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Abstract.
Optimization is a ubiquitous modeling tool and is often deployed in settings which
repeatedly solve similar instances of the same problem. Amortized optimization
methods use learning to predict the solutions to problems in these settings, exploiting
the shared structure between similar problem instances. These methods have been
crucial in variational inference and reinforcement learning and are capable of solving
optimization problems many orders of magnitudes times faster than traditional
optimization methods that do not use amortization. This tutorial presents an
introduction to the amortized optimization foundations behind these advancements
and overviews their applications in variational inference, sparse coding, gradient-
based meta-learning, control, reinforcement learning, convex optimization, optimal
transport, and deep equilibrium networks. The source code for this tutorial is available
at https://github.com/facebookresearch/amortized-optimization-tutorial.
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Chapter 1
Introduction

This tutorial studies the use of machine learning to improve repeated solves of
parametric optimization problems of the form

y?(x) ∈ arg min
y

f(y;x), (1.1)

where the non-convex objective f : Y × X → R takes a context or parameterization
x ∈ X which can be continuous or discrete, and the continuous, unconstrained domain
of the problem is y ∈ Y = Rn. Eq. (1.1) implicitly defines a solution y?(x) ∈ Y. In
most of the applications considered later in chapter 3, y?(x) is unique and smooth,
i.e., the solution continuously changes in a connected way as the context change s
illustrated in fig. 1.1.

Parametric optimization problems such as eq. (1.1) have been studied for decades
[Bank et al., 1982, Fiacco and Ishizuka, 1990, Shapiro, 2003, Klatte and Kummer,
2006, Bonnans and Shapiro, 2013, Still, 2018, Fiacco, 2020] with a focus on sensitivity
analysis. The general formulation in eq. (1.1) captures many tasks arising in physics,
engineering, mathematics, control, inverse modeling, and machine learning. For
example, when controlling a continuous robotic system, X is the space of observations
or states, e.g., angular positions and velocities describing the configuration of the
system, the domain Y := U is the control space, e.g., torques to apply to each
actuated joint, and f(u;x) := −Q(u, x) is the control cost or the negated Q-value of
the state-action tuple (x, u), e.g., to reach a goal location or to maximize the velocity.
For every encountered state x, the system is controlled by solving an optimization
problem in the form of eq. (1.1). While Y = Rn is over a deterministic real-valued
space in eq. (1.1), the formulation can also capture stochastic optimization problems
as discussed in section 2.3.1. For example, Section 3.1 optimizes over the (real-
valued) parameters of a variational distribution and section 3.6 optimizes over the
(real-valued) parameters of a stochastic policy for control and reinforcement learning.

Optimization problems such as eq. (1.1) quickly become a computational bottle-
neck in systems they are a part of. These problems often does not have a closed-form
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Figure 1.1: Illustration of the parametric optimization problem in eq. (1.1). Each
context x parameterizes an optimization problem that the objective f(y;x) depends
on. The contours show the values of the objectives where darker colors indicate
higher values. The objective is then minimized over y and the resulting solution
y?(x) is shown in red. In other words, each vertical slice is an optimization problem
and this visualization shows a continuum of optimization problems.

analytic solution and is instead solved with approximate numerical methods which
iteratively search for the solution. This computational problem has led to many
specialized solvers that leverage domain-specific insights to deliver fast solves. Spe-
cialized algorithms are especially prevalent in convex optimization methods for linear
programming, quadratic programming, cone programming, and control and use theo-
retical insights of the problem structure to bring empirical gains of computational
improvements and improved convergence [Boyd et al., 2004, Nocedal and Wright,
2006, Bertsekas, 2015, Bubeck et al., 2015, Nesterov et al., 2018].

Mostly separate from optimization research and algorithmic advancements, the
machine learning community has focused on developing generic function approxi-
mation methods for estimating non-trivial high-dimensional mappings from data
[Murphy, 2012, Salakhutdinov, 2014, Deisenroth et al., 2020]. While machine learn-
ing models are often used to reconstruct mappings from data, e.g. for supervised
classification or regression where the targets are given by human annotations. Many
computational advancements on the software and hardware have been developed in
recent years to make the prediction time fast: the forward pass of a neural network
generating a prediction can execute in milliseconds on a graphics processing unit.

Overview. This tutorial studies the use of machine learning models to rapidly
predict the solutions to the optimization problem in eq. (1.1), which is referred to
as amortized optimization or learning to optimize. Amortized optimization methods
are capable of significantly improving the computational time of classical algorithms
on a focused subset of problems. This is because the model is able to learn about
the solution mapping from x to y?(x) that classical optimization methods usually do
not assume access to. My goal in writing this is to explore a unified perspective of
modeling approaches of amortized optimization in chapter 2 to help draw connections
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Figure 1.2: An amortized optimization method learns a model ŷθ to predict the
minimum of an objective f(y;x) to a parameterized optimization problem, as in
eq. (1.1), which depends on a context x. For example, in control, the context space
X is the state space of the system, e.g. angular positions and velocities describing
the configuration of the system, the domain Y := U is the control space, e.g. torques
to apply to each actuated joint, the cost (or negated value) of a state-action pair
is f(u;x) := −Q(x, u), and the state distribution is p(x). For an encountered state
x, many reinforcement learning policies πθ(x) := ŷθ(x) amortize the solution to the
underlying control problem with true solution y?(x). This humanoid policy was
obtained with the model-based stochastic value gradient in Amos et al. [2021].

between the applications in chapter 3, e.g. between amortized variational inference,
meta-learning, and policy learning for control and reinforcement learning, sparse
coding, convex optimization, optimal transport, and deep equilibrium networks.
These topics have historically been studied in isolation without connections between
their amortization components. Chapter 4 presents a computational tour through
source code for variational inference, policy learning, and a spherical optimization
problem and chapter 5 concludes with a discussion of challenges, limitations, open
problems, and related work.

How much does amortization help? Amortized optimization has been revo-
lutionary to many fields, especially including variational inference and reinforcement
learning. Figure 4.1 shows that the amortization component of a variational autoen-
coder trained on MNIST is 25000 times faster (0.4ms vs. 8 seconds!) than solving a
batch of 1024 optimization problems from scratch to obtain a solution of the same
quality. These optimization problems are solved in every training iteration and can
become a significant bottleneck if they are inefficiently solved. If the model is being
trained for millions of iterations, then the difference between solving the optimization
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problem in 0.4ms vs. 8 seconds makes the difference between the entire training
process finishing in a few hours or a month.

A historic note: amortization in control and statistical inference. Amor-
tized optimization has arisen in many fields as a result to practical optimization
problems being non-convex and not having easily computed, or closed-form solutions.
Continuous control problems with linear dynamics and quadratic cost are convex and
often easily solved with the linear quadratic regulator (LQR) and many non-convex
extensions and iterative applications of LQR have been successful over the decades,
but becomes increasingly infeasible on non-trivial systems and in reinforcement learn-
ing settings where the policy often needs to be rapidly executed. For this reason, the
reinforcement learning community almost exclusively amortizes control optimization
problems with a learned policy [Sutton and Barto, 2018]. Related to this throughline
in control and reinforcement learning, many statistical optimization problems have
closed form solutions for known distributions such as Gaussians. For example, the
original Kalman filter is defined with Gaussians and the updates take closed-form.
The extended Kalman filter generalizes the distributions to non-Gaussians, but the
updates are in general no longer available analytically and need to be computation-
ally estimated. Marino et al. [2018a] shows how amortization helps improve this
computationally challenging step. Both of these control and statistical settings start
with a simple setting with analytic solutions to optimization problems, generalize to
more challenging optimization problems that need to be computationally estimated,
and then add back some computational tractability with amortized optimization.
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Chapter 2
Amortized optimization foundations

Amortization model ŷθ (section 2.1)
Fully-amortized (section 2.1.1): no objective access
Semi-amortized (section 2.1.2): accesses objective

Amortization loss L (section 2.2)
Regression (section 2.2.1): Ep(x) ‖ŷθ(x)− x‖22
Objective (section 2.2.1): Ep(x) f(ŷθ(x))

Figure 2.1: Overview of amortized optimization modeling and loss choices.

The machine learning, statistics, and optimization communities are exploring
methods of learning to optimize to obtain fast solvers for eq. (1.1). I will refer to
these methods as amortized optimization as they amortize the cost of solving the
optimization problems across many contexts to approximate the solution mapping
y?. Amortized optimization is promising because in many applications, there are
significant correlations and structure between the solutions which show up in y? that
a model can learn. This tutorial follows Shu [2017] for defining the core foundation
of amortized optimization.

