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SUMMARY

Standard survival data measure the time span from some time origin until the occurrence of one type of
event. If several types of events occur, a model describing progression to each of these competing risks is
needed. Multi-state models generalize competing risks models by also describing transitions to intermediate
events. Methods to analyze such models have been developed over the last two decades. Fortunately, most
of the analyzes can be performed within the standard statistical packages, but may require some extra effort
with respect to data preparation and programming. This tutorial aims to review statistical methods for
the analysis of competing risks and multi-state models. Although some conceptual issues are covered, the
emphasis is on practical issues like data preparation, estimation of the effect of covariates, and estimation
of cumulative incidence functions and state and transition probabilities. Examples of analysis with standard
software are shown. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Standard survival data measure the time span from some time origin until the occurrence of the event
of interest. Examples from medical and epidemiological research include the time to leukaemia
relapse after bone marrow transplantation and the time from infection by the HIV virus until the
development of AIDS. Typically, in medical research survival data are obtained from clinical trials
in which the effect of an intervention (treatment) is measured, whereas in epidemiological research
data are obtained from observational studies such as cohort studies.

∗Correspondence to: H. Putter, Department of Medical Statistics and Bioinformatics, Leiden University Medical
Center, P.O. Box 9604, 2300 RC, Leiden, The Netherlands.

†E-mail: h.putter@lumc.nl
‡Contributed equally to this tutorial.

Contract/grant sponsor: Zon-MW; contract/grant number: 0032-4633-2324

Received 26 October 2005
Copyright q 2006 John Wiley & Sons, Ltd. Accepted 31 July 2006



2390 H. PUTTER, M. FIOCCO AND R. B. GESKUS

In the disease/recovery process, often more than one type of event plays a role. Usually, one
type of event can be singled out as the event of interest. The other event types may prevent the
event of interest from occurring. Leukaemia relapse or AIDS may be unobservable because the
person died before the diagnosis of these events. Caution is needed in estimating the probability
of the event of interest occurring in the presence of these so-called competing risks. Treating the
events of the competing causes as censored observations will lead to a bias in the Kaplan–Meier
estimate if one of the fundamental assumptions underlying the Kaplan–Meier estimator is violated:
the assumption of independence of the time to event and the censoring distributions. The Cox
proportional hazards model can still be used, but the interpretation of the results is different. This
will be outlined in some detail in Section 3.

In other situations, another event may substantially change the risk of the event of interest to
occur. If one is only interested in the event of interest as a first event, the other event can still
be seen as competing. Often, one is also interested in what happens after the first non-fatal event.
Then intermediate event types provide more detailed information on the disease/recovery process
and allow for more precision in predicting the prognosis of patients. For a leukaemia patient, if
the event of interest is death, then relapse becomes an intermediate event worth modelling and not
preventing death. Such non-fatal events during the disease course can be seen as transitions from
one state to another. The time origin is characterized by a transition into an initial, transient, state,
such as the start of treatment; the endpoint is an ‘absorbing’ final transition. Instead of survival
data or time-to-event data, data on the history of events is available. Multi-state models provide a
framework that allow for the analysis of such event history data. They are an extension of competing
risk models, since they extend the analysis to what happens after the first event. Multi-state models
are the subject of Section 4.

Several of the ideas presented in the sections on competing risks and multi-state models can
also be found in Reference [1]. For more information on competing risks and multi-state mod-
els we refer to the relevant chapters in the textbooks [2–7]. A recent issue of Statistical Methods
in Medical Research, entirely devoted to multi-state models, is also of interest, see e.g.
References [1, 8, 9].

This tutorial reviews statistical methods for the analysis of competing risks and multi-state mod-
els. Fortunately, the theory that has been developed over the past two decades for the analysis
of right censored survival data can be applied to competing risks and multi-state models as well
and often most of the analyzes can be performed within the standard statistical packages, but may
require some extra effort with respect to data preparation and programming. Section 2 introduces
background and notation needed for the sequel of the paper and discusses the implications of the
(lack of) independence between the censoring and time-to-event distributions. Sections 3 and 4 dis-
cuss competing risks and multi-state models respectively. Each of these sections is concluded with a
subsection on available software. We illustrate estimation and modelling aspects of competing risks
and multi-state models using the statistical package R [10]. The full code for the analyzes performed
in this tutorial as well as the data used are available at http://www.msbi.nl/multistate.

2. BACKGROUND AND NOTATION

The central role played by time brings about special characteristics for survival data. The observation
window during which data are collected causes individuals to have part of their disease history
unobserved. If the endpoint of interest has not (yet) occurred at the end of the observation window,
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the event time is right censored. The event may occur between two consecutive observation times
within the observation window, leading to interval censored data. In cohort studies, there is less
control with respect to occurrence of the event that determines the time origin. For example, HIV
infection may have occurred before an individual enters a cohort study on AIDS. If this time origin
is unknown, it is left censored. Sometimes extra information on the time origin is available, for
instance through stored blood samples in case of HIV infection. Such individuals only provide
information from the moment of entry until their endpoint of interest. This is called delayed entry
or left truncation.

In the sequel, we restrict to data in which all the event times are observed exactly or right
censored. Hence, left censored and interval censored data are not discussed. Left truncated data,
however, play a major role in multi-state settings. We assume throughout that all failure time
distributions are continuous. In the model for right censored data, each individual i is assumed to
have an event time ti and a censoring time ci . Observed are xi = min(ti , ci ) and �i = I (ti�ci ),
indicating whether ti was observed (�i = 1) or not (�i = 0). The event times and censoring times
of the individuals in the data set are seen as a random sample (X1,C1), . . . , (Xn,Cn) from a
survival distribution Xi ∼ S, with S(t) =Prob(T>t), and a censoring distribution Ci ∼G. The
basic assumption of the standard models for right censored data is that the censoring distribution
and the event time distribution are independent (possibly conditionally on the covariates included
in the model). Then, at each point in time, the individuals who are censored can be represented by
those who remain under observation. Therefore, the hazard, defined for continuous distributions as

�(t) = lim
�t↓0

Prob(t�T<t + �t |T�t)

�t
(1)

plays a fundamental role in the analysis of right censored survival data. By the independence
assumption, the hazard of the individuals that are censored is equal to the hazard of the individuals
that remain in follow-up.

The hazard completely describes the survival distribution. It can be derived from the survival
function S(t) through

�(t) = 1

S(t)
lim
�t↓0

S(t) − S(t + �t)

�t
=−d log S(t)

dt
(2)

The cumulative hazard is defined by

�(t) =
∫ t

0
�(s) ds (3)

The survival function can be found from the cumulative hazard through the relation

S(t)= exp(−�(t)) (4)

It is instructive, particularly in view of the extension in Section 3, to give a heuristic derivation
of the Kaplan–Meier estimator of the survival function. Let 0<t1<t2< · · · <tN be the ordered
distinct time points at which events occur. Let R(t) be the risk set (those subjects that are in
follow-up and have not reached their event) at time t . For each t j , define R j = R(t j ) to be the
risk set at t j , and n j the size of this risk set, the number at risk. For each t j , define d j to
be the number of observed events at t j . Even though our restriction to continuous distributions
prevents the occurrence of tied events (i.e. d j>1), they may occur because of rounding errors.
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The Kaplan–Meier estimator treats the data ‘as is’, so it assumes that the distribution is discrete
instead of continuous, with the events only occurring at these observed time points. Consider
the conditional probability of failing at t j , given still alive just before time t j . Since events are
assumed only to occur at the observed event times, ‘alive just before time t j ’ is equivalent to
‘alive beyond the previous time point t j−1’. In general, ‘alive just before time t’ is often denoted
as ‘alive at t−’; the distinction between t and t− is only needed if the distribution is discrete.
Hence we can write the conditional probability of failing at t j , given still alive just before time t j
as �(t j ) =Prob(T = t j |T>t j−1), a discretized form of the hazard function of equation (1). Under
the assumption of independent censoring, subjects in the risk set are representative for all subjects
alive at t j−, so �(t j ) can be estimated simply by the at risk sample proportion that fail at t j ,
i.e. by

�̂(t j ) = d j

n j
(5)

The probability of surviving up to t j is the product of the probability of surviving up to t j−1 and
the conditional probability of surviving up to t j given still alive beyond t j−1; in formula form

Ŝ(t j ) = Ŝ(t j−1)(1 − �̂(t j ))= Ŝ(t j−1)

(
1 − d j

n j

)
(6)

By repeatedly applying (6) one then finds the Kaplan–Meier estimator

Ŝ(t) = ∏
j :t j�t

(
1 − d j

n j

)
(7)

If the sample size increases, the number of event times increases as well, and the Kaplan–Meier
estimate approaches a continuous distribution. Also, the Kaplan–Meier survival estimate and the
estimate based on the exponential form of the survival function (using (4) and the estimate of the
hazard in the exponential) become similar.

The effect of covariates on disease progression is most often modelled using the Cox proportional
hazards model. In its simplest form, the hazard for a subject with covariate values Z= (Z1, . . . , Z p)

is assumed to be

�(t |Z) = �0(t) exp(b
�Z)

where b is a vector of regression coefficients and �0(t) is the baseline hazard. Here and in the
sequel, we will use b�Z as a short-hand notation for

∑p
k=1 �k × Zk . Assuming all event times are

distinct, the parameter vector b is found by maximising the partial likelihood. This is a product,
over the event times, of a quotient that compares the hazard of the individual with the event at t j
to the hazard of all the individuals at risk at t j :

L(b) =
N∏
j=1

exp(b�Z j )∑
l∈R j

exp(b�Zl)

Note that the baseline hazard cancels out. The estimate b̂ is used in Breslow’s estimate of the
baseline cumulative hazard

�̂0(t) = ∑
j :t j�t

1∑
l∈R j

exp(̂b�Zl)

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2389–2430
DOI: 10.1002/sim



COMPETING RISKS AND MULTI-STATE MODELS 2393

A number of methods exist to deal with tied event times which fall outside the scope of this
tutorial.

Sometimes, one may want to allow the baseline hazard to be different across subgroups
h = 1, . . . ,m, called strata:

�h(t |Z)= �h,0(t) exp(b
�Z)

Parameter estimation in this stratified Cox model is performed by maximization of the partial
likelihood per stratum

L(b) =
m∏

h=1
Lh(b) (8)

with

Lh(b) =
N∏
j=1

exp(b�Z j )∑
l∈Rhj

exp(b�Zl)

Here, the product in Lh(b) is only taken over the event times from individuals in stratum h, and
Rhj denotes the risk set at event time t j in stratum h. If all relative risk parameters b are allowed
to differ per strata, then the Lh(b) = Lh(bh) have nothing in common and fitting such a stratified
Cox model boils down to fitting m different Cox models, i.e. one per stratum.

