
J. Appl. Phys. 124, 111101 (2018); https://doi.org/10.1063/1.5042413 124, 111101

© 2018 Author(s).

Tutorial: Brain-inspired computing using
phase-change memory devices
Cite as: J. Appl. Phys. 124, 111101 (2018); https://doi.org/10.1063/1.5042413
Submitted: 31 May 2018 • Accepted: 20 August 2018 • Published Online: 18 September 2018

Abu Sebastian, Manuel Le Gallo, Geoffrey W. Burr, et al.

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

A phase-change memory model for neuromorphic computing
Journal of Applied Physics 124, 152135 (2018); https://doi.org/10.1063/1.5042408

Challenges in materials and devices for resistive-switching-based neuromorphic computing
Journal of Applied Physics 124, 211101 (2018); https://doi.org/10.1063/1.5047800

A comprehensive review on emerging artificial neuromorphic devices
Applied Physics Reviews 7, 011312 (2020); https://doi.org/10.1063/1.5118217

https://images.scitation.org/redirect.spark?MID=176720&plid=1857431&setID=379065&channelID=0&CID=683627&banID=520741325&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6b7428f39f88a83c980d213bbba0a8ac3c995aa5&location=
https://doi.org/10.1063/1.5042413
https://aip.scitation.org/topic/collections/featured?SeriesKey=jap
https://doi.org/10.1063/1.5042413
https://aip.scitation.org/author/Sebastian%2C+Abu
http://orcid.org/0000-0003-1600-6151
https://aip.scitation.org/author/le+Gallo%2C+Manuel
http://orcid.org/0000-0001-5717-2549
https://aip.scitation.org/author/Burr%2C+Geoffrey+W
https://aip.scitation.org/topic/collections/featured?SeriesKey=jap
https://doi.org/10.1063/1.5042413
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5042413
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5042413&domain=aip.scitation.org&date_stamp=2018-09-18
https://aip.scitation.org/doi/10.1063/1.5042408
https://doi.org/10.1063/1.5042408
https://aip.scitation.org/doi/10.1063/1.5047800
https://doi.org/10.1063/1.5047800
https://aip.scitation.org/doi/10.1063/1.5118217
https://doi.org/10.1063/1.5118217

Tutorial: Brain-inspired computing using phase-change memory devices

Abu Sebastian,1 Manuel Le Gallo,1 Geoffrey W. Burr,2 Sangbum Kim,3 Matthew BrightSky,3

and Evangelos Eleftheriou1
1IBM Research–Zurich, S€aumerstrasse 4, 8803 R€uschlikon, Switzerland
2IBM Research–Almaden, 650 Harry Road, San Jose, California 95120, USA
3IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA

(Received 31 May 2018; accepted 20 August 2018; published online 18 September 2018)

There is a significant need to build efficient non-von Neumann computing systems for highly

data-centric artificial intelligence related applications. Brain-inspired computing is one such

approach that shows significant promise. Memory is expected to play a key role in this form of

computing and, in particular, phase-change memory (PCM), arguably the most advanced emerg-

ing non-volatile memory technology. Given a lack of comprehensive understanding of the work-

ing principles of the brain, brain-inspired computing is likely to be realized in multiple levels of

inspiration. In the first level of inspiration, the idea would be to build computing units where

memory and processing co-exist in some form. Computational memory is an example where the

physical attributes and the state dynamics of memory devices are exploited to perform certain

computational tasks in the memory itself with very high areal and energy efficiency. In a second

level of brain-inspired computing using PCM devices, one could design a co-processor compris-

ing multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks.

PCM technology could also play a key role in the space of specialized computing substrates for

spiking neural networks, and this can be viewed as the third level of brain-inspired computing

using these devices. VC 2018 Author(s). All article content, except where otherwise noted, is

licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/

licenses/by/4.0/). https://doi.org/10.1063/1.5042413

I. INTRODUCTION

We are on the cusp of a revolution in artificial intelli-

gence (AI) and cognitive computing. The computing systems

that run today’s AI algorithms are based on the von

Neumann architecture where large amounts of data need to

be shuttled back and forth at high speeds during the execu-

tion of these computational tasks (see Fig. 1). This creates a

performance bottleneck and also leads to significant area/

power inefficiency. Thus, it is becoming increasingly clear

that to build efficient cognitive computers, we need to transi-

tion to novel architectures where memory and processing are

better collocated. Brain-inspired computing is a key non-von

Neumann approach that is being actively researched. It is

natural to be drawn to the human brain for inspiration, a

remarkable engine of cognition that performs computation

on the order of peta-ops per joule thus providing an

“existence proof” for an ultralow power cognitive computer.

Unfortunately, we are still quite far from attaining a compre-

hensive understanding of how the brain computes. However,

we have uncovered certain salient features of this computing

system such as the collocation of memory and processing, a

computing fabric comprising large-scale networks of neu-

rons and plastic synapses and spike-based communication

and processing of information. Based on these insights, we

could begin to realize brain-inspired computing systems at

multiple levels of inspiration or abstraction.

In the brain, memory and processing are highly

entwined. Hence, the memory unit can be expected to play a

key role in brain-inspired computing systems. In particular,

very high-density, low-power, variable-state, programmable

and non-volatile memory devices could play a central role.

One such nanoscale memory device is phase-change memory

(PCM).1 PCM is based on the property of certain compounds

of Ge, Te, and Sb that exhibit drastically different electrical

characteristics depending on their atomic arrangement.2 In

the disordered amorphous phase, these materials have very

high resistivity, while in the ordered crystalline phase, they

have very low resistivity.

A PCM device consists of a nanometric volume of this

phase change material sandwiched between two electrodes.

A schematic illustration of a PCM device with a

“mushroom-type” device geometry is shown in Fig. 2(a).

The phase change material is in the crystalline phase in an

as-fabricated device. In a memory array, the PCM devices

are typically placed in series with an access device such as a

field effect transistor (FET) referred to as a 1T1R configura-

tion. When a current pulse of sufficiently high amplitude is

applied to the PCM device (typically referred to as the

RESET pulse), a significant portion of the phase change

material melts owing to Joule heating. The typical melting

temperature of phase-change materials is approx. 600 �C.

When the pulse is stopped abruptly so that temperature

inside the heated device drops rapidly, the molten material

quenches into the amorphous phase due to glass transition.

In the resulting RESET state, the device will be in a high

resistance state if the amorphous region blocks the bottom

electrode. A transmission electron micrograph of a PCM

0021-8979/2018/124(11)/111101/15 VC Author(s) 2018.124, 111101-1

JOURNAL OF APPLIED PHYSICS 124, 111101 (2018)

https://doi.org/10.1063/1.5042413
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5042413
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5042413&domain=pdf&date_stamp=2018-09-18

device in the RESET state is shown in Fig. 2(b). When a cur-

rent pulse (typically referred to as the SET pulse) is applied

to a PCM device in the RESET state, such that the tempera-

ture reached in the cell via Joule heating is high, but below

the melting temperature, a part of the amorphous region

crystallizes. The temperature that corresponds to the highest

rate of crystallization is typically �400 �C. In particular, if

the SET pulse induces complete crystallization, then the

device will be in a low resistance state. In this scenario, we

have a memory device that can store one bit of information.

