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Angular momenta dynamics
in magnetic and electric field:
Classical and quantum approach

Marcis Auzinsh

Abstract: A standard description of the angular momentum in atomic or molecular physics
is based on quantum mechanics. However, especially at large angular-montiemtum
molecules, sometimes a classical approach greatly simplifies probfanare extremely
complicated from a quantum-mechanical viewpoint. The aim of this paper is to examine
the relationship between the classical and quantum descriptions of the angulartoromen
distribution in an ensemble of particles. At first glance, quantum and classical approaches
appear to be absolutely different and have very little in common. In this paer thi
relationship is analyzed. It is shown that similarities can be found between the jwacefss
angular momentum in the external field and the influence of this field upomvétve-function
phase of a microparticle. The importance of wave function phases is stressed reven fo
stationary conditions, and some examples of coherent superposition of quantesnasé
presented. The general method of how to pass from the quantum approach to a classical on
is formulated. Results are visualized in the form of 3D distribution functions. appgoach
allows a graphical interpretation and thus results in a better understanding, sesatifirst
glance, of counterintuitive quantum results. As an example the phenomendgroheht—
orientation transition is considered. Rather than presenting only formaktens, the
emphasis is on the instructional aspects, and on illustrating the general approach.

Résure: La description standard du moment &ligue dans les atomes et les molécules fait
normalement appel a la mécanique quantique. Cependant, aux grandes valeurs de moment
cinétique dans les molécules, I'approche classique simplifie énormément des problémes qui
seraient trées complexes en formalisme quantique. Nous examinons ici ksnekntre

les descriptions classique et quantique du moment cinétique d’'un ensemble de particules.

A premiére vue, les deux approches différent dramatiquement et ont trés peu en commun.
Nous analysons ici cette relation. Nous trouvons une similitude entre la précésisissique)

du moment cinétique dans un champ externe et I'influence de ce champ sur la phase de

la fonction d’onde de la particule microscopique (quantique). L'importance de la phase

est soulignée, méme en situation stationnaire et nous présentons quelqupegxkm
superposition cohérente d’états quantiques. Nous proposons une méthode générale pour passer
de I'approche quantique a I'approche classique. Les résultats sont présentés sous la forme de
fonctions de distribution 3D. La méthode permet une présentation graphiquesietésulte

en une meilleure compréhension, parfois trés rapide, de certains effets quantiques cont
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intuitifs. Nous dveloppons le cas de la transition alignement—orientation coexe@ple.
Nous favorisons une présentation pédagogique plutdt que d'insister sur des dérivations
formelles.

[Traduit par la edaction]

1. Introduction

Usually when describing angular momentum in atomic or molecular physics, we use amguant
mechanical approach. However, there are problems, mostly connected with the descriptid@sof sta
with large angular-momentum quantum numbefs~(10...100), say, in molecular physics, where
the classical approach can obtain reasonably accurate results [1]. Classicalrexficatiarge angular
momentum are often easier to solve. This makes it possible to treat a whole class ahprotitéch,

from a quantum theory viewpoint, are extremely complicated. For example, one such probtem is t
interaction of intense laser radiation with molecules in an external electric or mafjiakticsee, for
example, refs. 2 and 3.

The classical and quantum descriptions of such phenomenon as the well-known Zeeman effect
have little in common. On the other hand in general it is obvious that bottriggens must at
least in some sense coincide at the limit of large angular momentum. At this“poincidence of
descriptions” does not only mean the coincidence of calculated observable signals. Such mméncide
is obvious. It also means the coincidence of how both approaches understand thertafhzadticles
with a definite angular momentum under well-defined conditions, such as excitationhbyiidy a
certain polarization, action of external electric or magnetic fields, etc.

In this paper, we examine the relationship between the quantum and classical descriptions of
angular momentum. As examples, Zeeman and Stark effects in atoms and moleewesigzed.
Finally, a general method for interpreting quantum-mechanical results in the large amguatentum
limit from a classical perspective is demonstrated. This general approach is based on thgsaymp
of the quantum density-matriX,; ;. description of angular momentum with the classical angular
probability density functiong(f, ¢). These give a classical characterization of the probability ¢
p(0, )d2 of finding angular momentd pointing into the solid angle(d = sin 0dfd,.

2. Magnetic field

2.1. Angular-momentum dynamics in a static magnetic field: Classical approach

Let us start our analysis with a simple model. The particle, it must be an atom oleauteo with
angular momentuny is placed in an external magnetic fiel (see Fig.1). In atomic physics, an
angular momentund is always connected with a collinear magnetic momenErom the viewpoint
of classical physics, it can be written as

n=-—J 1)

wherey = g;e/2m is a gyromagnetic ratia; an electron chargen its mass, and the proportionality
coefficientg; is called the Land factor [4].

