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Evaluation of the impact of ‘critical’ or high-risk periods in
longitudinal studies of growth may provide clues to the
aetiology of life-long obesity or the optimal timing of preventive
or therapeutic intervention. If the critical period has a lasting
effect on an ongoing temporal process, we must be able to
observe the changes in this temporal process with repeated
measurements over pre- and post-critical periods. The ability to
model the temporal pattern before and after the critical period
provides the information needed to assess whether the critical
period has had an enduring effect on the process under obser-
vation. The data that derive from such a study are inevitably
and unavoidably complex because the timing of critical periods
will vary from subject to subject and may not correspond to an
occasion of measurement. In addition, subjects may exhibit con-
siderable variability in time trends. Furthermore, the assump-
tions of independence required for traditional statistical methods

are not met in these studies due to the nature of the process
itself and to the limitations of any observational study design.

Observational studies to assess the impact of critical periods
share a number of challenging features. The critical or high-risk
period is often a fairly complex biological process and it is some-
times difficult to define the beginning and end of the critical
period. Pregnancy exemplifies a well-defined critical period: 
it starts with fertilization and ends with delivery. In this case,
evaluation of the impact of pregnancy on fat accretion, for
example, would be straightforward. We would compare fat
accretion before and after pregnancy. When the critical period 
is less well defined and consists of a series of complex processes,
one is forced to choose an event within the critical period, which
will serve as a proxy. The event proxy allows the time period 
to be separated into pre- and post- event periods. The process of
sexual maturation with menarche as the event is illustrative of
a less well-defined critical period. Here, menarche is of interest
to obesity researchers as a proxy for the pubertal period, proposed
as a critical period in the development of obesity.

A second challenge arises because the critical period, and con-
sequently the period around the event, is often characterized by
increased variability. Increased variability arises for two major
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reasons: first, the critical period, and the event per se can be
thought of as a transient period of destabilization with
uncertainty as to the timing of the event; second, since 
one does not know a priori when the event will occur,
measurements at this time are not guaranteed. Menarche, for
example, is characterized by changes in the levels of many
hormones, some of which affect growth. Ideally, we would like
a measurement at the time of the event, or, to increase the
frequency of measurements just prior to the event. This, of
course, requires one to know when the event will occur—the
very information one lacks! Variability should be considered in
assessing the impact of the event on the ongoing process.

A third challenge is the unbalanced design associated with the
conduct of observational studies. In classically designed experi-
ments, such as clinical trials or laboratory experiments, data can
be collected completely and at standard intervals. Under these
circumstances of balanced and complete data, covariates typically
vary either within subjects (subject-specific level) or between
subjects (population level), but not both. In observational studies,
this is virtually never the case—unbalanced designs and/or
missing data are the norm; it is rarely possible to design the
study so that each subject is measured at the same set of times
and measured at every single time. This unavoidable feature of
observational studies should be incorporated into the analysis.

From a statistical perspective, to evaluate the impact of critical
periods in longitudinal studies using a traditional analysis, one
could use ordinary least squares (OLS) regression. One would need
to do two regressions, one regression for the pre-event period and
another for the post-event period, for each subject separately.
Then, taking the difference of slopes for each subject, one could
calculate the average difference in the slope pairs, its standard
error, and perform a t-test to test whether this value is different
from zero. The advantage of this approach is that it is simple to
do and easy to explain. However, this approach does not take
full advantage of the richness of the data, including the correla-
tion structure. Also, the traditional analysis does not characterize
individual variation relative to the population mean. In addition,
this approach requires one to discard data on subjects with an
insufficient number of measurements either before or after the
event. This approach will also weight all remaining subjects equally
even though their estimates are based on variable numbers of
measurements. Finally, fitting two regressions separately will
not insure that the lines will meet at the time of event, which is
required by the growth process. It is not biologically possible to
have an substantial instantaneous shift in body fat.

These limitations are elegantly addressed by modern applied
statistical techniques, such as general linear mixed models.1 The
mixed model intrinsically consists of two components: subject-
specific and population, while accounting for the correlation at
each level. The model allows one to characterize individual
variation relative to the population mean. The estimates that
derive from a mixed model are weighted based on the actual
data. Missing data can be handled readily by these techniques.
Finally, the mixed model allows one to simultaneously fit the
two slopes, so that intersection of the lines at the time of the
event is insured.

Given the clear advantages for the applied researcher, why
have these methods not been utilized more widely? There are
likely several reasons for this. One reason may be that unless
compelled to do otherwise, researchers will continue to use

familiar methods. The typical researcher may be intimidated by
complex formulations and mathematical notation (e.g. Greek
letters, double subscripts, matrix notation, multiple brackets). 
In addition, the complete absence of graphical displays, which
can make the step-by-step process far easier to understand, are
not often included. Papers describing these methods typically
appear in statistical journals and, although they include clear
examples and often do explain the model in terms of the vari-
ables under study, the amount of mathematical terminology the
reader must wade through before they get to interpretation may
be overwhelming. These descriptions meet the needs of the stat-
istical reader, but may be difficult for the applied researcher.2