The memory state can be read by biasing the device with a

small amplitude read voltage that does not disturb the phase-

configuration.

The first key property of PCM that enables brain-

inspired computing is its ability to achieve not just two levels

but a continuum of resistance or conductance values.3 This is

typically achieved by creating intermediate phase configura-

tions by the application of suitable partial RESET pulses.4,5

For example, in Fig. 3(a), it is shown how one can achieve a

continuum of resistance levels by the application of RESET

pulses with varying amplitude. The device is first pro-

grammed to the fully crystalline state. Thereafter, RESET

pulses are applied with progressively increasing amplitude.

The resistance is measured after the application of each

RESET pulse. It can be seen that the device resistance,

related to the size of the amorphous region (shown in red),

increases with increasing RESET current. The curve shown

in Fig. 3(a) is typically referred to as the programming curve.

The programming curve is usually bidirectional (can

increase as well as decrease the resistance by modulating the

programming current) and is typically employed when one

has to program a PCM device to a certain desired resistance

value. This is achieved through iterative programming by

applying several pulses in a closed-loop manner.5 The pro-

gramming curves are shown in terms of the programming

current due to the highly nonlinear I-V characteristics of the

PCM devices. A slight variation in the programming voltage

would result in large variations in the programming current.

For example, for the devices shown in Fig. 3, a voltage drop

across the PCM devices of 1.0 V corresponds to 100 lA and

1.2V corresponds to 500 lA. The latter results in a dissi-

pated power of 600 lW and the energy expended assuming a

pulse duration of 50 ns is 30 pJ. An additional consideration

is that the amorphous phase-change material has to undergo

FIG. 2. (a) Phase-change memory is based on the rapid and reversible phase transition of certain types of materials between crystalline and amorphous phases

by the application of suitable electrical pulses. (b) Transmission electron micrograph of a mushroom-type PCM device in a RESET state. It can be seen that

the bottom electrode is blocked by the amorphous phase.

FIG. 1. Most of the algorithms related

to artificial intelligence run on conven-

tional computing systems such as cen-

tral processing units (CPUs), graphical

processing units (GPUs) and field pro-

grammable gate arrays (FPGAs).

There is also significant recent interest

in application specific integrated cir-

cuits (ASICs). In all these computing

systems, the memory and processing

units are physically separated and

hence a significant amount of data

need to be shuttled back and forth dur-

ing computation. This creates a perfor-

mance bottleneck.

111101-2 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

threshold switching prior to being able to conduct such high

currents at such low voltage values.6,7 This could necessitate

voltage values of up to 2.5 V.

Even though it is possible to achieve a desired resistance

value through iterative programming, there are significant

temporal fluctuations associated with the resistance values

[see Fig. 3(b)]. For example, PCM devices exhibit significant

1/f noise behavior.8 There is also a temporal evolution of

resistance arising from a spontaneous structural relaxation of

the amorphous phase.9,10 The thermally activated nature of

electrical transport also leads to significant resistance

changes resulting from ambient temperature variations.11

The second key property that enables brain-inspired

computing is the accumulative behavior arising from the

crystallization dynamics.12 As shown in Fig. 3(c), one can

induce progressive reduction in the size of the amorphous

region (and hence the device resistance) by the successive

application of SET pulses with the same amplitude.

However, it is not possible to achieve a progressive increase

in the size of the amorphous region. Hence, the curve shown

in Fig. 3(c) typically referred to as the accumulation curve,

is unidirectional. The SET pulses typically consume less

energy (approx. 5 pJ) compared to the RESET pulses. As we

will see later on, it is often desirable to achieve a linear

increase in conductance as a function of the number of SET

pulses. However, as shown in Fig. 3(d), this desired behavior

is not what real devices tend to exhibit. It can also be seen

that there is significant cycle-to-cycle randomness associated

with the accumulation process attributed to the inherent sto-

chasticity associated with the crystallization process.13–15

In Secs. II–IV, we will describe how the multi-level

storage capability and the accumulative behavior can be

exploited for brain-inspired computing.

II. COMPUTATIONAL MEMORY

At a basic level, a key attribute of brain-inspired com-

puting is the co-location of memory and processing. It can

be shown that it is possible to perform in-place computation

with data stored in PCM devices. The essential idea is not to

treat memory as a passive storage entity, but to exploit the

physical attributes of the memory devices as described in

Sec. I, and thus realize computation exactly at the place

where the data are stored. We will refer to this first level of

inspiration as in-memory computing and refer to the memory

unit that performs in-memory computing as computational

memory (see Fig. 4). Several computational tasks such as

logical operations,16 arithmetic operations17,18 and even

FIG. 3. (a) Characteristic programming curves that show the achievable resistance values as a function of partial RESET pulses with varying amplitude. This

bi-directional curve is typically employed to achieve a desired resistance value using iterative programming. (b) Temporal fluctuations associated with the

resistance values due to structural relaxation of the amorphous phase as well as 1/f noise. (c) Characteristic accumulation curves that show the evolution of

resistance values as a function of the successive application of a SET pulse with the same amplitude. Due to the crystallization dynamics, there is a progressive

reduction in the size of the amorphous region and the resulting device resistance. (d) Illustration of the accumulative behavior where the progressive increase

in device conductance is depicted in a linear scale.

111101-3 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

certain machine learning tasks19 can be implemented in such

a computational memory unit.

One arithmetic operation that can be realized is matrix-

vector multiplication.20 As shown in Fig. 5(a), in order to

perform Ax ¼ b, the elements of A should be mapped linearly

to the conductance values of PCM devices organized in a

cross-bar configuration. The x values are encoded into the

amplitudes or durations of read voltages applied along the

rows. The positive and negative elements of A could be

coded on separate devices together with a subtraction circuit,

or negative vector elements could be applied as negative vol-

tages. The resulting currents along the columns will be pro-

portional to the result b. If inputs are encoded into durations,

the result b is the total charge (e.g., current integrated over

time). The property of the device that is used is the multi-

level storage capability as well as the Kirchhoff circuit laws:

Ohm’s law and Kirchhoff’s current law. The same cross-bar

configuration can be used to perform a matrix-vector multi-

plication with the transpose of A. For this, the input voltage

has to be applied to the column lines and the resulting cur-

rent has to be measured along the rows. Mapping of the

matrix elements to the conductance values of the resistive

memory device can be achieved via iterative programming

using the programming curve.5 Figure 5(b) shows an experi-

mental demonstration of a matrix-vector multiplication using

real PCM devices fabricated in the 90 nm technology node.

A is a 256� 256 Gaussian matrix coded in a PCM chip and x

is a 256-long Gaussian vector applied as voltages to the devi-

ces. It can be seen that the matrix-vector multiplication has a

precision comparable to that of 4-bit fixed point arithmetic.