The natural unit forJ in atomic physics is Planck’s constainfind the natural unit for the atomic
magnetic moment is the Bohr magnetep = efi/2m.

The interaction between the magnetic moment of the particle and the external field eauses
torque,

M=upuxB (2)
to which the angular momentum will be subjected,
dJ/dt = M 3)
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Fig. 1. Precession of an angular momentum in an external magnetic field

The result of the action of torque will be the precession of the angular momentum with angular
velocity

_ grusB
B h

During this precession, the anglebetween the angular momentufmand the magnetic field3 is
constant. The angular velocity of the precession is independent of this angle (contrary to the partic
in an external electric field, as will be shown later).

However, in the microworld, we usually do not have the possibility of investigating a single
particle. In most cases we deal with an ensemble of particles detsirhinexperimental conditions.

Let us consider such an ensemble of gaseous molecules prepared by a laser pulsstéisad ex
resonant transition in an external magnetic fidd Laser radiation is linearly polarized with light
E-vector along they axis as shown in Fig.&

At the beginning, let us assume that the laser pulse is short in comparison with the precession
period T = 27 /wp, and the excited molecular state decays slowly in comparison with both, the
laser impulse duration and the precession periagl, of the molecule. If during the excitation the
molecule undergoes a transition in which the angular-momentum quantum number of tHiestait
J" is equal to the angular-momentum quantum number of the excited .Btate so-called@-type
transition [5], then in the classical approach, the transition dipole moment is paralte smgular
momentum of moleculed [1,6]. In the classical approach, the transition dipole moment is the dipole
that starts oscillating as a result of absorption and emits an electromagnetic field cadiation.

Immediately after the laser pulse, the classical probability density ) of finding molecules
in the excited state with their angular momentum in the directidry) is characterized by a dumb-
bell-shaped function spanning along thexis (see Fig.&1))

(4)

p(0,0,t) = sin? 0 sin? (p — wpt) (5)

As in classical physics, the absorption probability is proportional to the cosine of the angle
between the laser-light polarization vectbr and the absorbing dipole squared, this is an obvious
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Fig. 2. Ensemble of molecules excited by a light pulse in a magnetic fieldtHe geometry of the excitation,
(b) (seefacing page) 1 —wpt = 0; 2—wpt = ;3 —wpt = 5 4—wpt = &, 5 —wpt = 6 —wpt = 2T .

(a) :

result, especially if we remember that we consider ¢heype transition with a transition dipole to
be parallel to the angular momentum.

Now, when looking at the time evolution of this distribution after the laser pulse, we have the
precession of this distribution around the magnetic fiBld The important point is that all angular
momenta precess with the same angular frequengyand as a result, the shape of the distribution
apart from the rotation will remain unchanged (see Hixy. Zaking into account the radiation decay
of the state (not included in (5) and Figb)2 the size of distribution will decrease in time, still
preserving its shape.

If we detect the fluorescence intensity with a chosen linear polarization from such an emsembl
we observe the well-known quantum beats [7], the effect that in the quantum approach iseattribut
to the interference of quantum states.

As a second example, we analyze the excitation of molecules with continuous laséomadibé
geometry of experiment and transition types is the same as in the previous case.

Now, the most interesting case is when the lifetime of the excited state and thegioageeriod
are comparable. In the limit where the precession is slow, the molecule returns totimel gtate
before the angular momentum manages to turn araBnby a substantial angle. As long as we
are depicting the angular-momentum distribution in the excited state, we will have théudistri
function p (0, ¢) as shown in Fig. 3(1).

At the other limit, the precession frequengy will be much higher than the decay rafeof
the excited molecules. Consequently, the angular momentum of the melewillgorecess around
B many times before it decays. This leads to the funciid, ©) in the form shown in Fig. 3(4).

In intermediate cases (Figures 3(2) and 3(3)), we are in between these two extremes. Figs. 3(2) and
3(3) illustrate the situation, when by increasing the magnetic field and with it the precession rate, we
increase the angle through which the angular momentum manages to turn before decay.