The results from a Cox model, which models effects of covariates on the hazard, can also be used
to describe cumulative effects. For the moment, assume that only effects of time-fixed covariates
have been modelled. If an individual has covariate values Z, then, using (4), his or her survival
curve is estimated as

Ŝ(t) = exp{−�̂0(t) ê
b�Z} = Ŝ0(t)

exp(̂b�Z) (9)

with Ŝ0(t) = exp(−�̂0(t)) the estimated baseline survival curve.
In the so-called counting process approach for right censored survival data, the number and

type of events an individual experiences during his or her follow-up are counted. This approach
allows for a nice representation of standard survival data, which is easily extended to more complex
situations. With standard survival data, there is only one type of event and the number of events
is either zero or one. An individual’s survival data is expressed by three variables: the time the
individual becomes at risk (entry time), the time the individual experiences the event or is
censored (event time) and a variable denoting whether the event time is observed or censored
(status). Consider the following example:

id entry time event time status
1 0.0 4.3 1
2 0.0 5.6 0
3 3.4 7.7 1

The first individual experienced the event at time 4.3, and had been in follow-up since his time
origin (e.g. transplant or HIV infection). The second individual was censored at time 5.6. If all
individuals had been in follow-up from the time origin until the event or censoring, the entry
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time column would not be needed, since it would have the value zero for each individual.
However, by including this extra time column, late entry (left truncation) with a known time
origin can be described as well. The time value 3.4 of the third individual describes that the
event determining his time origin occurred 3.4 time units before he came under follow-up. More-
over, time-dependent covariates are described in exactly the same way, with the inclusion of a
column describing the value of the time-dependent covariate. For example, an individual that
changes covariate value during follow-up, say at time 5.6, and experiences the event at time 7.7, is
described as

id start time stop time status covar value
4 0.0 5.6 0 A
4 5.6 7.7 1 B

In the following sections, we will see some further extensions of this basic representation.

2.1. The independence assumption

Often, independence between the event and censoring distribution is assumed without further
consideration, but may easily fail to be true. Reasons for the occurrence of right censored event
times can be categorized as:

End of study: Since calendar time restricts observation to events that occurred in the past, an
event time may be right censored because the individual has not been followed long enough
yet. This is also called administrative censoring.
Loss to follow-up: The person has left the study, e.g. because of migration or study fatigue. He
may have experienced the event already, but this information is missing.
Competing risk: Another event has occurred, which prevents occurrence of the event of
interest.

If censoring is caused by end of study, we can in general safely assume that the censoring mechanism
is independent of disease progression. In the other two situations (loss to follow-up and competing
risks), one should be more cautious.

The censoring time due to loss to follow-up is negatively correlated with the event time when
healthy participants feel less need for medical services offered from the study, and therefore
quit. Censoring these individuals when they leave the study will cause a downward bias of the
estimated survival curve, i.e. it will overestimate the probability to experience the event, since
individuals with worse prognosis are assumed to be representative for the censored individuals.
The censoring time is positively correlated with the event time when persons with advanced
disease progression are more likely to leave the study. A reason may be that they have become
too ill for further follow-up or that they return to their country of birth to spend the last period
with their family. Here, censoring these individuals will cause an upward bias of the survival
curve. Sometimes, extra information is available after drop-out, for example through registries.
Using this information may decrease or remove bias, if selection of post-drop-out information is
done in a proper way, which depends on the situation. Hoover et al. [11] considered censoring
strategies with post-drop-out ascertainment and the resulting bias in parameter estimates in more
detail. Although it is described in the context of HIV/AIDS cohort studies, the results apply more
generally.
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3. COMPETING RISKS

3.1. Introduction

Competing risks concern the situation where more than one cause of failure is possible. If failures
are different causes of death, only the first of these to occur is observed. In other situations,
observations after the first failure may be observable, but not of interest. We can represent a
competing risks model graphically with an initial state (alive or more generally event-free) and a
number of different endpoints, as shown in Figure 1.

A number of examples from the medical field include:

1. One may have several endpoints which are of equal interest. For instance in bone marrow
transplantation, death from different kinds of infections (bacterial, viral, fungal) are possible,
as well as death due to relapse, graft-versus-host disease (GvHD) or other causes.

2. In cancer, death due to cancer may be of interest, and death due to other causes (surgical
mortality, old age) are competing risks. Alternatively, one could be interested in time to
relapse, where death due to any cause is a competing risk.

3. Interest is in the time from HIV infection to AIDS diagnosis (the incubation time) and whether
this differs by risk group. Among injecting drug users, about 20 per cent of the HIV infected
individuals dies before an AIDS diagnosis. Here, death before AIDS is a competing risk.

4. If one is interested in the time to staphylococcus infection during hospital stay in patients with
burn wounds, censoring may occur due to death or hospital discharge. After hospital discharge,
staphylococcus infection may still occur, but under completely different circumstances. One
is then interested in the probability of infection during hospital stay. The competing event
hospital discharge is non-fatal, but prevents the event of interest to occur as a first event.

Examples in other fields include failure of different components in a system in industrial reliability
testing or time to part- or full-time employment in econometrics.

The subject of competing risks goes as far back as the 18th century, when Bernoulli [12] studied
the possible consequences of eradication of smallpox on mortality rates. Indeed, the problem of
estimation of failure probabilities after elimination (or modification) of one of the competing risks
has been of great importance and has been the subject of much debate in the 1970s [13, 14].

Figure 1. A competing risks situation with K causes of failure.
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Figure 2. Estimated survival curve for AIDS and probability of SI appearance, based on
the naive Kaplan–Meier estimator.

The central criticism is the assumption that upon removal of one cause of failure, the risks of
failure of the remaining causes is unchanged. While this may be a reasonable assumption in the
industrial setting, in human studies it will rarely be true.

For illustration of several concepts and techniques we will use data from 329 homosexual
men from the Amsterdam Cohort Studies on HIV infection and AIDS [15]. During the course of
HIV infection, the so-called syncytium inducing (SI) HIV phenotype appears in many individuals.
Prognosis is strongly impaired after the appearance of this SI phenotype [16]. Little is known about
factors that induce the appearance of SI phenotype. When analysing time to SI appearance before
AIDS diagnosis, AIDS acts as a competing event.

In the first example above, each failure type is equally important. The other examples are more
typical: one failure type can be singled out as the event of interest, while the remaining failure types
are of less importance. One is then interested in the probability of failing from the cause of interest
in the presence of competing risks (or, as in the first example, each of the death causes in turn is the
cause of interest, with all the other death causes taken as competing risks). One method that is often
used to estimate this failure probability is the Kaplan–Meier estimate, where the failures from the
competing causes are treated as censored observations. This naive Kaplan–Meier, as we shall call
it, is biased, however. Before discussing the reasons for this bias and ways to correctly estimate the
failure probabilities, we first illustrate the bias by considering the data described above. For time to
AIDS, all individuals in which SI phenotype appeared first were treated as censored, while for SI
appearance, all AIDS diagnoses were treated as censored. Figure 2 shows the naive Kaplan–Meier
estimates, where the Kaplan–Meier estimate of AIDS is represented as a survival curve, that of SI
appearance as a probability distribution function (one minus survival). After 13 years of follow-up,
the estimated probabilities of AIDS and SI appearance are 0.567 and 0.496, respectively. The curves
of AIDS and SI appearance cross after 11 years, which means that the estimated probabilities of
AIDS and SI appearance sum to more than one, which is clearly impossible, since in a competing
risks context AIDS and SI appearance are disjoint first events.
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The basic issue in competing risks models that results in the bias of the naive Kaplan–Meier
estimator is the violation of one of the assumptions underlying the Kaplan–Meier estimator: the
assumption of independence of the censoring distribution, i.e. the distribution of the time to the
competing events. If the competing event time distributions were independent of the distribution
of time to the event of interest, this would imply that at each point in time the hazard of the event
of interest is the same for subjects that have not yet failed and are still under follow-up as for
subjects that have experienced a competing event by that time. However, a subject that is censored
because of failure from a competing risk will with certainty NOT experience the event of interest.
Since subjects that will never fail are treated as if they could fail (they are censored), the naive
Kaplan–Meier overestimates the probability of failure (and hence underestimates the corresponding
survival probability). The bias is greater when the competition is heavier, i.e. when the hazard of
the competing events is larger. This is different from censoring due to end of study or loss to
follow-up. In the latter situations, individuals may still fail at a later time point. One may argue that
the naive Kaplan–Meier estimator describes what would happen if the competing event could be
prevented to occur, creating an imaginary world in which an individual remains at risk for failure
from the event of interest. This touches on the 1970s debate, since usually there is some biological
mechanism that influences occurrence of both events, and changing the mechanism behind the
competing event will also change the risk of the event of interest, i.e. time to the event of interest
and time to the competing event are not independent. Hence this would be a completely different
hypothetical situation about which we are not able to say anything. For an alternative explanation
of the bias of the naive Kaplan–Meier estimator, see Reference [17].

3.2. Approaches to competing risks

The observable data in competing risks models is represented by the time of failure T , the cause
of failure D, and possibly a covariate vector Z, which we shall ignore for the moment. Inference
therefore is to be based on the joint distribution of T and D, possibly given Z. The fundamental
concept in competing risks models is the cause-specific hazard function, the hazard of failing from
a given cause in the presence of the competing events

�k(t) = lim
�t↓0

Prob(t�T<t + �t, D = k|T�t)

�t
(10)

The cause-specific hazard is estimable from the data, see (17) below, and constitutes all relevant
information that can be observed from the data. Also, anything that can be derived uniquely from
the cause-specific hazard can be estimated.

Early approaches viewed competing risks models as a multivariate failure time model, where
each individual is assumed to have a potential failure time for each type of failure. The earliest
of these failures is actually observed and the others are latent. Let T̃k denote the time to failure
of cause k. We only observe T = min{T̃k} and D. Here D is an index variable, which specifies
which event happened first. If some individuals are censored for all events by end of study or loss
to follow-up, they have D = 0, and an extra censoring distribution C ∼G is introduced, which is
assumed to be independent of all the other events.