Definition 1 An amortized optimization method to solve eq. (1.1) can be
represented by A := (f,Y,X , p(x), ŷθ,L), where f : Y × X → R is the unconstrained
objective to optimize, Y is the domain, X is the context space, p(x) is the
probability distribution over contexts to optimize, ŷθ : X → Y is the
amortization model parameterized by θ which is learned by optimizing a loss
defined on all the components L(f,Y,X , p(x), ŷθ).

The objective f and domain Y arise from the problem setting along with the
context space X and distribution over it p(x), and the remaining definitions of the
model ŷθ and loss L are application-specific design decisions that sections 2.1 and 2.2
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opens up. These sections present the modeling and loss foundations for the core
problem in definition 1 agnostic of specific downstream applications that will use
them. The key choices highlighted in chapter 2 are how much information 1) the
model ŷθ has about the objective f (fully- vs. semi-amortized), and 2) the loss has
about the true solution y? (regression- vs. objective-based). Figure 1.2 instantiates
these components for amortizing the control of a robotic system. The model ŷθ solves
the solution mapping y? simultaneously for all contexts. The methods here usually
assume the solution mapping y? to be almost-everywhere smooth and well-behaved.
The best modeling approach is an open research topic as there are many tradeoffs,
and many specialized insights from the application domain can significantly improve
the performance. The generalization capacity along with the model’s convergence
guarantees are challenging topics which section 5.2 covers in more detail.

Origins of the term “amortization” for optimization. The word “amor-
tization” generally means to spread out costs and thus “amortized optimization”
usually means to spread out computational costs of the optimization process. The
term originated in the variational inference community for inference optimization
[Kingma and Welling, 2014, Rezende et al., 2014, Stuhlmüller et al., 2013, Gershman
and Goodman, 2014, Webb et al., 2018, Ravi and Beatson, 2019, Cremer et al.,
2018, Wu et al., 2020], and is used more generally in Xue et al. [2020], Sercu et al.
[2021], Xiao et al. [2021]. Marino [2021, p. 28] give further background on the origins
and uses of amortization. Concurrent to these developments, other communities
have independently amortization methods without referring to them by the same
terminology and analysis, such as in reinforcement learning, policy optimization, and
sparse coding — chapter 3 connects all of these under definition 1.

Conventions and notation. The context space X represents the sample space
of a probability space that the distribution p(x) is defined on, assuming it is Borel
if not otherwise specified. For a function f : Rn → R in standard Euclidean space,
∇xf(x̄) ∈ Rn denotes the gradient at a point x̄ and ∇2

xf(x̄) ∈ Rn×n denotes the
Hessian. For f : Rn → Rm, Dxf(x̄) ∈ Rm×n represents the Jacobian at x̄ with entries
[Dxf(x̄)]ij := ∂fi

∂xj
(x̄). I abbreviate the loss to L(ŷθ) when the other components can

be inferred from the surrounding text and prefer the term “context” for x instead of
“parameterization” to make the distinction between the x-parameterized optimization
problem and the θ-parameterized model clear. I use “;” as separation in f(y;x) to
emphasize the separation between the domain variables y that eq. (1.1) optimizes
over from the context ones x that remain fixed. A model’s parameters θ are usually
subscripts as hθ(x) but I will equivalently write h(x; θ) sometimes.

2.1 Defining the model ŷθ(x)

The model ŷθ(x) : X ×Θ→ Y predicts a solution to eq. (1.1). In many applications,
the best model design is an active area of research that is searching for models that
are expressive and more computationally efficient than the algorithms classically used
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to solve the optimization problem. Section 2.1.1 starts simple with fully-amortized
models that approximate the entire solution to the optimization problem with a single
black-box model. Then section 2.1.2 shows how to open up the model to include more
information about the optimization problem that can leverage domain knowledge
with semi-amortized models.

2.1.1 Fully-amortized models

Definition 2 A fully-amortized model ŷθ : X → Y maps the context to the
solution of eq. (1.1) and does not access the objective f .

I use the prefix “fully” to emphasize that the entire computation of the solution
to the optimization problem is absorbed into a black-box model that does not access
the objective f . The prefix “fully” can be omitted when the context is clear because
most amortization is fully amortized. These are standard in amortized variational
inference (section 3.1) and policy leaning (section 3.6), that typically use feedforward
neural networks to map from the context space X to the solution of the optimization
problem living in Y. Fully-amortized models are remarkable because they are often
successfully able to predict the solution to the optimization problem in eq. (1.1)
without ever accessing the objective of the optimization problem after being trained.

Fully-amortized models are the most useful for attaining approximate solutions
that are computationally efficient. They tend to work the best when the solution
mappings y?(x) are predictable, the domain Y is relatively small, usually hundreds
or thousands of dimensions, and the context distribution isn’t too large. When
fully-amortized models don’t work well, semi-amortized models help open up the
black box and use information about the objective.

2.1.2 Semi-amortized models

Definition 3 A semi-amortized model ŷθ : X → Y maps the context to the
solution of the optimization problem and accesses the objective f of eq. (1.1), typically
iteratively.

Kim et al. [2018], Marino et al. [2018b] proposed semi-amortized models for
variational inference that add back domain knowledge of the optimization problem to
the model ŷθ that the fully-amortized models do not use. These are brilliant ways of
integrating the optimization-based domain knowledge into the learning process. The
model can now internally integrate solvers to improve the prediction. Semi-amortized
methods are typically iterative and update iterates in the domain Y or in an auxiliary
or latent space Z. I refer to the space the semi-amortization iterates over as the
amortization space and denote iterate t in these spaces, respectively, as ŷtθ and ztθ.
While the iterates and final prediction ŷθ can now query the objective f and gradient
∇yf , I notationally leave this dependence implicit for brevity and only reference
these queries in the relevant definitions.
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Semi-amortized models over the domain Y

ŷ0
θ ŷ1

θ
. . . ŷKθ =: ŷθ(x)

One of the most common semi-amortized model is to parameterize and integrate
an optimization procedure used to solve eq. (1.1) into the model ŷθ, such as gradient
descent [Andrychowicz et al., 2016, Finn et al., 2017, Kim et al., 2018]. This
optimization procedure is an internal part of the amortization model ŷθ, often
referred to as the inner-level optimization problem in the bi-level setting that arises
for learning.

Examples. This section instantiates a canonical semi-amortized model based
gradient descent that learns the initialization as in model-agnostic meta-learning
(MAML) by Finn et al. [2017], structured prediction energy networks (SPENs) by
Belanger et al. [2017], and semi-amortized variational auto-encoders (SAVAEs) by
Kim et al. [2018]. The initial iterate ŷ0

θ(x) := θ is parameterized by θ ∈ X for all
contexts. Iteratively updating ŷtθ for K gradient steps with a learning rate or step
size α ∈ R+ on the objective f(y;x) gives

ŷtθ := ŷt−1
θ − α∇yf(ŷt−1

θ ;x) t ∈ {1 . . . ,K}, (2.1)

where model’s output is defined as ŷθ := ŷK .
Semi-amortized models over the domain can go significantly beyond gradient-

based models and in theory, any algorithm to solve the original optimization problem
in eq. (1.1) can be integrated into the model. Section 2.2.2 further discusses the
learning of semi-amortized models by unrolling that are instantiated later:

• Section 3.2 discusses how Gregor and LeCun [2010] integrate ISTA iterates
[Daubechies et al., 2004, Beck and Teboulle, 2009] into a semi-amortized model.

• Section 3.4.1 discusses models that integrate fixed-point computations into
semi-amortized models. Venkataraman and Amos [2021] amortize convex cone
programs by differentiating through the splitting cone solver [O’donoghue et al.,
2016] and Bai et al. [2022] amortize deep equilibrium models [Bai et al., 2019,
2020].

• Section 3.4.5 discusses RLQP by Ichnowski et al. [2021] that uses the OSQP
solver [Stellato et al., 2018] inside of a semi-amortized model.

Semi-amortized models over a latent space Z

ẑ0
θ ẑ1

θ
. . . ẑKθ ŷθ(x)

In addition to only updating iterates over the domain Y , a natural generalization
is to introduce a latent space Z that is iteratively optimized over inside of the
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amortization model. This is usually done to give the semi-amortized model more
capacity to learn about the structure of the optimization problems that are being
solved. The latent space can also be interpreted as a representation of the optimal
solution space. This is useful for learning an optimizer that only searches over the
optimal region of the solution space rather than the entire solution space.

