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Josephson junctions and single flux quantum (SFQ) circuits form a natural neuromorphic technology

with SFQ pulses and superconducting transmission lines simulating action potentials and axons.

Josephson junctions consist of superconducting electrodes with nanoscale barriers that modulate the cou-

pling of the complex superconducting order parameter across the junction. When the order parameter

undergoes a 2π phase jump, the junction emits a voltage pulse with an integrated amplitude of a flux

quantum f0= h/(2e) = 2.068 × 10
−15V s. The coupling across a junction can be controlled and modulated

by incorporating the nanoscale magnetic structure in the barrier. The magnetic state of embedded nano-

clusters can be changed by applying small current or field pulses, enabling both unsupervised and super-

vised learning. The advantage of this magnetic/superconducting technology is that it combines natural

spiking behavior and plasticity in a single nanoscale device and is orders of magnitude faster and lower

energy than other technologies. Maximum operating frequencies are above 100GHz, while spiking and

training energies are ∼10−20 J and 10−18 J, respectively. This technology can operate close to the thermal

limit, which at 4 K is considerably lower energy than in a human brain. The transition from deterministic

to stochastic behavior can be studied with small temperature modifications. Here, we present a tutorial on

the spiking behavior of Josephson junctions; the use of the nanoscale magnetic structure to modulate the

coupling across the junction; the design and operation of magnetic Josephson junctions, device models,

and simulation of magnetic Josephson junction neuromorphic circuits; and potential neuromorphic archi-

tectures based on hybrid superconducting/magnetic technology. © 2018 Author(s). All article

content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)

license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5042425

I. INTRODUCTION

Deep neural nets have been successful in many tasks,1

including image recognition/classification, language translation,

speech recognition, medical image reconstruction, medical

diagnosis, and robotics. Current implementations are mostly

software based and are limited by software algorithms for train-

ing and the inherent serial nature of the complementary metal–

oxide–semiconductor (CMOS) processors used to implement

the algorithms. Developing neuromorphic hardware has been a

longstanding challenge.2,3 Biological neural systems are char-

acterized by complex spike-based communication, co-location

of memory and processing, plasticity, and extreme complexity.

Extreme complexity includes a large number of neurons (1011)

and synapses (1015), large fan-out (>1000), 3-dimensional con-

nectivity, large number of physical parameters and mecha-

nisms working together, and chemical/physics based

processing where all components evolve simultaneously.4

Many neuromorphic systems have been proposed and

developed to various stages of complexity.5,6 The most advanced

are CMOS based systems, such as True North,7 SpiNNacker,8

Neurogrid,9 and the BrainScaleS machine.10 Most of these

systems imitate neural function with mixed analog and digital

techniques using conventional silicon device structures.

Non-CMOS neuromorphic devices have been proposed includ-

ing memristors,11–13 nanowires,14 photonics,15,16 and spin based

systems.17–20 Most of these technologies do not have low energy

plasticity combined with natural spiking at the device level.

While there is considerable debate about the added advantage

and necessity of spiking systems,21,22 when operating at extreme

speeds (>100GHz) and ultra-low energy (<10−20 J/spike),

systems that use asynchronous spikes for data transmission and

unsupervised learning are at present the most accessible.

Here, we focus on hybrid magnetic superconducting

devices that naturally output voltage spikes and have plastic-

ity due to embedded nanoscale magnetic structures.

Superconducting and magnetic device technologies are rela-

tively mature, and large scale integrated systems have been suc-

cessfully deployed. On the magnetic device side, large

non-volatile memories based on magnetic tunnel junctions,

using spin-polarized currents to write, have been commercial-

ized.23 Magnetic devices are uniquely suited for nanoscale

memory applications. On the superconducting device side, high

speed microprocessors and communication systems have been

developed, based mostly on superconducting tunnel junctions.24

One successful application is the Josephson voltage standard

that uses large arrays of Josephson junction oscillators to phase

lock on an external microwave signal and output a precise

voltage that is related to the flux quantum.25 Superconducting

Note: This paper is part of the Special Topic section “New Physics and

Materials for Neuromorphic Computation” published in J. Appl. Phys.
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devices are being used for quantum computation and informa-

tion processing applications.26 Neuromorphic applications of

these devices use completely different design concepts than all

of these previous applications. For nanoscale digital memory,

systems require high uniformity and discrete well-defined states,

while neuromorphic systems embrace nonuniformity and a

large number of analog states. In quantum computation and

information processing, interactions with the environment are

minimized while neuromorphic systems embrace thermal fluc-

tuations and interactions with their environment.

Both the superconducting and the magnetic systems can

be described by macroscopic order parameters that character-

ize a coherent state of electrons, which occurs due to

electron-electron interactions. Superconducting systems are

characterized, in the simplest case, by a complex order

parameter ψ(~r, t) ¼
ffiffiffi

n
p

eiθ, which is derived from a two-

particle correlation function that describes a many body

coherence of the quantum state. For a standard s-wave super-

conductor, an attractive interaction leads to correlations of a

pair of spin up and spin down electrons near the Fermi

surface.27,28 The two-body correlation can be thought of as a

superconducting electron pair (Cooper pair), which has a

wave function similar to positronium and an extent given by

the coherence length ξ0 ¼
�hvF

πΔsc

, where vF is the Fermi veloc-

ity and Δsc is the superconducting energy gap. For Nb, one

of the commonly used materials in superconducting circuits,

the coherence length is ξ0 ¼ 38 nm.29 The superconducting

energy gap, Δsc, is a measure of the minimum energy to

create an electronic excitation and the decrease in energy

going into the correlated state Usc ¼
1

2
N(0)Δ2

sc, where N(0) is

the density of states at the Fermi surface.27 For conventional

superconductors, the wave function is built up from momen-

tum states near the Fermi surface and has strong charge modu-

lation at wavelengths comparable to lattice spacings. These

charge modulations couple with the lattice to cause distortions

(phonons) that lower the overall energy of the electron pair.

The superconducting pairs are highly overlapping, so the mac-

roscopic charge density is uniform. The square of the magni-

tude of the order parameter n(~r, t) can be viewed as a local

density of superconducting pairs, while the phase θ(~r, t) is

related to motion and flow of the superconducting pairs.

For magnetic systems, there is a strong spin-dependent

interaction between electrons due to the antisymmetry of the

wave function. This asymmetry requires that two electrons of

identical spin cannot occupy the same spatial location, which

leads to strong correlations in the spin states of neighboring

electrons. For the case where neighboring spins tend to align,

the order parameter can be expressed as the local magnetiza-

tion vector, ~M(~r), which is the local magnetic moment per

unit volume. For both superconducting and magnetic

systems, especially when they are combined, the order

parameters may have a more complex structure.