This precision is mostly determined by the conductance fluc-

tuations discussed in Sec. I.

Compressed sensing and recovery is one of the applica-

tions that could benefit from a computational memory unit

that performs matrix-vector multiplications.21 The objective

behind compressed sensing is to acquire a large signal at a

sub-Nyquist sampling rate and subsequently reconstruct that

signal accurately. Unlike most other compression schemes,

sampling and compression are done simultaneously, with the

signal getting compressed as it is sampled. Such techniques

have widespread applications in the domains of medical imag-

ing, security systems, and camera sensors.22 The compressed

measurements can be thought of as a mapping of a signal x of

length N to a measurement vector y of length M<N. If this

process is linear, then it can be modeled by an M�N mea-

surement matrix M. The idea is to store this measurement

matrix in the computational memory unit, with PCM devices

organized in a cross-bar configuration [see Fig. 6(a)]. This

allows us to perform the compression in O(1) time complex-

ity. An approximate message passing algorithm (AMP) can be

used to recover the original signal from the compressed mea-

surements, using an iterative algorithm that involves several

matrix-vector multiplications on the very same measurement

matrix and its transpose. In this way, we can also use the same

matrix that was coded in the computational memory unit for

the reconstruction, reducing the reconstruction complexity

from O(MN) to O(N). An experimental illustration of com-

pressed sensing recovery in the context of image compression

is shown in Fig. 6(b). A 128� 128 pixel image was com-

pressed by 50% and recovered using the measurement matrix

elements encoded in a PCM array. The normalized mean

square error associated with the recovered signal is plotted as

a function of the number of iterations. A remarkable property

of AMP is that its convergence rate is independent of the pre-

cision of the matrix-vector multiplications. The lack of preci-

sion only results in a higher error floor, which may be

considered acceptable for many applications. Note that, in this

application, the measurement matrix remains fixed and hence

the property of PCM that is exploited is the multi-level storage

capability.

FIG. 4. “In-memory computing,” computation is performed in place by

exploiting the physical attributes of memory devices organized as a

“computational memory” unit. For example, if data A is stored in a computa-

tional memory unit and if we would like to perform f(A), then it is not

required to bring A to the processing unit. This saves energy and time that

would have to be spent in the case of conventional computing system and

memory unit. Adapted from Ref. 19.

FIG. 5. (a) Matrix-vector multiplication can be performed with O(1) com-

plexity by organizing PCM devices in a cross-bar configuration. (b)

Experimental demonstration of the concept using PCM devices fabricated in

the 90 nm technology node.

111101-4 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

Another interesting demonstration of in-memory com-

puting is that of unsupervised learning of temporal correla-

tions between binary stochastic processes.19 This problem

arises in a variety of fields from finance to life sciences.

Here, we exploit the accumulative behavior of the PCM

devices. Each process is assigned to a PCM device as shown

in Fig. 7(a). Whenever the process takes the value 1, a SET

pulse is applied to the device. The amplitude of the SET

pulse is chosen to be proportional to the instantaneous sum

of all processes. With this procedure, it can be seen that the

devices which are interfaced to the processes that are tempo-

rally correlated will go to a high conductance value. The

simplicity of this approach belies the fact that a rather intri-

cate operation of finding the sum of the elements of an

uncentered covariance matrix is performed, using the accu-

mulative behavior of the PCM devices. An experimental

demonstration of the learning algorithm is presented involv-

ing a million pixels that are turning on and off, representing

a million binary stochastic processes. Some of the pixels turn

on and off with a weak correlation of c¼ 0.01, and the over-

all objective is to find them. Each pixel is assigned to a cor-

responding PCM device and the algorithm is executed as

described earlier. It can be seen that after a certain period of

time, the PCM devices associated with the correlated pro-

cesses progress towards a high conductance value. This way,

just by reading back the conductance values, we can

decipher which of the binary random processes are tempo-

rally correlated [Fig. 7(b)]. The computation is massively

parallel, with the final result of the computation imprinted

onto the PCM devices. The reduction in computational time

complexity is from O(N) to Oðk logðNÞÞ, where k is a small

constant and N is the number of data streams. A detailed

system-level comparative study with respect to state-of-the-

art computing hardware was also performed.19 Various

implementations were compiled and executed on an IBM

Power System S822LC system with 2 Power8 central proc-

essing units (CPUs) (each comprising 10 cores) and 4 Nvidia

Tesla P100 graphical processing units (GPUs) attached using

the NVLink Interface. A multi-threaded implementation was

designed that can leverage the massive parallelism offered

by the GPUs, as well as a scale out implementation that runs

across several GPUs. For the PCM, a write latency of 100 ns

and a programming energy of 1.5 pJ were assumed for each

SET operation. It was shown that using such a computational

memory module, it is possible to accelerate the task of corre-

lation detection by a factor of 200 relative to an implementa-

tion that uses 4 state-of-the-art GPU devices. Moreover,

power profiling of the GPU implementation indicates that

the improvement in energy consumption is over two orders

of magnitude.

The compressed sensing recovery and unsupervised

learning of temporal patterns are two applications that

FIG. 6. (a) Compressed sensing involves one matrix-vector multiplication. Data recovery is performed via an iterative scheme, using several matrix-vector

multiplications on the very same measurement matrix and its transpose. (b) An experimental illustration of compressed sensing recovery in the context of

image compression is presented, showing 50% compression of a 128� 128 pixel image. Adapted from Ref. 21. The normalized mean square error (NMSE)

associated with the reconstructed signal is plotted against the number of iterations.

111101-5 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

clearly demonstrate the potential of PCM-based computa-

tional memory in tackling certain data-centric computational

tasks. The former exploits the multi-level storage capability,

whereas the latter mostly relies on the accumulative behav-

ior. However, one key challenge associated with computa-

tional memory is the lack of high precision. Even though

approximate solutions are sufficient for many computational

tasks in the domain of AI, there are some applications that

require that the solutions are obtained with arbitrarily high

accuracy. Fortunately, many such computational tasks can

be formulated as a sequence of two distinct parts. In the first

part, an approximate solution is obtained; in the second part,

the resulting error in the overall objective is calculated accu-

rately. Then, based on this, the approximate solution is

refined by repeating the first part. Step I typically has a high

computational load, whereas Step II has a light computa-

tional load. This forms the foundation for the concept of

mixed-precision in-memory computing: the use of a compu-

tational memory unit in conjunction with a high-precision

von Neumann machine.23 The low-precision computational

memory unit can be used to obtain an approximate solution

as discussed earlier. The high-precision von Neumann

machine can be used to calculate the error precisely. The

bulk of the computation is still realized in computational

memory, and hence we still achieve significant areal/power/

speed improvements while addressing the key challenge of

imprecision associated with computational memory).

A practical application of mixed-precision in-memory

computing is that of solving systems of linear equations (if

Ax ¼ b, find x). As shown in Fig. 8(a), an initial solution is

chosen as a starting point and is then iteratively updated

based on a low-precision error-correction term, z. This error-

correction term is computed by solving Az ¼ r with an inex-

act inner solver, using the residual r¼ b � Ax calculated

with high precision. The matrix multiplications in the inner

solver are performed inexactly using computational memory.