To obtain the explicit form op (6, ) for the arbitrary magnetic field strength, we must multiply
(5) by a factorexp(—TI't) that accounts for the decay of the excited state at Fa#nd average
p(0,¢,t) in time. As a result, we then have

1 1 F v2 2 B 2
P(9a¢)2551n29<__ cos2p + 2wp Sin 4,0)

r I? + 4w (©)
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Fig. 3. Ensemble of molecules excited by a continuous radiation in magnetic fieldyz /T' = 0; 2—wp /T =
1.0; 3 —wp/I'=25;4—wp /T = co.
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2.2. Angular-momentum dynamics in the magnetic field: Quantum-mechanical approach

In a guantum-mechanical description, particles in a state with angular-momentum gquantunt numbe
J exposed to an external magnetic figltlgain an additional energy

Ey =gy ps M;B (7)

depending linearly not only on the magnetic field strength, but also on the magnetittiouaumber
My, which can assume discrete values in the range fraimto J. In quantum mechanics, the
angular-momentum quantum numbgmdefines the modulus of the angular momentum

T =TT+ 1)k @)

but the magnetic quantum numbef; its discrete projection on the magnetic field direction (or
quantization axis)

Jz=Myh My=—J—J+1,—J+2...J 9)

As a result, in an external magnetic field, according to quantum mechanics, energy levetstigith
energyEy split into 2J + 1 components, see Fig. 4.

At first glance, classical and quantum descriptions of particles with angular momentum in an
external magnetic field have little in common, but even at this stage we can finel Siamiarities.

In quantum angular-momentum theory, each quantum state corresponding to a magnetic sublevel
is characterized by the stationary wave function, [8,9]. If we add the phase factor in a standard
form, we obtain the total wave function for each particular state in the form

Wya(t) = Yypp e [(BotEa)/Rlt o)
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Fig. 4. Magnetic sublevel structure for a particle in a magnetic field.

E

Eo

where E is the energy of the state in the absence of the magnetic field.
In the following, it is important to remember that by turning a system of coordinatemd B
by an anglep, the stationary wave function acquires an additional phase according to

YJMJ = YJ/'MJ e My (11)

whereY,,, is a function in the final system of coordinates, Wher}é’§1§[] is a function in the initial
system of coordinates [8, 9].

Now, if we compare the phase factor in (10) connected with the additional energy (fig of t
quantum state in the magnetic field with the phase that the wave-funaios gnder the rotation

—i gsps B Myt

—iMyp = >

(12)
then we obtain the angular velocity of thgrecession” of the wave-function in an external magnetic
field

¥ _gsusB
t h

As we can see, it is exactly the same velocity that we obtain from the clasgipedach, see (4).

At first glance, the last result seems to make no sense because the probability ﬁémiﬁ/
for each|J M) state is axially symmetric and precession around the symmetry axis (magnietic fie
B) has no effect on this distribution [1, 8,9]. This attitude can be supported by the feeling that we
sometimes get from quantum mechanics textbooks, that in a stationary case, the wave-filragn
has no influence on the observable results. Actually, the situation is different. In egpesimve
usually excite thecoherent superposition of quantum states. This concept is extremely important in
modern quantum theory. As an example, let us consider the optical excitation.sf the) — J' =1
transition in the geometry as depicted in Fig. 2

In this geometry, the unit light polarization vector [1,9] has the follajdiomponents in a cyclic
coordinate system that is most convenient for the angular-momentum theory:

BN = — (V3 (E.—iB,) — iV
0

wp = (13)

E° = E, =
E7' = (1/V2)(E.+iE,) = i/V2

This means that from a single ground-state subléyél= 0, M ;» = 0) optical transition occurs
simultaneously to two excited state sublevels, namély= 1, M;» = —1) and|J' = 1, M;; = +1),
see Fig.5. This means that these sublevels are excited coherently, and sigatiorometween the
phases of the respective wave functions is established.

(14)

©1997 NRC Canada


http://www.nrc.ca/cisti/journals/cjp/cjp75/physco97.pdf

860 Can. J. Phys. Vol. 75, 1997

Fig. 5. Optical transitions between magnetic sublevels at the geometry of excitajictet in Fig. 2.

1 0 +1 M,

Keeping in mind that both transitions depicted in Fig. 5 have the saotmpility [1] (in general
characterized by the respective Clebg@Glrdan coefficient), the total wave function of an excited
state in the case of a short exciting pulse can be written as

U (t) = e i(Eo/P)t (—Y1_1 B /Mty Ly i 5
V2 V2

Inserting theY;+; functions in (15) in the explicit formyi.; = F3/5=sinfe*™ [1,8,9]

and calculating the quantum-mechanical probability der|dity (¢)|* for this example, we can get
once more for particles in an external magnetic field (7) a dumb-bell-shaped quantum-mechanical
probability density distribution that precesses in the magnetic field

|U 5 (8)]% « sin? 6 sin® (¢ — wpt) (16)

wherewp is the same precessional frequency we get from the classical description, see (4).