Examples. The iterative gradient updates in eq. (2.1) can be replaced with
a learned update function as in Ravi and Larochelle [2017], Li and Malik [2017a],
Andrychowicz et al. [2016], Li and Malik [2017b]. These model the past sequence
of iterates and learn how to best-predict the next iterate, pushing them towards
optimality. This can be done with a recurrent cell g such as an LSTM [Hochreiter
and Schmidhuber, 1997] or GRU [Cho et al., 2014] and leads to updates of the form

ztθ, ŷ
t
θ := gθ(z

t−1
θ , xt−1

θ ,∇yf(ŷt−1
θ ;x)) t ∈ {1 . . . ,K} (2.2)

where each call to the recurrent cell g takes a hidden state z along with an iterate and
the derivative of the objective. This endows g with the capacity to learn significant
updates leveraging the problem structure that a traditional optimization method
would not be able to make. In theory, traditional update rules can also be fallen back
on as the gradient step in eq. (2.1) is captured by removing the hidden state z and
setting

g(x,∇yf(y;x)) := x− α∇yf(y;x). (2.3)

Latent semi-amortized models are a budding topic and can excitingly learn many
other latent representations that go beyond iterative gradient updates in the original
space. Luo et al. [2018], Amos and Yarats [2020] learn a latent domain connected
to the original domain where the latent domain captures hidden structures and
redundancies present in the original high-dimensional domain Y. Luo et al. [2018]
consider gradient updates in the latent domain and Amos and Yarats [2020] show
that the cross-entropy method [De Boer et al., 2005] can be made differentiable
and learned as an alternative to gradient updates. Amos et al. [2017] unrolls and
differentiates through the bundle method [Smola et al., 2007] in a convex setting
as an alternative to gradient steps. The latent optimization could also be done
over a learned parameter space as in POPLIN [Wang and Ba, 2020], which lifts the
domain of the optimization problem eq. (1.1) from Y to the parameter space of a
fully-amortized neural network. This leverages the insight that the parameter space
of over-parameterized neural networks can induce easier non-convex optimization
problems than in the original space, which is also studied in Hoyer et al. [2019].

Comparing semi-amortized models with warm-starting

Semi-amortized models are conceptually similar to learning a fully-amortized model
to warm-start an existing optimization procedure that fine-tunes the solution. The
crucial difference is that semi-amortized learning often end-to-end learns through the
final prediction while warm-starting and fine-tuning only learns the initial prediction
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and does not integrate the knowledge of the fine-tuning procedure into the learning
procedure. Choosing between these is an active research topic and while this tutorial
will mostly focus on semi-amortized models, learning a fully-amortized warm-starting
model brings promising results to some fields too, such as Zhang et al. [2019b],
Baker [2019], Chen et al. [2022b]. In variational inference, Kim et al. [2018, Table
2] compare semi-amortized models (SA-VAE) to warm-starting and fine-tuning
(VAE+SVI) and demonstrate that the end-to-end learning signal is helpful. In
other words, amortization finds an initialization that is helpful for gradient-based
optimization. Arbel and Mairal [2022] further study fully-amortized warm-started
solvers that arise in bi-level optimization problems for hyper-parameter optimization
and use the theoretical framework from singularly perturbed systems [Habets, 2010]
to analyze properties of the approximate solutions.

On second-order derivatives of the objective

Training a semi-amortized model is usually more computationally challenging than
training a fully-amortized model. This section looks at how second-order derivatives
of the objective may come up when unrolling and create a computational bottleneck
when learning a semi-amortized model. The next derivation follows Nichol et al. [2018,
§5] and Weng [2018] and shows the model derivatives that arise when composing a
semi-amortized model with a loss.

Starting with a single-step model. This section instantiates a single-step
model similar to eq. (2.1) that parameterizes the initial iterate ŷ0

θ(x) := θ and takes
one gradient step:

ŷθ(x) := ŷ0
θ(x)− α∇yf(ŷ0

θ(x);x) (2.4)

Interpreting ŷθ(x) as a model is non-standard in contrast to other parametric models
because it makes the optimization step internally part of the model. Gradient-based
optimization of losses with respect to the model’s parameters, such as eqs. (2.9)
and (2.10) requires the Jacobian of ŷθ(x) w.r.t. the parameters, i.e. Dθ[ŷθ(x)]
(or Jacobian-vector products with it). Because ŷθ(x) is an optimization step, the
derivative of the model requires differentiating through the optimization step, which
for eq. (2.4) is

Dθ[ŷθ(x)] = I − α∇2
yf(y0

θ(x);x) (2.5)

and requires the Hessian of the objective. In Finn et al. [2017], ∇2
yf is the Hessian

of the model’s parameters on the training loss (!) and is compute- and memory-
expensive to instantiate for large models. In practice, the Hessian in eq. (2.5) is
often never explicitly instantiated as optimizing the loss only requires Hessian-vector
products. The Hessian-vector product can be computed exactly or estimated without
fully instantiating the Hessian, similar to how computing the derivative of a neural
network with backprop does not instantiate the intermediate Jacobians and only
computes the Jacobian-vector product. More information about efficiently computing
Hessian-vector products is available in Pearlmutter [1994], Domke [2012]. Jax’s
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autodiff cookbook [Bradbury et al., 2020] further describes efficient Hessian-vector
products. Before discussing alternatives, the next portion derives similar results for a
K-step model.

Multi-step models. Eq. (2.4) can be extended to the K-step setting with

ŷKθ (x) := ŷK−1
θ (x)− α∇yf(ŷK−1

θ (x);x), (2.6)

where the base ŷ0
θ(x) := θ as before. Similar to eq. (2.5), the derivative of a single

step is
Dθ[ŷ

K
θ (x)] = Dθ[ŷ

K−1
θ (x)]

(
I − α∇2

yf(yK−1
θ (x);x)

)
, (2.7)

and composing the derivatives down to ŷ0
θ yields the product structure

Dθ[ŷ
K
θ (x)] =

K−1∏
k=0

(
I − α∇2

yf(ykθ (x);x)
)
, (2.8)

where Dθ[ŷ
0
θ(x)] = I at the base case. Computing eq. (2.8) is now K times more

challenging as it requires the Hessian ∇2
yf at every iteration of the model. While

using Hessian-vector products can alleviate some computational burden of this term,
it often still requires significantly more operations than most other derivatives.

Computationally cheaper alternatives. The first-order MAML baseline in
Finn et al. [2017] suggests to simply not use the second-order terms ∇2

yf here,
approximating the model derivative as the identity, i.e. Dθ[ŷ

K
θ (x)] ≈ I, and relying

on only information from the outer loss to update the parameters. They use the
intuition from Goodfellow et al. [2015] that neural networks are locally linear and
therefore these second-order terms of f are not too important. They show that this
approximation works well in some cases, such as MiniImagenet [Ravi and Larochelle,
2017]. The MAML++ extension by Antoniou et al. [2019] proposes to use first-order
MAML during the early phases of training, but to later add back this second-order
information. Nichol et al. [2018] further analyze first-order approximations to MAML
and propose another approximation called Reptile that also doesn’t use this second-
order information. These higher-order terms also come up when unrolling in the
different bi-level optimization setting for hyper-parameter optimization, and Lorraine
et al. [2020, Table 1] gives a particularly good overview of approximations to these.
Furthermore, memory-efficient methods for training neural networks and recurrent
models with backpropagation and unrolling such as Gruslys et al. [2016], Chen et al.
[2016] can also help improve the memory utilization in amortization models.

Parameterizing and learning the objective. While this section has mostly
not considered the setting when the objective f is also learned, the second-order
derivatives appearing in eq. (2.8) also cause issues in when the objective is parame-
terized and learned. In addition to learning an initial iterate, Belanger et al. [2017]
learn the objective f representing an energy function. They parameterize f as a
neural network and use softplus activation functions rather than ReLUs to ensure
the objective’s second-order derivatives are non-zero.
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2.1.3 Models based on differentiable optimization

As discussed in section 2.2, the model typically needs to be (sub-)differentiable with
respect to the parameters to attain the Jacobian Dθ[ŷθ] (or compute Jacobian-vector
products with it) necessary to optimize the loss. These derivatives are standard
backprop when the model is, for example, a full-amortized neural network, but in
the semi-amortized case, the model itself is often an optimization process that needs
to be differentiated through. When the model updates are objective-based as in
eq. (2.1) and eq. (2.2), the derivatives with respect to θ through the sequence of
gradient updates in the domain can be attained by seeing the updates as a sequence
of computations that are differentiated through, resulting in second-order derivatives.
When more general optimization methods are used for the amortization model that
may not have a closed-form solution, the tools of differentiable optimization [Domke,
2012, Gould et al., 2016, Amos and Kolter, 2017, Amos, 2019, Agrawal et al., 2019a]
enable end-to-end learning.