The algorithm runs until the norm of the residual falls below

a desired pre-defined tolerance, tol. An experimental demon-

stration of this concept using model covariance matrices is

shown in Fig. 8(b). The model covariance matrices exhibit a

decaying behavior that simulates the decreasing correlation

of features away from the main diagonal. The matrix multi-

plications in the inner solver are performed using PCM

devices. The norm of the error between the estimated solu-

tion and the actual solution is plotted against the number of

iterative refinements. It can be seen that for all matrix

dimensions, the accuracy is not limited by the precision of

the computational memory unit. Several system-level

measurements using Power 8 CPUs and P100 GPUs serving

as the high-precision processing unit showed that up to

6.8� improvements in time/energy to solution can be

achieved for large matrices. Moreover, this gain can increase

to more than one order of magnitude for more accurate com-

putational memory units.

Computational memory can be viewed as a natural

extension of conventional memory units, either in a system-

on-a-chip (SoC) or as a stand-alone module. The objective of

such a unit is to perform certain relatively generic

FIG. 7. (a) By interfacing binary random processes to PCM devices, it is possible to learn the temporal correlations between the processes in an unsupervised

manner. (b) Experimental demonstration of the concept using a million PCM devices.19 The result of the computation is imprinted as conductance values in

the memory array.

111101-6 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

computational primitives in place with remarkably high effi-

ciency, but in conjunction with the other components of a

computing system. In Secs. III and IV, we discuss non-von

Neumann co-processors realized based on an underlying

neural network framework.

III. DEEP LEARNING CO-PROCESSORS

Recently, deep artificial neural networks have shown

remarkable human-like performance in tasks such as image

processing and voice recognition. Deep neural networks are

loosely inspired by biological neural networks. Parallel proc-

essing units called neurons are interconnected by plastic syn-

apses. By tuning the weights of these interconnections, these

networks are able to solve certain problems remarkably well.

The training of these networks is based on a global super-

vised learning algorithm typically referred to as back-

propagation. During the training phase, the input data are

forward-propagated through the neuron layers with the syn-

aptic networks performing multiply-accumulate operations.

The final layer responses are compared with input data labels

and the errors are back-propagated. Both steps involve

sequences of matrix-vector multiplications. Subsequently,

the synaptic weights are updated to reduce the error. Because

of the need to repeatedly show very large datasets to very

large neural networks, this brute force optimization approach

can take multiple days or weeks to train state-of-the-art net-

works on von Neumann machines.

The mixed-precision in-memory computing concept can

be extended to the problem of training deep neural networks,

where a computational memory unit is used to perform the

forward and backward passes, while the weight changes are

accumulated in high precision.26 However, one could also

envisage a co-processor comprising multiple cross-bar arrays

of PCM devices and other analog communication links and

peripheral circuitry to accelerate all steps of deep learning.24

This could be viewed as a second level of brain-inspired

computing using PCM devices. The essential idea is to repre-

sent the synaptic weights associated with each layer in terms

of the conductance values of PCM devices organized in a

cross-bar configuration. There will be multiple such cross-

bar arrays corresponding to the multiple layers of the neural

network. Such a co-processor also comprises the necessary

peripheral circuitry to implement the neuronal activation

functions and communication between the cross-bar arrays.

This deep learning co-processor concept is best illus-

trated with the help of an example. Let us consider the prob-

lem of training a neural network to classify handwritten

digits based on the MNIST dataset. As shown in Fig. 9, a

network with two fully connected synaptic layers is chosen.

FIG. 8. (a) Mixed-precision in-memory computing architecture to solve systems of linear equations. (b) Experimental demonstration of the concept using

model covariance matrices.23

111101-7 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

The number of neurons in the input, hidden and output layers

is 784, 250, and 10, respectively. The synaptic weights asso-

ciated with the two layers are stored in two different cross-

bar arrays. The matrix-vector multiplications associated with

the forward and backward passes can be implemented effi-

ciently in O(1) complexity as described earlier. It is also pos-

sible to induce the synaptic weight changes in O(1)

complexity by exploiting the cross-bar topology. Figure

10(a) shows the training and test accuracies corresponding to

a mixed hardware/software demonstration of this concept.

The test accuracy of 82.9% demonstrated here is not

particularly high, which can be attributed to the non-

idealities of the PCM devices discussed in Sec. I. The most

critical device requirement for backpropagation training is

the need for symmetric weight update. If the algorithm

increases (decreases) some given weight within the neural

network, and then later requests a counteracting decrease

(increase) of that same weight, those two separate conduc-

tance programming events must cancel on average.24,27

Unfortunately, the nonlinearity associated with the accumu-

lative behavior creates a consistent bias.24 In a recent experi-

ment, compact “3T1C” circuit structures that combine 3

transistors with 1 capacitor greatly increased the linearity

and the granularity of the weight update, allowing PCM

devices to be used for the non-volatile storage of weight data

transferred from the 3T1C structures.25 Since this weight-

transfer process is performed via iterative programming, the

programming accuracy of weights no longer depends on

PCM conductance nonlinearity or device-to-device variabil-

ity, although it is still affected by the inherent stochasticity

and conductance fluctuations. In spite of using the same

PCM devices used in the 2014 experiment, the classification

accuracy was shown to increase the accuracy of the mixed-

hardware-software experiment to software-equivalent levels

[see Figs. 10(b) and 10(c)].

A proposed chip architecture for such a co-processor is

shown in Fig. 11. The architecture is composed of a large

number of identical array-blocks connected by a flexible

routing network. Each array-block here represents a large

PCM device array. A flexible routing network has three

tasks: (1) to convey chip inputs (such as example data, exam-

ple labels, and weight overrides) from the edge of the chip to

the device arrays, (2) to carry chip outputs (such as inferred

classifications and updated weights) from the arrays to the

edge of the chip, and (3) to interconnect various arrays in

order to implement multi-layer neural networks. Each array

has input neurons (here shown on the “West” side of each

array) and output neurons (“South” side), connected with a

FIG. 9. (a) A prototypical two-layer neural network to classify handwritten digits based on the MNIST dataset. (b) The matrix-vector multiplications associated

with the forward pass can be implemented with O(1) complexity. (c) The backward pass involves a multiplication with the transpose of the matrix representing

the synaptic weights, which can be realized with O(1) complexity. (d) The synaptic weight update can also be achieved in place in O(1) time complexity.