This result raises the following question: how can a quantum state have a preferred direction
in an zy plane? We know from quantum angular-momentum theory, that all angular-momentum
operator eigenstates are axially symmetric [9]. This is a direct resulteoHt#isenberg uncertainty
relation AJ,Ap > h/2. It tells us that if we know the angular-momentum projectibn= M7 we
cannot specify the other two projectiods and J, determined by the angle. Is the Heisenberg
uncertainty relation violated here? The answer is — no. In this example, we do recd [pave operator
eigenstate, but coherent superpositions of the states, see (15) with two differprajections. So
we bring uncertainty into/, because the particle is simultaneously in th states. This allows us
to obtain a quantum state with a preferred direction inihelane. Such superpositional states are
often used in quantum chemistry. For example, orbitals of the pype —(1/v/2) (p+1 — p_1) are
known to be “dumb-bells” stretched along theaxis [10]. For superpositional states it is typical to
have nonaxially symmetric distribution in the plane [1,2].

The main difference between (5) and (16) is that (5) is a clasantpllar-momentum distribution,
but (16) is a quantum angular distribution @gctrons in the case of atoms, anolecular axes in
the case of diatomic or linear molecules. In some sense, these distributions musthogdnal”
because the molecular axes are almost perpendicular to their angular momenta. Thevigase
get distributions of the same shape in both classical and quantum examfies is the classical
case we analyzed thg-type transition(J’ — J” = 0) where the transition dipole moment is parallel
to J, whereas in the quantum example we analyzedRHgpe transition(J' — J” = 1), where in
the classical limit the transition dipole moment is known to be perpendiculdr[th 6].

As a second example in the quantum approach, we consider once more tlteeHect type
experiment [11]. Let us suppose the same geometry of excitation and tyjpansition as in the
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previous case (see Fig. 5), but the excitation is by continuous wave radiation gagigisin addition,
we assume that the excited state has a definite decay rat# we must do to obtain the quantum-
mechanical probability density for this case is, first, to multigly: in the form of (15) bye—(I'/2)t
to account for the decay of the excited state. As a result, we need to multiply (16)'byand to
account for a stationary excitation to average (16) over time. After doing this we get

— 5 . 1 Tcos2p+ 2wp sin2p
Uy ~sin?0 = -
%o sin (r 21 403

17

Again, it is a distribution of precisely the same shape as the one depicted in Fig. 3. Witht respe
the comparison of classical and quantum probability densities, we can make all the same comments
about it as we did in the previous example.

One remarkable point with the quantum examples is that we will get exactly the same =olecul
axis distribution for theR-type transition as for largé in classical theory. This happens very often
(but not always) if we do not consider a single quantum state, but a superposition of states that can
be created in a real experiment; then quantum and classical probability densities fully coincide not
only at the largeJ limit but also at very small/, as is the case in this example.

3. Electric field

3.1. Angular-momentum dynamics in electric field: Classical approach

The classical approach to the description of the behavior of particles with angulagmom/ in a
static electric field (Stark effect) is considerably less well known. Sometimes, amewen read in
physics textbooks that the Stark effect is a purely quantum effect and that does not hassieall
model.

Despite these statements, in a recent publication by Hilborn [12], we can find the classical
description of the precession of the angular momentum of particles in an externatdleldrilt can
be seen from ref. 12 that in the geometry in Fig. 1 that where the magneticBiétdreplaced by an
electric field€ the angular momentd of particles possessing the quadratic Stark effect (common for
most atoms and rotating diatomic and linear molecules) precess afouiitth an angular frequency

&2%d cos b
J

whered is the permanent dipole moment of the particles (that must be replaced\with- electric
polarizability anisotropy if the particles have= 0), £ is the electric-field intensity, and’ is the
proportionality coefficient. It can be seen that in this case the precession foggdepends on the
angled, see Fig.1, and wheros§ changes sign a# = /2, the angular momentum changes the
direction of the precession.

This leads to very unusual dynamics for the ensemble of angular momentum in the efi¢uinal
Let us consider the same example in the case of a magnetic field, namely, ppis=d excitation
in a Q-type transition molecular state without decay. The result of the calculation icldissical
approach, based on the absorption probability dependance on sphericaléanglasd (18), is

w, =C (18)

p(0,0,t) =sin?0 - sin? (¢ + @, cosf - t) (19)

where we singled out theos # dependence fromy, = @, cos . Depicting thep (0, ¢) evolution in
time graphically, we obtain Fig. 6.