A. Josephson junctions

The devices considered here, shown in Fig. 1, consist of

two superconducting electrodes separated by a barrier that

suppresses the superconducting order parameter. The barrier

can be an insulator, a normal metal, a magnetic metal or insu-

lator, a constriction, or a nanowire. Figure 1 shows a special

type of barrier that has embedded magnetic nanoclusters in a

dielectric barrier of thickness ∼5 nm. If the barrier is suffi-

ciently thin, there will be coupling across the barrier and a dis-

sipationless pair current (shown schematically as the coupled

electrons in Fig. 1) can flow up to a critical current Ic. These

devices all fall under the category of Josephson junctions,

named after Brian Josephson who first predicted the effect in

tunnel junctions.30 The dynamics of the superconducting order

parameter in a Josephson junction, in the simplest case, can be

described by a set of coupled equations31

i�h
@ψ1

@t
¼ μ1ψ1 þ kψ2

, (1)

i�h
@ψ2

@t
¼ μ2ψ2 þ kψ1,

where μ1 ¼ �μ2 are the pair energy levels on the two sides

of the electrodes and k is a coupling energy. The voltage V

(half of the energy to transfer a pair) and current I across the

device are given by (where ni is now the number of Cooper

pairs on each electrode)

V ¼
1

2e
(μ1 � μ2) , (2)

I ¼
2e@n1
@t

¼ �
2e@n2
@t

: (3)

By equating the real and imaginary parts of these equa-

tions, one can derive the Josephson relations which relate the

current and voltage to the phase difference θ ¼ θ2 � θ1 and

the time dependence of the phase, respectively,

dθ

dt
¼

2e

�h
V ¼

2πV

f0

, (4)

I ¼
4ek

�h

ffiffiffiffiffiffiffiffiffi

n1n2
p

sin (θ) ¼ Ic sin (θ) , (5)

f0 ¼
h

2e
¼ 2:067833831(13)10�15 V s is the superconducting

magnetic flux quantum and Ic is the junction critical current.

FIG. 1. Josephson junction with two superconducting electrodes separated

by an insulating barrier with embedded magnetic nanoclusters (shown in

red). The suppression of the superconducting order parameter ψ is shown

schematically on the right as a function of vertical z-position. Quasiparticle

Iqp and superconducting pair Isp currents are shown schematically.
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A steady state pair current can flow with no voltage (no

dissipation) and is a periodic function of the order parameter

phase difference θ, with a maximum value of Ic. Ic is a func-

tion of the pair density in the electrodes, which has a strong

temperature dependence and goes to zero near the supercon-

ducting transition temperature Tc. Ic is also a function of the

coupling energy k, which is a sensitive function of the

embedded magnetic order. As the pair current and phase dif-

ference increase, a voltage is generated proportional to dI=dt
and reversible work is done leading to a Josephson energy

Uj ¼
Ð

IV(t)dt ¼
Ð

Ic sin (θ)(dθ=dt)(f0=2π)dt¼ (Icf0=2π)[1�
cos (θ)]. Using the standard definition of an inductor

V ¼ L(dI=dt), a Josephson device can be considered as a

nonlinear inductor with Lj ¼ f0=2πIc cos (θ), with the induc-

tance inversely proportional to the critical current. If the phase

θ undergoes a phase jump, then a voltage pulse will be

generated with an integrated amplitude of
Ð

V(t)dt ¼ f0.

These pulses are referred to as single flux quantum (SFQ)

pulses and have typical amplitudes of 1 mV and duration 2 ps.

In addition to the pair current, there is a current carried

by thermal single-particle excitations, quasiparticles, that, at

higher energies, are similar to single particle excitations in

normal metals. The superconducting energy gap Δsc defines

the minimum energy of a quasiparticle excitation, leading to

an exponential decrease in the quasiparticle density at low

temperatures and nonlinear conductances across certain junc-

tions, especially those whose transport is dominated by tun-

neling. The current through the superconducting electrodes

can be considered to be the sum of two independent compo-

nents, the superconducting pair and quasiparticle currents,

which constitutes a two-fluid model. In conventional tunnel

barriers, the transport through the barrier can also be

assumed to be due to independent pair and quasiparticle cur-

rents. This may not be the case in more complex barriers that

have magnetic structures.

B. Josephson junction dynamics and models

A Josephson junction can be viewed as an ideal

Josephson device, which transports superconducting pairs, in

parallel with a capacitor and a dissipative element. This

model, referred to as the resistively capacitively shunted junc-

tion (RCSJ) model,29,32 is shown in Fig. 2. The dissipative

element can be either the quasiparticle current or a separate

resistive shunt. Here, we take Rn to be independent of

voltage, which adequately models the junctions used in this

work.

The circuit model describes a resonant LCR circuit with

a nonlinear inductor describing the supercurrents. Summing

the currents and setting them equal to the applied current

yields the RCSJ dynamical equation29,32

f0

2π
Cj
€θ þ

w0

2πRn

_θ þ In(t)þ Icsin(θ)� I ¼ 0 , (6)

where current noise In(t) is a random variable usually

assumed to have a Gaussian distribution with a standard

deviation of Inrms ¼

ffiffiffiffiffiffiffiffiffiffi

4kBT

Rnτ

r

. Here, kB is Boltzmann’s cons-

tant, T is the temperature of the junction, and τ is the time

over which the random field is applied, which must be much

less than dynamical oscillation times.

The dynamics are characterized by two parameters, the

plasma frequency, ωp, defined as the oscillation frequency at

the bottom of the potential well and the unitless McCumber

parameter, βc, which determines the strength of the

damping.

ωp ¼

ffiffiffiffiffiffiffiffiffiffi

2πIc

f0Cj

s

, (7)

βc ¼
2πIcR

2
nCj

f0

: (8)

Typical values of the plasma frequency for the junctions con-

sidered here are 100 to 400 GHz.33 The McCumber parame-

ter is related to the quality factor of the oscillator

Q ¼ RnCjωp ¼
ffiffiffiffiffi

βc
p

and can be chosen to vary over a wide

range. Highly damped junctions, βc � 1, are used for

Josephson voltage standard arrays, while underdamped junc-

tions, βc � 1, have been used for latching logic. Here, we

will restrict ourselves to junctions that are moderately

damped that have βc close to 1, which is close to critical

damping.

The circuit model yields a dynamical equation that is

identical to that of a forced damped pendulum, where the

first term gives the kinetic energy with a mass promotional to

Cj, the second and third terms are the damping term and

associated fluctuations, respectively. The fourth term is the

torque due to a “gravitational” potential with the same form

as the Josephson energy U ¼ (� Icf0=2π) cos (θ). The final

term is the external torque corresponding to the applied

current.

The dynamics can be visualized using the damped

pendulum analogy. When a small torque (or current) is

applied, the order parameter phase θ will increase and

reach a static value. When the phase gets close to π, there

will be a probability that the pendulum will go over the

potential energy maximum and will emit a SFQ pulse.

When the applied current is larger than Ic, the torque is

sufficient to continually drive the pendulum over the poten-

tial energy maximum outputting a series of SFQ pulses. At

very high applied currents, the pendulum will undergo

rapid oscillations with a rate of phase advance proportional

to the applied current, corresponding to a linear increase in
FIG. 2. Resistively capacitively shunted junction (RCSJ) model of a

Josephson junction. An × is used as the symbol for a Josephson junction.
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the average voltage. Here, the dissipative current is much

larger than the supercurrent. This trend is seen in Fig. 3,

which is a simulation of the RCSJ equation with a current

ramp of 3.0 μA/ns, T = 4.0 K, Ic = 1.5 μA, βc = 0.5. The crit-

ical current is sufficiently low that the thermal energy is

comparable to the Josephson energy leading to observed

fluctuations.

Experimentally measured time-averaged voltages as a

function of applied current, for arrays of Josephson junctions

designed for SFQ applications, are shown in Fig. 4. Here,

Ic = 0.7 mA. The three regimes are labeled: the low-current

dissipationless regime, the SFQ pulsing regime, and the high-

current dissipative regime.