2.1.4 Practically choosing a model

This section has taxonomized how to instantiate an amortization model in an
application-agnostic way. As in most machine learning settings in practice, the
modeling choice is often application-specific and needs to take into consideration
many factors. This may include 1) the speed and expressibility of the model, 2)
adapting the model to specific context space X . An MLP may be good for fixed-
dimensional real-valued spaces but a convolutional neural network is likely to perform
better for image-based spaces. 3) taking the solution space Y into consideration.
For example, if the solution space is an image space, then a standard vision model
capable of predicting high-dimensional images is reasonable, such as a U-net [Ron-
neberger et al., 2015], dilated convolutional network [Yu and Koltun, 2016] or fully
convolutional network [Long et al., 2015]. 4) the model also may need to adapt to a
variable-length context or solution space. This arises in VeLO [Metz et al., 2022] for
learning to optimize machine learning models where the model needs to predict the
parameters of different models that may have different numbers of parameters. Their
solution is to decompose the structure of the parameter space and to formulate the
semi-amortized model as a sequence model that predicts smaller MLPs that operate
on smaller groups of parameters.

2.2 Learning the model’s parameters θ

After specifying the amortization model ŷθ, the other major design choice is how
to learn the parameters θ so that the model best-solves eq. (1.1). Learning is often
a bi-level optimization problem where the outer level is the parameter learning
problem for a model ŷθ(x) that solves the inner-level optimization problem in
eq. (1.1) over the domain Y. While defining the best loss is application-specific,
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Figure 2.2: Overview of key losses for optimizing the parameters θ of the amortization
model ŷθ. Regression-based losses optimize a distance between the model’s prediction
ŷθ(x) and the ground-truth y?(x). Objective-based methods update ŷθ using local
information of the objective f and without access to the ground-truth solutions y?.

most approaches can be roughly categorized as 1) regressing a ground-truth solution
(section 2.2.1), or 2) minimizing the objective (sections 2.2.1 and 2.2.3), which
fig. 2.2 illustrates. Optimizing the model parameters here can in theory be done
with most parameter learning methods that incorporate zeroth-, first-, and higher-
order information about the loss being optimized, and this section mostly focuses on
methods where θ is learned with a first-order gradient-based method such as Nesterov
[1983], Duchi et al. [2010], Zeiler [2012], Kingma and Ba [2015]. The rest of this
section discusses approaches for designing the loss and optimizing the parameters
with first-order methods (section 2.2.1) when differentiation is easy or zeroth-order
methods (section 2.2.3) otherwise, e.g., in non-differentiable settings.

2.2.1 Choosing the objective for learning

Regression-based learning

Learning can be done by regressing the model’s prediction ŷθ(x) onto a ground-truth
solution y?(x). These minimize some distance between the predictions and ground-
truth so that the expectation over the context distribution p(x) is minimal. With a
Euclidean distance, for example, regression-based learning solves

arg min
θ
Lreg(ŷθ) Lreg(ŷθ) := E

x∼p(x)
‖y?(x)− ŷθ(x)‖22. (2.9)

Lreg is typically optimized with an adaptive first-order gradient-based method that
is able to directly differentiate the loss with respect to the model’s parameters.

Regression-based learning works the best for distilling known solutions into a
faster model that can be deployed at a much lower cost, but can otherwise start
failing to work. In RL and control, regression-based amortization methods are
referred to as behavioral cloning and is a widely-used way of recovering a policy using
trajectories observed from an expert policy. Using regression is also advantageous
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when evaluating the objective f(y;x) incurs a computationally intensive or otherwise
complex procedure, such as an evaluation of the environment and dynamics in RL, or
for computing the base model gradients when learning parameter optimizers. These
methods work well when the ground-truth solutions are unique and semi-tractable,
but can fail otherwise, i.e. if there are many possible ground-truth solutions for a
context x or if computing them is too intractable. After all, solving eq. (1.1) from
scratch may be computationally expensive and amortization methods should improve
the computation time.

Remark 1 Eq. (2.9) can be extended to other distances defined on the domain, such
as non-Euclidean distances or the likelihood of a probabilistic model that predicts a
distribution of possible candidate solutions. Adler et al. [2017] propose to use the
Wasserstein distance for learning to predict the solutions to inverse imaging problems.

Objective-based learning

Instead of regressing onto the ground-truth solution, objective-based learning methods
seek for the model’s prediction to be minimal under the objective f with:

arg min
θ
Lobj(ŷθ) Lobj(ŷθ) := E

x∼p(x)
f(ŷθ(x);x). (2.10)

These methods use local information of the objective to provide a descent direction
for the model’s parameters θ. A first-order method optimizing eq. (2.10) uses updates
based on the gradient

∇θLobj(ŷθ) = ∇θ
[

E
x∼p(x)

f(ŷθ(x);x)

]
= E

x∼p(x)
Dθ [ŷθ(x)]>∇y [f(ŷθ(x);x)] ,

(2.11)

where the last step is obtained by the chain rule. This has the interpretation
that the model’s parameters θ are updated by combining the gradient information
around the prediction ∇y [f(ŷθ(x);x)] shown in fig. 2.2 along with how θ impacts
the model’s predictions with the derivative Dθ [ŷθ(x)]. While this tutorial mostly
focuses on optimizing eq. (2.11) with first-order methods that explicitly differentiate
the objective, section 2.2.3 discusses alternatives to optimizing it with reinforcement
learning and zeroth-order methods.

Objective-based methods thrive when the gradient information is informative and
the objective and models are easily differentiable. Amortized variational inference
methods and actor-critic methods both make extensive use of objective-based learning.

Remark 2 A standard gradient-based optimizer for eq. (1.1) (without amortization)
can be recovered from Lobj by setting the model to the identity of the parameters, i.e.
ŷθ(x) := θ, and p(x) to be a Dirac delta distribution.
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Figure 2.3: Contours of the regression-based amortization loss Lreg (in black) alongside
the contours of the objective (in purple where darker colors indicate higher values).
This shows the inaccuracies of the regression-based loss, e.g. along a level set, may
impact the overall objective differently.

This can be seen by taking Dθ[ŷθ(x)] = I in eq. (2.11), resulting in ∇θLobj(ŷθ) =
∇yf(ŷθ(x);x). Thus optimizing θ of this parameter-identity model with gradient
descent is identical to solving eq. (1.1) with gradient descent. Remark 2 shows a
connection between a model trained with gradients of an objective-based loss and a
non-amortized gradient-based solver for eq. (1.1). The gradient update that would
originally have been applied to an iterate y ∈ Y of the domain is now transferred into
the model’s parameters that are shared across all problem instances. This also leads
to a hypothesis that objective-based amortization works best when a gradient-based
optimizer is able to successfully solve eq. (1.1) from scratch. However there may be
settings where a gradient-based optimizer performs poorly but an amortized optimizer
excels because it is able to use information from the other problem instances.

Remark 3 The objective-based loss in section 2.2.1 provides a starting point for
amortizing with other optimality conditions or reformulations of the optimization
problem. This is done when amortizing for fixed-point computations and convex
optimization in section 3.4, as well as in optimal transport section 3.5.

Comparing the regression- and objective-based losses

Choosing between the regression- and objective-based losses is challenging as they
measure the solution quality in different ways and have different convergence and
locality properties. Liu et al. [2022] experimentally compare these losses for learning
to optimize with fully-amortized set-based models. Figure 2.3 illustrates that the `2-
regression loss (the black contours) ignores the objective values (the purple contours)
and thus gives the same loss to solutions that result in significantly different objective
values. This could be potentially addressed by normalizing or re-weighting the
dimensions for regression to be more aware of the curvature of the objective, but
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this is often not done. Another idea is to combine both the objective and regression
losses. Combining the losses could work especially well when only a few contexts
are labeled, such as the regression and residual terms in the physics-informed neural
operator paper [Li et al., 2021b]. The following summarizes some other advantages
(+) and disadvantages (−):

Regression-based losses Lreg

− Often does not have access to f(y;x)
+ If f(y;x) is computationally expensive,

does not need to compute it
+ Uses global information with y?(x)
− It may be expensive to compute y?(x)
+ Does not need to compute ∇yf(y;x)
− May be hard when y?(x) is not unique

Objective-based losses Lobj

+ Uses objective information of f(y;x)
− Can get stuck in local optima of f(y;x)
+ Faster, does not require y?(x)
− Often requires computing ∇yf(y;x)
+ Easily learns non-unique y?(x)

2.2.2 Learning iterative semi-amortized models

Fully-amortized or semi-amortized models can be learned with the regression- and
objective-based losses. This section discusses how the loss can be further opened up
and crafted to learn iterative semi-amortized methods. For example, if the model
produces intermediate predictions ŷiθ in every iteration i, then instead of optimizing
the loss of just the final prediction, i.e. L(ŷKθ ), a more general loss LΣ may consider
the impact of every iteration of the model’s prediction

arg min
θ
LΣ(ŷθ) LΣ(ŷθ) :=

K∑
i=0

wiL(ŷiθ), (2.12)

where wi ∈ R+ are weights in every iteration i that give a design choice of how
important it is for the earlier iterations to produce reasonable solutions. For example,
setting wi = 1 encourages every iterate to be low.

