburn, B. A theoretical study of epidural electrical stimulation

of the spinal cord—Part II: effects on long myelinated fibers. IEEE
Trans. Biomed. Eng. 32, 978–986 (1985).

7. Bossetti, C. A., Birdno, M. J. & Grill, W. M. Analysis of the quasi-
static approximation for calculating potentials generated by
neural stimulation. J. Neural Eng. 5, 44–53 (2008).

8. Struijk, J. J., Holsheimer, J., van der Heide, G. G. & Boom, H. B.
K. Recruitment of dorsal column fibers in spinal cord stimulation:
influence of collateral branching. IEEE Trans. Biomed. Eng. 39,
903–912 (1992).

9. Rattay, F., Minassian, K. & Dimitrijevic, M. R. Epidural electrical
stimulation of posterior structures of the human lumbosacral
cord: 2. quantitative analysis by computer modeling. Spinal Cord.
38, 473–489 (2000).

10. Capogrosso, M. et al. A computational model for epidural elec-
trical stimulation of spinal sensorimotor circuits. J. Neurosci. 33,
19326–19340 (2016).

11. Anderson, D. J. et al. Intradural spinal cord stimulation: perfor-
mance modeling of a new modality. Front. Neurosci. 13, 253
(2019).

12. McIntyre, C. C., Grill, W. M., Sherman, D. L. & Thakor, N. V.
Cellular effects of deep brain stimulation: model-based analysis
of activation and inhibition. J. Neurophysiol. 91, 1457–1469
(2003).

13. Chaturvedi, A., Butson, C. R., Lempka, S. F., Cooper, S. E. &
McIntyre, C. C. Patient-specific models of deep brain stimulation:

Influence of field model complexity on neural activation predic-
tions. Brain Stimul. 3, 65–67 (2010).

14. McIntyre, C. C. & Foutz, T. J. Computational modeling of deep
brain stimulation. Handb. Clin. Neurol. 116, 55–61 (2013).

15. Lowery, M. M. in Computational Models of Brain and Behavior
(ed. Moustafa, A. A.) 109–123 (Wiley, 2017).

16. Li, M. et al. A simulation of current focusing and steering with
penetrating optic nerve electrodes. J. Neural Eng. 10, 066007
(2013).

17. McIntyre, C. C. & Grill, W. M. Finite element analysis of the
current-density and electric field generated by metal microelec-
trodes. Ann. Biomed. Eng. 29, 227–235 (2001).

18. Raspopovic, S., Carpaneto, J., Micera, S. & Navarro, X. Com-
parison of intraneural electrode geometries: Preliminary guide-
lines for electrode design. in Proc. 4th International IEEE/EMBS

Conference on Neural Engineering (IEEE, Antalya, 2009).
19. Raspopovic, S., Capogrosso, M., Navarro, X. & Micera, S. Finite

element and biophysics modelling of intraneural transversal
electrodes: influence of active site shape. Conf. Proc. IEEE Eng.
Med. Biol. Soc. 2010, 1678–1681 (2010).

20. Schiefer, M. A., Triolo, R. J. & Tyler, D. J. A model of selective
activation of the femoral nerve with a flat interface nerve elec-
trode for a lower extremity neuroprosthesis. IEEE Trans. Neural
Syst. Rehabil. Eng. 16, 195–204 (2008).

21. Raspopovic, S., Petrini, F. M., Zelechowski, M. & Valle, G.
Framework for the development of neuroprostheses: from basic

understanding by sciatic and median nerves models to bionic legs
and hands. Proc. IEEE 105, 34–49 (2017).

22. Raspopovic, S. & Petrini, F. M. A computational model for
the design of lower-limb sensorimotor neuroprostheses. in

REVIEW ARTICLE NATURE PROTOCOLS

3150 NATURE PROTOCOLS | VOL 15 |OCTOBER 2020 | 3129–3153 |www.nature.com/nprot

https://github.com/s-romeni/PNS-HM
www.nature.com/nprot


Proc of the 4th International Conference on NeuroRehabilitation,
49–53 (Springer, 2018).

23. Zelechowski, M., Valle, G. & Raspopovic, S. A computational
model to design neural interfaces for lower-limb sensory neuro-
prostheses. J. Neuroeng. Rehabil. 17, 24 (2020).