C. Superconducting transmission lines as axons

As important as efficient spiking and synaptic plasticity,

a neuromorphic architecture must have the ability to transport

spikes with little dispersion over long distances and large

fan-out. Superconducting transmission lines have low loss

and low dispersion up to frequencies comparable to the gap

frequency hfg ¼ 2Δsc, above which quasiparticle pairs can be

created.34 For Nb transmission lines, which are used in most

of the current SFQ circuits, fg ¼ 650 GHz.35 1 ps SFQ

pulses can propagate 10 mm without significant loss and

dispersion.34

A superconducting transmission line can function as a

long dispersionless axon. However, synaptic connections will

cause attenuation of the pulse. Several circuits have been

demonstrated using Josephson transmission lines [an

example is shown in Fig. 5(b)] and SFQ pulse splitters that

can be used to add energy and regenerate quantized SFQ

pulses.36 Using these techniques, a single spike can be sent

to a very large number of synaptic taps.

D. Single flux quantum technology for neuromorphic
computing

When operating in a low current regime near Ic,

Josephson junctions are naturally spiking devices. These

pulses form the basis of several high-speed logic families.37

In addition, Josephson junctions have been demonstrated as

biologically realistic neurons with two Josephson junctions

per cell.38,39 They have been proposed for use in stochastic

neural networks,40 spiking neural networks, and have been

used to implement a sigmoid transfer function for rate encod-

ing.41 Figure 5 shows the correspondence between this super-

conducting technology and biological neural systems.

Figure 5(a) shows a comparison of numerically calculated

action potentials using a Hodgkin-Huxley model42 and SFQ

pulses calculated using the RCSJ model. SFQ pulses are an

order of magnitude smaller in voltage and nine orders of

magnitude shorter duration. Both neural and SFQ pulses can

propagate long distances with little dispersion. SFQ pulses

can propagate on passive superconducting transmission lines

or active Josephson transmission lines, shown in Fig. 5(b).

Neurons also use a combination of regions with the myelin-

ated regions being more passive and the nodes of Ranvier

[Fig. 5(b)] corresponding to more active regions. Active

lines, where there is energy input along the transmission

path, are required for high fan-out to maintain the pulse

energy. Biological neural systems have an inherent high-

complexity 3-dimensional structure, as indicated schemati-

cally by a white matter tractography map for a human brain

in Fig. 5(c), while the magnetic/superconducting systems are

still limited by current microfabrication technology.

Figure 5(c) shows state-of-the-art SFQ technology with

8-metal layers for Josephson junctions, high speed

FIG. 3. Stochastic RCSJ simulation for a junction showing the phase and

voltage as the current is ramped at 3 μA/ns. The temperature is 4.0 K which,

for this small critical current, gives rise to significant thermal fluctuations of

the phase.

FIG. 4. Measured average voltage vs. applied current for Josephson junction

arrays designed for SFQ applications. Figure courtesy of P. Dresselhaus and

D. Olaya.
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interconnects, resistive, capacitive, and inductive compo-

nents.24 While technically advanced, this microfabricated

technology cannot match the fan-out possible in biological

systems. In SPICE (SPICE refers to Simulation Programs

with Integrated Circuit Emphasis, which is used to simulate

many types of electronic devices and circuits) simulations,

we have been able to implement fan-out of 1 to 3 without

additional junctions. If we use this as a worst case, imple-

menting all-to-all connections in a feed forward between two

100 node layers would require roughly 3900 additional junc-

tions. This is a major challenge and any larger fan out is dif-

ficult without a further advance in the microfabrication

technology. Fan-in of 9 to 1 has been simulated and would

follow a similar approach, which is more promising. We have

thus indicated 100 fan-out as the maximum feasible number

with the current technology in Fig. 5(c), though even this

level will clearly be challenging. The speed of Josephson

based neurons is much faster than biological, with ≈1010

pulses/neuron/s possible. The neuromorphic synapse being

discussed in this paper is shown schematically in Fig. 5(d)

along with a biological synapse. The biological synapse is

exceedingly complex relying on many different neurotrans-

mitters, ion transport mechanisms, and intracellular struc-

tures. The neuromorphic synapse relies on the complex

interaction of the superconducting order parameter with the

embedded magnetic nanostructure. The magnetic nanostructure

forms a memory that can modulate the superconducting

spiking behavior. The modulation depends on the relative

orientations of the spin clusters, which can be modified using

low energy current pulses. Finally, the human brain shows

remarkable energy efficiency with operation at 20W. The

superconducting circuits take considerably less energy,

excluding the costs for the cryogenic system. In large scale

applications where the power consumption is already greater

than 10 kW, the cooling overhead is roughly 1000W of wall

power to cool 1W at 4 K.43

Neuromorphic technologies have many potential advan-

tages over corresponding digital technologies when going to

extreme speeds and low energies. Digital technologies

require global high-speed clocks for synchronization, which

is challenging above 10 GHz, while neuromorphic systems

are asynchronous. Digital SFQ systems require precise pulse

timing and synchronization of pulse arrival at subsequent

gates, while neuromorphic systems embrace pulse time varia-

tions as an important form of information transfer. Digital

systems require high uniformity of devices, while neuromor-

phic systems, given that the devices are inherently plastic,

embraces nonuniformity. Digital systems require a memory

hierarchy with memory located at sequentially farther dis-

tances from the information processing core. This separation

FIG. 5. Comparison of biological and magnetic Josephson junction neural systems. (a) Numerical simulations of action potentials using the Hodgkin–Huxley

model and SFQ pulses using the RCSJ model. (b) Schematic of an axon which transmits action-potential pulses long distances without degradation and a

Josephson transmission line which transmits SFQ pulses long distances without degradation. The axon schematic is from https://en.wikipedia.org/wiki/Axon.

(c) A diffusion MRI-based tractography map of a human brain from www.humanconectomeproject.org illustrating complex 3-dimensional connectivity and

state-of-the art 8-layer SFQ circuit showing present day connectivity in microfabricated circuits.24 (d) Illustrates a biological synapse (https://en.wikipedia.org/

wiki/Synapse) with complex neurotransmitters and ion channels, and a magnetic Josephson junction synapses with connectivity modulated by local spin clus-

ters. [(e), (f ), and (g)] Number of neurons and fan-out possible at present, speed of the neural systems measured in pulses per neuron per second, and the power

consumed by a system with the above parameters. The power listed for a typical SFQ neuromorphic circuit does not include cooling overhead.
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leads to both higher power and lower speed. Neuromorphic

systems, such as the one discussed here, have the memory

intrinsically embedded in the information processing core,

collocated at the nanoscale. Digital systems require determin-

istic response and cannot tolerate stochasticity, which neces-

sarily occurs when switching energies are close to the

thermal energy. Neuromorphic systems embrace stochastic-

ity44 as an important method of information transfer and as a

method to explore options that have not been explicitly

preprogramed.