The latent failure time approach focused on the joint distribution of the times to the K different
events, as described by the joint survival function

S(t1, . . . , tK ) =Prob(T̃1>t1, . . . , T̃K>tK )
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The marginal distribution Sk(t) = Prob(T̃k>t) = S(0, . . . , 0, t, 0, . . . , 0) then defines a marginal
hazard function as in (1). A fundamental problem with this approach is that, without additional
assumptions, the joint survival function is not identifiable from the observed data (a single failure
time for each subject). As already noted by Cox [18] and studied in detail by Tsiatis [19], for any
joint survival function with arbitrary dependence between the different failure time distributions,
one can find a different joint survival function with independent failure time distributions, which
has the same cause-specific hazards. The implications of this are that the joint survival function is
not identifiable, nor are the marginal distributions. It is even impossible to test for independence
of the marginal failure time distributions! Sometimes extra information is available, for instance
the value of some marker of progression was measured just before the competing event occurred.
This marker may provide extra information on the dependence of the competing event. Now the
problem is shifted to the impossibility of testing for independence conditionally on the value of
the marker.

Anything that can be uniquely determined by the cause-specific hazards is estimable. Define the
cumulative cause-specific hazard by

�k(t) =
∫ t

0
�k(s) ds

and define

Sk(t) = exp(−�k(t))

Note that, although Sk(t) can be estimated, it should not be interpreted as a marginal survival
function; it only has this interpretation if the competing event time distributions and the censor-
ing distribution are independent. In that case, the marginal distribution describes the event time
distribution in the situation that the competing events do not occur. Furthermore, define

S(t)= exp

(
−

K∑
k=1

�k(t)

)
(11)

This survival function does have an interpretation; it is the probability of not having failed from any
cause at time t . The cumulative incidence function of cause k, Ik(t), is defined by the probability
Prob(T�t, D = k) of failing from cause k before time t . It can be expressed in terms of the
cause-specific hazards as

Ik(t) =
∫ t

0
�k(s)S(s) ds (12)

Several alternative names have been used for this function, for example ‘crude cumulative incidence
function’ or ‘subdistribution function’. The latter name has its origin in the fact that the cumulative
probability to fail from cause k remains below one, Ik(∞) =Prob(D = k), hence it is not a proper
probability distribution.

Note that, as events from causes other than k are treated as censored, the naive Kaplan–Meier
estimate of the probability of failing from cause k before or at time t is estimating

1 − Sk(t) =
∫ t

0
�k(s)Sk(s) ds
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The difference with the cumulative incidence function Ik(t) from equation (12) is that S(s) is
replaced by Sk(s). Since S(t)�Sk(t), we have Ik(t)�1 − Sk(t), with equality at t if there is
no competition, i.e. if

∑K
j=1, j �=k� j (t) = 0, again showing the bias in the naive Kaplan–Meier

estimator.
The cumulative incidence function is also used extensively in calculating state and prediction

probabilities in multi-state models. In fact, as we shall see in the next section, competing risks
models are a special case of multi-state models and the cumulative incidence approach has been
termed the multi-state approach to competing risks [1].

We now turn to estimation of the cumulative incidence functions. Let 0<t1<t2< · · · <tN be the
ordered distinct time points at which failures of any cause occur. Let dk j denote the number of
patients failing from cause k at t j , and let d j = ∑K

k=1dk j denote the total number of failures (from
any cause) at t j . In the absence of ties only one of the dk j equals 1 for a given j , and d j = 1. The
formulas are also valid, however, in the presence of ties. As in Section 2, let n j be the number of
patients at risk (i.e. that are still in follow-up and have not failed from any cause) at time t j . The
overall survival probability S(t) at t can be estimated, without considering the cause of failure, by
the Kaplan–Meier estimator

Ŝ(t) = ∏
j :t j�t

(
1 − d j

n j

)
(13)

familiar from equation (7). As in Section 2, consider a discretized version of the cause-specific
hazard of equation (10),

�k(t j ) =Prob(T = t j , D = k|T>t j−1) (14)

Similar to (5), this quantity would be estimated by

�̂k(t j ) = dk j
n j

the proportion of subjects at risk that fail from cause k. Note that (13) can also be written down as

Ŝ(t) = ∏
j :t j�t

(
1 −

K∑
k=1̂

�k(t j )

)
(15)

The unconditional probability of failing from cause k at t j , pk(t j ) =Prob(T = t j , D = k) is the
product of the hazard and the probability of being event-free at t j , and is estimated as

p̂k(t j ) = �̂k(t j )Ŝ(t j−1) (16)

Finally, the cumulative incidence Ik(t) of cause k at t is estimated as the sum of these terms for
all time points before t ; in summary

Îk(t) = ∑
j :t j�t

p̂k(t j ), p̂k(t j ) = �̂k(t j )Ŝ(t j−1), �̂k(t j ) = dk j
n j

(17)

Table I illustrates the steps in estimating the cumulative incidence functions for AIDS and SI
appearance in the SI data. For example, at time t j = 0.112, SI appeared in one individual. The
estimated overall survival at the previous time point is 1 (there was no earlier event), and the
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Figure 3. Estimates of probabilities of AIDS and SI appearance, based on the naive Kaplan–Meier (grey)
and on cumulative incidence functions (black).

estimate of the failure rate �̂2(0.112) is 1
329 = 0.0030. Since the overall survival is one, 0.0030

is also the estimate of the unconditional probability p̂2(0.112). The first AIDS event occurs at
time 1.440. At this time, 309 patients are at risk. The estimated overall survival at the previous
time point 1.437 is 0.9723, and the estimate of the failure rate �̂1(1.440) is 1

309 = 0.0032, yielding
0.9723× 0.0032= 0.0031 for the estimated unconditional failure probability.

Figure 3 shows the estimates of the probabilities of AIDS and SI appearance for all patients
in the SI data, using the same representation as Figure 2. In grey are the estimates based on the
naive Kaplan–Meier, in black those based on the cumulative incidence functions. Recall that the
estimates based on Kaplan–Meier after 13 years of follow-up are 0.567 and 0.496, cumulative
incidence estimates are 0.408 and 0.375, for AIDS and SI appearance, respectively. Figure 4 shows
the estimated cumulative incidence curves again, laid out in a different way. They are stacked; the
bottom curve shows Î1(t), the top curve Î1(t)+ Î2(t), where Î1(t) and Î2(t) are the estimates of the
cumulative incidence functions of AIDS and SI appearance respectively. The distances between
adjacent curves now correspond to the probabilities of the events. This representation is particularly
useful for displaying more than two competing risks and for multi-state models.

If there are only competing events and no censoring or left truncation, then the estimate of the
cumulative incidence function reduces to a very simple form. At time t , the estimate divides the
cumulative number of events of type k until time t by the total sample size. Hence, individuals
remain in the denominator, even though they have experienced a competing event.

3.3. Modelling and estimating covariate effects

Just like in standard survival analysis, the effect of one or two binary covariates is most easily
investigated by estimating cumulative incidence curves non-parametrically and testing whether the
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Figure 4. Cumulative incidence curves of AIDS and SI appearance. The cumulative incidence functions
are stacked; the distance between two curves represent the probabilities of the different events.

curves differ by covariate value. Gray [20] developed a log-rank type test for equality of cumulative
incidence curves.

In this subsection we shall illustrate the use of R [10] in carrying out some of the regression
analyzes based on the SI data set. A specific deletion in the C–C chemokine receptor 5 gene
(CCR5 �32) has been associated with reduced susceptibility to HIV infection and delayed AIDS
progression. Since NSI viruses use CCR5 for cell entry, whereas SI viruses can also use C-X-C
chemokine receptor 4 (CXCR4), the latter virus type may have an advantage in persons with the
deletion. Therefore, we investigate whether in persons with the deletion the SI phenotype appears
more rapidly. This question has been addressed using standard survival analysis techniques [21],
which implicitly assumed that a switch to SI and progression to AIDS are independent mechanisms.
The CCR5 genotype is incorporated in the SI data set through the covariate ccr5. Persons without
the deletion (‘wild type’) have WW, the reference category, whereas individuals who have the deletion
on one of the chromosomes have WM (individuals with the deletion on both chromosomes were not
present in our data).

As a preliminary, we introduce two ways of representing the same data. The first of these is the
standard way of representing competing risks data. Consider the first four patients of the SI data
set, in regular format:

patnr time status cause ccr5
1 1 9.106 1 AIDS WW
2 2 11.039 0 event-free WM
3 3 2.234 1 AIDS WW
4 4 9.878 2 SI WM
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Here a single time and cause variable are used to indicate time of failure (or censoring) and
cause of failure. The variable status is just a numeric representation of cause. The whole data
set represented in this format will be called si. An alternative way of representing the same data
is in long format (the SI data set in long format is called silong). We will see later that this
representation allows for more flexibility in modelling the effect of covariates. The same data in
long format look like this:

patnr time status stratum cause ccr5 ccr5.1 ccr5.2
1 1 9.106 1 1 AIDS WW 0 0
2 1 9.106 0 2 SI WW 0 0
3 2 11.039 0 1 AIDS WM 1 0
4 2 11.039 0 2 SI WM 0 1
5 3 2.234 1 1 AIDS WW 0 0
6 3 2.234 0 2 SI WW 0 0
7 4 9.878 0 1 AIDS WM 1 0
8 4 9.878 1 2 SI WM 0 1

If there are K competing events, each individual needs K rows in the new data file, one for each
possible cause of failure. A column (cause in the example) is used to denote the event type or
failure cause that the row refers to. The value of the time variable is identical over the K rows of
an individual. The status variable changes. Instead of values 0, 1, . . . , K , it now has the value
1 if the corresponding event type is the one that occurred, and it has the value 0 otherwise. Any
covariates are simply replicated for each patient over the K rows of that individual. We have also
introduced two extra dummy variables ccr5.1 and ccr5.2. They have the value 0 except for
mutant (WM) genotypes for the cause that they correspond to (i.e. for a patient with the mutant
genotype, ccr5.1= 1 for the first cause, ‘AIDS’, ccr5.2= 1 for the second cause, ‘SI’). They
are what Andersen et al. [22] call type-specific covariates.