Another issue is terminology: the literature on repeated
measurement analysis describes the same models and methods
using different terminology, and the lack of consistency is a source
of confusion. For example, random effects, mixed effects, two-
stage and hierarchical models are variously used to describe 
the same model. The term hierarchical is especially common 
in the educational literature, where one may have repeat
measures on children in several classrooms in several schools,
etc. In this paper, we use the term random effects to describe
models where all the parameters in a single individual’s
regression model are random. We use the term mixed effects to
describe models where the parameters can be both fixed and
random. Incorporating a fixed effect in the model allows one to
include covariates that do not vary within a subject. As another
example, consider the interchangeable usage of the terms
repeated measures and longitudinal data. Sometimes the term
repeated measures is used narrowly to refer to designs where
each subject is measured under different conditions, and then
they are appropriately analysed with a classical repeated meas-
ures analysis. In other instances, the term is used more broadly
to include longitudinal studies, where the repeated measures are
taken on the same subject over time. To our minds, longitudinal
data represent a special case of repeated measures, where the
condition is the time at which the measurement was obtained.

Addressing this need is particularly urgent. With the number of
large longitudinal studies currently underway, these data will become
more common, and they deserve to be analysed properly. The soft-
ware needed for analysis of longitudinal data obtained from
complex study designs is now part of standard statistical pack-
ages.3 User-friendly graphic interfaces in the commercially avail-
able software allow one to easily visualize each step of data
analysis, validation and presentation of results. Together these
developments suggest the opportunity to reach a broader audience.

Our goal is to illustrate and present the use of general 
linear mixed model in a manner that is accessible to applied
researchers; we use prospectively collected data to assess the
influence of menarche on changes in body fat accretion as an
example. We take the reader through the process of data prepara-
tion, model formulation, fitting and validation. In this process,
we will incorporate traditional and familiar statistical methods,
as needed. To visualize the hypothesis under study, actual data
are used, and, for practically every step in the development of
the mixed model, we incorporate a variety of graphical displays.

Description of the Study
It is known that the peripubertal period is associated with
increases in body fatness.4 This increase starts just before or
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around menarche and is presumed to level off by approximately
4 years after menarche. However, this phenomenon has not been
systematically studied in population-based samples. The current
epidemic of obesity in the US and elsewhere has stimulated
interest in the aetiology, with the possible role of critical periods
in the development of obesity as one important focus of efforts.5,6

The data presented here were derived from a prospective
study of the development of obesity in a cohort of 162 girls.
Initiated in 1990, this ongoing NIH-funded study examines the
effects of energy expenditure and other metabolic and behav-
ioural factors on subsequent changes in body fat as adolescence
progresses, until 4 years after menarche. At study entry, all girls
were non-obese, as determined by a triceps skinfold thickness
less than the 85th percentile, and pre-menarcheal. All girls were
followed according to a schedule of annual measurements. They
reported their date of menarche and were then observed until
their exit day, which was scheduled on the fourth anniversary
of their menarche.

The outcome variable of interest in the study, body fatness, 
is based on bioelectric impedance analysis. Per cent body fat
(%body fat) was obtained from three basic measurements:
weight (Wt [kg]), height (Ht [cm]) and bioelectric impedance
resistance (R). Per cent body fat was then calculated using 
the Kushner equation:7 % BF = (1 – TBW/0.73 Wt) × 100%,
where total body water TBW = (0.7 Ht2/R) – 0.32. For each sub-
ject, date of birth, date of study entry, dates of each follow-up
measurement, date of menarche, and date of exit were recorded.
Then, for baseline and subsequent measurements, the age and
times relative to menarche and corresponding age at the date of
each measurement were calculated in years, to three significant
digits after the decimal point.

Although the endpoint of the study is 4 years after the first
menstrual period (menarche), the study is ongoing. As of June
1999, based on protocol completion, of the 162 girls enrolled in
the study and followed through menarche, 94 girls have exited
(they are the completers), 54 girls remain in the study, and 14
are lost-to-follow-up after menarche. On average, the time period

between two consecutive measurements was 1.11 ± 0.3 years.
There are 1049 individual %body fat measurements, with an
average of 6.5 ± 1.41 measurements per subject: 3.06 ± 1.36 for
the pre-menarcheal period (497 measurements) and 3.45 ± 1.22
for the post-menarcheal period (552 measurements). In our data,
the number of measurements per subject pre- and post-menarche
are almost equal; Table 1 provides the overall frequency of
measurements.

Exploratory Analysis
We conducted an exploratory analysis to check for the presence
of unusual features in the data, to visualize the hypothesis
under study, and to check the validity of our initial assumptions
for modelling. Per cent body fat is shown as a set of individual
growth curves. Figure 1 shows the entire set of data, in which
each data point is shown as an empty circle for pre-event and a
solid diamond for post-event measurements. This plot reveals
the variability in subjects’ age at entry, age at exit and age at the
menarcheal event, but includes too much data to reveal the
underlying patterns.

