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Abstract 

Single-cell transcriptomics can profile thousands of cells in a single experiment and identify novel 

cell types, states and dynamics in a wide range of tissues and organisms. Standard experimental 

protocols and analysis workflows have been developed to create single-cell transcriptomic maps 

from tissues. This Tutorial focuses on how to interpret these data to identify cell types, states and 

other biologically relevant patterns with the objective of creating an annotated map of cells. We 

recommend a three-step workflow including automatic cell annotation (wherever possible), 

manual cell annotation and verification. Frequently encountered challenges are discussed, as well 

as strategies to address them. Guiding principles and specific recommendations for software tools 

and resources that can be used for each step are covered and an R notebook is included to help 

run the recommended workflow. Basic familiarity with computer software is assumed and basic 

knowledge of programming (e.g. in the R language) is recommended. 
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Introduction 

Single-cell genomics enables the molecular profiling of thousands of cells in a single 

experiment1–3 to create comprehensive maps of cellular heterogeneity in multicellular systems4,5. 

In particular, single-cell RNA sequencing (scRNA-seq) and single-nuclei RNA sequencing 

(snRNA-seq) can be used to measure single-cell transcriptomes and map novel cell types6, 

states7 and dynamics8 in a wide range of tissues and organisms. 

Single-cell transcriptomics data are often presented as a two-dimensional “map” 

organizing cells based on the similarity of their gene expression profiles. Data visualized in this 

way naturally identifies groups (or “clusters”) of highly similar cells, as well as gradients and other 

transcript-based patterns. Such artifacts must be interpreted and annotated to define cell types 

and states to support biological discovery (Figure 1). Standard experimental protocols and 

analysis workflows detail how to create single-cell transcriptomic maps from tissues9–12. Briefly, 

tissues are dissociated into single cells and profiled using a single-cell transcriptomic technology. 

Computational analysis is then used to perform quality control filtering on the results (e.g. 

removing low-quality cells), quantify the expression of each mapped gene in each cell13, identify 

groups of similar cells using a clustering algorithm14–18, and visualize all cells in two dimensions 

using techniques such as tSNE19 or UMAP20 to produce an unannotated “single-cell map” image 

(Box 1)21. To interpret this map biologically, it is necessary to determine which cell types or cell 

states are represented by clusters or other patterns (e.g. gradients) observed in the data. These 

interpretations can then be labeled on the map, which helps place them in a conceptual framework 

useful for better understanding tissue biology. This Tutorial offers a guide to the map interpretation 

and labeling process, starting from clustered data and resulting in a completely annotated single-

cell map (Figure 1). The general workflow for annotating cells in scRNA-seq data has three major 

steps: automatic annotation, manual annotation, and verification (Figure 2). First, automatic 

annotation uses a predefined set of “marker genes” (i.e. genes that are specifically expressed in 

a known cell type) or reference single-cell data (i.e. an existing expertly annotated single-cell map) 

to identify and label individual cells or cell clusters by matching their gene expression patterns 

(signatures) to those of known cell types. A second major step is manual annotation, which 

involves studying genes and gene functions specific to each cell cluster or pattern to verify 

automatic cell annotations and identify novel cell types and states. Finally, verification can confirm 

the identity and function of select cell types using independent methods, such as new validation 

experiments. 

Step 1: Automatic cell annotation 

Automatic cell annotation is an efficient way to label cells or cell clusters using a computer 

algorithm and an appropriate set of prior biological knowledge. The general principle is to identify 

a gene expression signal (pattern, signature) in a single cell or cell cluster that matches a 

characteristic gene expression signature of a known cell type or state; the cell or cluster is then 

assigned the respective label. Labels often have an associated confidence score. 

There are two major automatic cell annotation approaches. One is to use known marker 

genes for each of the cell types that are likely to be found in the sample to be annotated (referred 
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to as “marker-based automatic annotation”). In this case, known relationships between marker 

genes and cell types are obtained from databases, such as SCSig22, PanglaoDB23, and 

CellMarker24, or manually from the literature. Then cells or clusters are labeled according to the 

marker genes they characteristically express. The second approach is to compare single-cell 

RNA-seq data to be annotated (the ‘query’ data set) to an existing, similar, expertly annotated 

scRNA-seq data set (the ‘reference’ data set), and transfer the label from a reference cell or 

cluster to a sufficiently similar one in the query (referred to as “reference-based automatic 

annotation”). Reference single-cell data are obtained from sources such as Gene Expression 

Omnibus (GEO)25, the Single Cell Expression Atlas26 or cell atlas projects27,28. 

Automatic cell annotation methods can be applied to individual cells (either before or after 

clustering) or to clusters of cells, which occurs only after clustering the cells. In the case of 

annotating clusters, the gene expression profile for each cluster is determined by averaging the 

expression profiles of all cells within the cluster. Annotating individual cells is ideal, as this reduces 

the chance of missing important differences between cells. However, some scRNA-seq 

experimental data are based on low numbers of transcript reads per cell, so there may be 

insufficient data for cell-based annotation to function correctly, making clustered data sets easier 

to work with. Annotating clusters is faster, as there are fewer clusters than cells to process; it can 

also be more accurate than the single-cell approach, considering it is based on more reliable 

expression level estimates averaged across all cells in a cluster. However, not all cells can be 

easily grouped into clusters, especially for dynamic systems like developing tissues29 or tissues 

that contain gene expression gradients30,31. 

A major challenge with automatic cell annotation is that many cell types do not have well-

characterized gene expression signatures, resulting in incomplete or inaccurate labeling for some 

cells. Automated methods typically work better for major cell types and may not be able to 

effectively distinguish subtypes. Thus, automatic cell annotation is useful to quickly identify known 

cell types and highlight unknown cell types for further exploration. The main caveats and 

recommendations for automatic cell annotation are summarised in Table 1. 

 

Marker-based automatic annotation 

Marker-based automatic annotation labels cells or cell clusters based on the characteristic 

expression of known marker genes. To be successful, the marker gene or gene set (a collection 

of marker genes) should be specifically and consistently expressed in a given cell, cluster or class 

of cells (e.g. immune cells). Markers are readily available for well-characterized organisms and 

cell types (e.g. human PBMC samples32). Marker-based automatic annotation works well once a 

relevant and sufficiently large set of marker genes is collected33. 