II. MODULATING COUPLING ACROSS A JOSEPHSON
JUNCTION WITH THE NANOSCALE MAGNETIC
STRUCTURE

A. Magnetic Josephson junctions

Superconductivity and ferromagnetism have a funda-

mental competition in their ground states, which makes the

combination of the systems quite interesting. The singlet

ground state in a superconductor has Cooper pairs with oppo-

site spin orientation, whereas the ferromagnetic exchange

interaction tends to align spins parallel. Vitaly Ginzburg in

1956 was the first to posit the coexistence problem of singlet

superconductivity with ferromagnetism from the viewpoint

of orbital interactions.45 The advent of BCS theory27 soon

after lead to the realization that the problem could also be

explained in terms of a competition between the opposite

spin orientation in superconducting pairs and the parallel

spin orientation favored by the ferromagnetic exchange

interaction.46 The effect of the exchange field can lead to a

nonuniform superconducting state with the pairs acquiring a

non-zero center of mass momentum, which was predicted in

1964 by Fulde, Ferrell, Larkin, and Ovchinnikov

(FFLO).47,48 While these theoretical works were done with

respect to continuous ferromagnetic superconductors, the

behavior that is observed in superconducting-ferromagnetic

heterostructures is often analogous. This analogous behavior

has led to many exciting recent developments in nanometer

scale superconducting ferromagnetic hybrid devices.49–53

Among the most promising devices for high perfor-

mance computing applications are the magnetic Josephson

junctions (MJJs). In these devices, the Cooper pair wavefunc-

tion extends into the ferromagnetic layer with a damped

oscillatory behavior. Leveraging the work of the hard disk

drive industry, the magnetic random access memory industry,

and the great progress in superconductive thin films, hybrid

superconducting-ferromagnetic devices can be made with

precise control of the ferromagnetic layer. This has led to the

development of many interesting devices that exploit the

physics of the interacting order parameters. Among these are

π Josephson junctions,54 spin triplet Josephson junctions,49,55

and pseudo spin-valve Josephson junctions.56 What has

become clear is that there is a strong interaction between the

state of the ferromagnetic barrier in an MJJ and the supercon-

ducting order parameter. These effects can be used to modu-

late the phase and/or amplitude of the Josephson critical

current Ic. More specifically, the exchange field F results in a

superconducting spin-pair ↑ ↓ that occupies a spin-split

Fermi level in the ferromagnet. The resultant center of mass

momentum of the spin-pair is nonzero |k↑− k↓|≡ δk and is

directed perpendicular to the interface. In a typical supercon-

ductor, the ground state is occupied by Cooper pairs in the

singlet state ↑↓− ↓↑. Once the spin splitting from the

exchange field is introduced, the pair amplitude is propor-

tional to ↑↓ eiδk·R− ↓↑ e-iδk·R in analogy to the FFLO phase

in a ferromagnetic superconductor. This leads to an oscilla-

tory pair-phase w(x) that modulates with distance from the

superconductor-ferromagnet interface that is also accompa-

nied by decoherence as the pairs move away from the super-

conducting interface.47,48,51,57 This effect can be observed in

the Josephson coupling, which leads to an Ic that oscillates

and decays as a function of ferromagnetic thickness. The

oscillation period with ferromagnetic thickness is set by the

spin splitting at the Fermi level and is ∼π/δk.49,58–60 The

ability to tune phase and the phase dependent Josephson crit-

ical current by changing the magnetic properties allows one

to exploit the work that has gone into a large range of spin-

tronics devices to control the superconducting properties of a

hybrid MJJ.

B. Manipulating magnetic structure to perform
synaptic functions

Significant work has gone into exploring ferromagnetic

semiconductors for spintronics applications.61,62 One of the

unintended effects that was discovered was the tendency for

Mn to cluster during annealing when doping semiconduc-

tors.63,64 The size and energy barrier of the Mn clusters can

be tuned by varying these annealing conditions leading to a

highly tunable materials system.65 This is particularly useful

in Nb based Josephson junctions, which enables easy access

to clusters that are thermally stable at operating temperature

of 4 K. In addition, the clusters can be physically very small

with cluster sizes being estimated from magnetometry to be

around 4 nm in diameter and having a density of roughly

20 000 clusters per square micron. Being able to make MJJs

with these large number of clusters allows us to control the

critical current of the junction in a near analog way over two

orders of magnitude. This flexible tunability is ideal for

enacting the synaptic functions that are needed in SFQ neuro-

morphic computing.33

Figure 6 shows voltage versus applied current data from

a 2.5 × 5 μm elliptical MJJ with the SiMn cluster barrier. In

FIG. 6. Voltage versus applied bias current for 2.5 × 5 μm elliptical clustered

MJJ in the magnetically disordered (left) and magnetically ordered (right)

states.
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the magnetically disordered state, where there is dissipation-

less transport, the critical current is roughly 130 μA. In

the magnetically ordered state, the critical current is near the

noise limit of this measurement at roughly 10 μA or less. The

magnetic structure in these junctions can be toggled between

ordered and disordered with 50 ± 5 fJ, 300 ± 20 ps electrical

pulses. In the presence of a 20 mT external magnetic field,

this causes the clusters to order, and in the absence of an

applied field, the pulse causes the clusters to disorder. If the

field direction is reversed and the junction is pulsed with

lower amplitude pulses, the MJJ will transition first to a

higher Ic state and then back down to a lower Ic state, indicat-

ing that the ordered MJJ clusters point along the direction of

the field.

The strong modulation of the Josephson critical current

at zero field, seen in Fig. 6, suggests that the effect is due

to the interacting order parameters. However, it is also

known that the magnetically ordered state will produce a

dipole field that can shift the maximum critical current

away from zero applied field.66 To confirm that the

observed change in Ic is not due to the dipolar field effect,

we can measure Ic as a function of the applied magnetic

field. Figure 7 shows the characteristic voltage IcRn for a

10 μm circular junction in the magnetically ordered (blue)

and disordered states (red). The classic Fraunhofer pattern29

is observed for the magnetically disordered state and is par-

tially fit by the Airy function. The discrepancy of the Airy

function fit on the right-hand lobe illustrates the complexity

of the interaction of the superconducting order parameter

with the magnetic clusters; the details of which are cur-

rently under investigation. In the magnetically ordered state

(red; Fig. 7), we did not fit the data to the Airy function

because Ic was at the noise level of the measurement and

no clear pattern was observed for Ic as a function of

applied field.

Figure 8 shows the Josephson Ic as a function of a

number of electrical pulses used to order the Josephson

junction.33 The data demonstrate the ability to tune the order

in a quasi-analog way between the fully magnetically ordered

and disordered states, which is critical for synaptic function-

ality. The ability to reset the clusters into the disordered state

is easily achieved by pulsing the MJJ in the absence of an

external magnetic field. These data were taken on a 10 μm

circular clustered MJJ. The electrical pulses were applied in a

20 mT external field. The measurements of Ic were taken in

zero applied field and it was confirmed that sweeping the

field between zero and 20 mT had no effect on Ic without the

additional electrical pulses. The pulse voltage was chosen to

be a factor of 10 less than the voltage required to fully order

the clusters with a single pulse. This indicates that the

amount of order induced with the electrical pulse can be

modulated by changing the pulse amplitude. This is an

important tunability that can be used in the design of self-

training synaptic circuits.

Figure 9 shows the energy scaling well with the device

size.33 The red squares are the energy in the electrical pulse

that was required to fully order the junction in an applied 20

mT external magnetic field. It was confirmed that the mag-

netic field alone was sufficiently small that it did not affect

the magnetic order without the addition of an electrical

pulse. It is worth noting that pulses many times below this

energy also affected the magnetic order, as seen in Fig. 8,

and allows for the near analog control of the magnetic order.