24. Raspopovic, S., Capogrosso, M. & Micera, S. A computational
model for the stimulation of rat sciatic nerve using a transverse

intrafascicular multichannel electrode. IEEE Trans. Neural Syst.
Rehabil. Eng. 19, 333–344 (2011).

25. Raspopovic, S., Capogrosso, M., Badia, J., Navarro, X. & Micera, S.
Experimental validation of a hybrid computational model for selec-
tive stimulation using transverse intrafascicular multichannel elec-
trodes. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 395–404 (2012).

26. McIntyre, C. C. & Grill, W. M. Selective microstimulation of
central nervous system neurons. Ann. Biomed. Eng. 28, 219–233
(2000).

27. Oddo, C. M. et al. Intraneural stimulation elicits discrimination of
textural features by artificial fingertip in intact and amputee

humans. eLife 8, e09148 (2016).
28. Gaillet, V. et al. Spatially selective activation of the visual cortex

via intraneural stimulation of the optic nerve. Nat. Biomed. Eng.
4, 181–194 (2019).

29. Lubba, C. H. et al. PyPNS: multiscale simulation of a peripheral
nerve in Python. Neuroinformatics 17, 63–81 (2019).

30. Tubbs, R. S. et al. Nerves and Nerve Injuries—History, Embriology,
Anatomy, Imaging, and Diagnosis (Academic, Elsevier, 2015).

31. Hämäläinen, M., Riitta, H., Ilmoniemi, R. J., Knuutila, J. &
Lounasmaa, O. V. Magnetoencephalography theory, instru-

mentation, and applications to noninvasive studies of the working
human brain. Rev. Modern Phys. 65, 413–497 (1993).

32. Grinberg, Y., Schiefer, M. A., Tyler, D. J. & Gustafson, K. J.
Fascicular perineurium thickness, size, and position affect model
predictions of neural excitation. IEEE Trans. Neural Syst. Rehabil.
Eng. 16, 572–581 (2008).

33. Watchmaker, G. P., Gumucio, C. A., Crandall, R. E., Vannier, M.
A. & Weeks, P. M. Fascicular topography of the median nerve: a
computer based study to identify branching patterns. J. Hand
Surg. 16A, 53–59 (1991).

34. Parent A. & Carpenter, M. B. Carpenter’s Human Neuroanatomy
(Williams & Wilkins, 1996).

35. Delgado-Martínez, I., Badia, J., Pascual-Font, A., Rodríguez-Baeza,
A. & Navarro, X. Fascicular topography of the human median nerve
for neuroprosthetic surgery. Front. Neurosci. 10, 286 (2016).

36. Gustafson, K. J., Grinberg, Y., Joseph, S. & Triolo, R. J. Human
distal sciatic nerve fascicular anatomy: implications for ankle
control using nerve-cuff electrodes. J. Rehabilitation Res. Dev. 49,
309–321 (2012).

37. Sunderland, S. The intraneural topography of the radial, median
and ulnar nerves. Brain 68, 243–249 (1945).

38. Sunderland, S. & Ray, L. J. The intraneural topography of the
sciatic nerve and its popliteal divisions in man. Brain 71, 242–273
(1948).

39. Jabaley, M. E., Wallace, W. H. & Heckler, F. R. Internal topo-
graphy of major nerves of the forearm and hand: a current view. J.

Hand Surg. 5, 1–18 (1980).
40. Planitzer, U. et al. Median nerve fascicular anatomy as a basis for

distal neural prostheses. Ann. Anat. 196, 144–149 (2014).
41. Bäumer, P., Weiler, M., Bendszus, M. & Pham, M. Somatotopic

fascicular organization of the human sciatic nerve demonstrated

by MR neurography. Am. Acad. Neurol. 84, 1782–1787 (2015).
42. Wurth, S. et al. Long-term usability and bio-integration of

polyimide-based intraneural stimulating electrodes. Biomaterials
122, 114–129 (2017).

43. Brill, N. A. & Tyler, D. J. Quantification of human upper extre-
mity nerves and fascicular anatomy. Muscle Nerve 56, 463–471
(2017).