To label individual cells, one of the most reliable marker-based annotation tools is Semi-

supervised Category Identification and Assignment (SCINA)34. SCINA assumes each marker 

follows a bimodal gene expression distribution, where one peak corresponds to cells from the 

associated cell type and the other peak contains the rest of the cells in the experiment. A cell of 

a particular type is assumed to have expression in the upper part of this distribution for all the 

markers of that cell type, consequently requiring markers provided as input to SCINA to be specific 

to only one cell type. AUCell35 is another good marker-based labeling method that classifies 
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individual cells or clusters. AUCell ranks the genes in each cell by decreasing expression value, 

and cells are labeled according to their most active (highly expressed) marker gene sets. AUCell 

works best with cell types that have a sufficiently large set of marker genes such that multiple 

markers are detected in each cell. It has the advantage of scoring a whole set of marker genes at 

once, which may increase sensitivity over methods that examine each marker gene 

independently. 

To label whole clusters, Gene Set Variation Analysis36 (GSVA) has been benchmarked to 

be fast and reliable37. GSVA works similarly to AUCell - given a database of marker gene sets, it 

identifies sets that are enriched in the gene expression profile of a cluster. The GSVA software 

has a practical advantage that it can annotate all clusters in one operation. 

Marker-based automatic cell annotation methods often have the advantage that they will 

only assign labels to cells associated with known markers and other cells will remain unlabeled33. 

However, this depends on the specific tool and the parameters used; see Table 2 and 

Supplementary table 1 for details on which tools have the option to leave cells unlabelled. A 

disadvantage of these tools is that markers are not easily accessible for all cell types. 

Reference-based automatic cell annotation 

Reference-based cell annotation is based on the concept of “guilt-by-association”, 

whereby a cell or cluster label in the reference data is transferred to an unlabeled cell or cluster 

in the query data with a similar gene expression profile. Consequently, this approach is only 

possible if high-quality and relevant annotated reference single-cell data are available. Studying 

the original clustering and annotation steps performed on the reference data can help determine 

its quality, and ensure that errors in the reference will not be propagated to new data. Tissue-

specific reference data can be obtained from public databases (e.g. the Gene Expression 

Omnibus25 or the Expression Atlas26) or large cell atlas projects (e.g. the Human Cell Atlas27, the 

Tabula Muris or Mouse Cell Atlas5, or others4,28,38–40), although the required associated cell 

annotations are not always easily available. These atlases typically contain hundreds of 

thousands of cells and dozens of different annotated cell types. 

scmap41 is one of the best performing tools for reference-based automatic cell or cluster 

annotation, in terms of both accuracy of assigned labels and avoiding incorrect labeling of novel 

cell types33. Other tools for reference-based automatic annotation include SingleCellNet42 and 

SingleR43. SingleCellNet has high accuracy when all cell types are well represented in the 

reference data but with low accuracy if the reference data are incomplete or represent a poor 

match33. The main advantage to SingleR is that a reasonable, general reference data set is 

included with the tool, but this may not perform as well as a reference specifically matched to the 

query data set. An alternative to using specific software packages for reference-based cell 

annotation is to train a machine learning tool, such as a support vector machine (SVM)44 or 

random forest classifier45, on selected reference data. This model can then be applied to classify 

cells or clusters as specific cell types in novel data. These methods can outperform any of the 

prepackaged automatic-annotation software tools33 but require substantial computational 

expertise to use. 

Another approach to reference-based cell annotation is to integrate a query data set with 

a reference data set using an integration algorithm, enabling clusters to be identified that span 
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both data sets (Box 2). The reference labels can then be transferred to within-cluster query data 

cells. This approach supports the identification of novel cell types, distinct cell types, and gradients 

in cell state, but can be computationally expensive to run and additional problems, such as over-

integration, may be encountered. 

Refining automatic annotation 

Benchmarking studies show variable performance of automatic annotation tools, 

depending on the data set and distinctiveness of the gene expression profiles of the cell types to 

be annotated33,37. For instance, distinguishing T-cells from B-cells is relatively straightforward, but 

automatic tools sometimes cannot accurately distinguish CD8+ cytotoxic T cells from natural killer 

(NK) cells (Figure 3). Thus, we recommend applying multiple, complementary annotation tools 

with multiple available marker gene databases to a single data set. 

When applying multiple cell annotation methods to a data set, cells or clusters will acquire 

multiple, sometimes conflicting, cell-type labels. A set of annotations on a cell or cluster can easily 

be resolved to a single label if all labels are in agreement. If conflicts exist, most tools provide 

label confidence scores that can be used to identify a single high-scoring label. However, 

confidence scores are not standardized between tools, so they are often not comparable. 

Conflicts can also be resolved via a majority-rule approach, which selects the most frequent label 

(Figure 4), or percent agreement between methods. If no label can be confidently decided, the 

cells or cluster must be manually annotated. 

Conflicting annotations within a cluster may reflect important information about that 

cluster, such as whether it contains cell subtypes. However, if subtypes cannot be clearly defined, 

a more general cell-type annotation may be more appropriate. For example. if a cluster is 

annotated as regulatory T-cells, naive T-cells and helper T-cells by different methods, it may be 

most appropriate to assign the general label of “T-cells”. In this case, the original clustering 

parameters should be altered to better capture cell subtypes (see section “The impact of 

experimental and analysis parameters on annotation”). 

If the conflicting annotations are not subtypes of the same cell type, then the cluster may 

represent an intermediate cell state or gene-expression gradient. As many automatic annotation 

tools assume discrete cell types, they often assign clusters or cells within a larger gradient to a 

well-defined endpoint. However, gradients often contain cells of various phenotypes, so multiple 

methods may assign the same cell to different ends of the gradient. Recommendations for 

handling gradients are discussed in the section “Annotating cell states and gradients”. 

Alternatively, a conflicting label on a cell could indicate that the cell is actually a doublet; a scenario 

in which two or more cells of different types are captured by the same cell-barcode. This case can 

be detected using doublet-finding methods46–48. 

Most automatic annotation tools are designed to annotate individual cells (Table 2, 

Supplementary Table 1). Advantages of this approach are the ability to identify insufficiently 

resolved cell types and cellular gradients, as well as the independence to choose clustering 

resolution, feature selection, and dimensionality reduction parameters. Interestingly, the resulting 

annotations can be used to inform these analysis choices. For example, cell annotation could help 

optimize the clustering process to result in one cluster per cell type. 
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Finally, a cluster may have a novel cell identity that is absent from the reference data. 

Often, this results in widely varying results from automatic annotation methods or insufficient 

confidence for any tool to assign any label. In such situations, manual annotation must be 

performed. 

Step 2: Expert manual cell annotation 

Although automated cell annotation methods are convenient and systematic, they require 

an appropriate reference database and do not always result in high confidence annotations. When 

these methods result in lower confidence, conflicting or absent cell labels, expert manual 

annotation is required. In manual cell annotation, cells are manually examined for clues to their 

function using a variety of resources, following the same principles as marker-based automatic 

annotation. Manual annotation usually operates at the cluster level for convenience, but rare cells 

can be individually examined. Expert manual annotation is typically regarded as the gold-standard 

method for annotating cells; however it is slow, labour-intensive, and can be subjective. 