3.3.1. Regression on cause-specific hazards. If the covariate is continuous or the simultaneous
effect of several covariates on cause-specific failure is of interest, a competing risks analogue of
a Cox proportional hazards model seems the most logical choice [23]. Since the cause-specific
hazards are identifiable, regression on the cause-specific hazards is possible. In proportional hazards
regression on the cause-specific hazards, we model the cause-specific hazard of cause k for a subject
with covariate vector Z as

�k(t |Z)= �k,0(t) exp(b
�
k Z) (18)

where �k,0(t) is the baseline cause-specific hazard of cause k, and the vector bk represents
the covariate effects on cause k. The analysis is completely standard, but the interpretation
requires caution, as we shall see later. At each time some person moves to state k, the co-
variate values of this individual are compared with the covariates of all other individuals still
event-free and in follow-up. Persons who move to another state are censored at their transition
time.

As an example, let us look at the effect of CCR5 (classified as wild-type (WW) or mutant (WM))
on AIDS and SI appearance, using (18). A total of 259 out of 324 patients (80 per cent) had the
wild-type variant, while 65 patients (20 per cent) had the mutant variant. Five patients had unknown
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CCR5-genotype.

> coxph(Surv(time, status == 1) ˜ ccr5, data = si)
Call: coxph(formula = Surv(time, status == 1) ˜ ccr5, data = si)

coef exp (coef) se(coef) z p
ccr5WM -1.24 0.291 0.307 -4.02 5.7e-05

Likelihood ratio test=22 on 1 df, p=2.76e-06 n= 324

> coxph(Surv(time, status == 2) ˜ ccr5, data = si)
Call: coxph(formula = Surv(time, status == 2) ˜ ccr5, data = si)

coef exp(coef) se(coef) z p
ccr5WM -0.254 0.776 0.238 -1.07 0.29

Likelihood ratio test=1.19 on 1 df, p=0.275 n= 324

Some familiarity with R, in particular with the use of formulas, and with the survival library
by Therneau [24] is needed to fully understand the code. For this, we refer to one of the tutorials on
the Comprehensive R Archive Network (http://cran.r-project.org/). However, what
these statements do is fit a Cox proportional hazards model with ccr5 as sole covariate, first using
status= 1 (AIDS) as event (so censoring SI appearances), then using status= 2 (SI appearance)
as event (censoring AIDS events). The estimated coefficient for the mutant with respect to the
wild-type variant for AIDS was −1.24 (SE 0.31), giving a significant protective effect of the
mutant variant (hazard ratio (HR) = 0.29, P<0.0001). The effect of CCR5 on SI appearance was
not significant (coefficient −0.25, SE 0.24, HR 0.78, P = 0.29).

The same model as before, with different effects of CCR5 on AIDS and SI appearance, can also
be fitted using data in long format. In fact, this can be done in a number of ways. One is to use
only subsets of the data corresponding to the cause of failure of interest:

> coxph(Surv(time, status) ˜ ccr5, data = silong, subset=cause=="AIDS")

and

> coxph(Surv(time, status) ˜ ccr5, data = silong, subset=cause=="SI")

Another is to use the dummies ccr5.1 and ccr5.2, to obtain an attractively simple
analysis:

> coxph(Surv(time, status) ˜ ccr5.1 + ccr5.2 + strata(cause),
data = silong)

Call:
coxph(formula = Surv(time, status) ˜ ccr5.1 + ccr5.2 + strata(cause),

data = silong)

coef exp(coef) se(coef) z p
ccr5.1WM -1.236 0.291 0.307 -4.02 5.7e-05
ccr5.2WM -0.254 0.776 0.238 -1.07 2.9e-01

Likelihood ratio test=23.2 on 2 df, p=9.3e-06 n=648
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The n = 648 mentioned here equals the number of rows (two times 324) in the long data set without
missing data (a warning from R that 10 observations were not used because of missing covariates
has been removed from the output). The same model can also be fitted by adding an interaction
term between the cause stratum variable and age.

> coxph(Surv(time, status) ˜ ccr5 * cause + strata(cause),
data = silong)

Call:
coxph(formula = Surv(time, status) ˜ ccr5 * cause + strata(cause),

data = silong)

coef exp(coef) se(coef) z p
ccr5WM -1.236 0.291 0.307 -4.02 5.7e-05
causeSI NA NA 0.000 NA NA
ccr5WM:causeSI 0.982 2.669 0.389 2.53 1.2e-02

Likelihood ratio test=23.2 on 2 df, p=9.3e-06 n=648

Now we see the advantage of the use of the long format. The notation in (18) allows the effect
of the covariates to be different for each failure cause. Use of the long format makes it possible
to assume that the effects of CCR5 are identical for the different causes and to test for equality
of the effects of CCR5 on AIDS and SI appearance. The coefficient −1.236 is (as before) for
the effect of CCR5 on AIDS. The deviant coefficient 0.982 now represents the difference in the
effect of CCR5 on the two cause-specific hazards. The CCR5 genotype by cause interaction term
is significant, indicating that the effect of CCR5 is quite different on AIDS and SI appearance. The
effect of CCR5 on SI appearance is thus given by −1.236+ 0.982= − 0.254, as before. Note that
the second row with NA’s in the output above is caused by the fact that the cause main effect
cannot be estimated, since the baseline cause-specific hazards are both freely estimated.

Although not applicable here, if we were to assume that the effect of CCR5 on the two cause-
specific hazards is equal, we could use

> coxph(Surv(time, status) ˜ ccr5 + strata(cause), data = silong)

There are two alternative ways yielding the same result. First, it can be shown, by carefully writing
out the partial likelihood, that the strata can be left out.

> coxph(Surv(time, status) ˜ ccr5, data = silong)

The reason is that in both strata the risk sets as well as the covariate values (here ccr5) are equal.
Second, since the strata term is not needed, we can use si in original format:

> coxph(Surv(time, status != 0) ˜ ccr5, data = si)

Finally, we show the analyzes under the assumption that the baseline cause-specific hazards are
proportional. Now cause is not used as stratum, but as another covariate for which a relative risk
parameter is estimated. The R code for this is given by

> coxph(Surv(time, status) ˜ ccr5.1 + ccr5.2 + cause, data = silong)
Call:
coxph(formula = Surv(time, status) ˜ ccr5.1 + ccr5.2 + cause,

data = silong)
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coef exp(coef) se(coef) z p
ccr5.1 -1.166 0.311 0.306 -3.81 0.00014
ccr5.2 -0.332 0.718 0.237 -1.40 0.16000
causeSI -0.184 0.832 0.148 -1.25 0.21000

Likelihood ratio test=21.5 on 3 df, p=8.12e-05 n=648

The coefficient −0.184 and its hazard ratio 0.832 would indicate that (under the assumption of
the cause-specific hazards being proportional) the baseline cause-specific hazard of SI appearance is
somewhat smaller than that of AIDS, though not significant (P = 0.21). Even though the assumption
of proportional baseline cause-specific hazards will often be unrealistic, this proportional risk model
has the nice property that the probability of an individual failing of cause k follows a logistic model
[23].

The covariate effects in (18) are proportional for the cause-specific hazards. In the absence of
competing risks this would mean that the survival functions for different values of the covariates
were related through a simple formula. If S1 and S2 are the survival functions for covariate values
Z1 and Z2, then (cf. also (9))

S2(t) = S1(t)
exp(b�(Z2−Z1)) (19)

However, in the presence of competing risks, when the effect of the same covariates are also
modelled for other causes of failure, this relation does not extend to cumulative incidence functions.
The reason is that the cumulative incidence function for cause k not only depends on the hazard of
cause k, but also on the hazards of all other causes (recall the definition of the cumulative incidence
function from (12)). Hence the relation of the cumulative incidence functions of cause k for two
different covariate values not only depends on the effect of the covariate on cause k, but also on
the effects of the covariate on all other causes and on the baseline hazards of all other causes.
As a result, the simple effect of a covariate on the cause-specific hazard of cause k can be quite
unpredictable when expressed in terms of the cumulative incidence function.

Figure 5 shows the estimated cumulative incidence functions for both wild-type and mutant
variants of CCR5 based on the above regression model and formulas (15) and (18), for AIDS (left)
and for SI appearance (right). While the protective effect of the mutant WM on AIDS is clear, on
close inspection it is apparent that the effect of CCR5 on the probability of SI appearance is not
quite as expected from a standard situation without competing risks. In the latter situation, since
the hazard ratio is 0.78, the patients with the mutant genotype would have a consistently lower
probability of SI appearance, and the difference in SI probabilities between mutant and wild-type
would increase with time. Here, although initially the probability of SI appearance is indeed lower
for the mutant WM, after approximately 9 years the difference decreases rather than increases, and
after 11 years the cumulative incidence functions of AIDS and SI appearance cross. This is caused
by the fact that although the hazard of SI appearance is lower for WM, the hazard of AIDS is also
lower for WM, and the effect is much stronger for AIDS. Both the effect of the covariate on the
competing risk and the baseline hazard of the competing risk influence the effect of the covariate on
the cumulative incidence of the event of interest. The fact that the baseline hazard of the competing
risk matters is perhaps unexpected, so we illustrate the fact that the baseline hazard of AIDS (i.e.
corresponding to the wild-type WW) plays an important role here in two ways.

In Figure 6, we have considered a somewhat idealized situation, where we have a population
of 10 000 individuals with the wildtype WW and 10 000 individuals with the mutant WM genotype.
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Figure 5. Cumulative incidence functions for AIDS (left) and SI appearance (right), for wild-type (WW)
and mutant (WM) CCR5 genotype, based on a proportional hazards model on the cause-specific hazards.

Figure 6. The difference between covariate effects on cause-specific hazards and
cumulative incidence explained.