It is also worth noting that the minimum training spike

voltage was roughly 700 μV. The blue circles are the approxi-

mate spiking energy for the MJJ as a function of size. The

energy value is calculated as IcΦ0 and is close to the energy

dissipated during a spiking event in the MJJ synapse during

inference. If the observed scaling trends continue, then junc-

tions with approximately 1 μm2 area will be in the self-

training regime. In this limit, the magnetic order can interact

directly with the SFQ pulses and self-learning circuits based

on Hebbian learning rules can be designed. If the size

scaling fails to continue, we should also be able to reduce the

training energy required by reducing the Mn cluster size.

This can likely be achieved with a lower annealing

temperature.

FIG. 7. Josephson Ic as a function of applied field for a 10 μm circular clus-

tered MJJ. Blue data are taken in the magnetically disordered state and fit to

the Airy function, and red data are in the magnetically ordered state and were

at the instrument resolution and therefore not fit to the Airy function.

FIG. 8. Josephson critical current vs. the number of applied electrical pulses

demonstrating the ability to tune order in small increments for synaptic

functionality.
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III. MODELING NEUROMORPHIC SPIKING OF
JOSEPHSON JUNCTIONS AND MAGNETIC
JOSEPHSON JUNCTIONS

In this section, we present simulations of spiking

Josephson junctions based on the RCSJ models. Sections III A

and III B present stochastic models of a single Josephson

junction driven by thermal noise. Section III C extends the

RCSJ model to include a magnetic degree of freedom that

can serve as a synaptic weight.

A. Modeling stochastic dynamics of Josephson
junction

When the Josephson energy becomes comparable to

kBT , fluctuations become important. The thermal stability

factor is given by

Δth ¼
Icf0

2πkBT
: (9)

Here, kB is the Boltzmann constant and T is the temperature

in kelvin. When Δth is large, the dynamics are deterministic,

whereas when Δth,
�
6, there is a significant stochastic com-

ponent. Given the large nonlinear variation of Ic, with tem-

perature near the superconducting critical temperature Tc, we

can vary Δth over a wide range by adjusting the temperature

over just a few degrees, thereby controlling the amount of

stochasticity in the neural circuit.

Figure 10 shows a numerical simulation of the RCSJ

equation for junctions with different critical currents and

thermal stability factors showing a transition from small to

extensive stochastic spiking as the critical current is lowered

from 1.0 μA to 0.5 μA. Here, a small external current bias, Ib
= 0.3 μA, is applied, which sets the polarity of the spiking

and provides energy input. The energy input is given by the

product of Ib and the time-integrated voltage, which is then

nIbf0, where n is the number of 2π phase slips that occur.

The external energy required to generate a spike is 11 kBT .

This low spiking energy is an important advantage to operat-

ing in the stochastic regime. A second advantage is the expo-

nential dependence of spiking rate on device parameters. By

dynamically changing the critical current by a factor of 2, the

physics of which was described in Sec. II, a large increase in

spiking can be obtained. Without any external energy input

in the stochastic limit, the system will undergo random posi-

tive and negative spikes as energy is transferred in and out of

the thermal bath, which is an inherent component of the dis-

sipative element.

B. Modeling spike timing effects

All neuromorphic systems have spike timing effects due

to their intrinsic dynamics. For SFQ systems, the dynamics

are based on ωp and βc, as well as on stochastic effects

caused by temperature. Figure 11 shows an RCSJ simulation

for a series of current-pulse-pairs input into a 1 μm, 200Ω

junction. The current-pulse pairs have temporal separations

ranging from 100 ps to 0 ps and are each 5 ps in duration. For

pulse separation ≥50 ps, no SFQ pulses are emitted. As the

pulse separation is reduced below 20 ps, increasing number

of SFQ pulses are emitted, showing a strong spike timing

dependence. While there is a transient response for pulse sep-

arations of 50 ps and 100 ps, the output voltage pulses inte-

grate precisely to zero. The integrated amplitudes of all

output voltage pulses are quantized in units of f0 and range

from 0 f0 to 8 f0. This spike timing dependence is due to

the energy relaxation time of the junction, which is depen-

dent on βc. As seen in the inset to Fig. 11(c), the relaxation

time, for this junction, is on the order of 20 ps. The oscilla-

tions in the junction, which occur at the plasma frequency

ωp, will lead to fine-scale structure in the spiking probabili-

ties on short time scales if βc . 1.

C. Magnetic Josephson junction model

In addition to the standard RCSJ model that is available

as open source in WRspice, we have developed a Verilog

model of our magnetic Josephson junctions and integrated it

FIG. 9. Pulse energy scaling as a function of the MJJ device area. The red

squares represent the electrical pulse energy required to fully order the mag-

netic state in a 20 mT applied external field. The blue circles are the approxi-

mate energy dissipated during a 2π spiking event of the Josephson junction

and are calculated as IcΦ0.

FIG. 10. Simulations of spiking of a 0.5 μm diameter 400Ω junction at 4.2

K for critical currents of (a) 1.0 μA and (b) 0.5 μA and a bias current of 0.3

μA. The junction with Ic = 0.5 μA shows spikes corresponding to 1, 2, and 3

flux quanta.
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into WRspice. In this model, the magnetic order parameter

m is expressed by its effect on the junction critical current

(IC), according to the relationship

IC(m, T) ¼ [(1� m)ICV þ ICM] 1�
T

TC

� �2
" #

, (10)

where T is the temperature, TC is the critical temperature of

the superconducting material, m is the magnetic order param-

eter (the normalized total magnetic moment in the barrier),

and the sum ICV þ ICM is the maximum critical current,

achieved when m = 0 (the magnetically disordered state) and

T = 0. Equation (10) is a simple phenomenological model

which coarsely mimics the observed behavior that the IC
changes with each voltage pulse and that IC varies with the

observed power law behavior 1� (T=TC)
2. The magnetic

order parameter varies with the integrated junction voltage

according to dm ¼ kV(t)dt between m= 0 and m= 1; in other

words, a voltage pulse across the junction causes the order

parameter to increase and critical current to decrease, until sat-

uration at m = 1 and IC ¼ ICM . The proportionality constant k

is a simulation input parameter; physically, this parameter

varies based on fabrication parameters and external field

strength. To simulate the neural network in situ self-training

mode, k can be set so that m varies from 0 to 1 within ∼100

SFQ voltage pulses. For simulation of network operation after

MJJ, IC’s have converged to their optimal values and k is set

so that m is essentially invariant in normal circuit operation.

IV. NEUROMORPHIC CIRCUIT MODELS
INCORPORATING JOSEPHSON JUNCTIONS AND
MAGNETIC JOSEPHSON JUNCTIONS

Josephson junctions and MJJs can be built into simple

superconducting circuit elements that emulate the synapses

and neurons of a neural network. A simple 3-layer feed

forward network is shown schematically in Fig. 12, with

neurons and synapses labeled n and s, respectively. These

elements can be used to realize the layers of a standard feed-

forward neural network and perform, in hardware, the com-

putation

~y ¼ f (W~xþ~b), (11)

where ~x and ~y are the vectors of network layer inputs and

outputs, W is a matrix of weight factors, ~b is a vector of

offset bias values, and f (~z) is a nonlinear function, applied

element-wise to each element of ~z, which is the weighted

sum of the inputs and biases. W and ~b are variables and

these are modified, in either a supervised or unsupervised

manner, to train the circuit for a particular function.