If automatic annotation has not been performed, marker-based annotation should first be 

manually applied. Usually, each known marker gene is individually visualized on the 2D projected 

data map (Box 1) to create a "gene expression overlay" plot (Figure 5). The entire list of markers 

may also be simultaneously visualized across clusters as a heat map (Extended data figure 1) or 

dot plot (Figure 6). A dot plot is more informative than a heat map, as it can communicate mean 

detected gene expression levels and the proportion of cells in a cluster in which each gene is 

detected, whereas a heat map only typically describes average gene expression levels per 

cluster. If many marker genes for a known cell type are highly expressed across cells in a cluster, 

this is often sufficient support for it to be labeled as that cell type. Easy-to-use software like the 

free Loupe Cell Browser for 10x Genomics scRNA-seq data supports this visualization and 

analysis process. Challenges in this approach are that well-known markers are often too few in 

number to completely annotate a scRNA-seq data set, and some well-known markers may not be 

as specific within a scRNA-seq data set as expected. Often, additional markers must be manually 

found via searching the literature and mining existing single-cell transcriptomic data for gene 

expression signatures related to the query data set. Master transcription factors that drive cell 

fate49,50 often make better gene expression markers than cell-surface proteins that are commonly 

used to classify cell populations with methods like flow cytometry5,39, presumably because mRNA 

and protein levels may not be strongly correlated51. Furthermore, there may not be any single 

distinguishing gene expression marker; in which case, multiple genes must be used together to 

distinguish a cell type from others in the data. 

The ideal primary source for cell-defining genes is a single-cell atlas from a relevant 

organism, organ and disease context. In the absence of this, gene expression markers can be 

collected from bulk RNA-seq data from purified cell populations isolated from the same tissue 

source52. Given that protein expression may correlate with mRNA expression, protein expression 

markers can be gathered and used as potential gene expression markers53 from published 

evidence of staining patterns within the tissue (i.e. using immunohistochemistry or 

immunofluorescence), flow cytometry and western blots. Integrating markers from independent 

sources can be challenging due to conflicts between lists. For instance, PanglaoDB23 contains 

220 markers for B-cells and CellMarker24 contains 1426 markers, yet only 66 are shared. If 
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species-specific data are scarce, then data can be transferred by orthology from model organisms 

(Box 3) or other models (e.g. in vitro cell culture or organoids). 

Ideally, each cluster will uniquely express the markers of one cell type. However, in some 

instances a cluster may not express markers of any known cell type; conversely, it may express 

markers of more than one cell type. Clusters that express markers of more than one cell type may 

represent doublets. Typically, such clusters will be very small compared to the clusters of true 

single cells, and they may express more genes than single cells. There are a variety of doublet 

detection tools that can help determine if a cluster is composed of doublets46–48. If a cluster does 

not express markers of any known cell type, it may contain poor quality cells or represent a novel 

cell type. 

Once cell-type information from known markers is exhausted, cells that have not been 

confidently annotated must be manually examined, cluster by cluster. Potential novel markers are 

identified by computing differential expression between a cluster and all other cells54–56 (Figure 6, 

Extended data figure 1). All marker genes are then manually researched to find functional 

information that may help identify the cell type of the cluster they are associated with. Pathway 

enrichment analysis should also be applied to each cluster to identify cluster-specific pathways 

using standard workflows57 and tools, like GSVA36 or ssGSEA58. Pathway enrichment analysis 

simultaneously scores multiple functionally related genes for gene expression activity within a 

cluster at once, and can be more sensitive than individual gene-based analysis. 

Some cells may be challenging to annotate, including novel cell types, which can be 

described based on the function of genes they express. Furthermore, it can be particularly difficult 

to differentiate between tissue-resident cells (e.g. tissue-resident macrophages) and non-tissue-

resident cells (e.g. monocytes circulating in the blood) of the same overall type. One approach to 

identify tissue-resident cells is to modify the experimental design to remove passenger cells from 

the tissue in question with a perfusion step. However, the number and types of cells removed by 

flushing will depend on the specific tissue and protocol. In situations where this flushing is not 

possible, one may profile peripheral blood mononuclear cells (PBMCs) from the same individual 

and then subtract those cell signatures from the tissue map using the cell annotation methods 

mentioned above. 

Ultimately, when annotating cell types, it is prudent to use standard nomenclature, such 

as from the Cell Ontology (CL), which is a hierarchically-organized controlled vocabulary of cell 

types and subtypes59–61. This enables maps to be more easily integrated across studies. 

Annotating cell states and gradients 

When analyzing and characterizing novel cell types, it is important to determine whether 

they represent a stable cell type or contain multiple cell states. The definitions of cell type and 

state are not yet standardized, but a stable cell type may be expected to have homogeneous 

gene expression across a cluster and be compact in a 2D projection plot (Box 1), whereas cell 

gradients appear as a spread-out string of cells and cell states (e.g. cell cycle state) (Figure 6). 

Expression gradients indicate continuous differences that are present in the cell population, which 

could represent states like the cell cycle62, immune activation63, spatial patterning64 or transient 

developmental stages65,66. Care must be taken to distinguish biologically meaningful cell states 

and experimental batch effects, which can manifest in a similar way (Box 2). 
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Annotating the intermediate stages of a gradient is often difficult, as these regions rarely 

express unique marker genes. It is often easier to label the ends of a gradient and then 

characterize intermediate stages using the order of specific genes that mark these ends as 

increasing or decreasing across the gradient. Extracting the cells in the gradient and performing 

PCA on them is often a useful visualization for gradients, as it preserves the large-scale distances 

between cells (Figure 6). There are currently no automated gradient annotation methods, so they 

must be manually annotated, making use of known structure and cell-type transitions relevant to 

the particular experiment7,59. 

Similarly, homogenous or similar cell states or cell types are often difficult to annotate 

because they share many of the same marker genes (Figure 3). For instance, when annotating 

T-cells within a tissue sample, it is common for all the T-cell subtypes to exhibit common T-cell 

markers; the subtype-specific markers are hidden within or below the general T-cell signal. In this 

case, it is often useful to subcluster the population, or to test specifically each subpopulation 

against the other related clusters to identify the subtype-specific markers. Very fine distinctions 

between highly similar cell types may not be visible transcriptionally and may only be visible in 

other genomic layers, such as chromatin state (ATAC-seq, DNA methylation). 