We assume that WW individuals have a constant failure rate of 30 per cent at discrete time points,
for both endpoints. The mutation WM is protective for the cause-specific hazard to SI appear-
ance (hazard ratio 0.90). However, it is even more protective for AIDS diagnosis (hazard ratio
0.33). This latter aspect causes more individuals to remain at risk after the first round for WM.
Hence, in the second round, SI appears in more individuals with WM than in individuals with WW
(1701 to 1200). As a result, after the second round, the cumulative incidence for SI appearance
is higher for individuals with WM than for individuals with WW genotype. The second illustration
of this phenomenon is through Figure 7, which shows what would happen if we were to change
the baseline hazard of AIDS by multiplying the estimate from the data with different multiplica-
tion factors, while keeping everything else (the baseline cause-specific hazard of SI appearance,
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Figure 7. Cumulative incidence functions for SI appearance, for CCR5 wild-type WW (black) and
mutant WM (grey). The baseline hazard of AIDS was multiplied with different factors, while

keeping everything else the same.

and the effects of CCR5 on both cause-specific hazards) the same. The sub-plot with factor= 0
corresponds to the standard Cox regression in the absence of the competing risk ‘AIDS’. Here the
difference in probabilities of SI appearance between wild-type and mutant indeed increases with
time. As the competition fromAIDS is increased, the higher cause-specific hazard for SI appearance,
�SI(s), for WW compared to WM is offset against an increasingly smaller contribution from the overall
survival S(s)= exp(−(�AIDS(s)+�SI(s))) for WW, where the contribution of AIDS, �AIDS(s), in-
creases as the multiplication factor increases. At first this results in a crossing of the cumulative inci-
dence curves (see e.g. factor= 1, this is not possible in the absence of competing risks), which occurs
earlier with increasing multiplication factor. With factor= 4, the effect of CCR5 on the cumulative
incidence of SI appearance is inverse to what the hazard ratio of 0.78 of WM with respect to WW
seems to suggest.
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The use of long format, in particular in combination with the use of cause-specific dummies
(ccr5.1 and ccr5.2 in our example) and stratified Cox regression offers great flexibility in
modelling the effect of covariates on the cause-specific intensity rates, while using standard statis-
tical software [25]. Several authors have suggested that robust estimates of standard errors should
be used in order to correct for the correlation caused by multiplication of the data set (see e.g. [25]).
However, each individual still has at most one event, so that standard estimates of the standard
error do suffice (see also the discussion in Reference [7] and our online material).

If the number of competing events becomes large or if one of the events is rare, equality of effects
or proportionality of baseline hazards may become a necessary assumption to prevent overfitting.
The reduced rank proportional hazards model for competing risks, introduced in Fiocco et al. [26]
may be helpful in such situations. For the special case of rank one such a reduced rank model is a
proportional hazards model where each covariate has the same effect on all transitions except for
proportionality coefficients. More generally, the reduced rank proportional hazards model of rank
R requires the matrix of regression coefficient vectors, stacked horizontally column by column for
different causes, to be of reduced rank R, smaller than the number of failure causes, K , and the
number of covariates, p. It has the advantage of modelling each transition in a different way with
fewer parameters, deals with transitions with rare events and overcomes the problem of over-fitting.
Two applications of this method, to leukaemia-free patients surviving a bone marrow transplant
[26] and to data from a breast cancer trial [27], led to interpretable results that made clear clinical
sense but were not immediate from the full rank models.

3.3.2. Regression on cumulative incidence functions. In order to avoid the highly nonlinear effects
of covariates on the cumulative incidence functions when modelling is done on the
cause-specific hazards, Fine and Gray [28] introduced a way to regress directly on cumulative
incidence functions. In analogy with the relation (2) between hazard and survival, they defined a
subdistribution hazard

�k(t) = − d log(1 − Ik(t))

dt
(20)

This is not the cause-specific hazard. In terms of estimates of this quantity, the difference is in the
risk set. For the cause-specific hazard, the risk set decreases at each time point at which there is
a failure of another cause. For �k(t), persons who fail from another cause remain in the risk set.
If there is no censoring, they remain in the risk set forever and once these individuals are given a
censoring time that is larger than all event times, the analysis becomes completely standard. If there
is censoring, they remain in the risk set until their potential censoring time, which is not observed if
they experienced another event before. With administrative censoring, the potential censoring time
is still known. If individuals may also be lost to follow-up, a censoring distribution is estimated
from the data. Fine and Gray imposed a proportional hazards assumption on the subdistribution
hazards:

�k(t |Z)= �k,0(t) exp(b
�
k Z) (21)

Estimation follows the partial likelihood approach used in a standard Cox model. In a later paper,
Fine extended this idea to other link functions using an estimating equations approach. Using the
R library cmprsk we obtain the following results (after removing the five subjects with missing
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CCR5 covariate values and making ccr5 numeric).

> library(cmprsk)
> crr(si$time,si$status,si$ccr5) # for failures of type 1 (AIDS)
convergence: TRUE
coefficients:
[1] -1.004
standard errors:
[1] 0.295
two-sided p-values:
[1] 0.00066
> crr(si$time,si$status,si$ccr5,failcode=2) # for failures of type
2 (SI)

convergence: TRUE
coefficients:
[1] 0.02359
standard errors:
[1] 0.2266
two-sided p-values:
[1] 0.92

The protective effect of the mutant WM genotype on AIDS is again apparent (P = 0.0007). Note
that the effect of the mutant WM genotype on SI appearance has reversed compared to regression
on cause-specific hazards, though it is very far from significant.

Figure 8 shows the predicted cumulative incidence curves for time to AIDS and time to SI
appearance based on the Fine and Gray results. Note that the cumulative incidence curves of SI
appearance for CCR5 wild-type and mutant do not cross and that the cumulative incidence curve
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Figure 8. Cumulative incidence functions for AIDS (left) and SI appearance (right), for CCR5 wild-type
(WW) and mutant (WM), based on the Fine and Gray model.
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Figure 9. Non-parametric cumulative incidence functions for AIDS (left) and SI appearance (right), for
CCR5 wild-type (WW) and mutant (WM).

of the mutant is above that of the wild-type. As far as we know the Fine and Gray regression does
not yet allow the flexibility (e.g. in testing for or assuming equality of covariate effects across
different causes) of regression on cause-specific hazards. Also, it is not clear how left truncated
data or time-dependent covariates can be included in their approach.

We have presented the Fine and Gray method here as a way of repairing problems with propor-
tional hazards regression on cause-specific hazards. We would like to stress that there is nothing
fundamentally wrong with regression on cause-specific hazards. The problems lie in the fact that
we are used to interpreting hazard ratios in the standard proportional hazards regression with a
single endpoint as implying a qualitatively similar cumulative effect via a relation like (19). One
should be aware that this relation is no longer true in the presence of competing risks; it does
not mean that the model itself is incorrect. A straightforward way of judging the goodness-of-fit
of the two approaches is by comparing the predicted cumulative incidence curves of the regres-
sion models with the non-parametric cumulative incidence curves obtained by applying (17) to
the subset of CCR5 wild-type and mutant separately. Figure 9 shows these model-free cumulative
incidence curves. Judging from Figure 9, particularly for SI appearance, the cumulative incidence
curves of the proportional hazards regression model on cause-specific hazards (Figure 5) follow the
non-parametric cumulative incidence curves quite closely, more so than the cumulative incidence
curves from the Fine and Gray regression (Figure 8).

3.4. Software

Regression on cause-specific hazards can be performed in any package that includes the Cox
proportional hazards model. An option to fit stratified Cox models needs to be included if we want
to fit or test for equality of covariate effects for different transitions.

Cumulative incidence curves in a competing risks setting can be estimated in S-PLUS/R
(cmprsk library), Stata (stcompet.ado module) and NCSS. The Stata web site also
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provides further explanations on fitting competing risks models (see http://www.stata.com/
support/faqs/stat/stmfail.html). Rosthøj et al. [29] have written a set of SAS macros
that allows to translate results from a Coxmodel on cause-specific hazards into cumulative incidence
curves for some choice of covariate values (see http://www.pubhealth.ku.dk/˜pka). It
also calculates standard errors. A Cox null model without covariates can be used to obtain a single
cumulative incidence curve for the whole group. The R package mstate, further mentioned in
Section 4.6, can also be used for competing risks, and also implements the reduced rank approach
of Fiocco et al. [26].

3.5. Summary and concluding remarks

We have seen that modelling the effect of covariates on cause-specific hazards may lead to different
conclusions than modelling their effect on subdistribution hazards and cumulative incidence func-
tions. The standard Cox model can be used to model the effect of covariates on the cause-specific
hazards of the different endpoints. The data format used is basically the same as in a standard
survival analysis with one endpoint (the long format is just a clever way of combining data for
the different endpoints such that all can be analyzed at once). If we start with a Cox model on
cause-specific hazards, we have the advantage of a wealth of theory that has been developed and
software that has been written for this purpose. Cause-specific hazards as obtained from a Cox
model can be translated into cumulative incidence curves through formula (17). The problem is that
proportionality is lost and hence covariate effects on cumulative incidence curves can no longer
be expressed by a simple number. The main lesson to be learned here is that to determine the
effect of a covariate on the cumulative incidence of an event of interest it is also important to
consider the competing risk(s) (both baseline and effect of covariate). Still, results from the Cox
model do not provide an answer to the question what the effect of some covariate would have been
on the cause-specific hazard if the competing risks were absent, unless the competing events are
independent. Di Serio [30], in a simulation study, has shown that the estimated effect of a covariate
may even be reversed if the dependence between two endpoints is caused by a common factor
that is not included in the model, but is correlated with the covariate of interest. Regression on
cumulative incidence curves allows to describe the effect of covariates through simple numbers.
To our knowledge, software to fit these models has only been written in S-PLUS/R.

We have presented the most common approaches to the analysis of competing risks.
Another approach to regression with competing risks is to use pseudo-observations, as explained in
References [31, 32]. Sometimes, different endpoints occur at the same time. For example, relapse
may occur at several locations simultaneously, or an HIV infected person may be diagnosed with
several AIDS defining illnesses. See Reference [33] for some approaches to analyze such data.
Sometimes, two different groups of endpoints can occur simultaneously, e.g. when two different
classification schemes are used. Such data lead to the concept of multivariate competing risks [34].

4. MULTI-STATE MODELS

4.1. Introduction

The class of multi-state models forms an extension to that of competing risks models. Competing
risks models deal with one initial state and several mutually exclusive absorbing states. Typically,
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Figure 10. A multi-state model for breast cancer.

the disease or recovery process of a patient will also consist of intermediate events that can neither
be classified as initial states nor as final states. This type of models is called multi-state models.

Before introducing the necessary terminology, let us consider a number of examples:

1. In many cancer studies, after surgery of the primary tumour, the tumour may recur in the
vicinity of the primary tumour (local recurrence), or at distant locations (distant metastasis).
These events may occur in any order (although local recurrence usually precedes distant
metastasis) and patients may die before or after experiencing local recurrence or distant
metastasis. Figure 10 illustrates a multi-state model that has been used to describe the disease
process in a breast cancer study [35].