Rescaling the horizontal axis of this graph more clearly shows
the pattern of growth. Figure 2 represents the same set of data,
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Table 1 Overall frequency of measurements

No. of measurements No. of Total no. of 
per subject subjects (%) measurements (%)

3 7 (4) 21 (2)

4 3 (2) 12 (1)

5 29 (18) 145 (14)

6 39 (24) 234 (22)

7 45 (28) 315 (30)

8 30 (19) 240 (23)

9 8 (5) 72 (7)

10 1 (1) 10 (1)

Total 162 1049

Figure 1 The entire set of growth curves, where each data point is shown as an empty
circle for pre-menarcheal and as a solid diamond for post-menarcheal measurement



but for a time scale relative to the individual age at menarche.
In this graph we can see more clearly the separate patterns
before and after the menarcheal event. Also, we can see that 
the range of measurement times in the pre-menarcheal period
is greater than that in the post-menarcheal range, which was
limited to 4 years by the study design.

To reveal the general pattern in growth curves with respect 
to the time of event, we smooth the outcome variable using
non-parametric robust local smoothing procedures.8 Although
this technique ignores the correlation structure in repeated
measurements, it allows for an informal check for non-linearity

in the growth pattern. A scatterplot of %body fat and the 
results of smoothing are shown in Figure 3. One can see that
the smoothed curve remains flat during the time period prior to
menarche, and then starts to rise sharply near the time of the
event, remains steep for about 2 years after menarche and then
becomes shallower.

As the part of the preliminary analysis, we evaluated the
descriptive statistics for the cross-sectional examination of %body
fat in pre-menarcheal and post-menarcheal periods. We also
calculated the summary statistics for differences in subject’s
post- and pre-averages (Table 2). Checking for departures from
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Figure 2 The entire set of growth curves plotted against the time relative to menarche.
Each data point is shown as an empty circle for pre-menarcheal and as a solid diamond
for post-menarcheal measurement

Figure 3 Per cent body fat measurements with LOWESS curve non-parametrically
smoothed with a moving window chosen to cover 20% of data points (overlay)



normality in subject’s post- and pre-averages using standard
tests, we did not observe any obvious departures. However a
slight right skew in pre-event and some left skew in post-event
measurements was observed.

Research Hypothesis
We hypothesize that %body fat accretion increases linearly with
age, but with different slopes before and after menarche. We
assume that each subject has a two-piece linear spline growth
curve with a knot at the time of menarche. Graphical repre-
sentation of the research hypothesis and the modelling approach
are shown schematically in Figure 4. To make the graph realistic
and to reflect the range of time of measurements relative to 
the age at menarche, we used results from our exploratory an-
alysis on sample means of age at baseline (10 years), of age on
exit day (16 years), average age at menarche (12.8 years), and
average of %body fat taken at the baseline and exit.

Our goal is to define a model that allows us to directly quantify
the scientific question, i.e. to evaluate the two slopes and their
difference. In addition, the model should readily allow testing of
secondary hypotheses, and to permit model validation. Thirdly, the
model should be easily fit using standard statistical software packages.

Piecewise Least Squares Analysis
For the piecewise least squares analysis, we fit two straight lines
to the data for each girl, connected at the time of menarche. We
regress %body fat as a function of time relative to menarche,
obtaining one intercept and two slopes: one for before and one

for after the event. Then, we take the difference in slopes for
each girl. Next, we compute the mean intercept, mean slopes,
the mean slope differences, and their standard errors. Finally,
we perform a paired t-test in the usual way. Note that for this
piecewise least squares regression, to estimate the three regres-
sion parameters, we need at least three data points (with at least
one data point for both pre- and post- menarcheal time period),
and known age at menarche. The number of girls with sufficient
data to calculate the intercept and two slopes is 153.

The mean and standard deviation estimates are as follows: for
pre-menarcheal slope: 0.81 ± 4.46; for post-menarcheal slope:
2.44 ± 1.93; and for post- and pre- difference: 1.62 ± 5.17. The
correlation between slopes is weak and inverse (r = –0.18, P =
0.027). Since we are regressing %body fat as a function of time
relative to menarche, the mean and standard error of the
intercept provides the estimate of %body fat at menarche: 21.41
± 7.12%. T-tests demonstrate that the post-, but not the pre-
menarcheal slope differs significantly from zero, as does the
difference in the two slopes.

Although this piecewise regression is simple to compute and
interpret, there are a few disadvantages in this procedure: first,
girls with fewer measurements are weighted equally to girls
with more measurements in our estimation of population mean,
and second, we must disregard data on subjects with insufficient
number of data points and therefore reduce statistical power.

Random Effects Analysis
Here we provide a description of a piecewise approach for model-
ling growth using a random effects analysis. This analysis assumes
that a continuous outcome variable is linearly related to a set 
of explanatory variables, allows one to fit pre- and post-slopes
simultaneously using all data points, and also can account for
dependence between observations collected over time.