Step 3: Annotation verification 

The above tools and approaches can provide confident cell-type labels for scRNA-seq 

data. However, due to the various challenges discussed above, it is important to confirm cell 

annotation labels using independent methods, such as statistical methods67 or by consulting an 

expert. Furthermore, as mRNA measurements only partially define cell type and function, 

important conclusions about novel cell types must be experimentally validated. 

As an example, cell-type labels of tissue-resident immune cells can be refined using T-

cell receptor (TCR)68 and B-cell receptor (BCR)69 clonotyping, to examine the transcriptional 

signature of T- and B-cells as stratified by the TCRs and BCRs that they express. For instance, 

mucosal-associated invariant T-cells express the marker genes SLCA4A10 and KLRB1,70 which 

can be identified in a scRNA-seq experiment, as well as the known semi-invariant TCRs that are 

found in MAIT cells (TRAV1-2/TRAJ12/20/3), which can be revealed by TCR clonotyping. In 

addition, identifying the B-cell receptor repertoire within single-cell data sets enables annotation 

of naive vs. mature B-cells. Naive B-cells express both IgM and IgD heavy chains, whereas 

mature B-cells, which have undergone antibody class switching by V(D)J recombination, express 

IgG, IgA or IgE heavy chains. Other traditional methods to increase cell annotation confidence 

include in vitro functional assays such as cytokine secretion, proliferative capacity, and cytotoxic 

potential measures, imaging experiments (such as fluorescence in situ hybridization (FISH)71 of 

source tissue samples)72, and single-cell qPCR to verify the co-expression of a novel combination 

of marker genes in a larger number of samples73,74. Complementary single-cell genomic methods 

are also useful, such as Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-

seq)51, which simultaneously immunophenotypes cell surface proteins and measures scRNA-seq, 

single-cell ATAC-seq, which maps chromatin state, and spatial transcriptomics, which combines 

cell imaging and scRNA-seq to measure spatial transcript patterns and cell morphology in one 

experiment75.  
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In the context of tumour biology, mutations are important to distinguish cancer and normal 

cell types. Genetic alterations like single nucleotide variants (SNV) and copy number variants 

(CNV) can be detected in single-cell data using tools developed for bulk RNA-seq data76, despite 

challenges with sequencing coverage. CNV inference methods identify consistently up or down 

expression values relative to a reference across large numbers of genomically contiguous genes 

to call amplification or deletion events, respectively. HoneyBADGER77 and CaSpER78 methods 

predict CNVs using other cells in the data as a reference, whereas InferCNV79,80 uses a given set 

of normal cells. 

Experimental design considerations 

The impact of experimental and analysis parameters on 

annotation 

Cell-type annotation quality is affected by many data analysis pipeline parameters, such 

as data filtering and data quality settings, and the selected clustering resolution. Quality control 

filtering often involves removing cells from the data set where the marker genes are highly 

enriched in mitochondrial, heat shock, or other stress-response genes81–83, but this must be 

balanced to retain important biological signals that should be kept and annotated84. 

Choosing an appropriate clustering resolution is critical for accurate cell annotation. If the 

clustering resolution is too low, rare cell types may be merged with larger clusters or related cell 

subtypes may be merged with each other. If the clustering resolution is too high, a single cell type 

may be split across multiple clusters with few unique markers that are often a result of 

experimental noise rather than distinguishing biological function. To identify rare cell types, it may 

be necessary to use a feature selection tool that specifically identifies markers of rare cell types 

(e.g. GiniClust85) before clustering the cells. However, this can lead to over clustering of data sets 

that do not contain rare cell types. If cell-based annotation identifies multiple cell types within a 

cluster, then increasing the clustering resolution or subsetting the cluster and rerunning the 

clustering on the resulting smaller group of cells to create a zoomed-in map can help isolate these 

unique cell groups. Tools like scClustViz86, Seurat21 and clustree87 help select an appropriate 

clustering resolution. 

Cell-based automatic annotation tools are often useful to choose an appropriate clustering 

resolution, as the results are independent of the clustering pipeline. Thus, the clustering 

parameters can be tuned to identify clusters that correctly segregate cells annotated to different 

types. Alternatively, the presence of cluster-specific differentially expressed genes can be used 

to tune the clustering parameters either by gradually increasing or decreasing the resolution until 

the maximum number of clusters that still exhibit unique differentially expressed genes is 

identified. 

In some cases, the original gene expression matrix generated by droplet-based 

technologies can be contaminated by cell-free, or ‘ambient’, mRNA within the cell suspension. 

Frequently, the ambient RNA is derived from one or more cell types that are sensitive to the tissue 

dissociation or cell-handling steps of the scRNA-seq experiment and break apart from the rest. 
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As a result, markers of the contaminating cell types may be spread to all other cell clusters, which 

will interfere with marker determination. It is possible to estimate and correct the background 

contamination using methods such as SoupX88, which looks for non-specific expression of cell-

type markers, or CellBender89, which uses machine learning to learn and correct cell expression 

profiles. However, care is needed to avoid over- or under-correcting the data. 

Workflow recommendations 

The preferred starting approach for transcriptomic cell map annotation depends on the 

level of computational skills of the annotator. We recommend starting with automatic annotation 

because it is fast and reproducible, thus efficient for large data sets with many samples. 

Automated methods require programming, database and data science skills to operate (mainly 

using R or python programming languages). A little programming knowledge goes a long way, as 

many recommended software packages are well documented and easy to use with basic 

programming knowledge. We strongly recommend anyone working regularly with single-cell 

genomics data to learn programming. R programming is a good language to start with, due to its 

prevalent use in single-cell genomics and ease of use. This recommendation may change, as an 

increasing number of point-and-click tools are being developed that package automated methods 

into easy-to-use workflows90–92. A second recommendation is to use a powerful computer with 

lots of memory (e.g. 128GB RAM), as current analysis and visualization methods load all data in 

memory for processing. 

If needed, the map can be completely annotated manually by investigating gene 

expression patterns of cells and associated gene functions using point-and-click software (e.g. 

Loupe Browser, GSEA, Cerebro93) without programming skills. This process is easier for those 

knowledgeable about the biology and markers of the cells in the sample, and is sufficient for many 

projects, but is time consuming, especially if it must be repeated for multiple analysis parameters, 

such as different cluster resolutions. Even if automatic cell annotation is used, some manual 

annotation is usually needed due to the incompleteness of known marker databases and single-

cell atlases that automated methods depend on. 