111101-8 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

dense grid of synaptic connections. Peripheral circuitry is

divided into circuitry assigned to individual rows and col-

umns, circuitry shared between a number of neighboring

rows and columns, and support circuitry. Power estimations

for device arrays and the requisite analog peripheral circuitry

project power per DNN training example as low as 44 mW,

for a computational energy efficiency of 28 065 Giga-

Operations per second per Watt (GOP/s/W) and a through-

put-per-unit-area of 3.6 Tera-Operations per second per

square millimeter (TOP/s/mm2) � 280� and 100� better

than the most recent GPU models, respectively.25

The next steps will be to design, implement and refine

these analog techniques on prototype PCM-based hardware

accelerators and to demonstrate software-equivalent training

accuracies on larger networks. Since the most efficient map-

ping offered by crossbar arrays of PCM or other analog

memory devices is to large, fully connected neural network

layers, one suitable class of networks is recurrently con-

nected Long Short Term Memory (LSTM)29 and Gated

Recurrent Unit (GRU)30 networks behind recent advances in

machine translation, captioning and text analytics.

IV. SPIKING NEURAL NETWORKS

Despite our ability to train deep neural networks with

brute-force optimization, the computational principles of

neural networks remain poorly understood. Hence, signifi-

cant research is aimed at unravelling the principles of com-

putation in large biological neural networks and, in

particular, biologically plausible spiking neural networks

(SNNs). In biological neurons, a thin lipid-bilayer membrane

separates the electrical charge inside the cell from that out-

side it. This allows an equilibrium membrane potential to be

maintained in conjunction with several electrochemical

FIG. 10. (a) A mixed hardware/software demonstration of the concept of training deep neural networks using PCM devices. The training and test accuracies as

a function of the number of training epochs are shown.24 (b) and (c) The classification accuracy is shown to increase the accuracy of the mixed-hardware-soft-

ware experiment to software-equivalent levels with the use of a “3T1C” circuit structure in conjunction with the PCM devices,25 both for (b) MNIST handwrit-

ten digits and for (c) transfer learning experiments involving CIFAR-10 and CIFAR-100 datasets.

111101-9 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

mechanisms. However, this membrane potential could be

changed by the excitatory and inhibitory input signals

through the dendrites of the neuron. Upon sufficient excita-

tion, an action potential is generated, referred to as neuronal

firing or spike generation. The neurons pass this firing infor-

mation to other neurons through synapses. There are two key

attributes associated with these synapses: synaptic efficacy

and synaptic plasticity. Let us consider two such neurons

connected to each other via synaptic connections [see Fig.

12(a)]. Synaptic efficacy refers to the generation of a synap-

tic output based on the incoming neuronal activation and is

indicative of the strength of the connection between the two

neurons denoted by the synaptic weight. For example, in

response to a pre-synaptic neuronal spike, a postsynaptic

potential is generated and then serves as an input to a den-

drite of the post-synaptic neuron. Synaptic plasticity, in con-

trast, is the ability of the synapse to change its weight,

typically in response to the pre- and post-synaptic neuronal

spike activity. A well-known plasticity mechanism is spike-

time-dependent plasticity (STDP), where synaptic weights

are changed depending on the relative timing between the

spike activity of the input (pre-synaptic) and output (post-

synaptic) neurons [see Fig. 12(b)].

Highly specialized computational platforms are required

to realize these neuronal and synaptic dynamics and their

interconnections in an efficient manner. Most of the efforts

in building such computational substrates to date are based

on digital and analog CMOS circuitry.32–37 In 2014, IBM

presented a million spiking-neuron chip with a scalable com-

munication network and an interface.33 The chip, TrueNorth,

has 5.4 � 109 transistors, 4096 neuro-synaptic cores and 256

� 106 configurable synapses. However, this chip does not

perform in-situ learning. An alternate approach is to exploit

the subthreshold MOSFET characteristics to directly emulate

the biophysics of neural systems.35 In particular, this can be

achieved by using field-effect transistors (FETs) operated in

the analog weak-inversion or “subthreshold” domain. These

naturally exhibit exponential relationships in their transfer

functions, similar to the exponential dependencies observed

in the conductance of sodium and potassium channels of bio-

logical neurons.

PCM devices could also play a key role in the space of

specialized computing substrates for SNNs. This can be

viewed as a third level of brain-inspired computing using

these devices. A particularly interesting application is in the

emulation of neuronal and synaptic dynamics. The essential

idea of phase-change neurons is to realize the neuronal

dynamics using the accumulative behavior resulting from the

crystallization dynamics.38 The internal state of the neuron is

represented in terms of the phase configuration of the PCM

device (see Fig. 13). By translating the neuronal input signals

into appropriate electrical signals, it is possible to tune the

firing frequency in a highly controllable manner proportional

to the strength of the input signals.

FIG. 11. A proposed chip architecture for a co-processor for deep learning based on PCM arrays.28

111101-10 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

In addition to the deterministic neuronal dynamics, sto-

chastic neuronal dynamics also play a key role in signal

encoding and transmission in biological neural networks.

The use of neuronal populations to represent and transmit

sensory and motor signals is one prominent example. The

stochastic neuronal dynamics is attributed to a number of

complex phenomena, such as ionic conductance noise, cha-

otic motion of charge carriers due to thermal noise, inter-

neuron morphologic variabilities, and other background

noise.39 It has been shown that emulating this stochastic fir-

ing behavior within artificial neurons could enable intriguing

functionality.40 Tuma et al. showed that neuronal realiza-

tions using PCM devices exhibit significant interneuronal as

well as intra-neuronal randomness, thus mimicking this sto-

chastic neuronal behavior at the device level. The intra-

neuronal stochasticity arises from the randomness associated

with the accumulative behavior as discussed in Sec. I. This

causes multiple integrate and-fire cycles in a single phase-

change neuron to generate a distribution of interspike inter-

vals, thus enabling population-based computation. Fast

signals were demonstrated to be accurately represented by

overall neuron population, despite the rather slow firing rate

of the individual neurons.38

The ability to alter the conductance levels in a controlla-

ble way makes PCM devices particularly well-suited for syn-

aptic realizations. The synaptic weights can be represented

in terms of the conductance states of PCM devices. Synaptic

efficacy can be emulated by biasing the devices with a suit-

able voltage signal initiated by a pre-synaptic neuronal spike.