2. After bone marrow transplantation, patients may acquire acute graft-versus-host disease
(GvHD), a reaction of the immune system in the donor graft against normal host tissues.
The acute GvHD may become chronic. Patients may also relapse, either before or after acute
GvHD, or die. Another intermediate event is the recovery of platelet count to normal levels.
In the literature, many papers have appeared dealing with multi-state models on bone marrow
transplantation, see e.g. References [36–39].

3. HIV infected individuals may develop AIDS, but may also experience a switch to SI
phenotype. If the SI switch occurs first, it may change the risk to progress to AIDS.

The last of these is an example of a special class of multi-state models, called illness-death
models. In this class of models individuals start out as healthy; this initial state will be denoted by
state 1. They may become ill (move to state 2) and afterwards they may die (state 3). In principle
they may also recover from their illness and become healthy again, i.e. move back to state 1. If
this is possible the model is called a bi-directional illness-death model. Individuals may also die
without first becoming ill (this is a direct transition from state 1 to state 3). A uni-directional
illness-death model is illustrated in Figure 11.

Although, as suggested by the name, the typical application of an illness-death model is one
where ‘illness’ is an unfavourable intermediate event, this is not necessarily the case. In Sections
4.4 and 4.5 we will use an illness-death model in bone marrow transplantation for illustration,
where the ‘illness’ state corresponds to platelet recovery and ‘death’ corresponds to relapse or
death.

Data on state occupation are often incomplete to some extent. States may be determined by the
value of some marker that is not observed directly. Then the state can only be determined at the
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Figure 11. The illness-death model.

times at which the marker is measured and the transition time is interval censored. For a survey
on multi-state models with interval censored data, see Reference [40]. Also, the marker value may
be measured with error, leading to state misclassification. Models for these type of data will not
be considered here, although software to fit these models will be mentioned in Section 4.7.

We will restrict attention in this tutorial to inference in multi-state models with non-parametric
hazards in the framework of the Cox model, ignoring fully parametric and other important
approaches, such as those based on additive hazards [41–43]. In Section 4.2 we introduce no-
tation and discuss some preliminary notions. Section 4.3 is devoted to ways of representing data
for multi-state modelling. Section 4.4 concerns estimation of regression coefficients and survival
functions in multi-state models. Finally, Section 4.5 shows how to use multi-state models for
prediction.

4.2. Preliminaries

4.2.1. Notation. We restrict to uni-directional multi-state models without recurrent events for which
the intermediate transition times are observed exactly. Typically, a multi-state model contains one
initial state, which we will assign the number 1. In the above examples, this state is entered at
the moment of surgery for cancer, bone marrow transplantation and HIV infection respectively.
Some states represent an endpoint; when a patient enters such a state, he or she will remain there
or one is not interested in what happens after this state has been reached. We call these states
final or absorbing states (the latter terminology comes from the theory of Markov chains and
processes [44]). The absorbing states in our examples are death (in the cancer example), relapse
and death (BMT), AIDS (HIV/AIDS). States that are neither initial nor absorbing states are called
intermediate or transient states (again borrowed from Markov chain theory); strictly speaking, the
initial state is also transient.

In Figures 10 or 11, each state is represented by a box. Transitions are represented by arrows
going from one state to another. When we assign numbers to all states, we represent a transition
from state i to j by ‘i → j’. If T denotes the time of reaching state j from state i , we denote the
hazard rate (transition intensity) of the i → j transition by (cf. (1) and (10))

�i j (t) = lim
�t↓0

Prob(t�T<t + �t |T�t)

�t
(22)

Similar to (3), we define the cumulative hazard for transition i → j by

�i j (t) =
∫ t

0
�i j (s) ds (23)
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Figure 12. Illustration of the ‘clock forward’ and ‘clock reset’ approach. LR, DM and FUP stand for local
recurrence, distant metastasis and follow-up, respectively.

4.2.2. Time scales. In the above definition, the question remains: what is t , or more precisely, what
is the time scale to which t refers? Two approaches are in frequent use, which we shall denote
here by the ‘clock forward’ or ‘clock reset’ approach.

‘Clock forward’: Time t refers to the time since the patient entered the initial state. The clock
keeps moving forward for the patient, also when intermediate events occur.

‘Clock reset’: Time t in �i j (t) refers to the time since entry in state i , also called backward
recurrence time. The clock is reset to 0 each time the patient enters a new state.

The difference between the two approaches is illustrated in Figure 12. The upper half shows the
dates of surgery and subsequent events for a cancer patient. At 13 May 2005, the patient is still
alive. The lower picture shows the patient time-scale, first in the ‘clock forward’ approach, where
time is measured from date of surgery, then in the ‘clock reset’ approach, where time intervals
between state visits are recorded. In both instances the patient is censored for the last event, due
to the end of follow-up.

4.2.3. Markov, semi-Markov and extended Markov models. A property that is often assumed in
practice is that the multi-state model is a Markov model. Loosely speaking, the Markov property
states that the future depends on the history only through the present. For a multi-state model this
means that, given the present state and the event history of a patient, the next state to be visited
and the time at which this will occur will only depend on the present state. Strictly speaking,
only ‘clock forward’ models can be Markov models; for ‘clock reset’ models the Markov property
cannot hold since the time scale itself depends on the history through the time since the current
state was reached. However, if it is assumed that the sojourn times depend on the history of the
process only through the present state and the time since entry of that state, the resulting multi-state
model forms a sequence of embedded Markov models, called a Markov renewal model (see e.g.
References [45–48]), or also a semi-Markov model. Note that competing risks models are always
Markovian, since there is no event history.

Several kinds of violations (or relaxations) of the Markov property can be envisaged. One is a
situation where the order of states visited influences transition rates. For example, in the multi-state

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2389–2430
DOI: 10.1002/sim



2416 H. PUTTER, M. FIOCCO AND R. B. GESKUS

model of Figure 10, the transition rate from local recurrence and distant metastasis to death can be
different according to whether local recurrence was diagnosed before or after distant metastasis.
Often in such situations, the multi-state model can be adapted (in this case by allowing two states,
namely ‘LR, then DM’, and ‘DM, then LR’ to represent the ‘local recurrence and distant metastasis’
state) so that the multi-state model becomes Markov again. A second, more common relaxation of
the Markov assumption is to let the sojourn times as covariates depend on the times at which earlier
states have been entered. In the illustration in Sections 4.4 and 4.5 of this paper, we shall use the
term state arrival extended (semi-)Markov to mean that the i → j transition hazard depends on the
time of arrival at state i . For estimation in our illness-death model, the (semi-)Markov model is
extended with only one additional parameter, associated with the arrival time at state 2 (or possibly
a function of it), for the 2→ 3 transition only.

4.3. Data preparation

Many survival studies have their data stored initially in a one-row-per-subject (wide) format. This
way is most convenient for most standard survival analyzes involving one endpoint. For example,
consider the following three patients from a breast cancer study:

patid survyrs survstat lryrs lrstat dmyrs dmstat
1 1 8.70 0 8.70 0 8.70 0
2 2 6.30 1 6.30 0 6.30 0
3 3 11.36 0 2.25 1 6.75 1

Patient 1 did not experience any event, i.e. is alive and event-free at t = 8.7 years. Patient 2
died after 6.3 years without any intermediate event. Patient 3 is as illustrated in Figure 12; she
experienced a local recurrence at 2.25 years post-surgery, subsequently a distant metastasis at 6.75
years post-surgery, and is still alive at 11.36 years post-surgery.

The format allowingmost flexibility for multi-state modelling is the so-called long format, already
mentioned in Section 3. Each row now represents one patient ‘at risk’ for a certain transition. For
the above 3 patients, for the multi-state model of Figure 10, the data in this format would need 12
rows instead of 3:

patid start stop status from to transition time
1 1 0.00 8.70 0 1 2 1 -> 2 8.70
2 1 0.00 8.70 0 1 3 1 -> 3 8.70
3 1 0.00 8.70 0 1 5 1 -> 5 8.70
4 2 0.00 6.30 0 1 2 1 -> 2 6.30
5 2 0.00 6.30 0 1 3 1 -> 3 6.30
6 2 0.00 6.30 1 1 5 1 -> 5 6.30
7 3 0.00 2.25 1 1 2 1 -> 2 2.25
8 3 0.00 2.25 0 1 3 1 -> 3 2.25
9 3 0.00 2.25 0 1 5 1 -> 5 2.25
10 3 2.25 6.75 1 2 4 2 -> 4 4.50
11 3 2.25 6.75 0 2 5 2 -> 5 4.50
12 3 6.75 11.36 0 4 5 4 -> 5 4.61

The data contains a patient identification column patid and a transition column, as well
as a from and a to column specifying from which state the transition initiates and to which it
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terminates. Furthermore, it contains a start and stop time to indicate when the patient started
and stopped being at risk for that transition, and a status to denote whether or not (1 and 0,
respectively) the patient reached the to state. Patients 1 and 2 are represented by three columns
each, one for each of the transitions going out from state 0. Patient 1 has status= 0 for each
of these transitions, patient 2 has status= 1 only for the 1→ 5 transition (surgery to death).
Patient 3 has these same three initial rows as well. After a local recurrence (status= 1 for the
1→ 2 transition), two more rows are added, corresponding to the two transitions (2→ 4 and 2→ 5)
going out from state 2. The start time for these transitions is 2.25, the stop time is 6.75. This
is an example of delayed entry or left truncation (Section 2); patient 3 becomes at risk for the
transitions 2→ 4 and 2→ 5 after 2.25 years. The variable status has value 0 for the 2→ 5
transition and 1 for the 2→ 4 transition. One final row is added after the patient has reached state
4 (local recurrence and distant metastasis). The only transition going out from state 4 is the 4→ 5
transition. The start time is 6.75, stop time is 11.36 years, the end of follow-up of that patient.
Since the patient is still alive (censored), status= 0 for that row. One column time is added for
modelling the ‘clock reset’ approach; it is simply defined by time=stop–start. If time-fixed
covariates are also recorded, the values are simply replicated for each row corresponding to the
same patient.

4.4. Estimation

We will illustrate estimation of the effect of prognostic factors on the transition rates in multi-state
models, using the simplest non-trivial multi-state model, the illness-death model. Some aspects
that play a role and that we will try to cover here are:

• which baseline hazards (for the different transitions) to choose proportional;
• whether to use the ‘clock forward’ or ‘clock reset’ approach;
• whether to use a (semi-)Markov or a state arrival extended (semi-)Markov model.