Learning iterative semi-amortized methods also has (loose) connections to sequence
learning models that arise in, e.g. text, audio, and language processing. Given
the context x, an iterative semi-amortized model seeks to produce a sequence of
predictions that ultimately result in the intermediate and final predictions, which can
be analogous to a language model predicting future text given the previous text as
context. One difference is that semi-amortized models do not necessarily attempt to
model the probabilistic dependencies of a structured output space (such as language)
and instead only needs to predict intermediate computation steps for solving an
optimization problem. The next section discusses concepts that arise when computing
the derivatives of a loss with respect to the model’s parameters.

17



Unrolled optimization and backpropagation through time

ẑ0
θ ẑ1

θ
. . . ẑKθ ŷθ(x) L

. . .

The parameterization of every iterate ziθ can influence the final prediction ŷθ
and thus losses on top of ŷθ need to consider the entire chain of computations.
Differentiating through this kind of iterative procedure is referred to as backpropagation
through time in sequence models and unrolled optimization [Pearlmutter and Siskind,
2008, Zhang and Lesser, 2010, Maclaurin et al., 2015b, Belanger and McCallum,
2016, Metz et al., 2017, Finn et al., 2017, Han et al., 2017, Belanger et al., 2017,
Belanger, 2017, Foerster et al., 2017, Bhardwaj et al., 2020, Monga et al., 2021]
when the iterates are solving an optimization problem. The term “unrolling” arises
because the model computation is iterative and computing Dθ[ŷθ(x)] requires saving
and differentiating the “unrolled” intermediate iterations, as in section 2.1.2. The
terminology “unrolling” here emphasizes that the iterative computation produces a
compute graph of operations and is likely inspired from loop unrolling in compiler
optimization [Aho et al., 1986, Davidson and Jinturkar, 1995] where loop operations
are inlined for efficiency and written as a single chain of repeated operations rather
than an iterative computation of a single operation.

Even though Dθŷθ through unrolled optimization is well-defined, in practice it
can be unstable because of exploding gradients [Pearlmutter, 1996, Pascanu et al.,
2013, Maclaurin, 2016, Parmas et al., 2018] and inefficient for compute and memory
resources because every iterate needs to be stored, as in section 2.1.2. This is why
most methods using unrolled optimization for learning often only unroll through
tens of iterations [Metz et al., 2017, Belanger et al., 2017, Foerster et al., 2017, Finn
et al., 2017] while solving the problems from scratch may require 100k-1M+ iterations.
This causes the predictions to be extremely inaccurate solutions to the optimization
process and has sparked the research directions that the next section turns to that
seek to make unrolled optimization more tractable.

Truncated backpropagation through time and biased gradients

ẑ0
θ ẑ1

θ
. . . ẑK−Hθ

. . . ẑKθ ŷθ(x) L
. . .

Truncated backpropagation through time (TBPTT) [Werbos, 1990, Jaeger, 2002]
is a crucial idea that has enabled the training of sequence models over long sequences.
TBPTT’s idea is that not every iteration needs to be differentiated through and that
the derivative can be computed using smaller subsequences from the full sequence of
model predictions by truncating the history of iterates. For example, the derivative of
a model running for K iterations with a truncation length of H can be approximated
by considering the influence of the last H iterates

{
ziθ
}H
i=K−H on the loss L.
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Figure 2.4: Illustration of the penalty used in the Implicit MAML by Rajeswaran
et al. [2019] in eq. (2.13). The original loss f(y;x) is shown in black for a fixed
context x and the lighter grey colors show the impact of varying λ. This shows that
the quadratic term of the penalization eventually overtakes the original loss and
makes an optimum appear close to ŷ0

θ

Truncation significantly helps improve the computational and memory efficiency
of unrolled optimization procedure but results in harmful biased gradients as these
approximate derivatives do not contain the full amount of information that the model
used to compute the prediction. This is especially damaging in approaches such
as MAML [Finn et al., 2017] that only parameterize the first iterate and is why
MAML-based approaches often don’t use TBPTT. Tallec and Ollivier [2017], Wu
et al. [2018], Liao et al. [2018], Shaban et al. [2019], Vicol et al. [2021] seek to further
theoretically understand the properties of TBPTT, including the bias of the estimator
and how to unbias it.

Other gradient estimators for sequential models

In addition to truncating the iterations, other approaches attempt to improve the
efficiency of learning through unrolled iterations with other approximations that retain
the influence of the entire sequence of predictions on the loss [Finn et al., 2017, Nichol
et al., 2018, Lorraine et al., 2020] which will be further discussed in section 2.1.2.
Some optimization procedures, such as gradient descent with momentum, can also
be “reversed” without needing to retain the intermediate states [Maclaurin et al.,
2015b, Franceschi et al., 2017]. Real-Time Recurrent Learning (RTRL) by Williams
and Zipser [1989] uses forward-mode automatic differentiation to compute unbiased
gradient estimates in an online fashion. Unbiased Online Recurrent (UORO) by
Tallec and Ollivier [2018] improves upon RTRL with a rank-1 approximation of the
gradient of the hidden state with respect to the parameters. Silver et al. [2022]
considers the directional derivative of a recurrent model along a candidate direction,
which can be efficiently computed to construct a descent direction.
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Semi-amortized learning with shrinkage and implicit differentiation

A huge issue arising in semi-amortized models is that adapting to long time horizons
is computationally and memory inefficient and even if it wasn’t, causes exploding,
vanishing, or otherwise unstable gradients. An active direction of research seeks to
solve these issues by solving a smaller, local problem with the semi-amortized model,
such as in Chen et al. [2020], Rajeswaran et al. [2019]. Implicit differentiation is an
alternative to unrolling through the iterations of a semi-amortized model in settings
where the model is able to successfully solve an optimization problem.

This section briefly summarizes Implicit MAML (iMAML) by Rajeswaran et al.
[2019], which notably brings this insight to MAML. MAML methods usually only
take a few gradient steps and are usually not enough to globally solve eq. (1.1),
especially at the beginning of training. Rajeswaran et al. [2019] observe that adding
a penalty to the objective around the initial iterate ŷ0

θ makes it easy for the model to
globally (!) solve the problem

ŷθ(x) ∈ arg min
y

f(y;x) +
λ

2
‖y − ŷ0

θ‖22, (2.13)

where the parameter λ encourages the solution to stay close to some initial iterate.
Figure 2.4 visualizes a function f(y;x) in black and add penalties in grey with
λ ∈ [0, 12] and see that a global minimum is difficult to find without adding a penalty
around the initial iterate. This global solution can then be implicitly differentiated
to obtain a derivative of the loss with respect to the model’s parameters without
needing to unroll, as it requires significantly less computational and memory resources.
Huszár [2019] further analyzes and discuses iMAML. They compare it to a Bayesian
approach and observe that the insights from iMAML can transfer from gradient-based
meta-learning to other amortized optimization settings.

Warning. Implicit differentiation is only useful when optimization problems are
exactly solved and satisfy the conditions of the implicit function theorem in theorem 1.
This is why Rajeswaran et al. [2019] needed to add a penalty to MAML’s inner
optimization problem in eq. (2.13) to make the problem exactly solvable. While they
showed that this works and results in significant improvements for differentiation,
it comes at the expense of changing the objective to penalize the distance from
the previous iterate. In other words, iMAML modifies MAML’s semi-amortized
model and in general is not helpful for estimating the derivative through the original
formulation of MAML. Furthermore, computing the implicit derivative by solving
the linear system with the Jacobian in eq. (2.30) may be memory and compute
expensive to form and estimate exactly. In practice, some methods such as Bai et al.
[2019] successfully use indirect and approximation methods to solve for the system in
eq. (2.30).
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Figure 2.5: Illustration of perturbing ŷθ. A zeroth-order optimizers may make
perturbations like this to search for an improved parameterization

2.2.3 Learning with zeroth-order methods and RL

Computing the derivatives to learn ŷθ with a first-order method may be impossible or
unstable. These problems typically arise when learning components of the model that
are truly non-differentiable, or when attempting to unroll a semi-amortized model for
a lot of steps. In these settings, research has successfully explored other optimizers
that do not need the gradient information. These methods often consider settings
that improve an objective-based loss with small local perturbations rather than
differentiation. Figure 2.5 illustrates that most of these methods can be interpreted
as locally perturbing the model’s prediction and updating the parameters to move
towards the best perturbations.