The resulting read current could represent the post-synaptic

potential, which in turn can be propagated to the post-

synaptic neurons. It is also possible to emulate synaptic

plasticity in a very elegant manner. For example, in one

implementation of STDP, the pre-synaptic neuronal spike

initiates a sequence of pulses with varying amplitude and the

post-synaptic neuronal spike initiates a single pulse with

opposite polarity [see Fig. 14(a)]. The pulse amplitudes are

chosen such that the PCM devices are programmed when the

pulse corresponding to the post-synaptic neuronal spike

overlaps with one of the pulses corresponding to the pre-

synaptic neuronal spike and depending on the relative time

difference between the spikes, the PCM device conductance

is increased or decreased.42 With the access transistor play-

ing a more active role, the STDP rule can be implemented

more efficiently [see Fig. 14(b)]. In this realization, the pre-

synaptic neuronal spike initiates a voltage pulse applied to

the gate of the transistor and the post-synaptic neuronal spike

initiates a pulse applied to the top electrode of the PCM

device. The shape of the pulse waveform is chosen such that

it implements the desired STDP rule. The FET only permits

programming (and the associated energy consumption) dur-

ing the brief overlap between the two signals.43 However, a

significant drawback of a single PCM-based synapse is that

it is not possible to progressively depress as was discussed in

Sec. I. The solution is to realize a single synapse using two

PCM devices organized in a differential configuration.44

Here, one PCM device realizes the long-term synaptic poten-

tiation (LTP), while the other helps to realize the long-term

synaptic depression (LTD) [see Fig. 14(c)]. Both LTP and

LTD devices receive potentiating pulses and the currents

flowing through the LTD PCM is subtracted from that flow-

ing through the LTP PCM in the post-synaptic neuron. When

the devices are saturated or when they reach their minimum

resistance value, they have to be periodically reset and

reprogrammed. More recently, it was shown that the two key

synaptic attributes of efficacy and plasticity can be efficiently

realized using a unit comprising 1 PCM device and 2 transis-

tors (see Fig. 15). This is achieved by turning ON the appro-

priate transistor as well as the application of suitable

electrical pulses. A neuromorphic core comprising 64 000

such synaptic elements was also fabricated.41 A top-level

schematic is shown in Fig. 15(b).

A single PCM neuron can be interfaced with several

PCM synapses to realize simple all-PCM neural networks

that can detect spatio-temporal patterns in an unsupervised

manner.38,46–48 The input is fed as a sequence of spikes and

a local STDP learning rule is implemented at the synaptic

level. The single neuron based neural networks can be

extended to multiple neurons. With an additional winner-

take-all (WTA) mechanism, pattern classification tasks can

be performed in an unsupervised manner.49 We present an

example where such a network is used to classify handwrit-

ten digit database.45 The task is identical to that described in

Sec. III, but in this case, the classification task is performed

in an unsupervised manner. A local learning rule is

employed as opposed to the global backpropagation algo-

rithm. The network consists of a single layer with all-to-all

synaptic connections as shown in Fig. 16(a). There are 50

output neurons, nj, implementing the leaky integrate-and-fire

FIG. 12. (a) Schematic illustration of a synaptic connection and the corre-

sponding pre- and post-synaptic neurons. The synaptic connection strength-

ens or weakens based on the spike activity of these neurons; a process

referred to as synaptic plasticity. (b) A well-known plasticity mechanism is

spike-time-dependent plasticity (STDP), leading to weight changes that

depend on the relative timing between the pre- and post-synaptic neuronal

spike activities. Adapted from Ref. 31.

111101-11 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

model. These neurons are interfaced to the synaptic elements

that receive as input patterns consisting of 28� 28 pixel

grayscale images that are presented to the network using a

rate-encoding scheme. Specifically, the pixel intensity is lin-

early mapped to a frequency which serves as the mean fre-

quency of a random Poisson process to generate the input

spikes, xi. There are two steps associated with the learning

task. In the first step, the network clusters the inputs in an

unsupervised way with each neuron responsible for one clus-

ter. In the second step, every cluster is assigned to one of the

digit classes using the appropriate labels. In the first step, a

winner-take-all (WTA) mechanism is employed to introduce

competition among the output neurons. The WTA scheme

selects one winning neuron among all the neurons that cross

the firing threshold based on the difference between the

respective membrane potential and the firing threshold.

Moreover, the threshold voltages are adapted to their respec-

tive stimuli using homeostasis to ensure that all the neurons

participate in the learning process. A modified STDP algo-

rithm is used for the learning. Two time windows defined as

FIG. 14. (a) Two synaptic elements, each comprising a PCM device and a transistor. The transistor just serves as a switch in this configuration. To implement

STDP, the pre-synaptic neuronal spike initiates a sequence of pulses with varying amplitude and the post-synaptic neuronal spike initiates a single pulse with

opposite polarity. (b) Two synaptic elements, each comprising a PCM device and a transistor. In this configuration, the transistor plays an active role in the

realization of synaptic plasticity. The pre-synaptic neuronal spike initiates a voltage pulse applied to the gate of the transistor and the post-synaptic neuronal

spike initiates a pulse applied to the top electrode of the PCM device. (c) A synaptic element comprising two PCM devices organized in a differential

configuration.

FIG. 13. PCM devices can be used to

emulate the neuronal dynamics.38 The

phase configuration within the PCM

device is used to represent the internal

state of the neuron.

111101-12 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

FIG. 15. (a) Synaptic efficacy and plas-

ticity can be realized very efficiently

using a synaptic element comprising 1

PCM device and two transistors. (b) A

neuromorphic core comprising 64000

such synaptic elements.41

FIG. 16. (a) A spiking neural network

architecture for unsupervised learning

of handwritten digits. (b) Schematic

illustration of the modified STDP rule.

(c) The synaptic weight map corre-

sponding to the 50 output neurons as

stored in the PCM-based synapses

through the unsupervised learning

scheme.45

111101-13 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

dTpot and dTdep are shown in Fig. 16(b). When an output neu-

ron nj spikes at a time instant, tj, the corresponding synaptic

weights are modified depending on the time, ti of their last

input spike. If tj � ti < dTpot, the synapse wji gets potenti-

ated. In the case, where tj � ti > dTdep, the synapse gets

depressed. In all other cases, the synaptic weight remains

unchanged. This network was implemented experimentally

where PCM devices are used to implement the synapses (2

PCM devices in a differential configuration to denote one

synapse), while the learning rule and the neurons were emu-

lated in software. The synaptic weight map corresponding to

the 50 output neurons are shown in Fig. 16(c). This experi-

ment achieved a test accuracy of 68.14%, which is quite

remarkable given that this is an unsupervised learning task

and real PCM devices were used to represent the synaptic

weights.

It is widely believed that because of the added temporal

dimension, SNNs should be computationally more power-

ful.50,51 The asynchronous nature of computation also makes

them particularly attractive for temporarily sparse data.

However, a killer application that transcends conventional

deep learning as well as a robust scalable global training

algorithm that can harness the local SNN learning rules are

still lacking. Hence, algorithmic exploration has to go hand-

in-hand with advances in the hardware front. For example,

there are recent results that show that one could learn effi-

ciently from multi-timescale data with the addition of a short

term plasticity rule to STDP.52,53

V. DISCUSSION AND OUTLOOK

The brain-inspired computing schemes described so far

are expected to reduce the time, energy and area required to

arrive at a solution for a number of AI-related applications.

System-level studies show that even with today’s PCM tech-

nology, we can achieve significantly higher performance

compared to conventional approaches.23 There are also

strong indications that this performance improvement will be

substantially higher with future generations of PCM devices.