We assume that our measurements depend upon the men-
archeal event such that each subject has a baseline level, a pre-
event slope and a post-event slope. Let di be age at menarche 
for i-subject and aij be age at j-measurement for i-subject, then
tij = aij – di is time of j-measurement for i-subject before or after
menarche. Let dij be an indicator: δij = 1 for the time period
before menarche, tij , 0, and δij = 0 for the time period after
menarche tij > 0. Now, we specify a model at the subject specific
level for the n subjects i = 1, …, n, each of whom has mi
observations, Yij, j = 1, …, mi, so that for the time period before
menarche Yij = β0i + β1i tij + eij (δij = 1), for the time period after
menarche Yij = β0i + β2itij + eij (δij = 0), and the combined model is:

Yij = β0i + β1i tijδij + β2i tij(1 – δij) + eii, (1)

where (β0i, β1i, β2i) are the intercept and two slopes for the i th

subject, tij is time of measurement relative to menarche, and 
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Table 2 Descriptive statistics for cross-sectional examination of per cent body fat

Time period Min. 1st Qu. Median Mean 3rd Qu. Max. Var. SD

All period 2.112 18.24 23.59 23.61 29.56 45.49 62.95 7.93

Pre-menarcheal 2.428 15.41 20.35 20.34 24.26 40.60 48.20 6.94

Post-menarcheal 8.043 22.76 26.38 26.35 31.46 41.63 39.60 6.29

Post-pre difference –12.29 3.536 6.607 6.132 9.249 17.51 18.48 4.30

Figure 4 Graphical representation of the research hypothesis and
modelling approach: the piecewise model assigns a pre-event slope β1
and a post-event slope β2 separated by the menarcheal event
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eij is the measurement error at the j th occasion for the i th

subject. These errors, eij, are typically taken to be independently
and identically normally distributed with a mean E(eij) = 0 and
variance, var (eij) = σ2. When the underlying biological process
for each subject is adequately represented by the random effects
model, the correlation among the eij should be negligible
(meaning that there is no association between the residuals
within a single subject after subtracting out individual growth
curves), and the eij can be thought of as measurement or
sampling error, and σ2 as the within-subject variance.

At the population level, the model specifies the population
mean and variance:

These matrices have a straightforward interpretation: (µ0, σ00),
(µ1, σ11), and (µ2, σ22) are respectively the mean and standard
deviation: for ‘true’ %body fat at menarche; of the pre-event
slopes; and of the post-event slopes respectively. Similarly, σ12,
σ01 and σ02 are: the covariance of the pre-event and post-event
slopes; the covariance of ‘true’ %body fat at menarche and 
the pre-event slopes; and the covariance of ‘true’ %body fat at
menarche and the post-event slopes. Because the actual %body
fat at menarche is not observed and not directly estimable, we
use the term ‘true’ %body fat at menarche to emphasise that
this β0i is a parameter in the piecewise linear model.

If we assume that (eij, eik; j ≠ k) are independent (residuals are
measurement errors), then the overall variances and correla-
tions depend upon the actual times of the observations, and
upon population variances and covariances. Note that at the
subject-specific level σ2 equals var(eij) and represents the meas-
urement error. Therefore, for the time period before menarche,
variances and covariances have the following form: var(Yij) = σ2

+ σ2
00 + σ2

11(tij)
2 + 2tij σ01 and cov(Yi1, Yi2) = σ2

00 + σ2
11(ti1ti2)

+ σ01(ti1 + ti2). Similarly for the time period after menarche:
var(Yij) = σ2 + σ2

00 + σ2
22(tij)

2 + 2tij σ02 and cov(Yi k+1, Yi k+2)
= σ2

00 + σ2
22(ti k+1ti k+2) + σ02 (ti k+1 + ti k+2).

The random effects model provides users with the means to
illustrate and make estimates for individual curves. The popu-
lation estimates: µ+0, µ+1, µ+2, and individual estimates: β̂0i, β̂1i, β̂2i,
can be used to create individual predicted trajectories, or growth
curves. This feature of the model can be used, in theory, to
assess how an individual girl’s fat accretion differs or mirrors
that of the population generally. How well this will work in
practice depends on the number of individual measurements
upon which a girl’s curve is based. This has implications for
practical study design issues, where with fixed resources, one
often has to balance the number of subjects against the number
of measurements per subject.

The model parameters can be estimated using maximum like-
lihood (ML) or its variant, restricted maximum likelihood (REML),
assuming that the observations are normally distributed. The
ML estimates of the mean are in essence weighted least squares,
with weights calculated from the estimated variances. The REML
is usually preferred for estimation of the variance-covariance
components because it adjusts for the degrees-of-freedom lost in
estimating the means. Parameter estimates, and their standard

errors, can be obtained using a variety of software packages,
including SAS (Proc MIXED), S-Plus (lme) and BMDP-5V.

We now apply the piecewise random effects model to estimate
the pre- and post-menarcheal slopes and to predict body fat-
ness. The results of this model consist of two main parts: a set 
of individual intercepts and two slopes (random effects), and
estimates of their means (fixed effects) and standard deviations.
Also, the correlations between the slopes and intercepts provide
additional useful information. Even though the results for the
individual curves form the basis for the fixed effects estimation,
for pedagogical reasons, our description of results will begin
with the fixed effects, since these results address our primary
research question.