Reinforcement learning

Li and Malik [2017a,b], Ichnowski et al. [2021] view their semi-amortized models as a
Markov decision process (MDP) that they solve with reinforcement learning. The
MDP interpretation uses the insight that the iterations xi are the actions, the context
and previous iterations or losses are typically the states, the associated losses L(xi) are
the rewards, and ŷiθ(x) is a (deterministic) policy, and transitions given by updating
the current iterate, either with a quantity defined by the policy or by running one
or more iterations from an existing optimizer. Once this viewpoint is taken, then
the optimal amortized model can be found by using standard reinforcement learning
methods, e.g. Li and Malik [2017a,b] uses Guided Policy Search [Levine and Koltun,
2013] and Ichnowski et al. [2021] uses TD3 [Fujimoto et al., 2018]. The notation
LRL indicates that a loss is optimized with reinforcement learning, typically on the
objective-based loss.

Loss smoothing and optimization with zeroth-order methods

Objective-based losses can have a high-frequency structure with many poor local
minimum. Metz et al. [2019a] overcome this by smoothing the loss with a Gaussian
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Figure 2.6: Gaussian smoothing of a loss using eq. (2.14). The colors show different
values of the variance σ2 of the Gaussian. Selecting a high enough variance results in
smoothing out most of the suboptimal minima.

over the parameter space, i.e.,

Lsmooth(ŷθ) := E
ε∼N (0,σ2I)

[L(ŷθ+ε)] , (2.14)

where σ2 is a fixed variance. Figure 2.6 illustrates a loss function L in black and shows
smoothed versions in color. They consider learning the loss with reparameterization
gradients and zeroth-order evolutionary methods. Merchant et al. [2021] further build
upon this for learned optimization in atomic structural optimization and study 1)
clipping the values of the gradient estimator, and 2) parameter optimization with
genetic algorithms.

Remark 4 While smoothing can help reduce suboptimal local minima, it may also
undesirably change the location of the global minimum. One potential solution to
this is to decay the smoothing throughout training, as done in Amos et al. [2021,
Appendix A.1].

Connection to smoothing in reinforcement learning. The Gaussian smooth-
ing of the objective L in eq. (2.14) is conceptually similar to Gaussian smoothing of
the objective in reinforcement learning, i.e. the −Q-value, by a Gaussian policy. This
happens in eq. (3.39) and is further discussed in section 3.6. The policy’s variance
is typically controlled to match a target entropy Haarnoja et al. [2018] and the
learning typically starts with a high variance so the policy has a broad view of the
objective landscape and is then able to focus in on a optimal region of the value
distribution. Amos et al. [2021] uses a fixed entropy decay schedule to explicitly
control this behavior. In contrast, Metz et al. [2019a], Merchant et al. [2021] do not
turn the loss into a distribution and more directly smooth the loss with a Gaussian
with a fixed variance σ2 that is not optimized over.

2.3 Extensions

I have intentionally scoped definition 1 to optimization problems over deterministic,
unconstrained, finite-dimensional, Euclidean domains Y where the context distribution
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p(x) remains fixed the entire training time to provide a simple mental model that
allows us to focus on the core amortization principles that consistently show up
between applications. This section cover extensions from this setting that may come
up in practice.

2.3.1 Extensions of the domain Y

Deterministic → stochastic optimization

A crucial extension is from optimization over deterministic vector spaces Y to
stochastic optimization where Y represents a space of distributions, turning y ∈ Y
from a vector in Euclidean space into a distribution. This comes up in section 3.6 for
control, for example..

Transforming parameterized stochastic problems back into determin-
istic ones. This portion will mostly focus on settings that optimize over the para-
metric distributions. This may arise in stochastic domains for variational inference
in section 3.1 and stochastic control in section 3.6. These settings optimize over a
constrained parametric family of distributions parameterized by some λ, for example
over a multivariate normal N (µ,Σ) parameterized by λ := (µ,Σ). Here, problems
can be transformed back to eq. (1.1) by optimizing over the parameters with

λ?(x) ∈ arg min
λ

f(λ;x), (2.15)

where λ induces a distribution that the objective f may use. When λ is not an
unconstrained real space, the differentiable projections discussed in section 2.3.1
could be used to transform λ back into this form for amortization.

Optimizing over distributions and densities. More general stochastic opti-
mization settings involve optimizing over spaces representing distributions, such as
the functional space of all continuous densities. Many standard probability distri-
butions can be obtained and characterized as the solution to a maximum entropy
optimization problem and is explored, e.g., in Cover and Thomas [2006, Ch. 12],
Guiasu and Shenitzer [1985, p. 47], and Pennec [2006, §6.2]. For example, a Gaussian
distribution N (µ,Σ) solves the following constrained maximum entropy optimization
problem over the space of continuous densities P:

p?(µ,Σ) ∈ arg max
p∈P

Hp[X] subject to E
p
[X] = µ and Varp[X] = Σ, (2.16)

where Hp[X] := −
∫
p(x) log p(x)dx is the differential entropy and the constraints are

on the mean Ep[X] and covariance Varp[X]. Cover and Thomas [2006, Theorem 8.6.5
and Example 12.2.8] prove that the closed-form solution of p? is the Gaussian density.
This Gaussian setting therefore does not need amortization as the closed-form solution
is known and easily computed, but more general optimization problems over densities
do not necessarily have closed-form solutions and could benefit from amortization.
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Figure 2.7: The Gaussian distribution can be characterized as the result of the
optimization problem in eq. (2.16): constrained to the space of continuous distribu-
tions with a given mean and variance, the Gaussian distribution has the maximum
entropy in comparison to every other distribution. This example parameterizes a
non-Gaussian density (shown in grey) and optimizes over it using gradient steps of
eq. (2.16), eventually converging to a Gaussian. An animated version is available
in the repository associated with this tutorial. While the Gaussian is the known
closed-form solution to this optimization problem and analytically known, more
general optimization problems over densities without known solutions can also be
amortized.

While this tutorial does not study amortizing these problems, in some cases it may be
possible to again transform them back into deterministic optimization problems over
Euclidean space for amortization by approximating the density gθ with an expressive
family of densities parameterized by θ.

Unconstrained → constrained optimization

Amortized constrained optimization problems may naturally arise, for example in
the convex optimization settings in section 3.4 and for optimization over the sphere
in section 4.2. Constrained optimization problems for amortization can often be
represented as an extension of eq. (1.1) with

y?(x) ∈ arg min
y∈C

f(y;x), (2.17)

where the constraints C may also depend on the context x. Remark 3 suggests one
way of amortizing eq. (2.17) by amortizing the objective-based loss associated with
the optimality conditions of the constrained problem. A budding research area studies
how to more generally include constraints into the formulation. Baker [2019], Dong
et al. [2020], Zamzam and Baker [2020], Pan et al. [2020] learn to warm-start for
optimal power flow. Misra et al. [2021] learn active sets for constrained optimization.
Kriváchy et al. [2020] solves constrained feasibility semi-definite programs with a
fully-amortized neural network model using an objective-based loss. Donti et al.
[2021] learns a fully-amortized model and optimizes an objective-based loss with
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Figure 2.8: Illustration of definition 4 showing a Euclidean projection πC(x) of a
point x onto a set C.

additional completion and correction terms to ensure the prediction satisfies the
constraints of the original problem.

Differentiable projections. When the constraints are relatively simple, a
differentiable projection can transform a constrained optimization problem into an
unconstrained one, e.g., in reinforcement learning constrained action spaces can be
transformed from the box [−1, 1]n to the reals Rn by using the tanh to project from
Rn to [−1, 1]n. Section 4.2 also uses a differentiable projection from Rn onto the
sphere Sn−1. These are illustrated in section 2.3.1 and defined as:

Definition 4 A projection from Rn onto a set C ⊆ Rn is

πC : Rn → C πC(x) ∈ arg min
y∈C

D(x, y) + Ω(y), (2.18)

where D : Rn×Rn → R is a distance and Ω : Rn → R is a regularizer that can ensure
invertibility or help spread Rn more uniformly throughout C. A (sub)differentiable
projection has (sub)derivatives ∇xπC(x). I sometimes omit the dependence of π
on the choice of D, Ω, and C when they are given by the surrounding context.

Lack of idempotency. In linear algebra, a projection is defined to be idem-
potent, i.e. applying the projection twice gives the same result so that π ◦ π = π.
Unfortunately, projections as defined in definition 4, such as Bregman projections,
are not idempotent in general and often πC ◦ πC 6= πC as the regularizer Ω may cause
points that are already on C to move to a different position on C.