We will use data from the European Blood and Marrow Transplant registry (EBMT) for illustra-
tion in this and the next subsection. The data consists of 2204 patients in this registry, who received
bone marrow transplantation between 1995 and 1998, and who had complete information on the
prognostic factors considered here. These are as summarized in Table II.

Table II. Prognostic factors for all patients.

Prognostic factor n (%)

Disease classification AML∗ 853 (39)
ALL 447 (20)
CML 904 (41)

Donor recipient No gender mismatch∗ 1648 (75)
Gender mismatch 556 (25)

GvHD prevention No T-cell depletion (−TCD)∗ 1928 (87)
+ TCD 276 (13)

Age at transplant (years) �20∗ 419 (19)
20–40 1057 (48)
>40 728 (33)

∗Refers to reference category.
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Figure 13. The EBMT illness-death model.

The multi-state model that we shall use for illustration here and in the next subsection is the bone
marrow transplantation illness-death model already mentioned in Section 4.1. Here, the ‘illness’
state corresponds to platelet recovery and ‘death’ corresponds to relapse or death. The model is
illustrated in Figure 13 along with the number of events. We can see that for 1169 of 2204 patients
(53 per cent), platelet levels returned to normal levels; 383 of these 1169 (33 per cent) subsequently
relapsed or died, the remaining 786 (67 per cent) did not relapse or die after platelet recovery. There
were 458 patients (21 per cent) that relapsed or died without platelet recovery prior to relapse or
death. Finally, 577 (26 per cent) of all 2204 patients did not experience any event in our data.

Let us start by not assuming anything about the baseline hazards. We will take the ‘clock forward’
approach and assume a Markov model. We will use Cox’s proportional hazards model for each
of the transition hazards separately. The hazard for transition i → j for a subject with covariate
vector Z is then given by

�i j (t |Z) = �i j,0(t) exp(b
�
i jZ) (24)

where �i j,0(t) is the baseline hazard of transition i → j , and bi j is the vector of regression co-
efficients that describe the effect of Z on transition i → j . For estimation in the 1→ 2 (1→ 3)
transition, in long format, it suffices to select only the rows corresponding to transition=1->2
(transition=1->3), and use a Cox regression on the selected data. For estimation of regres-
sion parameters for the 2→ 3 transition (platelet recovery→ relapse or death), it is important to
realise that patients are at risk only after entering state 2 (delayed entry). The estimates of bi j , their
standard errors and P-values are reported in Table III in the Markov stratified hazards column.
The most important findings are the higher relapse/death rates for older patients (particularly older
than 40), both before and after platelet recovery, the lower platelet recovery rate for CML patients,
and the increased platelet recovery rate for patients receiving T-cell depletion.

The estimated cumulative baseline hazards (i.e. all covariate values equal to the reference value)
for this model are shown in the left plot of Figure 14. Note the sharp increase in the baseline rate
of platelet recovery.

We may assume the baseline hazards of the 1→ 3 transition and the 2→ 3 transitions to be
proportional. In view of Figure 14 this does not seem unreasonable. This is equivalent to grouping
the 1→ 3 and 2→ 3 transitions and using the occurrence of the intermediate event as a time-
dependent covariate. The model for the transition to state 3 is then given by

�13(t |Z) = �3,0(t) exp(b
�
13Z)

�23(t |Z) = �3,0(t) exp(b
�
23Z + �)

(25)
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Figure 14. Baseline cumulative hazard curves for the EBMT illness-death model. On the left
the baseline hazards are not assumed to be proportional; on the right the baseline hazards of
the 1→ 3 and the 2→ 3 transitions are related through a proportional hazards assumption

on the transition hazards (see Equation (25)).

Note the use of the same baseline hazard �3,0(t) for both the 1→ 3 and the 2→ 3 transition. The
regression coefficients b13 and b23 in (25) have the same interpretation as in (24) (but will typically
result in different though comparable estimates). Another way of expressing (25) is as

� j3(t) = �3,0(t) exp(b
�
13Z + ( j − 1)D�Z + ( j − 1)�), j = 1, 2 (26)

i.e. as a single Cox regression with main covariate effects and interactions with transition. Here b13
still represents the covariate effects for relapse or death before platelet recovery; D represents the
difference in covariate effects for relapse or death after platelet recovery, compared to before platelet
recovery. Thus, b23 can be retrieved from b13 and D by the simple relationship b23 = b13 +D. The
results are also found in Table III, in column Markov proportional hazards. The estimates of b12
are left blank; they are the same as before. None of the elements of D was found to be significantly
different from zero (not shown). There are a number of advantages to taking the baseline hazards
of 1→ 3 and 2→ 3 proportional. The fact that the same baseline hazard �3,0(t) is used for both the
1→ 3 and the 2→ 3 transition may in case of rare events result in higher precision of the estimates
of b13 and/or b23. The model can be fitted as a time-dependent Cox model, where the intermediate
state is added as a time-dependent covariate. Model (26) could be stated in this form as

�3(t) = �3,0(t) exp(b
�
13Z + PR(t)D�Z + PR(t)�)

where the time-dependent covariate PR(t) equals 0 for all t before time of platelet recovery,
and 1 after time of platelet recovery. More importantly, the parameter � gives useful additional
information. Its exponent exp(�) represents the effect of experiencing the intermediate event on
the rate of occurrence of the endpoint. Here the parameter � is estimated as −0.38 with a standard
error of 0.21 (Table III; P = 0.073). This means that platelet recovery has a (trend significant)
protective effect on relapse-free survival (hazard ratio= 0.67, 95 per cent CI: 0.43–1.02). On the
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downside of course, one then has to wonder whether the assumption of proportional hazards
for the two transitions is reasonably fulfilled. The right plot of Figure 14 shows the estimated
baseline cumulative hazards for the three transitions in this model. Comparison with the left plot of
Figure 14 strongly suggests that the proportionality assumption of the baseline hazards for the 1→ 3
and 2→ 3 transitions is reasonably fulfilled. This can be checked more rigorously by testing the
significance of an interaction between (a function of) time, f (t), and an indicator distinguishing
between the two transitions, or by checking the Schoenfeld residuals. We will not pursue this
here.

The last two columns of Table III contain parameter estimates and P-values for the state arrival
extended Markov model. We have assumed proportionality of the baseline hazards for the 1→ 3
and 2→ 3 transitions. The model was fitted by adding the extra term pr in (26), where pr is the
time (in years) from transplant to platelet recovery. This term is meaningful only for the 2→ 3
transition (and is therefore set to 0 for the 1→ 3 transition).

Table IV contains the results for the ‘clock reset’ approach, for the same three models. The
results for the 1→ 2 transition are omitted here, since they are again identical to those in Table III.
The difference in parameter estimates between the ‘clock forward’ and the ‘clock reset’ approaches
are small; most notable are the differences in the effects of platelet recovery and the time at which
it occurs on the relapse-free survival after platelet recovery.

It is hard to give general guidance in deciding between the ‘clock forward’ and ‘clock reset’
approaches. The clinical context will most often be the most important consideration here. In
our experience the difference between the two approaches is usually quite small with regard to
the estimated regression coefficients. Farewell and Cox [49] propose a more formal procedure in
studying which time-scale is most appropriate. For the remainder of this tutorial, we will use the
(clock-forward) Markov proportional hazards model.

4.5. Prediction

In the preceding subsection, we have modelled the effects of covariates on the transition hazard.
In Section 3 on competing risks we have already seen that effects on the cumulative incidence
function may be different from what the regression coefficients suggest. In a multi-state setting,
this becomes even more of an issue, since intermediate events also contribute to effects on the
cumulative scale. This subsection is devoted to estimation of cumulative effects, or prediction, to
answer clinically important questions such as the following in our example:

• Given a bone marrow transplantation patient whose platelets have recovered after 60 days
and who has had no further events at one year post-transplant, what is then the probability
of surviving relapse-free for 2 more years? How does this probability compare to a patient
whose platelets have not yet recovered?

The general problem is to estimate the conditional probabilities of some clinical future events, given
an (event) history, and possibly a set of values for prognostic factors Z of a patient. The estimates of
these probabilities are based on the results obtained from the Cox model on the transition hazards
between the states. Let u be the time at which the prediction is made measured from the time
origin of the patient (surgery, transplantation, HIV infection in the context of the three examples
mentioned in Section 4.1). Let us also denote the event history of the patient by Hu . This event
history contains the times of all events recorded for that patient and the event types. Let Et denote
some future event evaluated at time t , e.g. the event of surviving relapse-free until t = 10 years
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after study entry. Then we are interested in

Prob(Et |Hu,Z)

Given a multi-state model without recurrent events, these probabilities can be expressed in terms
of the hazards for the transitions and can be estimated by appropriately combining the estimated
baseline hazards and regression coefficients. This was first outlined in Reference [36] using work
of Arjas and Eerola [50].

We will derive the formulas and show how they can be estimated for the illness-death model,
more specifically the bone marrow transplantation model of Figure 13. We will first illustrate the
‘clock forward’ approach. We denote the time of the intermediate event by R and the time of
the final event by T . Let us start with prediction from state 2, i.e. a patient whose platelets have
recovered at time R = r after transplant. We denote the corresponding event history by

H2,r (u) ={R = r, T>u} with r�u

In the notation, u is the time of prediction (measured from the time origin), the subscript 2 denotes
the fact that the patient is in state 2 at time u, and r is the time of reaching state 2, i.e. the time of
the intermediate event or illness, in this instance platelet recovery. The probabilities

P23,r (u, t) = Prob(T�t |H2,r (u)), P22,r (u, t) =Prob(T>t |H2,r (u)) (27)

are the (conditional) probabilities of going to state 3 before or at time t and staying in state 2
until time t , respectively, given a recovery of platelets at time r and no further events until time
of prediction u. The notation is similar to that of the histories; in addition t is time (since patient
entry) for which the prediction probability has to be calculated. The probabilities in (27) can be
directly expressed in terms of the hazard rate for transition 2→ 3, for instance

P23,r (u, t) =
∫ t

u
�23,r (s) exp

(
−

∫ s

u
�23,r (v) dv

)
ds (28)

An explanation of this formula is as follows. In order for the patient, starting from state 2 at time
u, to be in state 3 at time t , he or she as to make the transition from 2 to 3 at some time s (factor
�23,r (s)). Up to time s, the patient has to remain in state 2 (factor exp(− ∫ s

u �23,r (v) dv)). Using
S2,r (s)= exp(− ∫ s

0 �23,r (v) dv), we can simplify (28) to

P23,r (u, t) =
∫ t

u
�23,r (s)S2,r (s) ds/S2,r (u) = S2,r (u) − S2,r (t)

S2,r (u)
= 1 − S2,r (t)

S2,r (u)
(29)

Since there is only one state to reach from state 2, we have

P22,r (u, t) = 1 − P23,r (u, t) = S2,r (t)

S2,r (u)

In a Markov model, P22,r (u, t) and P23,r (u, t) do not depend on r because �23,r (t) does not depend
on the time r of ‘illness’.