Manual annotation should begin by identifying major well-known cell types, indicated by 

clearly defined, discrete cell clusters, as these are easiest to work with. Each cluster presents its 

own challenge; in the same experiment, one cluster could be annotated easily using a single well-

known marker and another may require iterations of data preprocessing pipeline optimization to 

accurately annotate. More challenging aspects of the map, such as cell subtypes, gradients, 

highly homogeneous data or poorly defined clusters, can then be progressively annotated. 

Sometimes, it is useful to split the data into broad subsets (e.g. immune, endothelial, tumour) and 

apply our recommended workflow on each one. Consider each label on the map a scientific claim 

that a functionally distinct biological entity (e.g. cell type) exists, and that this must be supported 

by evidence. 

In addition, not all tools are applicable to all data sets; it is important to consider the 

availability of reliable known markers, high quality reference data sets, or if there is sufficient 

diversity in a sample to detect differentially expressed genes before applying methods that rely 

on that information. Utilizing an approach based on known marker genes when there aren’t any 

repeatedly reproduced markers for the cell type of interest may lead to false conclusions. 
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Likewise, annotating cells or cell clusters with a poor quality or inaccurately labeled reference 

data set will likely lead to the propagation of incorrect cell type identifications. As a final example, 

calculating differentially expressed genes on a largely homogenous sample will typically result in 

a list of markers that are false positives, or genes subject primarily to experimental or technical 

noise that are unrelated to the actual biology. 

Concluding remarks 

Although the field of single-cell genomics is rapidly advancing and new technologies are 

being developed that will improve our ability to interpret, annotate and validate single-cell maps, 

we expect the overall workflow described here to remain valid over time. We expect major 

improvements in automatic annotation due to rapidly growing reference atlases, improvements to 

resources like the Cell Ontology59 and improved data set integration algorithms. These methods 

will also need to scale up to much larger data set sizes with millions of cells94,95. New experimental 

technologies are being developed to measure more molecular details about each cell, including 

multi-omics technologies (e.g. mRNA, ATAC-seq96, methylation97, surface proteins98) that can 

measure multiple types of information about individual cells, and these are expected to greatly 

improve our ability to understand multicellular systems. For instance, epigenetic information will 

help define stem cell subtypes that are not detectable using transcriptomics99. Data sets acquired 

from millions of cells across hundreds of patients will create computational challenges related to 

efficient analysis and annotation, requiring analysis to be performed on high-performance 

computing or cloud computing systems. In addition, meta-analyses across many single-cell maps 

will more clearly identify cell-type markers (e.g. macrophage or endothelial) across tissues and 

states (e.g. inflammation). We also expect the focus of map interpretation to gradually shift to 

comparisons across disease, age, or other conditions, as the number of samples per study 

increases. 
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Boxes 

Box 1: Visualizing single-cell data in a 2D projection 

A scRNA-seq data set is typically visualized as a two-dimensional (2D) scatter plot where 

cells (points) with similar transcriptomes are placed near each other. This 2D representation is 

projected from a higher dimensional space where each cell is described by the expression of 

thousands of genes, each of which is considered a separate dimension. The three most popular 

projection methods used for scRNA-seq data are t-Distributed Stochastic Neighbor Embedding 

(t-SNE)19, Uniform Manifold Approximation and Projection (UMAP)20 and Principal Component 

Analysis (PCA)100. 

t-SNE (Figure 6c) is a non-linear projection that preserves local groups of similar cells, 

while equalizing the density of cells within each group101. The scale of a “local group” is controlled 

by the “perplexity” parameter, with higher values creating larger local groups102. t-SNE effectively 

visualizes distinct robust clusters, making it easy to observe discrete cell types; however, global 

relationships between cell types are not maintained, and thus cluster-to-cluster relationships 

cannot be inferred and may be misleading. Cell subtypes can be combined into one large cluster 

or split into distinct plot regions depending on the perplexity101. 

UMAP (Extended data figure 1) is a non-linear projection method that differentiates 

discrete cell clusters20. UMAP is typically regarded as better for visualizing global relationships 

and gradients than t-SNE, although these differences are likely due to default parameters103. 

UMAP is often less computationally intensive to run than t-SNE104. 

PCA (Figure 6b) performs a linear transformation of normalized and scaled scRNA-seq 

data, to identify independent principal components (PCs) that capture major axes of variation in 

the data, which could represent biological factors, like cell types and states, or technical factors105. 

PCs are ranked in decreasing order of variance and typically the first two PCs are used to visualize 

the data, but more can be considered to detect more subtle expression patterns between cells100. 

PCA can be useful for visualizing cell gradients and states. 

Although these methods visually group similar cells and help visualize clusters, they do 

not define clusters and, therefore, are not clustering algorithms. Cell clustering algorithm output 

is typically visualized as colours on the plot and these colours may or may not correspond to 

patterns observed in the 2D plot. 

Box 2: Correcting confounding factors 

ScRNA-seq data contains a mix of biological (e.g. cell types, states, age, sex, and disease 

condition) as well as technical (e.g. batch effects) factors106. It is important to correct for undesired 

(i.e. “confounding”) factors while maintaining biological signals of interest. Confounding factors 

can either be regressed out of the data, or adjusted for when integrating data from multiple 

samples (Figure 7). Batch effects can be identified when cells from different batches form distinct 

stripes within groups or completely separate groups in a 2D visualization (Box 1). Harmony, 

mnnCorrect, Seurat v3, and LIGER are among the top-performing scRNA-seq integration or 

batch-correction tools107. 
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Harmony108 iteratively merges data sets represented by top PCs, which are then used to 

cluster cells. Each cell is iteratively adjusted based on an estimated correction vector to shift it 

closer to the centre of its cluster until convergence. Mutual nearest neighbour (MNN) approaches, 

such as mnnCorrect/FastMNN109 or Seurat v321, identify the most similar cells (MNNs), called 

“anchors”, across data sets that are used to estimate and correct the cell-type-specific batch 

effects. LIGER110 identifies shared (common biology) and unique (biological or technical) factors 

between data sets using non-negative matrix factorization. LIGER is recommended when specific 

cell types appear to be present in some of the data sets and missing in others107. Integration 

methods can suffer from overcorrection, where different cell types are merged, or undercorrection, 

when resulting clusters contain cells from only one input data set. Multiple integration methods 

may need to be evaluated to find a balance that best represents the data. 

Box 3: Cell annotation across species 

Sometimes the best reference single-cell map to use for cell annotation is from a different 

organism. To use such a reference for cell annotation, genes from the query organism must be 

mapped by orthology to genes from the reference, using databases such as Ensembl111 or 

EggNOG112, or tools such as OrthoFinder113, before being input to data integration or marker-

based annotation methods. Typically, one-to-one orthologs are used,114,115 which better ensures 

the conservation of function, although it is possible to use one-to-many and many-to-many 

relationships to increase gene coverage. The latter can be accomplished by grouping paralogs to 

create artificial gene groupings called ‘meta-genes’116. If homologous genes are unavailable, 

genes from each species can be aggregated into pathways or “biological process activities” 

(BPAs), which are compared across species to improve sensitivity of cross-species mapping117. 