Our goal is to assess the influence of the menarcheal event 
on the rate of fat accretion. The fixed effects results indicate that
the mean and standard deviation of the pre-menarcheal slope,
the post-menarcheal slope, and %body fat at menarche are:
0.42 ± 1.28 (µ+1, σ+11); 2.46 ± 0.94 (µ+2, σ+22); and 21.36 ± 6.78
(µ0, σ00), respectively. As a next step, we use the results of the
mixed effects model to test our hypotheses. First, we formally
test the hypothesis: Is %body fat increasing before and after
menarche? The estimate for the population mean pre-menarcheal
slope (µ̂1 ± SE) is 0.42 ± 0.16, with Z = 2.66, which is stat-
istically significant (using the Z-test). The slope is quite shallow
(the estimated rate of fat accretion is 0.42%), but different than
zero. The high variability suggests that some girls are gaining
fatness and others are losing fatness over the pre-menarcheal
period. After menarche, the estimate for the population mean
post-menarcheal slope (µ̂2 ± SE) is 2.46 ± 0.12, and Z = 20.67,
which translates to %body fat of 21.4% with a 95% CI ranging
from 8.08% to 34.64%. Our focus now shifts to the second hypo-
theses regarding the difference in the pre- and post- menarcheal
slopes: µ+2 – µ+1. That difference is 2.05 ± 0.22, with Z for the
hypothesis that slopes are equal of 9.32. Fat accretion is more
uniform after menarche, and the rate of fat accretion is almost
six times greater than before menarche. So for each year of age
after menarche %body fat increases an average 2.46%, so that
by 4 years post-menarche, body fatness has increased by
approximately 10% (absolute %body fat). If we assume that the
individual slopes are approximately normally distributed in the
population, then, based on the results of the random effects
model, about 37% of girls have pre-menarcheal slopes , 0, and
virtually none have post-menarcheal slopes , 0. We conclude
that the post-menarcheal slope is significantly greater than the
pre-menarcheal slope.

The random effects model also provides very useful additional
information, such as an estimate of the measurement error 
(σ̂ = 3.1) and covariance estimates and correlations: the correlation
of %body fat at menarche and the pre-event slope (ρ̂01 = 0.29),
the correlation of %body fat at menarche and the post-event
slope (ρ̂02 = –0.56), and the correlation of the pre- and post-
event slope (ρ̂12 = –0.10).

A graphical display of the resulting curve obtained from the
random effects model and least squares model along with their
confidence intervals are shown in Figure 5. The graph is rescaled
to reflect the range of predicted %body fat at the expected aver-
age age at menarche (12.8 years), and for the time period of 
4 years before and after menarche. In both models, the predicted
fat accretion before menarche is unimpressive, but after men-
arche %body fat increases markedly. Although the predicted
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%body fat at menarche and post-menarcheal slope are very close
in both models, the confidence intervals for the pre- and post-
event slopes are narrower for random effects model estimates
than for the least squares analysis which results from the weight-
ing of the random effects estimates. Thus, the random effects
model reduces variability and thereby improves the efficiency of
estimation.

Next, we turn our attention to the individual growth curves,
where there are two aspects of interest: the individual curves
themselves and their correlation structure. Figure 6 provides an
example of ‘reconstructed’ individual curves for three girls (with
10, 6 and 3 measurements) using the random effects estimates.
Again, weighting of random effects estimates ensures that sub-
jects with more data points have curves which are closer to their
data, while subjects with fewer data points have curves closer to
the population mean.

General linear mixed model: 
adding model complexity
The random effects model represents an early step in data
exploration. However, the researcher is often interested in what
variables influence changes over time. For the present example,
there are several questions that are of potential interest. If adol-
escence does in fact represent a critical period, we are interested
in variables that might influence %body fat at menarche and the
post-event (post-menarcheal) slope. Among the many questions
one might pose are: Is there non-linearity in the post-menarcheal
time period? Are there any variables measured at baseline that
influence %body fat at menarche and/or the magnitude of the
slopes? Examples of potential variables include ethnicity, socio-
economic status, or parental obesity.

To answer these questions, we extend our random effects
model to a mixed effects model to make it more flexible. In the
linear mixed effects model, fixed effects and random effects 

are connected to each other, so that in a single model for Yij any
observable effect is a combination of the two. To see how mixed
effects are formulated, let b0i = β0i – µ0; b1i = β1i – µ1; b2i = β2i
– µ2, so E(bi) = 0 and var(bi) = var (βi). Then, the piecewise
random effects model can be rewritten as follows:

Yij = β0 + β1tijδij + β2 tij (1 – δij) + b0i
+ b1i tijδij + b2i tij (1 – δij) + eij , (2)

where tijδij and tij (1 – δij) are the pre- and post- event times,
and the population mean effects are now denoted β0, β1, β21.
This reformulation provides a high level of flexibility. It allows
us to model the systematic variation in the data which can be
linked to explanatory variables that differ among the subjects
(in fixed effects: β0, β1, β2) and that vary within the subject
(random effects: b0i, b1i, b2i).

Thus, to answer the questions posited above we will extend
the model by adding parameters as fixed effects and/or random
effects. To answer the first question regarding non-linearity, 
we can add a quadratic term to the model, such as tij

2 (1 – δi).
To answer the second question we can add baseline variables,
which influence the %body fat at menarche and possibly the
slopes as well. To evaluate an effect of a baseline variable on an
intercept, the baseline variable should be added as a main term.
To evaluate an effect of a baseline variable on a slope we 
should add an interaction term for this variable and time since
menarche. If the baseline variable does not change over time,
we are adding it to the model by extending the fixed effects
terms.