44. Hallin, R. G. Microneurography in relation to intraneural topo-
graphy: somatotopic organisation of median nerve fascicles in
humans. J. Neurol. Neurosurg. Psychiatry 53, 736–744 (1990).

45. Stewart, J. D. Peripheral nerve fascicles: anatomy and clinical
relevance. Muscle Nerve 28, 525–541 (2003).

46. McKinley, J. C. The intraneural plexys of fasciculi and fibers in
the sciatic nerve. Arch. Neurol. Psychiatry, 6, 16–23 (1921).

47. Lumsden, D. B. et al. Topography of the distal tibial nerve and its
branches. Foot Ankle Int. 24, 696–700 (2003).

48. Ugrenovic, S. et al. Morphological and morphometric analysis of
fascicular structure of tibial and common peroneal nerves. Facta
Univ. Ser. Med. Biol. 16, 18–22 (2014).

49. Weis, J., Brandner, S., Lammens, M., Sommer, C. & Vallat, J. M.
Processing of nerve biopsies: a practical guide for neuropatholo-

gists. Clin. Neuropathol. 31, 7–23 (2012).
50. Reina, M. A. et al. Atlas of Functional Anatomy for Regional

Anesthesia and Pain Medicine (Springer, 2013).
51. Caparso, A. V., Durand, D. M. & Mansour, J. M. A nerve cuff

electrode for controlled reshaping of nerve geometry. J. Biomater.
Appl. 24, 247–273 (2009).

52. Cutrone, A. et al. A three-dimensional self-opening intraneural
peripheral interface (SELINE). J. Neural Eng. 12, 016016 (2015).

53. Grill, W. M. & Mortimer, J. T. Neural and connective tissue
response to long-term implantation of multiple contact nerve cuff
electrodes. J. Biomed. Mater. Res. 50, 215–226 (2000).

54. Grill, W. M. & Mortimer, J. T. Electrical properties of implant
encapsulation tissue. Ann. Biomed. Eng. 22, 23–33 (1994).

55. Fitzhugh, R. Computation of impulse initiation and saltatory
conduction in a myelinated nerve fiber. Biophys. J. 2, 11–21
(1962).

56. Sundt, D., Gamper, N. & Jaffe, D. B. Spike propagation through
the dorsal root ganglia in an unmyelinated sensory neuron: a
modeling study. J. Neurophysiol. 114, 3140–3153 (2015).

57. Sweeney, J. D., Mortimer, J. T. & Durand, D. M. Modeling
of mammalian myelinated nerve for functional neuromuscular
stimulation. in Proc. 9th IEEE Annual Conference of the Engi-
neering in Medicine and Biology Society, 1577–1578 (1987).

58. Halter, J. A. & Clark, J. W. Jr. A distributed-parameter model of
the myelinated nerve fiber. J. Theor. Biol. 148, 345–382 (1991).

59. McIntyre, C. C., Richardson, A. G. & Grill, W. M. Modeling the
excitability of mammalian nerve fibers: influence of afterpotentials
on the recovery cycle. J. Neurophysiol. 87, 995–1006 (2002).

60. Blight, A. R. Computer simulation of action potentials and
afterpotentials in mammalian myelinated axons: the case for a
lower resistance myelin sheath. Neuroscience 15, 13–31 (1985).

61. Berthold, C. H. & Rydmark, M. Electrophysiology and mor-
phology of myelinated nerve fibers. VI. Anatomy of the
paranode-node-paranode region in the cat. Experientia 39,
976–979 (1983).

62. Hodgkin, A. L. & Huxley, A. F. A quantitative description of
membrane current and its application to conduction and exci-
tation in nerve. J. Physiol. 117, 500–544 (1952).

63. Richardson, A. G., McIntyre, C. C. & Grill, W. M. Modelling the
effects of electric fields on nerve fibres: influence of the myelin

sheath. Med. Biol. Eng. Comput. 38, 438–446 (2000).
64. Scholz, A., Reid, G., Vogel, W. & Bostock, H. Ion channels in

human axons. J. Neurophysiol. 70, 1274–1279 (1993).
65. Schwarz, J. R., Reid, G. & Bostock, H. Action potentials and

membrane currents in the human node of Ranvier. Pflug. Arch.