It is clearly seen from Fig. 6 that the angular momentum with opposite projection otetitece
field £ precesses in the opposite direction and the precession velocity also depends csoliie ab
value of this projection. It leads to the situation that the angular-momentsimibdition spreads out
in time. The dynamics of an ensemble of particles in an electric field is totallyreliffefrom the
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Fig. 7. Ensemble of molecules excited by continuous radiation in elec#id;fl — w. /T' = 0; 2 —w. /T" = 1.0;
3—w:/I'=25;4—w./T =o0.

1 1 1, 2

-1 -1

T D

-1 -1

dynamics of the corresponding ensemble in a magnetic field. In an electric field, we cannot expect
to observe a quantum beat signal in fluorescence of the type we discussed in Sect. 2.1.

In the following example, we consider the same experimental geometiyransition type, but
with a continuous wave excitation and a state decaying withItal® obtain an angular-momentum
distribution all we need to do is multiply (19) by an exponential faetor* and find a time average
of the result.

After performing this procedure we obtain

1 T 20 — 2Wg sin 2
<__ cos 2 — 2w sin gocos@) (20)

T I'? 4402 cos? 0

This probability density represents the Stark analog to theéHeffibct analyzed in Sect. 2.1. In Fig. 7,
this probability density is presented for four differept= 2. /T values.

Fig. 6. (See facing page) Ensemble of molecules excited by a light pulse in electric figld; wet = 0; 2 — wet = F;
5

3—w5t:ﬂ';4—w5t:3%;5—w5t:27r;6—w5t:7.
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Fig. 8. “Stark” quantum beatsyj the geometry of the excitationb)((see facing page) 1 — wst = 0; 2 —wst =
04m; 3 —wst =0.57m; 4 —wst =7, 5 — wst = 1.5, 6 — wst = 2,

(a) Z

3

3.2. Angular-momentum dynamics in an electric field: The quantum-mechanical approach

In the quantum approach, microparticles exhibiting a quadratic Stark effect in amaxébectric
field gain an additional energy

En = &oh [J(J +1) — 3M?] £ (21)

This formula shows that the additional energy dependsdrand M2, i.e., at giveng, quantum
sublevels are no longer equidistant as they were in the magnetic field, see Fegide® stated/
and —M have the same energy at any electric field strength, that is, states\ivithO are doubly
degenerated.

Performing the same manipulations as in the case of the magnetic field (see Secta&sbciate
this gain of additional energy with tHgrecession” frequency of the respective wave function in an
external electric field, we have

—iM,p =—iw [J(J+1)—3M7] % (22)

This is the analog to expression (12).
If we are only interested in the relative precession frequency, we can keep only-thependent
part in the right-hand side of (22). This leads to

we = @/t =@ 3M ;E? (23)

which once more coincides in the same way with the frequency of angular precession in alclassica
approach as in the case of the magnetic field, see (18). This coincidence becomegaseifyvee
remember that in the vector model of quantum angular momentum weldayg/J (J + 1) = cos 6

[8].

Let us have a brief look at some examples where this precession of wasofisexhibits
itself through the evolution of a coherent superposition of quantum states. We analgzagaio
aJ’ =0 — J =1 optical transition caused by a linearly polarized light. However, the gegme
of excitation must be chosen with more sophistication than in the case of the magnetic fidld. In t
magnetic field geometry (Figa}, we coherently excitetl — 1) and|1 — 1) magnetic sublevels (Fig.

5) and then we actually examined “beats” between the phases of these wave fundtiereswill
be no beats between these states in the electric field, because they have the sgmarshare
degenerated.
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Fig. 9. Excitation with a continuous radiation of & = 0 — J' = 1 transition in an electric field} —w. /T" = 0;
2—we/I'=1.0; 3 - w./T'=25;4 —w. /T = o0.
1, 1 1, 2

1 1 -1 1

For this reason, we choose the excitation geometry wherdthiector of the light has direction
characterized by anglés= 7/4, ¢ = 7/2, see Fig. &.

In this geometry, according to (14), the unit vector along the direction of light polanizhte the
following componentsE+! = i/2 ; E° = 1/1/2 ; E~! = i/2. This means that all three magnetic
sublevels of the staté’ = 1 will be excited coherently. Keeping in mind that we still have a simple
case because the transition probabilities characterized by Clebsch—Gordan coeffreiergaad for
all three transitions, we can write the total wave function as

\I/J/ (t) _ efi(EO/ﬁ)t ZEq}/lqefi(EM/h)t

q

, i1/ . . 11 / ,
— o—i(Bo/R)t [%5 2?; sin fe— % o~ H(E-1/)t | \/55 %COSQG—Z(EO/H,)IS
; 1 o
Jr% (—5) \/% sin@ewe’(El/h)t] (24)