Differentiable projections for constrained amortization. These can be
used to cast Eq. (2.17) as the unconstrained problem eq. (1.1) by composing the
objective with a projection f ◦ πC . (Sub)differentiable projections enable gradient-
based learning through the projection and is the most easily attainable when the
projection has an explicit closed-form solution. For intuition, the ReLU, sigmoid,
and softargmax can be interpreted as differentiable projections that solve convex
optimization problems in the form of eq. (2.18). Amos [2019, §2.4.4] further discusses
these and proves them using the KKT conditions:
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Figure 2.9: Illustration of the second-order cone in eq. (2.24).

• The standard Euclidean projection onto the non-negative orthant Rn+ is defined
by

π(x) ∈ arg min
y

1

2
‖x− y‖22 s. t. y ≥ 0, (2.19)

and has a closed-form solution given by the ReLU, i.e. π(x) := max{0, x}.

• The interior of the unit hypercube [0, 1]n can be projected onto with the entropy-
regularized optimization problem

π(x) ∈ arg min
0<y<1

−x>y −Hb(y), (2.20)

where

Hb(y) =:=

(∑
i

yi log yi + (1− yi) log(1− yi)

)
(2.21)

is the binary entropy function. Eq. (2.20) has a closed-form solution given by
the sigmoid or logistic function, i.e. π(x) := (1 + e−x)−1.

• The interior of the (n− 1)-simplex defined by

∆n−1 := {p ∈ Rn | 1>p = 1 and p ≥ 0} (2.22)

can be projected onto with the entropy-regularized optimization problem

π(x) ∈ arg min
0<y<1

−x>y −H(y) s. t. 1>y = 1 (2.23)

where H(y) := −
∑

i yi log yi is the entropy function. Eq. (2.23) has a closed-
form solution given by the softargmax, i.e. π(x)j = exj/

∑
i e
xi , which is

historically referred to as the softmax.

This section goes beyond these to differentiable projections onto convex cones.
These can also be softened or regularized to help with continuity when composed
with learning and amortization methods. Ali et al. [2017], Busseti et al. [2019] discuss
differentiating the standard Euclidean projections onto these, including:
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• The second-order, Lorentz, or ice cream cone defined by

Ksoc := {(x, y) ∈ Rm−1 × R : ‖x‖2 ≤ y}, (2.24)

which is illustrated in section 2.3.1. The standard Euclidean projection is given
in closed form as

π(x, y) :=


0 ‖x‖2 ≤ −y
(x, y) ‖x‖2 ≤ y
1
2(1 + y

‖x‖2 )(x, ‖x‖2) otherwise.
(2.25)

and can be explicitly differentiated.

• The positive semidefinite cone Sm+ of the space of m×m positive semidefinite
matrices. The Euclidean projection is obtained in closed-form by projecting
the eigenvalues to be non-negative with π(X) :=

∑
i max{λi, 0}qiq>i , where

the eigenvalue decomposition of X is given by X =
∑

i λiqiq
>
i . The derivative

can be computed by differentiating through the eigenvalue decomposition and
projection of the eigenvalues.

• The exponential cone is given by

Kexp ={(x, y, z) : x ∈ R, y > 0, z ≥ y exp(x/y)}
∪ {(x, 0, z) : x ≤ 0, z ≥ 0}.

(2.26)

The standard Euclidean projection onto this does not have a known closed-form
solution but can be computed using a Newton method as discussed in Parikh
and Boyd [2014, §6.3.4]. Ali et al. [2017] differentiate through this projection
using implicit differentiation of the KKT system.

Other uses of projections in machine learning include:

• Adams and Zemel [2011], Cruz et al. [2017], Mena et al. [2018] project onto the
Birkhoff polytope of doubly stochastic matrices with row and column sums of 1,
i.e.

Bm := {X ∈ Rm×m : X1 = X>1 = 1}. (2.27)

• Amos et al. [2019] project onto the capped simplex for a differentiable top-k
layer.

• Blondel [2019] perform structure prediction and learning methods building on
Fenchel-Young losses [Blondel et al., 2020] and use projections onto the simplex,
unit cube, knapsack polytope, Birkhoff polytope, permutahedron, and order
simplex.

In many of these, the projections have explicit closed-form solutions that make
it easy to compute and differentiate through the projections for learning. When
a closed-form solution to the projection is not available to the project, but the
projection can be numerically computed, projections can often still be differentiated
through using implicit differentiation.
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Euclidean → non-Euclidean optimization

Manifold optimization [Absil et al., 2009, Hu et al., 2019] over non-Euclidean spaces
is a thriving topic in optimization as these problems arise frequently over complex
geometries in nature. One form of manifold optimization takes Y to be a Riemannian
manifold rather than a real-valued spaced. This area of research has studied accelera-
tion methods, [Duruisseaux and Leok, 2022], but less exploration has been done on
amortized optimization. Section 4.2 discusses amortizing a simple constrained spheri-
cal optimization problem that can be transformed into an unconstrained Euclidean
optimization problem by using projections from ambient Euclidean space. When
this is not possible, a budding area of research investigates more directly including
the manifold structure into the amortization process. Gao et al. [2020] amortize
optimization problems over SPD spaces.

2.3.2 Extensions of the model ŷθ

Finding the best model for an amortized optimization setup is an active research
topic in many areas. While the tutorial is mostly scoped to differentiable parametric
models that are end-to-end learned, variations and extensions can be considered.

Symbolic models: uncovering human-interpretable update rules

A huge issue of neural-network based amortization models is that they are uninter-
pretable and it is often impossible for us as humans to learn any new insights about
the optimization problems being modeled, e.g. how to better-solve them. Symbolic
models are one potential answer to this that attempt to search over a symbolic space
that is much closer to the operations that humans would use to implement update
rules for an optimization solver. Early studies of these methods include Bengio
et al. [1994], Runarsson and Jonsson [2000]. Bello et al. [2017] significantly advances
this direction by posing the learned optimizer as a reinforcement learning problem
where the actions produce the operations underlying the update rules. They show
how existing methods can be symbolically implemented using this formulation, and
learn better update rules for classification and machine translation tasks. Symbolic
methods are further studied and scaled in Real et al. [2020], Zheng et al. [2022].
Maheswaranathan et al. [2021] reverse engineer learned optimizers and show that
they have learned interpretable behavior, including momentum, gradient clipping,
learning rate schedules, and learning rate adaptation.

This direction of work challenges the best accelerated and adaptive gradient-
based optimizers that are used for machine learning. Nesterov acceleration [Nesterov,
1983] has a provably optimal convergence rate among first-order methods for solving
convex optimization problems, but unfortunately breaks down in the non-convex
setting. This has led to a stream of variations of acceleration methods for non-convex
problems that come up in machine learning, such as Duchi et al. [2010], Zeiler [2012],
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Kingma and Ba [2015], that typically add components that adapt the update rules
to how much the objective is moving in each dimension. None of these algorithms
are theoretically or provably the best in non-convex settings, and is often empirically
validated depending on the domain. Using amortized optimization with a symbolic
model to search the design space of optimizers can result is significantly better
optimizers and insights into the optimization problems being solved, especially when
this is done on new classes of problems beyond the parameter learning problems
typically considered in machine learning settings.

2.3.3 Uncertainty-aware and Bayesian optimization

An active research direction combines uncertainty estimation and amortized opti-
mization:

Amortization for Bayesian optimization. Chen et al. [2017] propose to use
an RNN-based amortization in Bayesian optimization settings that predict the optimal
solution to commonly used acquisition functions such as the expected improvement
and observed improvement. This is powerful as optimizing the acquisition function is
often a computational bottleneck. Swersky et al. [2020] consider amortized Bayesian
optimization in discrete spaces and show applications to protein sequence design.
Ravi and Beatson [2019] propose amortized Bayesian meta-learning for meta-learning
with uncertainty estimation over the posterior and show applications to contextual
bandits and few-shot learning.

Bayesian methods for amortization. You et al. [2022] investigate optimizer
uncertainty or Bayesian learning to optimize. This setting explores the uncertainty
that an optimizer, e.g. the amortization model, is the best optimizer for the problem.

2.3.4 Settings with additional learnable contexts ϕ

The amortization model is often a component within a larger system with other
learnable parameters that are being optimized over. This is done in, for example, 1)
variational autoencoders where the ELBO also depends on the decoder’s parameters
that are also being optimized over, 2) deep equilibrium models where the fixed point
is parameterized and optimized over, and 3) reinforcement learning where the value
estimate is also parameterized and learned over.