For a patient who is alive and relapse-free and whose platelets have not (yet) recovered at time
u (i.e. who is in state 1 at time u), we denote the corresponding history by

H1(u) ={R>u, T>u}
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We can now discern four different scenarios for a patient with history H1; their probabilities are
denoted by

P11(u, t) = Prob(R>t, T>t |H1(u))

P12(u, t) = Prob(R�t, T>t |H1(u))

P1
13(u, t) = Prob(T�t, T<R|H1(u))

P2
13(u, t) = Prob(R�T�t |H1(u))

(30)

The superscripts in P1
13 and P2

13 serve to distinguish between relapse or death without platelet
recovery (directly from state 1) and after platelet recovery (moving through state 2), respec-
tively. The probability of relapse or death before time t , conditionally given no events at time u,
P13(u, t) =Prob(T�t |H1(u)) is the sum of the corresponding probabilities without and with prior
platelet recovery, P1

13(u, t) + P2
13(u, t).

Let us start with the most complicated of these probabilities. For t>u, we have

P2
13(u, t) =

∫ t

u
�12(r) exp

(
−

∫ r

u
(�12(v) + �13(v)) dv

)
P23,r (r, t) dr

=
∫ t
u �12(r)S1(r)P23,r (r, t) dr

S1(u)
(31)

The explanation of this formula is similar to that of (29). Given that the patient starts in state 1
at time u, in order to first visit state 2 and then state 3 before or at time t , the patient must at
some time r between u and t visit state 2, before time r not having visited states 2 or 3. This is
expressed by �12(r) exp(−

∫ r
u (�12(v) + �13(v)) dv) (cf. equations (11) and (12)). Once the patient

has reached state 2 at time r , the probability of reaching state 3 before or at time t is given by
P23,r (r, t) as above. The second equation in (31) follows by defining

S1(t) = exp(−(�12(t) + �13(t))), �1 j (t) =
∫ t

0
�1 j (s) ds

as the probability of staying in state 1 until time t . Note the similarity with the competing risks
context (in particular, equation (11)). Similarly, again for t>u, we also have

P12(u, t) =
∫ t
u �12(r)S1(r)P22,r (r, t) dr

S1(u)
(32)

i.e. equation (31) with P23,r (r, t) replaced by P22,r (r, t). The sum of (31) and (32),

P2
13(u, t) + P12(u, t) =

∫ t
u �12(r)S1(r) dr

S1(u)
(33)

is the conditional probability of having visited state 2 by time t , given H1(u). Evaluated at u = 0,
this is the cumulative incidence function of state 2, cf. equation (12). The conditional probability

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2389–2430
DOI: 10.1002/sim



COMPETING RISKS AND MULTI-STATE MODELS 2425

of having visited state 3 by time t without moving through state 2, given H1(u), P1
13(u, t), has a

similar expression, with �12 replaced by �13:

P1
13(u, t) =

∫ t
u �13(r)S1(r) dr

S1(u)
(34)

The sum of the probabilities in (33) and (34),

P1
13(u, t) + P12(u, t) + P2

13(u, t) =
∫ t
u (�12(r) + �13(r))S1(r) dr

S1(u)

= S1(u) − S1(t)

S1(u)
= 1 − S1(t)

S1(u)

is the conditional probability of having left state 1 before or at time t , givenH1(u). Its complement,
the conditional probability of staying in state 1 until time t , given H1(u), is

P11(u, t) = S1(t)

S1(u)
(35)

Similar formulas can also be derived for the ‘clock reset’ approach. In general, they are slightly
more complicated because of the presence of several time-scales. However, in the easier case of
the illness-death model, the only difference is in the prediction probabilities out of state 2 given
H2,r (u). Instead of (29), these now become

P22,r (u, t) = S2,r (t − r)

S2,r (u − r)
, P23,r (u, t) = 1 − S2,r (t − r)

S2,r (u − r)
(36)

In the special case where u = r (these are the probabilities used in (31) and (32)), (36) simplifies
to

P22,r (r, t) = S2,r (t − r), P23,r (u, t) = 1 − S2,r (t − r) (37)

since for u = r , S2,r (u − r) = 1. It is important to note that estimators of S2,r will also change
compared to the ‘clock forward’ approach, due to the different time-scale. For formulas in more
extensive multi-state models, see Reference [36] for the ‘clock forward’ and References [35, 48]
for the ‘clock reset’ approach.

How do we estimate these prediction probabilities from data? Given a multi-state model with
estimated regression coefficients b̂i j and baseline cumulative hazards �̂i j,0(t), we can compute

the cumulative hazards �̂i j (t |Z)= �̂i j,0(t) exp(̂b�
i jZ) corresponding to a patient with covariate

values Z. This estimator will typically be represented by jumps of size �̂i j (s) at certain time points
s at which events for the i → j transition occur (or for which events for other transitions occur
as well, depending on proportional hazards assumptions between baseline hazards from different
transitions). We denote the collection of these time points byTi j . One then simply obtains estimates
of the prediction probabilities in (31)–(35) and (36) by replacing each integral by a sum and by
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Figure 15. Stacked prediction probabilities at u = 0 for a reference patient. PR stands for platelet recovery.

replacing hazard and survival functions by their estimated counterparts. For instance,

P̂ 2
13(u, t) =

∑
r∈T12
0�r�t

�̂12(r)Ŝ1(r−)P̂23,r (r, t)

Ŝ1(u)

where

Ŝ1(r) = ∏
s�r

(1 − (̂�12(s) + �̂13(s)))

The latter equation is a discretized version of S1(r) = exp(−(�12(r) + �13(r))), cf. (15). Note
that these prediction probabilities are special cases of the Aalen–Johansen estimator [51] (for more
details see Reference [2, Section IV.4]).

In the remainder of this subsection we shall illustrate the use of these prediction probabilities
for the EBMT multi-state model of Figure 13, based on the ‘clock forward’ Markov proportional
hazards model of the previous subsection. Figure 15 shows, from bottom to top, the probabilities
P̂12(u, t), P̂ 2

13(u, t), P̂ 1
13(u, t) and P̂11(u, t), for a patient with reference values for all covariates,

i.e. an AML patient, �20 years, no gender mismatch, no T-cell depletion. The time of prediction
here is u = 0, right after the transplant. The probabilities are stacked; the distance between two
curves represents the probability, associated with the text in the figure.

Figure 16 is similar to Figure 15; the time of prediction is now u = 0.5 years after transplant. The
estimated prediction probabilities P̂12(u, t) and P̂ 2

13(u, t) are now much smaller (in fact, P̂ 2
13(u, t)

is hardly visible on the plot). This is because the 1→ 2 hazard is initially very high (Figure 14)
and then decreases rapidly. Given that after 0.5 years no platelet recovery has occurred, platelet
recovery is far less likely to occur later.

Summing P̂ 1
13(u, t) and P̂ 2

13(u, t) gives P̂13(u, t), the estimated conditional probability of death
or relapse prior to time t , given alive without relapse at time u. Conditional relapse-free survival is
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Figure 16. Stacked prediction probabilities at u = 0.5 years for a reference patient. The predicted probability
of relapse or death after PR is negligible. PR stands for platelet recovery.
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Figure 17. Predicted relapse-free survival probabilities for three patients in different age categories, given
platelet recovery (dashed) and given no platelet recovery (solid). The time of prediction was 1 month

after transplant. PR stands for platelet recovery.

estimated as 1− P̂13(u, t) = P̂11(u, t) + P̂12(u, t). Figure 17 shows predicted relapse-free survival
probabilities for three patients, one in each age category. The other covariate values were set to their
reference values. The time of prediction was one month after transplant. The solid lines are predicted
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relapse-free survival probabilities given no platelet recovery (1− P̂13(u, t)), the dashed lines given
platelet recovery (1− P̂23(u, t)). Broadly summarizing, older patients have lower predicted relapse-
free survival probabilities (worse prognosis), and the occurrence of platelet recovery improves
prognosis. However, it can be seen that this improvement in prognosis is considerably higher, for
instance, for the middle (20–40) age group than for the youngest (�20) age group. The reason
for this is the fact that the effect of age 20–40 compared to age �20 is moderate (estimated
coefficient= 0.251) for the direct transition of transplant to relapse or death (1→ 3), while this
effect is negligible (estimated coefficient= 0.056) for the transition from platelet recovery to relapse
or death (2→ 3).

4.6. Software

Just like in the competing risks situation, estimation of the transition intensities can be done
in most statistical packages (for example S-plus/R, SAS, BMDP and Stata). Since SPSS does
not allow for left truncation, it can only be used if we assume proportionality of the different
transition hazards, such that a time-dependent Cox model is fitted. Estimation of cumulative ef-
fects is more complicated. Recently, an R package changeLOS [52] has become available that
implements the Aalen–Johansen estimator for general multi-state models with non-parametric haz-
ards. At the moment, it does not allow covariates. A package mstate for R is available from
http://www.msbi.nl/multistate in which the data preparation and techniques used in
this tutorial are implemented. This website also contains the EBMT data set used for illustration
and the full code used to obtain all fitted models and prediction results.

4.7. Summary and concluding remarks

We have seen that estimation of transition intensities in Markov models and some of its exten-
sions can be performed in a simple way. Estimation of cumulative effects is more complicated,
due to the many possible pathways that may occur. Throughout, we assumed that all transitions
were observed. However, irregular observation schemes may cause transition times to be interval
censored, and transitions may even be missed. Moreover, especially if the states are determined by
marker measurements, misclassification of the state may occur. Markov models that incorporate
misclassification are called hidden Markov models. Markov models and hidden Markov models
with interval censored transition times can be estimated via several stand alone programs and in
R in the package msm. These models require the baseline hazard to be parametric (constant or
piecewise constant).
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