For a software based neural net, ~x, ~y, W, and ~b would

consist of integers or floating-point numbers. For a neural net

implemented in analog, silicon-based circuitry ~x, ~y, and ~b
would be continuous voltages and W would be linear ampli-

fication stages. For neuromorphic spiking systems, being dis-

cussed here,~x and~y represent complex functions of the input

and output current spike trains (e.g., the number of spikes or

spike rate), W characterizes the complex processing of the

incoming spikes by the Josephson circuit elements, and ~b are

external bias currents. Hence, in our discussion, we refer to

“synapses” as the circuit elements that implement the weight

matrix elements wij and “neurons” as the circuit elements that

perform the summation of multiple synaptic inputs, add a

bias, apply a nonlinear function, and produce an output spike

train.

A. Synapses

Synapses are represented numerically by the elements

wij of a matrix of weights W. In a superconducting neuro-

morphic circuit with tunable IC’s, the synapse circuit ele-

ments are designed such that the IC of the (i,j)th synaptic

MJJ maps to the weight element wij. Ideally, the mapping

from IC to weight wij would be unique and monotonic. In

addition, due to the high volume of synapses in a feed-

forward network, a simple synapse architecture with small

circuit area is ideal.

A proposed synapse circuit structure is shown in Fig. 13.

This structure uses a single MJJ with tunable IC, in parallel

with a fixed inductor L fix. In a small-signal linear model, the

Josephson junction is modeled as an inductor LJ with induc-

tance LJ � Φ0=2πIC, in parallel with a resistance Rn. For

pulses much slower than the plasma frequency of the MJJ

FIG. 11. Simulations of spike timing effects. A pair of 5 ps wide 10 μA

amplitude Gaussian input pulses are applied to a 1 μm diameter 200Ω junc-

tion with different pulse separations ranging from 100 ps to 0 ps. (a) Input

current spikes, (b) output voltage spikes, (c) phase progression with the left

axis being the number of 2π phase jumps. (d) A close up of a voltage spike

and phase jump where the inherent dynamics corresponding to a damped

oscillator can be seen.
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(100 GHz as demonstrated33), the input current splits

between the two inductive branches in a ratio that depends

on the MJJ IC. The current through L fix is used as the

synapse output signal. Given an input current Iin to this

synapse structure, the current through L fix is given by

ILfix ¼ wijIin, (12)

where

wij ¼
LJ

LJ þ L fix

:

A SPICE simulation of the IC versus wij relationship is

shown in Fig. 14. This simulation uses circuit parameters

L fix = 4 pH, Rn = 1Ω, and IC varying from 20 μA to 200 μA

(corresponding to junction characteristic frequency varying

from 9.6 GHz to 96 GHz). In this simulation, the input

current Iin is ramped from 0 to 150 μA, and back to 0 μA,

over a range of ramp times. The synapse weight wij is calcu-

lated by the ratio of the peak current through Lext to the peak

input current of 150 μA. The solid curve corresponds to the

slowly varying input case (ramp time >150 ps). The value of

wij varies from 0.95 to 0.3 over the range of IC’s simulated.

To achieve smaller magnitude of weights wij, the maximum

MJJ IC could be further increased. For example, increasing

IC to 2 mA would decrease the synaptic weight factor to

∼0.04 in the slowly varying input case. The fixed inductance

L fix could also be increased to achieve smaller wij, although

this would result in larger circuit areas (with current NIST

fabrication technology, L fix = 4 pH corresponds to a synapse

circuit area of ∽10 μm× 15 μm). Alternatively, each synaptic

weight wij could be physically represented by two synapse

structures with independent MJJ IC’s, one with a positive

contribution and one with a negative contribution so that

wij(net) ¼ wþ
ij � w�

ij . This scheme will be further explained

in the discussion of output neurons.

The mapping between IC and wij deviates from the out-

lined model when either the input current changes too

quickly or the magnitude of input current becomes too high.

In particular, as the inverse of the input signal ramp time

approaches the junction characteristic frequency, the junction

FIG. 12. Schematic of a simple

spiking feed forward network. n, s, and

b represent neurons, synapses, and

biases, respectively. Not all connec-

tions are shown.

FIG. 13. Synapse circuit element consisting of a Josephson junction in par-

allel with a fixed inductor, Lfix, which is inductively coupled to the output.

The symbol for a MJJ is similar to that of a Josephson junction, except there

is an additional arrow to indicate that the junction properties can be varied

during circuit operation.

FIG. 14. SPICE simulation of synaptic weight vs. Josephson junction criti-

cal current for varying ramp times.
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resistance Rn shunts an increasing portion of the input

current, lowering the current through L fix and limiting the

range of possible variation in wij. This effect is shown by the

dashed curves in Fig. 14. For the junction parameters simu-

lated in this example, the range of possible wij begins to drop

significantly for input ramp times <30 ps. To achieve a

higher maximum operating speed while maintaining full sen-

sitivity of wij to IC, the MJJ Rn could be increased. Finally,

when the input current magnitude increases such that

IinL fix ∼ 0:5 Φ0 or larger, the small-signal model for the

Josephson inductance LJ is no longer valid. Instead, the MJJ

outputs an SFQ pulse for sufficiently large Iin, causing an

abrupt change in the effective wij. The proposed synapses are

not intended for operation in this large-signal regime.

The input current signals to the synapses could be either

analog (i.e., a current pulse from an external source with pro-

gramable amplitude or the scaled output from a previous

network layer) or digital and binary (a “1” or “0” represented

by the current, or lack thereof, from an SFQ pulse). An

advantage of SFQ pulses is that the input bits could be stored

prior to operation in an on-chip SFQ memory bank, and then

clocked at speed to the network input with a single universal

clock signal. For long input vectors ~x and networks that

require synchronous operation, this operation scheme is more

realistic than separately driving each input channel in real

time.

B. Output neurons

1. Overview

We envision using standard Josephson junctions, e.g.,

Nb/AlOx/Nb, to provide the functionality of neurons. These

will serve as the spiking elements and have already been well

developed for digital SFQ circuits. As previously described,

the role of output neuron j is to sum the synaptic inputs and

apply a nonlinear function

Iout,j ¼ f
P

n

i¼0

Iin,iwij þ bj

� �

: (13)

One proposed circuit structure that implements this function-

ality is shown in Fig. 15. The current through L fix of each

synapse is inductively coupled to an output loop that consists

of a large inductor in series with two Josephson junctions.

This output circuit structure is a superconducting quantum

interference device (SQUID).29,67 The SQUID is character-

ized by its total inductance LSQ, the coupled magnetic flux

through the SQUID loop Φcpl, the DC bias current Ibias, and

the IC’s of the component Josephson junctions (which could

either be fixed or tunable if MJJs are used). Here, it is

assumed that Φcpl arises from current through the inductively

coupled synaptic inputs.

The total magnetic flux through the SQUID

(Φtot ¼ Φcpl þ LSQIcir) is proportional to the difference in the

gauge-invariant phase w between the two Josephson junc-

tions; Φtot ¼ Φ0(w1 � w2)=2π. A further constraint on w1 and

w2 is that the total current through the Josephson junctions

must sum to Ibias in the absence of any coupled flux.