If the query species genome has not been sequenced, RNA transcripts can be assembled de 

novo from the entire pool of RNA-seq reads from all cells, which are then used to quantify gene 

expression and identify orthologs. Evolutionarily close reference species should be chosen; 

otherwise, integration may not be able to map similar cell types for annotation transfer. 
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Figures 

 

Figure 1: An annotated single-cell transcriptomic map 

A completely annotated single-cell transcriptomic map of the human liver from data generated 

using scRNA-seq applied to five human liver samples (8,444 cells) reported in MacParland et 

al.115 and visualized using a t-SNE plot. 

 

Figure 2: Cell annotation workflow 

The recommended cell annotation process is composed of three major steps: automatic cell 

annotation, manual cell annotation, and verification. The scRNA-seq data typically enter the 

workflow as a clustered gene-by-cell matrix, which is visualized using a dimensionality reduction 

method. An automatic cell annotation method is used to annotate cells either by comparison of 

the data with annotated reference data (e.g. a single-cell atlas) or using known marker genes 

indicative of a specific cell type. Manual annotation confirms or provides further detail for 

annotated cells or clusters, or identifies the cell type of unlabeled clusters. Cell type can be 

manually inferred using a combination of marker genes, pathway analysis, and differentially 

expressed genes with known functional information. Cell annotations are often verified using 

independent sources, such as new validation experiments or comparison to complementary data, 

such as spatial transcriptomics data. 

 

Figure 3: Automatic annotation results depend on marker genes used 

Peripheral blood mononuclear cells (PBMCs) from a 10x Genomics 3’ sequencing protocol118 

(68,579 cells) were automatically annotated with SCINA. The user provides lists of marker genes 

associated with all expected cell types, and SCINA assigns cell-type labels to individual cells 

based on the expression levels of the marker genes. SCINA was provided with (a) the top 20 

marker genes from each previously annotated scRNA-seq cell cluster along with their associated 

cell type118, and (b) Literature-derived PBMC cell-type markers gathered by Diaz-Mejia et al.37. 

(c) Sankey plot coloured by the cell-type labels found in (a) compares the assigned cell-type labels 

between those from SCINA annotations (a) and (b). Changes in label assignment demonstrate 

the variability of automatic annotation based on the marker genes chosen by the user to represent 

each cell type or subtype. The PBMC data set is available from 

https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.1.0/fresh_68k_pbmc_donor_a. 

 

Figure 4: Refining cluster labels from automatic annotation 

Raw scmap-cluster41 annotations provide every cluster with a unique label based on the identity 

assigned to the majority of cells in each cluster. These labels can be refined by aggregating 

identical labels, and label confidence can be assessed by viewing the proportion of cell identities 

in each cluster (“majority rule”). (a,c) are t-SNE maps of the liver transcriptomic map constructed 

from the data set reported in MacParland et al. 2018115 (8,444 cells). (a) The cells are coloured 

by the clusters identified by Seurat using default parameters. Each cluster was assigned a cell-

type label by scmap-cluster. Two clusters (labeled 4 and 10) are identified as different immune 

cells with labels of various levels of support, further described in (b). (b) scmap-cluster identifies 
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cluster labels as well as individual cell labels. Cluster 4 has approximately 83% of cells identified 

as inflammatory macrophages. Cluster 10 consists almost entirely of non-inflammatory 

macrophages with some cells unassigned. (c) Consensus cluster-level annotations are 

determined after aggregating identical cluster labels (e.g. clusters 1 and 3 from (a)) and using a 

majority rule (selecting a cluster label from the majority of cells assigned to a cell type).115 

 

Figure 5: Visualizing well-known markers 

Human liver marker genes are visualized as gene expression data overlaid on a t-SNE plot. The 

various markers represent: (a) immune cells and immune cell subtypes that can be easily 

identified by well-known markers, and (b) hepatocytes and inferred hepatocyte subtypes that are 

difficult to identify because the markers are not as well characterized and may vary across 

individual samples. Gene expression data are reported in MacParland et al.115 

 

Figure 6: How to identify and visualize a cell-type gradient 

Gradients across cell types can be identified by: (a) finding marker genes that are expressed at 

varying levels across clusters, (b) observing clear gradients of marker gene expression between 

cell types in PCA gene expression overlay plots, and (c) identifying closely related cell types that 

are split across clusters in a t-SNE plot. (a) Dot plots of marker genes distinguish clusters of 

scRNA-seq data from young and old mouse brains reported in Ximerakis et al.119 (37,069 cells). 

(b,c) These data can be visualized in two dimensions with gene expression of Mllt overlaid across 

cells; this occurs in a gradient across neuronal-restricted precursors (NRP), immature neurons 

(ImmN), neuroendocrine cells (NendC), and mature neurons (mNEUR). 

 

Figure 7: Batch correction 

Three peripheral blood mononuclear cell (PBMC) samples were assayed with the 10X platform 

using different library construction protocols: 5′ (green, 7,726 cells), 3′ V1 (orange, 5,419 cells) 

and 3′ V2 (blue, 7,726 cells). (a, b) UMAP diagrams showing clusters annotated by the SCINA 

using PBMC markers collected by Diaz-Mejia et al.37 (c, d, e, f) Bar graphs indicating the 

proportions of cells per cluster. The left column (a, c, e) shows the data merged without batch 

correction, and the right column (b, d, f) shows the data integrated using the Harmony batch 

correction method. Before Harmony, cells group by experimental protocol, clusters rarely contain 

cells from multiple experiments, and multiple clusters of the same cell type exist (e.g. there is one 

B-cell cluster for each experimental protocol, circled in e). After Harmony, cells group by cell type, 

clusters contain cells from various protocols, and fewer clusters share a cell identity.  

 

Extended Data Figure 1: Heat map and UMAP visualizations 

An extension of Figure 6 incorporating: (a) the visualization of marker genes for identified cell 

types as a heat map, and (b) a Mllt11 expression overlaid on a UMAP plot. Mllt11 is expressed at 

various levels across clusters, suggesting a cell-type gradient across neuronal-restricted 

precursors (NRP), immature neurons (ImmN), neuroendocrine cells (NendC), and mature 

neurons (mNEUR). Both plots are generated from scRNA-seq data from young and old mouse 

brains119. 
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Data availability: 

The data used to generate this Tutorial are openly available at the following sources: 

● The sequence data used to generate Figures 1 and 4 are available from MacParland et 

al.115 through the NCBI GEO accession GSE115469. The analysed data from which the 

map was directly created can also be accessed interactively as the R package 

HumanLiver from https://github.com/BaderLab/HumanLiver.  