Eur. J. Physiol. 430, 283–292 (1995).
66. Reid, G., Scholz, A., Bostock, H. & Vogel, W. Human axons

contain at least five types of voltage-dependent potassium chan-
nel. J. Physiol. 518, 681–696 (1999).

67. Schwarz, J. R. & Eikhof, G. Na currents and action potentials in
rat myelinated nerve fibres at 20 and 37 degrees C. Pflug. Arch.
Eur. J. Physiol. 409, 569–577 (1987).

NATURE PROTOCOLS REVIEW ARTICLE

NATURE PROTOCOLS | VOL 15 |OCTOBER 2020 | 3129–3153 |www.nature.com/nprot 3151

www.nature.com/nprot


68. Neumcke, B. & Stampfli, R. Sodium currents and sodium-current
fluctuations in rat myelinated nerve fibres. J. Physiol. 329,
163–184 (1982).

69. Zhu, K., Li, L., Wei, X. & Sui, X. A 3D computational model of
transcutaneous electrical nerve stimulation for estimating Aβ
tactile nerve fiber excitability. Front. Neurosci. 11, 250 (2017).

70. Gaines, J. L., Finn, K. E., Slopsema, J. P., Heyboer, L. A. & Polasek,
K. H. A model of motor and sensory axon activation in the
median nerve using surface electrical stimulation. J. Comput.
Neurosci. 45, 29–43 (2018).

71. Howells, J., Trevillion, L., Bostock, H. & Burke, D. The voltage
dependence of I_(h) in human myelinated axons. J. Physiol. 590,
1625–1640 (2012).

72. Joucla, S. & Yvert, B. The mirror estimate: an intuitive predictor
of membrane polarization during extracellular stimulation. Bio-

phys. J. 96, 3495–3508 (2009).
73. Sweeney, J. D., Ksienski, D. A. & Mortimer, J. T. A nerve cuff

technique for selective excitation fo peripheral nerve trunk
regions. IEEE Trans. Biomed. Eng. 37, 706–715 (1990).

74. Warman, E. N., Grill, W. M. & Durand, D. Modeling the effects
of electric fields on nerve fibers: determination of excitation
thresholds. IEEE Trans. Biomed. Eng. 39, 1244–1254 (1992).

75. Peterson, E. J., Izad, O. & Tyler, D. J. Predicting myelinated axon
activation using spatial characteristics of the extracellular field.
J. Neural Eng. 8, 046030 (2011).

76. Moffitt, M. A., McIntyre, C. C. & Grill, W. M. Prediction
of myelinated nerve fiber stimulation thresholds: limitations of
linear models. IEEE Trans. Biomed. Eng. 51, 229–236 (2004).

77. Gasser, H. S. The classification of nerve fibers. Ohio J. Sci. 41,
145–159 (1941).

78. Arbuthnott, E. R., Boyd, I. A. & Kalu, K. U. Ultrastructural
dimensions of myelinated peripheral nerve fibers in the cat and
their relation to conduction velocity. J. Physiol. 308, 125–157 (1980).

79. Veltink, P. H., van Alsté, J. A. & Boom, H. B. K. Multielectrode
intrafascicular and extraneural stimulation. Med. Biol. Eng.
Comput. 27, 19–24 (1989).

80. Rattay, F. Electrical Nerve Stimulation: Theory, Experiments and
Applications (Springer, 1990).

81. Bégin, S. et al. Automated method for the segmentation and
morphometry of nerve fibers in large-scale CARS images of spinal

cord tissue. Biomed. Opt. Express 5, 4145–4161 (2014).
82. Zaimi, A. et al. AxonSeg: open source software for axon and

myelin segmentation and morphometric analysis. Front. Neu-
roinform. 19, 37 (2016).

83. Zaimi, A. et al. AxonDeepSeg: automatic axon and myelin seg-
mentation from microscopy data using convolutional neural
networks. Sci. Rep. 8, 3816 (2018).

84. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y. & Basser, P. J. AxCa-
liber: a method for measuring axon diameter distribution from
diffusion MRI. Magn. Reson. Med. 59, 1347–1354 (2008).

85. Schellens, R. L. et al. A statistical approach to fiber diameter
distribution in human sural nerve. Muscle Nerve 16, 1342–1350
(1993).