Whenever Ibias is not split evenly between the two Josephson

junctions, a nonzero Icir is present. Depending on all SQUID

parameters and input values, a steady-state solution for the

distribution of Ibias between the two Josephson junctions may

exist (meaning that dw=dt ¼ 0 for both Josephson junctions),

and the SQUID remains in the “zero-voltage state;” if a solu-

tion does not exist and dw=dt = 0, the SQUID is in the

“voltage state.”

In the zero-voltage state, as the coupled flux Φcpl

increases, the current through each Josephson junction (and

value of Icir ) varies smoothly until the current through one of

the Josephson junctions reaches its IC threshold. At this

point, the Josephson junction at threshold outputs an SFQ

pulse, the circulating current Icir increments or decrements by

a discrete value, and the SQUID again evolves smoothly

along a new solution space as Φcpl increases further. If Φcpl

subsequently decreases to zero or its original value, the

second Josephson junction outputs an SFQ pulse, returning

Icir to its original value.

Figure 16 shows the results of a SPICE simulation of a

SQUID while ramping the coupled flux. One of the SQUID

Josephson junctions outputs an SFQ pulse when Φcpl

increases above a threshold, and the second outputs an SFQ

pulse as Φcpl decreases. In the proposed neuromorphic SFQ

circuit architecture, Φcpl is provided by the summation of the

coupled flux from all input synapses; Φcpl,j ¼
P

i MILfix,ij,

where M is the mutual inductance between the synapses and

FIG. 15. Schematic of multiple synapses inductively coupled to the “jth”

output neuron.

FIG. 16. SPICE simulations of a SQUID with coupled flux ramp. When the

coupled flux reaches a certain threshold, one of the SQUID Josephson junc-

tions outputs an SFQ pulse and the circulating current jumps in magnitude.
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neuron and ILfix,ij ¼ wijIin,i. As shown in Fig. 15, each

synapse is physically represented by two loops that couple

flux of opposite polarity to the output SQUID, corresponding

to the weight factors wþ
ij and w�

ij .

The inductively coupled scheme for transmitting

synapse signals to the output neuron was chosen to minimize

unwanted cross-talk between circuit structures. The

Josephson junctions are two-terminal devices with low

output impedance, which makes it difficult to achieve isola-

tion between inputs and output, especially when designing

directly coupled circuits with large fan-in. For example, con-

sider N MJJ synapses that are directly connected to the bias

input of a neuron SQUID loop. An SFQ voltage pulse from

one synapse could split and travel back through the other N

− 1 synapses rather than forward to the output neuron.

Additional circuitry can be added to block this back-

propagation,37 but our simulations of directly coupled neuro-

morphic circuits still reveal limited scalability and poor

circuit operating margins, which is why we propose an

inductively coupled scheme.

Cross-talk between synapses in the inductively coupled

scheme only results from second order effects, as long as the

parasitic mutual inductance between nearby synapses is kept

small. The second-order effect arises because incremental

addition to Φcpl by one synapse slightly changes the output

neuron Icir, which in turn changes the amount of magnetic

flux back-coupled from the output neuron to the other syn-

apses. The back-coupled flux through the synapse loops

slightly changes the current through L fix and effective

synapse weight wij. However, these incremental changes are

negligible and even the large-signal flux back-coupled to the

synapses from the total Icir in the neuron is small. For

example, assuming a synapse L fix of 4 pH, with each synapse

coupled to a ≏ 1 pH section of the output neuron LSQ with

coupling coefficient ≏ 0:3, and an Icir magnitude of 80 μA or

less, the magnetic flux back-coupled to the synapses is at

most 0:02Φ0. Simulations show that Φcpl ¼ 0:02Φ0 through

the synapses has negligible impact on wij. As network fan-in

grows, the neuron LSQ will increase to accommodate the

larger number of synapse inputs, while the neuron IC’s and

Icir will decrease. Therefore, unlike the directly coupled

architecture, unwanted cross-talk between circuit structures

will decrease with larger fan-in for the inductively coupled

architecture.

2. Neuron nonlinearity implementation

To fully implement the feed-forward neural network

layer model in Eq. (11), the output SQUID neuron should

apply a nonlinear function f (z) to the summation of coupled

synapse fluxes.

In a binary-output neuron model, the nonlinear function

f (z) is simply a threshold function. The SQUID Josephson

junctions each output an SFQ pulse if the value of Φcpl

exceeds a threshold value and do not output an SFQ pulse if

Φcpl does not reach the threshold. This threshold (ΦT
cpl=Φ0) is

tunable based on the parameters of the output SQUID,

including the IC and LSQ. The value of ΦT
cpl=Φ0 is shown in

Fig. 17 as a function of IC and LSQ; this figure shows that

ΦT
cpl=Φ0 mainly depends on the product ICLSQ. Figure 17 is

generated from a SPICE simulation in which Ibias was ini-

tially 0:5IC for each Josephson junction in the SQUID. The

effective neural network offset bias bj of neuron j can thus be

set by tuning the ICLSQ value, which will tune the amount of

coupled Φcpl needed to trigger a binary “1” output. The

binary-output neuron scheme is attractive from an energy and

speed standpoint, because the output from each neuron is

encoded in a single pulse with sub-attojoule energy and only

≏10s of ps duration. The tradeoff is that more information

can be encoded per neuron if analog output signals are used.

In one scheme to achieve analog neuron output signals,

the SQUID bias current Ibias is set at a sufficiently high value

that when Φcpl exceeds a threshold ΦT
cpl=Φ0, there is no possi-

ble zero-voltage SQUID configuration, and the SQUID enters

the voltage state. The time-average voltage (measured across

either Josephson junctions) depends on Φcpl, as shown in

Fig. 18. For this figure, SQUID output voltage was averaged

over 1 ns. Although the time-average voltage does not depend

monotonically on Φcpl, there is a regime of Φcpl in which the

SQUID behaves approximately as a Rectified Linear Unit

(ReLU) neuron, with zero output up to an input threshold

ΦT
cpl=Φ0 and steadily increasing output above this threshold.

FIG. 17. Results of SPICE simulations showing coupled flux ΦT
cpl=Φ0 to

create a neuron SQUID output pulse as a function of IC and LSQ. Lines of

constant IC LSQ are shown.

FIG. 18. Simulation of a neuron SQUID operated as an analog-output

neuron, with 0 output voltage up to a threshold ΦT
cpl=Φ0 and subsequent

monotonic increase in Vavg with Φcpl, within a limited range of Φcpl.
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Unlike a software-defined ReLU neuron, the output eventually

saturates and then decreases with increasing input.

3. Trainability

The IC’s of the MJJs can be tuned in either direction

depending on the presence or absence of a small magnetic

field ∼1 mT. The magnetic field can be generated either glob-

ally or locally by a write line. In the absence of any other

stimulus, the magnetic clusters in the MJJs remain stable in

this small magnetic field and do not change. However, any

of the MJJs that receive a voltage spike with the applied mag-

netic field will increase in magnetic order. This reduces the

IC value of these MJJs. In the absence of an applied mag-

netic field, a voltage spike will reduce the magnetic order of

any MJJ that receives one of these training spikes. The

details of the implementation of such training methods are an

area of active investigation.