Here we provide the results of the modelling from three
mixed effects models. Model A includes the quadratic term for
the post-menarcheal slope as fixed and random effects and is
formulated as follows:

Yij = β0 + β1tij δij + β2tij (1 – δij) + β3tij
2(1 – δij)

+ b0i + b1i tijδij + b2i tij (1 – δij) + b3i tij
2(1 – δij) + eij . (3)

We expect this model to improve the fit of the post-menarcheal
data due to potential for non-linearity.
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Figure 5 Graphical representation of the modelling results: predicted
%body fat along with the 95% upper and lower confidence limits, 
based on the piecewise random effects model (the solid line—for fixed
effects, the dotted lines—for the confidence interval, and the solid
diamond—for predicted %body fat at menarche) and least squares
model (the dashed line—for fixed effects, the dotted-dashed lines—for
the confidence interval, and the open circle—for predicted %body fat
at menarche)

Figure 6 Individual curves for three girls



Model B includes stratification by parental obesity status as a
fixed effect (where v = {0, 1 or 2}, if none, one, or both parents
were obese) and is formulated as follows:

Yij = β0 + β1tijδij + β2tij (1 – δij) + β3vi
+ b0i + b1i tijδij + b2i tij (1 – δij) + eij . (4)

This model includes a variable collected at baseline reflecting
parental obesity, which is posited to influence model para-
meters. In order to assess the influence of parental obesity on
%body fat at menarche, β3 vi is added as a fixed effect. Model B
only tells us how the number of obese parents affects the
%body fat at menarche.

Model C examines the influence of the parental obesity status
on the post-menarcheal slope by the addition of an interaction
term: β4 tij (1 – δij) vi. The model is formulated as follows:

Yij = β0 + β1tijδij + β2tij(1 – δij) + β3vi + 
β4 tij (1 – δij)vi + b0i + b1i tijδij + b2i tij (1 – δij) + eij . (5)

The estimates of the fixed effects from the basic random
effects model and Models A, B and C are shown in Table 3. All
models produce very similar estimates for the intercept, %body
fat at menarche. The results of Model A suggest that there is a
significant non-linearity in the post-event slope, which tends to
level off by 4 years post-menarche. Model A also produces the
smallest estimate for the pre-event slope. Model B suggests only
a weak positive effect of parental obesity on body fat at men-
arche. The results of Model C suggest that parental obesity has
no appreciable effect on the post-menarcheal slope. The piece-
wise nature of these models results in a strong interdependence
among the parameters, so that a change in the intercept, for
example, is reflected in changes in the two slope estimates.

Summary
This paper serves a dual purpose: to explain the advantages of
using mixed effects models for longitudinal growth data and to
demonstrate the model’s utility in answering a question of epi-
demiological interest. The current thinking regarding the natural
history of obesity is characterized by the invocation of critical
periods. Because these mixed effects models can accommodate
a change in slope, they are particularly well-suited for modelling
growth data wherein such events occur. In regards to critical
periods, the results of the models presented are quite clear and
confirm what has been observed impressionistically. Clinical

observation suggests that for many girls the first few years post-
menarche are associated with appreciable increases in fatness.4

Our findings indicate that adolescence is a time of potential
increased obesity incidence and that menarche does, in fact,
emerge as the breakpoint in the fat accretion curve. In our
analyses the inflection point is observed to occur (Figure 3), and
the timing of that point of inflection turns out to be around
menarche. Due to the absence of measurement at the time of
menarche, the interval around this event represents a time of
uncertainty. Using the approach of regressing %body fat against
time relative to menarche we have acquired from this model
the information, which is practically unobservable in a field
study, the %body fat at menarche.

Use of random and mixed effects models substantially reduces
parameter variability for all three estimates and thereby improves
the efficiency of estimation. For pre- and post-menarcheal
slopes, the standard deviations are 3.5 and 2 times smaller 
for random effects model estimates than for the least squares
analysis. Although the large variation in estimated slopes might
be explained by inherent biological variability during the critical
period of sexual maturation, the large variation in estimated
slopes obtained from OLS can also be exaggerated for at least
two reasons: first, girls with fewer measurements are weighted
equally to girls with more measurements in the estimation of
population mean slope; and secondly, slope estimates depend
on the number of measurements available. The requirement 
to have three data points and age at menarche to estimate both
slopes and intercept in OLS would omit all subjects who were
not yet menarcheal even if they have enough data points for
pre-menarcheal time period. This clearly reduces the efficiency
of OLS model for the interim and overall analysis.

Some practical considerations are worthy of mention. Because
the mixed effects models are basically weighted least squares,
with the weights estimated from the data, and because hypothesis
testing relies on asymptotic normality of the estimated fixed
effects, one needs a reasonable (.30) number of subjects to
ensure that this property holds. Secondly, given that missing
responses and attrition will occur in practice, the validity of the
results depends upon the assumption that missingness is not
related to unobserved measurements. The research question
itself, the exploration of the pre- and post-menarcheal slope
differences, emphasizes the importance of subject retention in a
longitudinal study. Good retention ensures that the reasons for
leaving a longitudinal study are likely to be largely independent
of growth pattern, so that missingness assumptions are satisfied.
Although subjects without a known time of menarche are
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Table 3 The estimates of the fixed effects from random effects model and Models A, B and C