86. Sepehrband, F. et al. Parametric probability distribution functions
for axon diameters of corpus callosum. Front. Neuroanat. 26, 59
(2016).

87. Titterington, D. M., Smith, A. F. M. & Makov, U. E. Statistical
Analysis of Finite Mixture Distributions (Wiley, 1985).

88. Prodanov, D. & Feirabend, H. K. P. Morphometric analysis of the
fiber populations of the rat sciatic nerve, its spinal roots, and its

major branches. J. Comp. Neurol. 503, 85–100 (2007).
89. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6,

138–145 (1978).
90. Jacobs, J. M. & Love, S. Qualitative and quantitative morphology

of human sural nerve at different ages. Brain 108, 897–924

(1985).

91. Navarro, X. et al. A critical review of interfaces with the per-
ipheral nervous system for the control of neuroprostheses and
hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258 (2005).

92. Tyler, D. J., Polasek, K. H. & Schiefer, M. A. in Nerves and Nerve
Injuries—History, Embriology, Anatomy, Imaging, and Diagnosis
(eds Tubbs, R. S. et al.) (Academic, Elsevier, 2015).

93. Boretius, T. et al. A transverse intrafascicular multichannel elec-
trode (TIME) to interface with the peripheral nerve. Biosens.
Bioelectron. 26, 62–69 (2010).

94. Tyler, D. J. & Durand, D. M. Functionally selective peripheral
nerve stimulation with a flat interface nerve electrode. IEEE
Trans. Neural Syst. Rehabil. Eng. 10, 294–303 (2002).

95. Joucla, S., Glière, A. & Yvert, B. Current approaches to model
extracellular electrical neural microstimulation. Front. Comput.
Neurosci. 8, 13 (2014).

96. Heuschkel, M. O., Fejtl, M., Raggenbass, M., Bertrand, D. &
Renauda, P. A three-dimensional multi-electrode array for multi-
site stimulation and recording in acute brain slices. J. Neurosci.
Methods 114, 135–148 (2002).

97. Joucla, S. & Yvert, B. Improved focalization of electrical micro-
stimulation using microelectrode arrays: a modeling study.
PlosONE 4, e4828 (2009).

98. Joucla, S., Branchereau, P., Cattaert, D. & Yvert, B. Extracellular
neural microstimulation may activate much larger regions than
expected by simulations: a combined experimental and modeling
study. PlosONE 7, e41324 (2012).

99. Günter, C., Delbeke, J. & Ortiz-Catalan, M. Safety of long-term
electrical peripheral nerve stimulation: review of the state of the
art. J. Neuroeng. Rehabil. 16, 13 (2019).

100. Meijs, J. W. H., Weier, O. W., Peters, M. J. & Oosterom, A. V. On
the numerical accuracy of the boundary element method. IEEE
Trans. Biomed. Eng. 36, 1038–1049 (1989).

101. Schimpf, P. H., Ramon, C. & Haueisen, J. Dipole models for the
EEG and MEG. IEEE Trans. Biomed. Eng. 49, 409–418 (2002).

102. Koole, P., Holsheimer, J., Struijk, J. J. & Verloop, A. J. Recruit-
ment characteristics of nerve fascicles stimulated by a multigroove
electrode. IEEE Trans. Rehabil. Eng. 5, 40–50 (1997).

103. Polasek, K. H., Hoyen, H. A., Keith, M. W. & Tyler, D. J. Human
nerve stimulation thresholds and selectivity using a multi-contact
nerve cuff electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 15,
76–82 (2007).

104. Hees, J. V. & Gybels, J. M. Pain related to single afferent C fibers
from human skin. Brain Res. 48, 397–400 (1972).

105. Gorman, P. H. & Mortimer, J. T. The effect of stimulus para-
meters on the recruitment characteristics of direct nerve stimu-
lation. IEEE Trans. Biomed. Eng. 30, 407–414 (1983).

106. McNeal, D. R., Baker, L. L. & Symons, J. T. Recruitment data
for nerve cuff electrodes: implications for design of implantable
stimulators. IEEE Trans. Biomed. Eng. 36, 301–308 (1989).