Phase-change materials are known to undergo reversible

phase transition down to nanoscale dimensions with substan-

tially lower power.54 Reducing the programming current will

also help reduce the size of the access device in the case of

1T1R configurations. However, circuit-level aspects such as

the voltage drop across the long wires connecting the devices

could still limit the achievable areal density. There are also

phase-change materials that can undergo phase transition on

the order of nanoseconds.55 This could significantly increase

the efficiency and the performance of PCM-based computing

systems. Moreover, the retention time, which is a key

requirement for the traditional memory application is not so

critical for several computing applications and this could

enable the exploration of new material classes. For example,

it was recently shown that single elemental antimony could

be melt-quenched to form a stable amorphous state at room

temperature.56

However, there are also numerous roadblocks associated

with using PCM devices for computational purposes. One

key challenge applicable to almost all the applications in

brain-inspired computing is the variation in conductance val-

ues arising from 1/f noise as well as structural relaxation of

the melt-quenched amorphous phase. There are also

temperature-induced conductance variations. One very

promising research avenue towards addressing this challenge

is that of projected phase-change memory.57,58 These devices

provide a shunt path for read current to bypass the amor-

phous phase-change material. Another challenge is the lim-

ited endurance of PCM devices (the number of times the

PCM devices can be SET and RESET), which is relatively

high (approx. 109–1012),59 but may not be adequate for cer-

tain computational applications. The non-linearity and sto-

chasticity associated with the accumulative behavior are key

challenges, in particular, for applications involving in-situ

learning. Multi-PCM architectures could partially address

these challenges.60 However, more research in terms of

device geometries and randomness associated with crystal

growth is required.

We conclude with an outlook towards the adoption of

PCM-based computing systems in future AI hardware.

Current research on AI hardware is mostly centered around

conventional von Neumann architecture. The overarching

objective is to minimize the time and distance to memory

access so that the von Neumann bottleneck is alleviated to a

large extent. One approach is to improve the memory/storage

hierarchy by introducing new types of memory such as stor-

age class memory.61,62 Near-memory computing is another

approach where CMOS processing units are placed in close

proximity to the memory unit.63 There is also significant

research activity in the space of custom ASICs (highly

power/area optimized) for various AI applications, in partic-

ular, deep learning.64 Unlike all these research efforts, the

computational approaches presented in this tutorial are dis-

tinctly non-von Neumann in nature. By augmenting conven-

tional computing systems, these systems could help achieve

orders of magnitude improvement in performance and effi-

ciency. In summary, we believe that we will see two stages

of innovations that take us from the near term, where the AI

accelerators are built with conventional CMOS, towards a

period of innovation involving the computational approaches

presented in this article.

ACKNOWLEDGMENTS

We acknowledge the contributions of our colleagues, in

particular, Angeliki Pantazi, Giovanni Cherubini, Stanislaw

Wozniak, Timoleon Moraitis, Irem Boybat, S. R. Nandakumar,

Wanki Kim, Pritish Narayanan, Robert M. Shelby, Stefano

Ambrogio, and Hsinyu Tsai. A.S. would like to acknowledge

funding from the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation

programme (Grant Agreement No. 682675).

1G. W. Burr et al., IEEE J. Emerging Sel. Top. Circuits Syst. 6, 146 (2016).
2S. Raoux, D. Ielmini, M. Wuttig, and I. Karpov, MRS Bull. 37, 118

(2012).
3N. Papandreou, A. Pantazi, A. Sebastian, M. Breitwisch, C. Lam, H.

Pozidis, and E. Eleftheriou, in International Conference on Electronics,

Circuits, and Systems (ICECS) (IEEE, 2010), pp. 1017–1020.
4N. Papandreou, A. Pantazi, A. Sebastian, E. Eleftheriou, M. Breitwisch, C.

Lam, and H. Pozidis, Solid-State Electron. 54, 991 (2010).

111101-14 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

https://doi.org/10.1109/JETCAS.2016.2547718
https://doi.org/10.1557/mrs.2011.357
https://doi.org/10.1016/j.sse.2010.04.020

5N. Papandreou, H. Pozidis, A. Pantazi, A. Sebastian, M. Breitwisch, C.

Lam, and E. Eleftheriou, in International Symposium on Circuits and

Systems (ISCAS) (IEEE, 2011), pp. 329–332.
6D. Ielmini, Phys. Rev. B 78, 035308 (2008).
7M. Le Gallo, A. Athmanathan, D. Krebs, and A. Sebastian, J. Appl. Phys.

119, 025704 (2016).
8M. Nardone, V. Kozub, I. Karpov, and V. Karpov, Phys. Rev. B 79,

165206 (2009).
9I. V. Karpov et al., J. Appl. Phys. 102, 124503 (2007).
10M. Le Gallo, D. Krebs, F. Zipoli, M. Salinga, and A. Sebastian, Adv.

Electron. Mater. (published online 2018).
11M. Le Gallo, M. Kaes, A. Sebastian, and D. Krebs, New J. Phys. 17,

093035 (2015).
12A. Sebastian, M. Le Gallo, and D. Krebs, Nat. Commun. 5, 4314 (2014).
13M. Le Gallo, T. Tuma, F. Zipoli, A. Sebastian, and E. Eleftheriou, in

European Solid-State Device Research Conference (ESSDERC) (IEEE,

2016), pp. 373–376.
14I. Boybat, M. L. Gallo, T. Moraitis, Y. Leblebici, A. Sebastian, and E.

Eleftheriou, in 2017 13th Conference on Ph. D. Research in

Microelectronics and Electronics (PRIME) (IEEE, 2017), pp. 13–16.
15N. Gong, T. Id�e, S. Kim, I. Boybat, A. Sebastian, V. Narayanan, and T.

Ando, Nat. Commun. 9, 2102 (2018).
16M. Cassinerio, N. Ciocchini, and D. Ielmini, Adv. Mater. 25, 5975

(2013).
17C. D. Wright, P. Hosseini, and J. A. V. Diosdado, Adv. Funct. Mater. 23,

2248 (2013).
18P. Hosseini, A. Sebastian, N. Papandreou, C. D. Wright, and H.

Bhaskaran, IEEE Electron Device Lett. 36, 975 (2015).
19A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell,

and E. Eleftheriou, Nat. Commun. 8, 1115 (2017).
20G. W. Burr et al., Adv. Phys. X 2, 89 (2017).
21M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou, in

International Electron Devices Meeting (IEDM) (IEEE, 2017), pp. 28–23.
22S. Qaisar, R. M. Bilal, W. Iqbal, M. Naureen, and S. Lee, J. Commun.

Networks 15, 443 (2013).
23M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma, C.

Bekas, A. Curioni, and E. Eleftheriou, Nat. Electron. 1, 246–253 (2018).
24G. W. Burr et al., IEEE Trans. Electron Devices 62, 3498 (2015).
25S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Nolfo, S.

Sidler, M. Giordano, M. Bodini, N. C. Farinha et al., Nature 558, 60

(2018).
26S. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian, and

E. Eleftheriou, in International Symposium on Circuits and Systems

(ISCAS) (IEEE, 2018), pp. 1–5.
27T. Gokmen and Y. Vlasov, Front. Neurosci. 10, 333 (2016).
28P. Narayanan, A. Fumarola, L. Sanches, K. Hosokawa, S. Lewis, R.