● The sequence data used to generate Figures 3 and 7 are available from 10X Genomics 

and can be downloaded from: https://support.10xgenomics.com/single-cell-gene-

expression/datasets.  

● The sequence data used to generate Figure 6 are available through the NCBI GEO 

accession GSE129788, as reported by Ximerakis et al.119. The analysed data can be 

accessed interactively at http://shiny.baderlab.org/AgingMouseBrain/.  

● The human bulk RNA-seq data used to generate the reference data set in the 

accompanying R code (https://github.com/BaderLab/CellAnnotationTutorial and 

https://codeocean.com/capsule/d67541eb-43f8-4cae-a258-5ef0069e5301/) are available 

from the Database of Immune Cell Expression (DICE) and can be downloaded in R 

through the package “celldex”43 by the command 

DatabaseImmuneCellExpressionData(). 

● The query data set used in the accompanying R code is available from 10X Genomics 

and can be downloaded from: https://cf.10xgenomics.com/samples/cell-

exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz  

● The collection of PBMC marker genes used in the accompanying R code is available 

from Diaz-Mejia JJ et al.37 with read data from NCBI Sequence Read Archive (SRA) 

accession number SRX1723926. The supplementary data from the Diaz-Mejia paper 

can be accessed from: https://zenodo.org/record/3369934/#.X3CGN5NKjGI. 

 

Code availability: 

 

An R script that implements the main workflow described in this proposal is available at 

https://github.com/BaderLab/CellAnnotationTutorial, and a version-controlled copy is available 

through Code Ocean at https://codeocean.com/capsule/d67541eb-43f8-4cae-a258-

5ef0069e5301/. 
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Tables 

Table 1: Comparison of the caveats and recommendations for different approaches to cell 

annotation 

Stage of Analysis Aspect of analysis Potential Caveats Recommendation 

 

All methods 
Fast, but not effective for 

poorly characterized cells. 
Use manual annotation for 
poorly characterised cells. 

Annotating clusters 
May miss important 

differences between cells. 

Use automatic annotation of 
clusters to get a general idea 

of cell type and then refine 
labels manually. Also use 

multiple cluster-based 
methods and compare 

results. 

Annotating individual cells 
Ideal, but requires high reads 

per cell. 

Experiments with low reads 
per cell require cluster-based 

annotation. 

Marker-based annotation 
methods 

Marker genes not easily 

accessible for all cell types; 
may result in conflicting or 

absent cell labels. 

Requires expert knowledge to 
curate more extensive marker 

lists. 

Reference-based annotation 
methods 

Perform poorly with 
incomplete or poorly-matched 

reference data, which may 

result in conflicting or absent 
cell labels. 

Use well-matched reference 
data or marker-based 

methods if such data are 

unavailable. 

Often requires batch 

correction, which may reduce 
the accuracy of results. 

Analyse the reference data 
for strong biological signals. 

Use a good experimental 
protocol that will prevail over 

batch effects. 

Mistakes in reference data 
get carried over to results. 

Analyse reference data for 
potential errors before using. 

Comparing results from 
different automatic annotation 

methods 

Results may not agree with 
each other. 

Compare confidence scores 
of respective labels, and 

consider label agreement 
(majority rule); resolve 
conflicts using manual 

annotation. 

Consider the possibility of cell 
subtypes, new cell types, or 

gradients and cell states. 

Expert manual cell annotation 

All methods 

Slow, labour-intensive. 

Whenever possible, begin 
with automatic annotation 
to determine general cell 

labels. 

Subjective. 
Work with an expert; 

consider multiple cell-type 
conclusions. 

 
Marker-based annotation 

Cell types not distinguishable 
by a single marker. 

Use multiple markers for each 
cell type. 
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Known markers not 
distinguishing cell types. 

Curate larger lists of markers 
from the literature, additional 

experiments or experts. 

Conflicting marker gene sets 
between sources. 

Select a marker gene set that 
best represents the biological 
signal being looked for in the 

data (e.g. if looking for cell 
subtypes, use more extensive 
gene sets than what is used 

for general cell-type 
annotation). 

 

Table 2: Summary of referenced annotation tools 

Tool Type Language Resolution Approach 
Allows 
“None” 

Notes 

singleCell 
Net42 

Reference
- based 

R 
Single 
cells  

Relative- 
expression gene-
pairs + Random 

Forest 

Yes, but 

rarely 
does so 

even 
when it 

should33 

10X-100X slower than other 
methods. High accuracy. 

scmap-cluster41 
Reference

- based 
R 

Single 

cells  

Consistent 

correlations 
Yes 

Fastest method available. 
Balances false-positives and false-

negatives.. Includes web-interface 
for use with a large pre-built 

reference or custom reference set. 

scmap-cell41 
Reference

- based 
R 

Single 
cells  

Approximate 
nearest neighbours 

Yes 

Assigns individual cells to nearest 

neighbour cells in reference; allows 
mapping cell trajectories. Fast and 

scalable. 

singleR43 
Reference

- based 
R 

Single 
cells 

Hierarchical 
clustering, 
Spearman 

correlations 

No 

Includes a large marker reference. 
Does not scale to data sets of 
10,000 cells or more. Includes 

web-interface with marker 
database 

Scikit-learn120 
Reference

- based 
python 

Multiple 

possible 

k-nearest 
neighbours (KNN), 

Support vector 
machine (SVM),  
Random forest 

(RF), Nearest 
mean classifier 
(NMC), Linear 

discriminant 
analysis (LDA) 

(optional) 

Expertise required for correct 
design and appropriate training of 

classifier while avoiding over-
training. 

AUCell121 
Marker- 
based 

R 
Single 
cells 

Area Under the 

Curve to estimate 
marker gene set 

enrichment 

Yes 

Due to low detection rates at the 

level of single cells, it requires 
many markers for every cell-type. 

SCINA34 
Marker- 
based 

R 
Single 
cells 

Expectation-

Maximization, 
Gaussian mixture 

model  

(optional) 

Simultaneously clusters and 

annotates cells. Robust to the 
inclusion of incorrect marker 

genes. 

GSEA/ 

GSVA36,122 

Marker- 

based 
R/Java 

Clusters of 

cells 
Enrichment test,  Yes 

Marker gene lists must be 

reformatted in GMT format. 
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Markers must all be differentially 
expressed in the same direction in 

the cluster. 