107. Henneman, E., Somjen, G. & Carpenter, D. O. Functional sig-
nificance of cell size in spinal motoneurons. J. Neurophysiol. 28,
560–580 (1965).

108. Solomonow, M. External control of the neuromuscular system.
IEEE Trans. Biomed. Eng. 31, 752–763 (1984).

109. Petrofsky, J. S. & Phillips, C. A. Impact of recruitment order on
electrode design for neural prosthetics of skeletal muscle. Am. J.
Phys. Med. 60, 243–253 (1981).

110. Peterson, B. E., Healy, M. D., Nadkarni, P. M., Miller, P. L. &
Shepherd, G. M. ModelDB: an environment for running and
storing computational models and their results applied to neu-
roscience. J. Am. Med. Inform. Assoc. 3, 389–398 (1996).

111. McDougal, R. A. et al. Twenty years of ModelDB and beyond:
building essential modeling tools for the future of neuroscience.
J. Comput. Neurosci. 42, 1–10 (2017).

112. Birmingham, K. et al. Bioelectronic medicines: a research road-
map. Nat. Rev. Drug Discov. 13, 399–400 (2014).

REVIEW ARTICLE NATURE PROTOCOLS

3152 NATURE PROTOCOLS | VOL 15 |OCTOBER 2020 | 3129–3153 |www.nature.com/nprot

www.nature.com/nprot


113. Craig, A. D. How do you feel? Interoception: the sense of the physio-
logical condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

114. Sharma, K. R. et al. Demyelinating neuropathy in diabetes mel-
litus. Arch. Neurol. 59, 758–765 (2002).

115. Hoeijmakers, J. G., Faber, C. G., Lauria, G., Merkies, I. S. & Waxman,
S. G. Small-fibre neuropathies—advances in diagnosis, pathophysiol-
ogy and management. Nat. Rev. Neurol. 8, 369–379 (2012).

116. Lang, G. E., Stewart, P. S., Vella, D., Waters, S. L. & Goriely, A. Is
the Donnan effect sufficient to explain swelling in brain tissue
slices? J. Roy. Soc. Int. 11, 20140123 (2014).

117. Valle, G. et al. Biomimetic intraneural sensory feedback enhances
sensation naturalness, tactile sensitivity, and manual dexterity in a
bidirectional prosthesis. Neuron 100, 37–45.e7 (2018).

118. Jehenne, B., Raspopovic, S., Capogrosso, M., Arleo, A. &
Micera, S. Recording properties of an electrode implanted in the
peripheral nervous system: a human computational model. in
Proc. of the 7th International IEEE/EMBS Conference on Neural
Engineering (IEEE, 2015).

119. Koh, R. G. L., Nachman, A. I. & Zariffa, J. Use of spatiotemporal
templates for pathway discrimination in peripheral nerve
recordings: a simulation study. J. Neural Eng. 14, 016013 (2016).

120. Garai, P., Koh, R. G. L., Shuettler, M., Stieglitz, T. & Zariffa, J.
Influence of anatomical detail and tissue conductivity variations
in simulations of multi-contact nerve cuff recordings. IEEE Trans.
Neural Syst. Rehabil. Eng. 25, 1653–1662 (2017).

121. Choi, A. Q., Cavanaugh, J. K. & Durand, D. M. Selectivity
of multiple-contact nerve cuff electrodes: a simulation analysis.
IEEE Trans. Biomed. Eng. 48, 165–172 (2001).

122. Weerasuriya, A., Spangler, R. A., Rapoport, S. I. & Taylor, R. E.
AC impedance of the perineurium of the frog sciatic nerve.
Biophys. J. 46, 167–174 (1984).

123. Ranck, J. B. & BeMent, S. L. The specific impedance of the dorsal
columns of cat: an anisotropic medium. Exp. Neurol. 11, 451–463
(1965).

124. Geddes, L. A. & Baker, L. E. The specific resistance of biological
material—a compendium of data for the biomedical engineer and
physiologist. Med. Biol. Eng. 3, 271–293 (1967).

Acknowledgements
This work was partly funded by the Bertarelli Foundation, and the Swiss National

Science Foundation via the National Competence Center Research (NCCR) Robotics

and the projects SYMBIOLEGs, NeuGrasp and CHRONOS.