Random Effects Model A Model B Model C

Parameter Estimate ± SE z ratio Estimate ± SE z ratio Estimate ± SE z ratio Estimate ± SE z ratio

Intercept 21.36 ± 0.565 37.84 20.43 ± 0.581 35.14 20.34 ± 0.765 26.57 20.42 ± 0.812 25.13

Pre-event slope 0.42 ± 0.157 2.66 –0.01 ± 0.161 –0.07 0.39 ± 0.160 2.44 0.39 ± 0.160 2.44

Post-event slope 2.46 ± 0.119 20.67 4.83 ± 0.318 15.15 2.46 ± 0.123 19.92 2.43 ± 0.175 13.86

Quadratic term for post-event slope –0.65 ± 0.075 –8.55

Parental obesity 1.51 ± 0.677 2.23 1.40 ± 0.766 1.83

Interaction term for parental obesity 
and post-event slope 0.05 ± 0.16 0.29
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Appendix

Available software and recommendations for data
preparation

To make this approach amenable to wide use, we developed a
set of recommendations for step-by-step data preparation, ex-
ploratory analysis, model implementation, and visualization of
results using standard statistical software. The interested reader
is directed to previous reviews of available software, such as
BMDP 5-V, SAS, S-Plus, HLM, ML33,9 and codes for imple-
menting these procedures previously published in the statistical
literature.2 Pinheiro and Bates provide guidance for using 
S-Plus for mixed effects modelling with a strong emphasis on
the use of graphical displays.10

In brief, to prepare the data set, one extracts data from base-
line and annual follow-up files, checks data for completeness
and develops decision rules for inclusion in the model. The data
are then reformatted to fit the scheme for a covariate matrix,
e.g. each row is a single record with identification number,
outcome, time of measurement, and pre/post event index. The
plots of the raw data for the complete and selected data set 
can be very useful in making assumptions for modelling. Below
we provide S-plus and SAS codes for random effects (RE) and
mixed effects (A, B, and C) modelling for all four models. The
data set growth contains an identifier for each subject (id), age
at menarche (age.at.menarche), two variables for time rela-
tive to event (time.before and time.after), a variable indica-
ting parental obesity (parental.obesity), and an outcome
variable—%body fat (y).
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excluded and this may bias the estimated pre-menarcheal slope,
including these subjects may bias the estimates of change in
slope. Our approach uses only within-subject data to estimate
this change in slope.

Random effects and mixed effects models are very flexible
and can accommodate a variety of study designs, data models and
hypotheses. We have presented an example with a continuous
Gaussian outcome variable; these models can readily be extend-
able to accommodate discrete outcomes as well. As described above,
from a statistical perspective these approaches address many of
the challenges present in longitudinal studies. The software needed
to perform the analysis is readily available as part of standard
statistical software programs. These programs have incorporated
special procedures for handling missing data and have built-in

user-friendly graphical interfaces that permit the analyst to
visualize the data at each step. The applied researcher would do
well to learn how to use these methods today, if not sooner.
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KEY MESSAGES

• Current growth research focuses on the evaluation of the impact of ‘critical’ or high-risk periods using longi-
tudinal study designs.

• Piecewise regression can be used to model changes during critical periods.

• Regressing growth characteristics against time relative to the event provides estimation for parameters that are
not observable in most human studies.

• Mixed effects models provide the ability to characterize individual variation relative to the population mean.

• The model suggests that fat accretion is different for pre- and post-menarche, with greater fat accretion following
the critical event of menarche.



The call for applied researchers to learn how to use mixed
effects models in the paper by Naumova, Must and Laird1 in this
issue of the International Journal of Epidemiology is to be welcomed.
The value of longitudinal studies, in which measurements on
the same sample of individuals are taken repeatedly over time,

is well understood. Such studies are costly, both financially and
in terms of the time and effort required on behalf of study
members and researchers. Correct analysis of the often vast
amount of data collected is therefore vital. Despite considerable
discussion regarding the analysis of repeated measures in the
statistics literature, the use of more complex models in medical
and epidemiological journals remains scarce. As well as researchers
being encouraged to use more complex models, journal editors
should also welcome their use where appropriate.
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S-plus CODE
function (MODEL)

{
if (MODEL == “RE”) {
## random effects model: y ~ time.before + time.after

m ,- lme(fixed = y ~ time.before + time.after, random 
= ~ time.before + time.after, cluster = ~ id, data 
= growth, na.action = na.omit)

}
if (MODEL == “A”) {
##
## Model A: y ~ time.before + time.after + time.after^2

m ,- lme(fixed = y ~ time.before + time.after 
+ I(time.after ^2), random = ~ time.before + time.after 
+ I(time.after^2), cluster = ~ id, data = growth, na.action
= na.omit)

}
if(MODEL == “B”) {
##
## Model B: y~ time.before + time.after + parental.obesity

m ,- lme(fixed = y ~ time.before + time.after 
+ parental.obesity, random = ~ time.before + time.after,
cluster = ~ id, data = growth, na.action = na.omit)

}
if (MODEL == “C”) {
##
## Model C: y~time.before + time.after * parental.obesity

m ,- lme(fixed = y ~ time.before + time.after * 
parental.obesity, random = ~ time.before + time.after, 
cluster = ~ id, data = growth, na.action = na.omit)