In one example of a simple training algorithm for a super-

vised learning task, consider a training set of binary-valued

input vectors ~x and their corresponding binary-valued known

outputs ~y. For each training example, the activated neurons in

output vector~ym are biased so that their circulating current, Icir,

couples significant magnetic flux through the input synapses

( ≏ 0:3Φ0), but does not induce an SFQ pulse from the

synapse MJJs. The non-activated output neurons are biased so

that Icir is negative, as is the magnetic flux coupled to the

input synapses. A positive Iin is then applied to the activated

inputs of ~xm. When bias and input amplitudes are chosen cor-

rectly, this scheme will cause an SFQ pulse only from the

MJJs in wþ
ij synapses that connect an activated input to an acti-

vated output, or in w�
ij synapses that connect an activated input

to a non-activated output. A schematic of this supervised learn-

ing scheme is shown for a simple 3-to-2 network in Fig. 19. It

is desirable to be able to supply a localized magnetic field to

target MJJ synapses, which can be achieved with a dedicated

field write line. It should be noted that in this case, we would

need to reduce the required field for ordering.

V. TOWARD LARGE SCALE NEUROMORPHIC
ARCHITECTURES

The combination of clustered MJJs that can mimic the

functionality of the synapse and normal Josephson junc-

tions that can mimic the functionality of a neuron allows

for a powerful device set for implementing neuromorphic

circuits. Neuromorphic systems based on this hardware plat-

form have clear advantages in speed and power consump-

tion compared to other systems. In addition, the substantial

amount of work that has been done for digital supercon-

ducting circuit design and fabrication can also be leveraged

to greatly accelerate the time from proof of concept to func-

tioning circuits. The previous modeling section has illus-

trated the ability to model the functionality of the various

circuit elements that will be needed to construct a larger

scale neuromorphic system. The fact that the Josephson

junction models used in the SPICE simulations have

already been proven to be accurate for digital circuit design

is a substantial benefit.

Building a truly neuromorphic system that can take

advantage of the spike time dependent dynamics and the

plasticity demonstrated by the clustered MJJs is the ultimate

goal. However, the demonstration of functional circuits com-

posed of these devices is the first step in this direction. We

can leverage the already existing simulation tools to design

various circuit architectures much more rapidly than testing

the circuit design only after fabrication. Given that we have

circuit elements that mimic the neuron and synapse, we

should be able to make circuits that perform the general arti-

ficial neural network functionality of Eq. (11). This function-

ality is at the heart of software based neural networks that are

now the best in class for applications such as image recogni-

tion,1 internet search,68 and are starting to show great

promise for medical diagnostics.69 We have shown that we

can implement a feed forward neural network directly with

these devices with an efficiently compact design in SPICE

simulations.70

FIG. 19. Proposed on a chip supervised learning scheme for MJJ neural network. For each training example, input pulses shown as 1s on top of figure are

applied to the activated input neurons, which will produce currents in the MJJs in the synapses connected to the active inputs. In addition, a positive training

current, shown as clockwise green arrow, is applied to the desired active output neuron, labeled as 1, and negative training current is applied to the desired non-

activated output neurons, labeled as 0. These applied currents at the outputs will induce currents in the MJJs of the connected synapses. The sum of the active

input and training currents will add together and exceed the MJJ cluster ordering threshold and, in the presence of an applied field, result in a strengthening of

the weight of the connected excitatory part of the synapse. The sum of the active input and training current will tend to cancel each other in the MJJ of the

inhibitory part of the synapse. Similarly, the current in an active input and non-active output neuron will add in the inhibitory part of the synapse (strengthening

the inhibitory weight) and will tend to cancel each other in the excitatory part of the connected synapses. The MJJs that will have their weight strengthened are

circled in red.
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In the example network shown in Fig. 20, we are able to

implement a 9 pixel 3 class feed forward network.71 We

trained this network on the example problem previously dem-

onstrated with a memristor implementation that was used to

recognize three distinct letters (z, v, or n) with any one pixel

of input noise.12 Since there is no separate training and test

data in the example, 100% accuracy is easily achievable. To

test our implementation, we first trained a standard software

neural network in Python using back propagation tech-

niques.72 We were then able to use a linear mapping of the

weight values in the Python network to the Ic values of the

MJJs in our SPICE simulation. With this mapping, we were

able to achieve 100% accuracy on the full dataset of noisy 9

pixel letters. Furthermore, because the propagation speed of

SFQ pulses is roughly 1/3 the speed of light in vacuum, the

network can respond very quickly. In our unoptimized simu-

lations, we could input a new image vector every 3 ns.70

Because of the structure used, the output neurons of the

model can be used as inputs for a subsequent layer. In general,

we can directly implement conventional deep learning archi-

tectures in our hardware platform. The key problem of

mapping software neural networks into this hardware will be

the large fan-in and fan-out that is often required. However,

the structures are naturally separated into layers in a feed

forward architecture, which greatly simplifies the issue of con-

nectivity. The fan-out in these circuits can be repeated in archi-

tectures where the neurons have a fixed spike amplitude. We

have simulated fan-out of 1 to 3, which is typical even in

digital circuits. As discussed above, nesting such a fan-out

would require a substantial overhead. We have simulated

fan-in of 9 to 1, which is quite promising, and imply that this

side of connectivity between layers will be less of an issue.

This is important as the fan-in from synaptic layers will

contain weighted spikes that would potentially require

weighted repeating nodes. Given the structure of modern feed

forward neural networks, the additional overhead in Josephson

junction count and wiring complexity will be one of the main

challenges for this technology for the foreseeable future.

VI. SUMMARY AND PERSPECTIVE

Deep neural nets have been successful in many tasks.

However, the current implementations are largely limited by

software algorithms for training the CMOS processors used

to implement the algorithms. Here, we focus on hybrid mag-

netic superconducting devices that naturally output voltage

spikes and have plasticity due to embedded nanoscale mag-

netic structures. These devices have the advantage of very

low energy (<10−20 J/spike) and very fast operating speeds

(>100 GHz) while naturally utilizing low loss (negligible dis-

persion up to 1 cm) high speed superconducting communica-

tion (∼108m/s).

Both the magnetic and superconducting technologies

have already been proven to scale well by leveraging stan-

dard semiconductor fabrication techniques. On the magnetic

device side, large non-volatile memories based on magnetic

tunnel junctions have been commercialized. On the supercon-

ducting device side, high speed microprocessors and commu-

nication systems have been developed, and large arrays of

Josephson junctions are used to create the Josephson voltage

standard. The scalability in size and energy and the proven

manufacturability of these devices are a large advantage com-

pared to many other emerging devices.

We have demonstrated nanoclustered magnetic

Josephson junctions that have low-energy high-speed plastic-

ity, which, in turn, enables a Josephson-junction-based

native-neuromorphic technology. We have used proven simu-

lation tools to model networks of these devices and have

mapped them onto a standard neural network architecture. In

this context, they have the potential to be faster and more

energy efficient than the same network implemented in soft-

ware even when run on specialized CMOS hardware such as

a tensor processing unit. In addition, because of the high

speed and low energy consumption, extending these devices

to large, truly complex spiking networks has a promising

outlook. In the next generation spiking neural networks, we

can take advantage of spike timing dependence and the

dynamics of the plasticity, which may enable all new func-

tionality beyond that currently associated with software

neural networks. This neuromorphic technology may be well

suited for much more complex highly recurrent networks that

can have learned intelligence that goes well beyond currently

utilized feed forward networks.
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FIG. 20. Schematic of the feed forward neural network that was imple-

mented in SPICE simulations to solve a 9-pixel three class example; this

network requires 12 Josephson junctions and 27 MJJs.
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