Author contributions
S.R. built the presented framework starting from state-of-the-art HM, developed the

software on which the presented framework was run to produce the presented results

and figures, wrote the manuscript and produced the figures; G.V. provided state-of-

the-art insight and software on HM, supervised modeling activity and helped drafting/

revising the manuscript; A.M. and S.M. guided the framework development providing

main core concepts on needed expansions of state-of-the-art HM, and revised the

manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.M.

Peer review information Nature Protocols thanks Shih Cheng Yen, Mario Romero-

Ortega and the other, anonymous, reviewer(s) for their contribution to the peer review

of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Received: 24 July 2019; Accepted: 15 June 2020;
Published online: 28 September 2020

Related links
Key reference(s) using this protocol
Raspopovic, S., Capogrosso, M. & Micera, S. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 333–344 (2011): https://ieeexplore.ieee.org/document/
5898424
Raspopovic, S., Capogrosso, M., Badia, J., Navarro, X. & Micera, S. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 395–404 (2012): https://ieeexplore.ieee.
org/document/6177270
Raspopovic, S., Petrini, M. P., Zelechowski, M. & Valle, G. Proc. IEEE 105, 34–49 (2016): https://ieeexplore.ieee.org/document/7570207
Gaillet, V. et al. Nat. Biomed. Eng. 4, 181–194 (2020): https://doi.org/10.1038/s41551-019-0446-8
Zelechowski, M., Valle, G. & Raspopovic, S. J. Neuroeng. Rehabil. 17, 24 (2020): https://doi.org/10.1186/s12984-020-00657-7
Oddo, C. eLife 5, e09148 (2016): https://doi.org/10.7554/eLife.09148.001

NATURE PROTOCOLS REVIEW ARTICLE

NATURE PROTOCOLS | VOL 15 |OCTOBER 2020 | 3129–3153 |www.nature.com/nprot 3153

https://doi.org/10.1038/s41596-020-0377-6
https://ieeexplore.ieee.org/document/5898424
https://ieeexplore.ieee.org/document/5898424
https://ieeexplore.ieee.org/document/6177270
https://ieeexplore.ieee.org/document/6177270
https://ieeexplore.ieee.org/document/7570207
https://doi.org/10.1038/s41551-019-0446-8
https://doi.org/10.1186/s12984-020-00657-7
https://doi.org/10.7554/eLife.09148.001
www.nature.com/nprot

	Tutorial: a computational framework for the design and optimization of peripheral neural interfaces
	Peripheral neural interfaces have been successfully used in the recent past to restore sensory-motor functions in disabled subjects and for the neuromodulation of the autonomic nervous system. The optimization of these neural interfaces is crucial for eth
	Main
	Hybrid modeling
	Comparison with alternative approaches
	Controllable parameters
	Noncontrollable parameters
	Partially controllable parameters
	PyPNS
	Organization
	Section 1: Peripheral nerve modeling
	Histological components
	Branching patterns
	General terms
	Terms relating to discussion of the peripheral nerve (Section 1)
	Terms relating to the nerve fiber (Section 2)
	Terms relating to modeling of the neural interface (Section 3)
	Terms relating to the analysis of stimulation results (Section 4)
	Morphological simplification of fascicles
	Reshaping effect
	FINE-induced reshaping
	TIME-induced reshaping
	Section 2: Nerve fiber modeling
	Overview of cable-like models
	The MRG fiber model
	Activation threshold estimation methods
	Fiber diameter distribution
	Fiber and fascicle packing
	A priori check for intersections (ACI) algorithm
	Multiscale square grid algorithm
	Section 3: Neural interface modeling
	Electrode parameterization
	TIME
	FINE
	Boundary conditions
	Stimulation waveform
	Section 4: Analysis of stimulation outcomes
	Measures of field similarity
	Recruitment curves
	Selectivity indices
	Discussion
	Our results
	Limitations
	Physics assumptions
	2.5D modeling
	Further validation data
	Ways in which the model could be further developed
	Evaluting the effects of steering and multisite stimulation
	Varying the waveform
	Including C fibers in the model
	Future research routes
	References
	References

	References
	Competing interests

	ACKNOWLEDGMENTS