We now assumé’,, has the form of (21) (quadratic Stark effect) and pulse excitation. Then we have
the evolution of quantum probability density in the case of Stark quantum beats
[P 5 (t) |2 1 —sin? 0 cos? ¢ + sin 260 sin ¢ cos Awt (25)

where Aw is a splitting between sublevel¥; = +1 (degenerated) andl/; = 0. The evolution of
|, (t)|* appears to be cyclic. One period of this evolution is shown in FigV8e see now that—
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contrary to magnetic quantum beats—the shape of the probability density changes and is restored
only after half a period, although in a different orientation in space. Afterlg&rlod, the orientation
in space is restored. We see that fbr~ 1 we have Stark quantum beats that disappear in a large
J limit, see (19). With increase o the period of restoration of the initidll ;(0)|* distribution
increases until at thé — oo limit beats disappear [14]. This has a simple explanation. At the limit
J — 00, Wy ~ J~* and the smallest frequencyy;ar:anr between coherently excited sublevels,
which determine the quantum beat period at the listhit> oo, approaches zero and as a result the
period increases infinitely and beats disappear.

Now, we can also calculate the Hértlype behavior of the probability density at stationary exci-
tation. To this end, we need to find the time average of (25) multiplied by the decay agtor't)
and we obtain

—— 1
[Ty (8))° - T (1 —sin® 6 cos® p) + sin 260 sin ¢ (26)

r
2+ Aw?
In Fig. 9 this distribution is depicted as dependent on parameterAw/T.

Besides the effects described above, an electric field can, in general, mikeogetve functions
Y;n with the same value ofi/, but differentJ. However, if the distance in energy scale between
guantum states with different is large in comparison to the energg, it may be neglected [13].

The main peculiarity of this distribution is the fact that at a high electrilel fimit Aw — oo,
we still have distributions that have no axial symmetry with respect to the externaEfiditiis may
seem strange. We are used to situations where the external field symmetrizestribetitin in the
plane perpendicular to the direction of the field. In spectroscopy, this leads tot#helepolarization
of fluorescence if viewed from the end of the external field. We had exactly this siuatithe
previous examples in a magnetic field. Nevertheless, there is a simple explanatios feedhiiarity.

In our last example, we had three pairs of coherently excited sublevels, namgeh10) , |1 — 1)—

[10), and|1 — 1) —|11). Only the coherence between the first two pairs can be destroyed by an exter-
nal field by increasing their separation in energetic scale. The sublevels okthéhkathird pair, are
degenerated and remain so at any field strength. This means that coherence between thete suble
is preserved, and it can be shown [2] that this means anisotropic distribution in a planedarizs

to the direction of the external fielfl.

4. Quantum-mechanical density matrix and classical probability
density description of angular-momentum dynamics

The last two examples where we derived a superpositional wave function for the/’state created

in an optical transition/” = 0 — J' = 1 (see (24)) show how complicated the wave function will
look for the transition where/” « 100 — J' « 100 (J” — J' = 0,%1). We then haveJ’ + 1
excited-state sublevels. A coherent superposition of these substates is created in anlugaipdion

from 2J” + 1 ground-state sublevels. Usually, the quantum density-matrix formalism is used [15] to
cope with all these substates. In the simplest case, the density-matrix elements can bheawi(ife

Ivme = anrayy (27)

whereay, andays are the coefficients showing the part¥f,, in the total wave function ;, say,
for Y11 in (24) the coefficient isi11 = (1/2) exp {—i [(Eo + E+1) /h]t}. Methods were developed
to calculate the density matrify ;- elements for definite experimental conditions.

In the more general case where atoms or molecules are excited with lowgitpteadiation, the
density-matrix elements can be calculated as follows: [1]

Farae= (M| dE* |y (M| dE* )" =T farae — iwnrne farar (28)
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whered is the transition dipole moment operator, b, = (Eyv — Epe)/h. Furthermore, we
can write

(M|dE* |y =T, S (E) M. (29)
q
whereC;,; is the ClebschGordan coefficient, and the proportionality coeffici@ht is called the

pumping rate .
If all density-matrix elements are known, we are now able to calculate the quantum probability
density

|‘I’J\2 = Z faane Yone Ying (30)
MM’

However, for states with largd it is a complicated task. There are no tables of explicit analytical
expressions fol’;, for large J; the only thing we have at hand are recursion relations [9].
However, a couple of years ago, a method was developed that alloweasgrransition to be
made from the quantum density matfiy ;- to a classical probability density(d, ¢) for angular
momentum. It can be shown that the density-matrix elemépts;r at theJ — oo limit can be
considered as coefficients of the Fourier expansion of a classical probability deiéity) [3, 16]