Harmony108 
Integration 

(Box 2) 
R 

Single 
cells 

Iterative clustering 
and adjustment 

Yes 

Integrates only lower-dimensional 
projection of the data. Seamlessly 

integrated into Seurat pipeline. 

May over-correct data. 

Seurat-CCA123 
Integration 

(Box 2) 
R 

Single 

cells 

MNN-anchors + 
Canonical 

Correlation 
Analysis 

Yes 

Accuracy depends on the accuracy 
of MNN-anchors, which are 

automatically-identified 
corresponding cells across data 

sets. 

mnnCorrect109 
Integration 

(Box 2) 
R 

Single 
cells 

MNN-pairs + SVD Yes 

Accuracy depends on the accuracy 

of MNN-pairs (cells matched 
between data sets). Referred to in 

Box 2. 

LIGER110 
Integration 

(Box 2) 
R 

Single 
cells 

Non-negative 
matrix factorization 

Yes 
Allows interpretation of data-set-

specific and shared factors of 
variation. Referred to in Box 2. 

 

 



-40 -20 0 20 40

-4
0

-2
0

0
2
0

4
0

tSNE_1

tS
N
E
_
2

Figure 1

Inflammatory

macrophages

Non-inflammatory 

macrophages

Hepatocytes 3

Portal 

endothelial 

cells

Mature B 

cells

Hepatocytes 1

Hepatocytes 2

Hepatocytes 4

Hepatocytes 6

Cholangiocytes

Hepatocytes 5

Plasma cells

Periportal

LSECs

Central venous 

LSECs

Hepatic stellate 

cells

ɑβ T cells

NK-like cells

γδ T cells 1
γδ T cells 2

Erythroid cells



Query scRNA-seq data

Fully annotated

Marker 
genes

Gene 
function

Verification

Experiments

Independent 
data integration

Statistical 
support

Consultation 
with experts

Figure 2

Query scRNA-seq data

Manual annotationAutomatic annotation

Query scRNA-seq data

Reference scRNA-seq data

Annotated 
cell cluster

Unannotated 
cell cluster

Subtype 
annotation



B cells
Dendritic cells
Eosinophils
Macrophages

CD4+ T Helper 2
CD34+

Mast cells

Dendritic 
cells

T cells

Plasma 
cells

NK cells

Neutrophils

B cells

Eosinophils
Macrophages

Dendritic cells

CD8+/CD45RA+
Naive Cytotoxic

CD8+ Cytotoxic T

CD56+ NK

CD4+/CD45RO+
Memory

CD4+/CD45RA+/
CD25- Naive T

CD4+/CD25 T Reg

CD19+ B

CD14+ Monocyte

Mast cells
Monocytes
Neutrophiles

NK cells
Plasma cells
T cells

CD14+ Monocyte
CD19+B
CD34+
CD4+ T Helper 2
CD4+/CD25 T Reg
CD4+/CD45RA+/
   CD25- Naive T

CD4+/CD45RO+ Memory
CD56+ NK
CD8+ Cytotoxic T
CD8+/CD45RA+ 
   Naive Cytotoxic
Dendritic

S
C

IN
A

-b
as

ed
 c

el
l a

nn
ot

at
io

ns
 

fro
m

 s
cR

N
A

-s
eq

 
cl

us
te

r-
de

riv
ed

 m
ar

ke
rs

 

a

b

c
S

C
IN

A 
an

no
ta

tio
ns

 
w

ith
 li

te
ra

tu
re

-d
er

iv
ed

 
P

B
M

C
 m

ar
ke

rs
 

Cell annotations from 
SCINA scRNA-seq (a)

Cell annotations from 
SCINA literature (b)

tSNE_1

tS
N

E
_2

tSNE_1

tS
N

E
_2

Figure 3



Figure 4

b scmap-cluster: 
automatic annotation 

assigns labels to 
individual cells

Each cluster is assigned 
the label of the majority 
of its constituent cells

Aggregated and 
consensus cluster labels

Labels shared 
across clusters 
are aggregated

c
Consensus annotated liver data set

a Clustered unlabeled 
liver data set

C
el

ls
 a

ss
ig

ne
d 

to
 a

n 
id

en
tit

y 
(%

)

4    10

Inflammatory 
macrophages

Unassigned

Non-Inflammatory 
macrophages

4

10
2

8

9

7

18 19

14

17

16

15

12 11 1320

5

6

3
1

Antibody secreting B cells
CD3 ɑβ T cells
Central venous LSECs
Cholangiocytes
γδ T cells 1
γδ T cells 2
Inflammatory macrophages
Interzonal hepatocytes
Mature B cells
NK-like cells
Non-inflammatory macrophages
Pericentral hepatocytes
Periportal hepatocytes
Periportal LSECs
Portal endothelial cells
Stellate cells
Unassigned
Unidentified hepatocytes



a

b

CD68

Macrophages
LYZ

Inflammatory macrophages
MARCO

Non-inflammatory macrophages

ALB

Hepatocytes
CYP3A4

Pericentral hepatocytes
SCD

Periportal hepatocytes

Figure 5



NendC
ImmN

mNEUR

mNEUR mNEUR
NRP

Mllt11 expressed 
at varying levels 
across clusters

= clear marker genes

Mllt11 expression

Marker genes

Abbreviated 
cell types ImmN

mNEUR

NendC

NRP Neuron m
aturity

t-SNE splits cells into 
small clusters with 

some shared identity 
(e.g. mNEUR)

PCA demonstrates 
cell gradient

Figure 6

a

b

c



B Cells
Dendritic Cells
Eosinophils

Macrophages
Mast Cells
Monocytes

Neutrophils
NK Cells
Plasma Cells

T Cells
Unknown

Figure 7

Experiment 1 Experiment 2 Experiment 3

a

Cells sequenced 
with 3 different 
technologies

Batch correction 
applied across 

data sets

ba

UMAP_1UMAP_1

U
M

A
P

_2

U
M

A
P

_2

Cell types 
condensed into 
fewer clusters

e
Cell types 

spread across 
multiple clusters

f

C
ou

nt
s

C
ou

nt
s

Cluster Cluster

Each cluster 
contains cells 
from multiple 
experiments

c

Each cluster has cells 
from a single 

experimental protocol

d

C
ou

nt
s

C
ou

nt
s

Cluster Cluster

Dendritic 
cells

Monocytes
B cells

T cells

Plasma cells
B cells

Macrophages

Monocytes

Dendritic cells

Monocytes

T cells

NK cells

B cellsNK cells

T cells

T cells

NK cells

NK cells

NK cells

B cells
Plasma cells

Monocytes

Macrophages B cells

Dendritic cells

Plasma cells