}
print(m)
print(anova.lme(m))
}

SAS CODE
data growth;
set save.fatrw;
run;

Model RE
proc mixed data = growth;
class id;
model y = time.before time after / s;
random intercept time.before time.after / type = un subject =
id;
run;

Model A
proc mixed data = growth;
class id;
model y = time.before time.after time.after*time.after / s;
random intercept time.before time.after time.after*time.after /
type = un subject = id;
run;

Model B
proc mixed data = growth;
class id parental.obesity;
model y = time.before time.after parental.obesity / s;
random intercept time.before time.after / type = un subject 
= id;
= run;

Model C
proc mixed data = growth;
class id parental.obesity;
model y = time.before time.after parental.obesity
time.after*parental.obesity / s;
random intercept time.before time.after time.after / type 
= un subject = id;
run;
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Mixed effects models can be used to analyse straightforward
repeated outcome measure data over time, many examples of
which exist in epidemiology. However, the specific mixed effects
model presented by Naumova et al.1 is more interesting. The
idea of using a time scale other than age or calendar time is
introduced, as is the use of a piecewise model. The piecewise
model allows separate slopes to be fitted to the observations
representing the periods before and after a ‘critical period’ or
‘event’. The extension of the basic model to determine the indi-
vidual characteristics that relate to differences in the increase in
fat after menarche is particularly valuable to the understanding
of obesity development. Understanding how early life and child-
hood growth influence not only obesity, but also later disease
development has been highlighted by the recent interest in life
course epidemiology.2 For example, early age at menarche3 and
tall adult height4 have been consistently related to increased
breast cancer risk, but the mechanism underlying the associations
may be due to childhood growth. Women who were both big
babies and tall at 7 years have been found to have a greater risk
of premenopausal breast cancer than others.5 Hence, under-
standing how growth patterns, in relation to menarche, are
influenced by factors such as childhood diet and socioeconomic
status is important in breast cancer aetiology. Menopause is
another obvious event to which the proposed models could 
be applied. Insight into the debates regarding the influence of
menopause on cardiovascular risk factors6 and on psychological
health7 could be gained. The ‘event’ could even be social such
as loss of job or divorce, both of which may influence health.

The additional information obtained from mixed effects models
regarding between-individual variability can be of interest in 
its own right.8 Assuming that the individual post menarcheal
slopes are normally distributed, approximately 95% of girls’
slopes will lie within ±1.96 standard deviations of the overall
average slope. For the example presented by Naumova et al.1,
the limits would be 0.62–4.30% and hence approximately 2.5%
of girls have an increase in fat above 4.3% per year. The per-
centage of girls above or below any given slope can be obtained
by reference to the standard normal distribution. It is this idea
that is utilized when Naumova et al.1 observe that there are
virtually no girls with a negative slope after menarche but 37%
with a negative slope before menarche. Such information could
be useful when planning obesity prevention strategy. The cor-
relation between body fat at menarche and post menarche slope
of –0.59 suggests that the greater the fat at menarche the slower
the increase in fat afterwards.

It may be unclear to the non-statistician why the desired
statistical property of efficiency is important. In practice, the
confidence intervals of the estimates in an efficient analysis will
be narrower than those from a less efficient one and hence use
of the more efficient analysis means there is greater power to
detect a given effect. Efficiency can therefore also have implica-
tions for study design and sample size requirements. Although
some improvement in efficiency is achieved simply through the
model fitting procedure, additional gains will often be made
simply through mixed effects models allowing more individuals
to be included in the analysis than standard methods. This is due
to their ability to handle missing outcome data and measures
collected at different time points for different individuals. This
represents a major practical advantage as unbalanced data is
unavoidable in longitudinal epidemiological studies. Although,

in technical terms, such models can always handle missing data,
assumptions about the missing data mechanism must be made
in order for the inferences to be valid. Specifically, the outcome
data must be missing at random which means that the prob-
ability of a measure being missing may depend upon observed,
but not unobserved, measures. Although impossible to test, the
feasibility of such an assumption should be considered in each
analysis as it may be more realistic in some cases than others. In
studies of cognitive function in the elderly, a missing cognitive
test score may be more likely if function has deteriorated. It
should also be noted that the mixed effects models cope far less
easily with missing covariate information.

With the increased ease of implementation, further aided 
by the SAS programs provided in the paper,1 wider use of such
models should be encouraged. It has to be acknowledged, how-
ever, that these models are complex and this is perhaps high-
lighted by the fact that Naumova et al.1 still require a certain
amount mathematical notation in their explanation. Effort is
therefore required on behalf of the applied researcher wishing
to utilize such models correctly. The use of graphical displays at
all stages of the analysis can certainly aid understanding. The
figures presented by Naumova et al.1 highlight the two com-
ponents of the mixed effects model, the subject-specific growth
curves and the population averages, which are key to such
models. Finally, as with all statistical techniques, but perhaps par-
ticularly with one as flexible as the mixed effects model, caution is
required and all analyses should be carried out with due thought
to the specific hypothesis under consideration. The added com-
plexity of having to specify correctly the random effects component
of the model as well as the fixed effects means that model
checking in addition to that usually carried out is required.9,10
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