S M
0,p) = e ¥ s cosl = ——— 31
p(0,) :ZOO Faos vs SIEESY (31)
The last equation is not restricted to the case where we have a coherent superpodition)Mof
states belonging to the sarde If they belong to different/ states, all we have to do is replade

with (J; + J2)/2. The reciprocal to (31) can be written as

27

1 .
firvsarg =50 [ € 0(0.¢)de (32)
0

In practice, we almost always have the situation where valugswhen Sarvs v—n differs from
zero are small in comparison to the interval of all allow®f values. For most cases of practical
interest it makes the calculus of (31) rather simple.

Let us consider some examples of how to pass fifam,- to p (0, ¢) and to visualize in this
way the results of quantum calculations at the lafg@nit.

The simplest case is when we excite thaype molecular transition with light linearly polarized
along thez axis. In this case, only the diagonal elementsfgfy, differ from zero

2 M?
S = (Coato)” = T+ (33)

For details of the calculation of the density-matrix elements, see ref. 17.
For the example considered in (31) only one summand is left. If we replabg \/.J (J + 1) cos 0
according to (31), we immediately get

p(0,) = cos” 0 (34)

To this end, we do not even need to considerJar- oo transition. Expression (34) is a precise
result of (31) for any/ value! From the viewpoint of classical physics at a lafgbmit, this result
is of course obvious, see Sect. 2.1.
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As a further example, let us consider fjetype excitation without external fields at the geometry
where the polarization vector of the light is along thexis. We have then

1 2 2] _ J(J+1) - M
fum = 5 [(Cﬁ\gﬂ 1)+ (CoArr11-1) } - S 2J(J+1) &5
, \/(J2 - M2) [(J + 1) - M2
frsim—1 = fr—1me1 = 5051\1\2[1_—11 Oﬁ\\ﬁll - - 2J (J+1)
J(J+1) =M
B S e el 36
27 (J+1) (30)

The explicit expressions for the Clebse¢bordan coefficients can be found in refs. 1,8, and 9.
Inserting thesefy i (31), we get three summands allowing us to easily obtain

p (0, ) = sin? 0 sin? (37)

a result we already have in the pure classical approach, see (5) and (19)vwheld andws = 0.

In the same way, by considerinfi;,» elements in the presence of an external field (directed along
the z axis) in the geometry of the previous example, we obtain for the maetw@nsitionJ” — J’

(see ref. 1 (5.12))

11 / 2 ' 2
P = g | (@ a) + (GF) | (38)
1 L oy v—1 A7t
frv-1me1 v m§CJffM1—1CJ"MJ{1 (39)
1 1. o
fMyim—1 v =Cyhtt Cilty (40)

I+ in+1 WM -1 2

If we write war1am+1 = (Ep1 — Env+1) /5 in explicit form usingE),, formulas of the type (7) and
(21) or more complicated ones for special cases, after manipulations similar tanthtbgeprevious
example, we can obtain from quantum-mechanical calculaj¢fisy) dynamics in an external field
at theJ — oo limit. This method allows us to visualize the angular-momentum distribution.

It may seem that the approach in which we perform the transition fronfthg. description to
the p (6, p) description does not provide new results. As demonstrated in the previous sedtions, a
these results (at least in a case of a sinfple dependence o/ and external field) can be obtained
directly from the classical approach. However, this is not always the case. This will belprotres
last example.

Usually, when exciting the ensemble of particles with linearly polarized light we expecthinat t
fluorescence will also be linearly polarized, i.e., under different perturbations we expecttidiéy in
aligned ensemble (that can readily be illustrated by a double-pointed afew=-) of particles to
change the actual shape of its angular momentum distribution, but to remain aligned. Iwatter
no orientation (that may be illustrated by a single-pointed arrew) will occur.

However, there are some kind of perturbations, and among them an influence on the external
electric field, that can cause an alignment—orientation conversion. The conditions necessaryet
such a transition in general are analyzed in refs. 17 and 18.

The phenomenon itself is sometimes considered counterintuitive, afisicdse this is why it
is especially interesting to visualize the dependence(6f ¢) on the strength of an external field.