Shelby, and G. Burr, IBM J. Res. Dev. 61, 1 (2017).
29S. Hochreiter and J. Schmidhuber, Neural Comput. 9, 1735 (1997).
30J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, in International

Conference on Machine Learning (2015), pp. 2067–2075.
31G.-Q. Bi and M.-M. Poo, J. Neurosci. 18, 10464 (1998).
32B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R.

Chandrasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A.

Merolla, and K. Boahen, Proc. IEEE 102, 699 (2014).
33P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F.

Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., Science

345, 668 (2014).
34S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, Proc. IEEE 102,

652 (2014).
35G. Indiveri and S.-C. Liu, Proc. IEEE 103, 1379 (2015).
36K. Meier, in International Electron Devices Meeting (IEDM) (IEEE,

2015), pp. 4–6.

37M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G.

Dimou, P. Joshi, N. Imam, S. Jain et al., IEEE Micro 38, 82 (2018).
38T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou, Nat.

Nanotechnol. 11, 693 (2016).
39B. B. Averbeck, P. E. Latham, and A. Pouget, Nat. Rev. Neurosci. 7, 358

(2006).
40W. Maass, Proc. IEEE 103, 2219 (2015).
41S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G.

Burr, N. Sosa, A. Ray et al., in International Electron Devices Meeting

(IEDM) (IEEE, 2015), pp. 17–11.
42D. Kuzum, R. G. Jeyasingh, B. Lee, and H.-S. P. Wong, Nano Lett. 12,

2179 (2012).
43B. L. Jackson, B. Rajendran, G. S. Corrado, M. Breitwisch, G. W. Burr, R.

Cheek, K. Gopalakrishnan, S. Raoux, C. T. Rettner, A. Padilla et al., ACM

J. Emerging Technol. Comput. Syst. (JETC) 9, 12 (2013).
44M. Suri et al., in International Electron Devices Meeting (IEDM) (2011),

pp. 4.4.1–4.4.4.
45S. Sidler, A. Pantazi, S. Wo�zniak, Y. Leblebici, and E. Eleftheriou, in

International Conference on Artificial Neural Networks (Springer, 2017),

pp. 281–288.
46T. Tuma, M. Le Gallo, A. Sebastian, and E. Eleftheriou, IEEE Electron

Device Lett. 37, 1238 (2016).
47S. Wo�zniak, T. Tuma, A. Pantazi, and E. Eleftheriou, in IEEE

International Symposium on Circuits and Systems (ISCAS) (IEEE, 2016),

pp. 365–368.
48A. Pantazi, S. Wo�zniak, T. Tuma, and E. Eleftheriou, Nanotechnology 27,

355205 (2016).
49O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and C.

Gamrat, IEEE Trans. Electron Devices 59, 2206 (2012).
50S. Thorpe, D. Fize, and C. Marlot, Nature 381, 520 (1996).
51W. Maass, Neural Networks 10, 1659 (1997).
52T. Moraitis, A. Sebastian, I. Boybat, M. L. Gallo, T. Tuma, and E.

Eleftheriou, in International Joint Conference on Neural Networks

(IJCNN) (IEEE, 2017), pp. 1823–1830.
53T. Moraitis, A. Sebastian, and E. Eleftheriou, in International Joint

Conference on Neural Networks (IJCNN) (IEEE, 2018).
54F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Science 332, 568 (2011).
55G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T.

Happ, J. Philipp, and M. Kund, Appl. Phys. Lett. 95, 043108 (2009).
56M. Salinga, B. Kersting, I. Ronneberger, V. P. Jonnalagadda, X. T. Vu, M.

Le Gallo, I. Giannopoulos, O. Cojocaru-Mir�edin, R. Mazzarello, and A.

Sebastian, Nat. Mater. 17, 681–685 (2018).
57S. Kim, N. Sosa, M. BrightSky, D. Mori, W. Kim, Y. Zhu, K. Suu, and C.

Lam, in International Electron Devices Meeting (IEDM) (IEEE, 2013),

pp. 30–37.
58W. W. Koelmans, A. Sebastian, V. P. Jonnalagadda, D. Krebs, L.

Dellmann, and E. Eleftheriou, Nat. Commun. 6, 8181 (2015).
59W. Kim, M. BrightSky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta,

G. Fraczak, H. Cheng, A. Ray et al., in International Electron Devices

Meeting (IEDM) (IEEE, 2016), pp. 2–4.
60I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Parnell, T. Tuma,

B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou, Nat.

Commun. 9, 2514 (2018).
61R. F. Freitas and W. W. Wilcke, IBM J. Res. Dev. 52, 439 (2008).
62P. Cappelletti, in International Electron Devices Meeting (IEDM) (IEEE,

2015), pp. 10–11.
63L. Fiorin, R. Jongerius, E. Vermij, J. van Lunteren, and C. Hagleitner,

IEEE Trans. Parallel Distrib. Syst. 29, 115 (2018).
64N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S.

Bates, S. Bhatia, N. Boden, A. Borchers et al., in Proceedings of the 44th

Annual International Symposium on Computer Architecture (ACM, 2017),

pp. 1–12.

111101-15 Sebastian et al. J. Appl. Phys. 124, 111101 (2018)

https://doi.org/10.1103/PhysRevB.78.035308
https://doi.org/10.1063/1.4938532
https://doi.org/10.1103/PhysRevB.79.165206
https://doi.org/10.1063/1.2825650
https://doi.org/10.1002/aelm.201700627
https://doi.org/10.1002/aelm.201700627
https://doi.org/10.1088/1367-2630/17/9/093035
https://doi.org/10.1038/ncomms5314
https://doi.org/10.1038/s41467-018-04485-1
https://doi.org/10.1002/adma.201301940
https://doi.org/10.1002/adfm.201202383
https://doi.org/10.1109/LED.2015.2457243
https://doi.org/10.1038/s41467-017-01481-9
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/JCN.2013.000083
https://doi.org/10.1109/JCN.2013.000083
https://doi.org/10.1038/s41928-018-0054-8
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1147/JRD.2017.2716579
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/nnano.2016.70
https://doi.org/10.1038/nnano.2016.70
https://doi.org/10.1038/nrn1888
https://doi.org/10.1109/JPROC.2015.2496679
https://doi.org/10.1021/nl201040y
https://doi.org/10.1145/2463585.2463588
https://doi.org/10.1145/2463585.2463588
https://doi.org/10.1109/LED.2016.2591181
https://doi.org/10.1109/LED.2016.2591181
https://doi.org/10.1088/0957-4484/27/35/355205
https://doi.org/10.1109/TED.2012.2197951
https://doi.org/10.1038/381520a0
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1126/science.1201938
https://doi.org/10.1063/1.3191670
https://doi.org/10.1038/s41563-018-0110-9
https://doi.org/10.1038/ncomms9181
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1147/rd.524.0439
https://doi.org/10.1109/TPDS.2017.2748580

	s1
	f2
	f1
	s2
	f3
	f4
	f5
	f6
	f7
	s3
	f8
	f9
	s4
	f10
	f11
	f12
	f14
	f13
	f15
	f16
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64