Let us consider once more the excitation of an ensemble of molecules in an kegtectic field
£ in the geometry of Fig.& This time, we consider th@-type absorption in theg — oo limit.
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Fig. 10. Alignment-orientation conversion caused by a quadratic Stark effeef = 0;2—x = 0.5;3—x = 2;
4—x=4;,5—x=8;6—x=o0.
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Using (28) and (29), the explicit form of the Clebsch—Gordan coefficients [1, 9], and mgplac
M with /J (J + 1) cos 8 for nonzero density-matrix elements in this limit, we get

1
fum = 1 (14 cos®6) (41)
1
1 1R — ———————sin2 42
fM;i’Mif :F4 1:|:ixcosesm o (42)
1 1 .
fusimer = n®¢ (43)

81 :I:z'2xc05981

wherey = 60p&?/T.
Now, we have all we need to accomplish the transitiop (6, ) according to (31). The result is

_ 1 2 1 sinp+xcosf cosp 1 .: 2 cos2p—2xcosfsin2p
p(0,¢) =1 (14 cos?6) — 1sin 20 s~ — 18I0 0T oy (44)

The expression looks rather complicated unless a figure is drawn that illustrates ditagtova
p (0, ) depends o or on the parametey, see Fig. 10. Note, that in this figure the projection from
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the end of they axis is depicted. It allows us to demonstrate the effect of the alignrogantation
transition most effectively.

In a Q-type absorption in the absence of an external field, the angular-momentum distrilsut
in the shape of a “dumb-bell” lying along a ligi#-vector; aty = 0, Fig. 10(1), we have a dumb-bell
lying in the yz plane and tilted by 45with respect to the axis.

We see that the initial alignment by an electric field is transformed into a strong oientat
(compare Figs. 10(1) and 10(3)). In Fig. 10(3), much more angular momentum is directed towards
the negativer-axis end than towards the positive end. However, by increasing the field further, the
orientation will again be destroyed.

The phenomenon can be easily explained from the classical model of the quadraticffétdrk e
see Sect. 3.1. We remember that the angular momentum with the positive and npgg#etions
on the direction of the electric field precesses in this field in the opposite direction. The initial
distribution of the angular momentum has a symmetry that leads to the situatiobothaends of
the dumb-bell precess in opposite directions and at some particular electric field value aeddirec
in the same direction, see Fig. 10(3). This is the creation of the orientdtitie @angular-momentum
distribution.

This effect can be used to produce molecules with a particular orientd®ma$ well as providing
a sensitive method to measure different intramolecular interactions [20, 21].

Another way how to connect the quantum-mechanical density métri%: to the classical prob-
ability densityp(6, ) is by using multipolar expansion. We can expafagy, over the irreducible
tensor operatorgy [1,15]

2J K
K=0Q= K

This is a simple way of accounting for the symmetry properties of the processebehzarticles
are undergoing.

The direct analogy of (45) in classical physics is expansiop(6f ) over spherical functions
YKQ

p(0, ) = (47) 1/22 Z (2K +1)"2 pfs (-1)? Y3 (6, ) (46)
K=0Q=—-K

It means that if we have calculated in the quantum-mechanical approach multipolar moments
fg for any particular problem in the limif — oo we can obtain a classical angular-momentum
distribution just by replacing the classical multipolar momepgsin expression (46) by the respective
quantum multipolar momenﬁg. This method with numerous examples is discussed in great detail
in refs. 1 and 2 and | will not go into further details here.

5. Concluding remarks

The aim of this paper was to examine the relationship between the classical and quasttiptides
of the angular-momentum distribution in an ensemble of particles.

As was demonstrated in this paper, there is more in common between the quantum and classical
descriptions of angular moments, than can be seen at first glance. In Sects. 2.2 danda® shown
that not only does the angular momentunprecess in an external field in classical physics, but we
can also associate it with a “precession” of the quantum-mechanical wave function in emalexte
field, which is related to specific changes of the wave-function phase on the actiba fiéld. The
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importance of the wave-function phase is stressed and some esaafipteherent superposition of
states are presented.

If we perform the transition to the classical limit in quantum mechanics binge/ — o in
quantum equations for angular momenta, then we can obtain not only the same values fabbbserv
signals, such as we get from classical physics, but also the angular-momentum distributiimm fianct
both cases evolve similarly. Using the method we have discussed we can obtain the evéliion o
distribution function in time as well as in space as a function of a stationary external fiatdtbtre

As an example, the interpretation of the Zeeman and Stark effects from the inéwpolassical
physics is presented and the influence of external magnetic and electric figbtistiie angular-
momentum distribution is discussed.

The method we describe to relate the quantum-mechanical density rfigtfix to the classical
angular-momentum distribution functignd, ©) helps one to better understand the results of quantum-
mechanical calculations. It can help to interpret the results in terms of angular-momemamicly
and to get a simple graphical explanation of the sometimes counterintuitive quantum resulis as w
demonstrated in the case of the alignmenientation transition.
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