These dependencies can be captured by writing an explicit dependence of the
context distribution and objective on an additional parameter ϕ, i.e. as p(x;ϕ) and
f(y;x, ϕ). ϕ can be learned with a higher-level optimization process with a loss `
defined on the solutions. This could take the form of the bi-level problem

arg min
ϕ

E
x∼p(x)

`(y?(x, ϕ);x, ϕ) subject to y?(x, ϕ) ∈ arg min
y

f(y;x, ϕ) (2.28)

where y?(x, ϕ) can be replaced with an approximation by a learned amortization
model ŷθ ≈ y?. The parameters ϕ in eq. (2.28) can often by end-to-end learned
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through the solution of eq. (1.1) to update the influence that ϕ has on the solutions.
The next section turns to methods that show how to differentiate through the
value f(y?(x, ϕ);x, ϕ) and solution y?(x, ϕ) to enable gradient-based learning of ϕ in
eq. (2.28).

Learning ϕ by differentiating the objective value f(y?(x, ϕ);x, ϕ)

Methods can end-to-end learn through the optimal objective value f(y?(x, ϕ);x, ϕ)
to update parameters ϕ that show up in the context — i.e. by taking ` = f in
eq. (2.28). For example, variational autoencoders differentiate through the objective
value, i.e. the best approximation to the ELBO, to optimize the data log-likelihood
of a parameterized decoder log p(x | z;ϕ). The theory around this is rooted in
the optimization community’s studies of envelope theorems, which describe settings
where the minimum value can be differentiated by just differentiating the objective.
Danskin’s envelope theorem [Danskin, 1966] in convex settings is one of the earliest
and has been extended into more general settings, e.g., in [Bertsekas, 1971, Prop.
A.22] and Carter [2001], Milgrom and Segal [2002], Bonnans and Shapiro [2013]. In
the unconstrained and non-convex eq. (1.1), the envelope theorem gives

∇ϕ min
y
f(y;x, ϕ̄) = ∇ϕf(y?(x, ϕ̄);x, ϕ̄) (2.29)

at a point ϕ̄ under mild assumptions, showing that differentiating through the min
operation is equivalent to differentiating through just the objective at the optimal
solution y?(x, ϕ).

Learning ϕ by differentiating the solution y?(x, ϕ)

In addition to differentiating through the objective value, the solution y?(x, ϕ) can
be implicitly differentiated. The derivative Dϕy

?(x, ϕ) is referred to as the adjoint
derivative, and it is often used for end-to-end learning [Domke, 2012, Gould et al.,
2016, Amos and Kolter, 2017, Barratt, 2018, Amos, 2019, Agrawal et al., 2019a, Bai
et al., 2019, 2020] and perturbation and sensitivity analysis [Bank et al., 1982, Fiacco
and Ishizuka, 1990, Shapiro, 2003, Klatte and Kummer, 2006, Bonnans and Shapiro,
2013, Still, 2018, Fiacco, 2020].

Computing the adjoint derivative Dϕy
?(x, ϕ) is more involved than the value

derivative using the envelope theorem in eq. (2.29) as more components of y?(x) can
change as x moves infinitesimally. An explicit closed-form solution to y?(x) is not
available in most cases, which means that standard methods for explicitly computing
the derivative through this computation may not work well or may break down. For
example, an optimizer to compute y?(x) may be explicitly unrolled through, but this
may be unstable and extremely memory- and compute-intensive to track all of the
iterations. The adjoint derivative is typically computed with implicit differentiation
by seeing y?(x) as an implicit function of x. This uses the implicit function theorem,
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which is originally from Dini [1878], and is presented in Dontchev and Rockafellar
[2009, Theorem 1B.1] as:

Theorem 1 (Dini’s implicit function theorem) Let the roots of g(y;ϕ) define
an implicit mapping Y ?(ϕ) given by Y ?(ϕ) := {y | g(y;ϕ) = 0}, where ϕ ∈ Rm,
y ∈ Rn, and g : Rn×Rm → Rn. Let g be continuously differentiable in a neighborhood
of (ȳ, ϕ̄) such that g(ȳ; ϕ̄) = 0, and let the Jacobian of g with respect to y at (ȳ, ϕ̄),
i.e. Dyg(ȳ; ϕ̄), be non-singular. Then Y ? has a single-valued localization y? around
ϕ̄ for ȳ which is continuously differentiable in a neighborhood Q of ϕ̄ with Jacobian
satisfying

Dϕy
?(ϕ̃) = −D−1

y g(y?(ϕ̃); ϕ̃)Dϕg(y?(ϕ̃); ϕ̃) for every ϕ̃ ∈ Q. (2.30)

The adjoint derivative Dϕy
?(ϕ) can be computed by seeing y? as the root of an

implicit function g(y;x, ϕ), which needs to be selected to make the solution equiva-
lent to the solution of eq. (1.1). Typically g(y;x, ϕ) is an optimality system of the
optimization problem, e.g. the KKT system for constrained convex optimization prob-
lems. For the unconstrained problem here, the first-order optimality of the objective
g(y;x, ϕ) := ∇yf(y;x, ϕ) can be used with theorem 1 to compute Dϕy

?(x, ϕ).
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Chapter 3
Applications of amortized optimization

This section takes a review and tour of many key applications of amortized op-
timization to show some unifying ideas that can be shared between all of these
topics. Table 3.1 summarizes the methods. The subsections in here are meant to be
standalone and can be randomly accessed and read in any order. I scope closely to
providing the relevant context for just the amortized optimization components and
under-emphasize the remaining context of each research area.

Warning. Even though I try to provide the relevant background and notation to
present the amortized optimization components, each section is meant to be a review
rather than an introduction to these research topics. I defer further background to
the original literature.

3.1 Variational inference and variational autoencoders

Key ideas in amortized optimization originated in the variational inference (VI) com-
munity’s interest in approximating intractable densities and integrals via optimization.
This section focuses only on the relevant components of amortized variational in-
ference (AVI) used in machine learning for the variational autoencoder (VAE) and
related generative models [Kingma and Welling, 2014, Rezende et al., 2014, Mnih
and Gregor, 2014, Rezende and Mohamed, 2015, Higgins et al., 2017, Doersch, 2016,
Kingma et al., 2019] and refer to references such as Jordan et al. [1999], Wainwright
and Jordan [2008], Blei et al. [2017] for a complete background in variational inference.
Kim [2020], Marino [2021] provide additional background on the use of amortization
and semi-amortization in these settings. Historically, the use of an encoder network
for amortized inference is often traced back to the Helmholtz machine [Dayan et al.,
1995], which uses a fully-amortized model but without a proper gradient estimator.
Sjölund [2023] provides further background information and a tutorial on parametric
variational inference.
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Table 3.1: Applications of amortized optimization covered in chapter 3

§ Application Objective f Domain Y Context Space X Amortization model ŷθ Loss L
3.1 VAE −ELBO variational posterior data full Lobj

SAVAE/IVAE | | | semi |

3.2 PSD reconstruction sparse code data full Lreg

LISTA | | | semi |

3.3 HyperNets task loss model parameters tasks full Lobj

LM | | | semi LRL
obj

MAML | | | | Lobj

Neural Potts pseudo-likelihood | protein sequences full Lobj

3.4 NeuralFP FP residual FP iterates FP contexts semi LΣ
obj

HyperAA | | | | LΣ
reg

NeuralSCS CP residual CP iterates CP parameters | LΣ
obj

HyperDEQ DEQ residual DEQ iterates DEQ parameters | LΣ
reg

NeuralNMF NMF residual factorizations input matrices | LΣ
obj

RLQP RRLQP QP iterates QP parameters | LRL
obj

3.5 Meta OT dual OT cost optimal couplings input measures full Lobj

CondOT dual OT cost optimal couplings contextual information | Lobj

AmorConj c-transform obj supp(α) supp(β) | Lobj

A-SW max-sliced dist slices Θ mini-batches | Lobj

3.6 BC/IL −Q-value controls state space full Lreg

(D)DPG/TD3 | | | | Lobj

PILCO | | | | Lobj

POPLIN | | | full or semi Lreg

DCEM | | | semi Lreg

IAPO | | | | Lobj

SVG DQ or −EQ control dists | full Lobj

SAC | | | | Lobj

GPS | | | | LKL

3.1.1 The variational autoencoder (VAE) by Kingma and Welling
[2014]

A VAE models a density p(x) over a high-dimensional space, for example images,
text, or videos, given samples x ∼ p(x). They introduce a lower-dimensional latent
space with a known distribution p(z), such as an isotropic Gaussian, designed to
capture hidden structure present in p(x). VAEs parameterize a likelihood model
p(x;ϕ) with ϕ. Optimizing the log-likelihood log p(x;ϕ) = log

∫
z p(x | z;ϕ)p(z)dz

with this latent structure is typically intractable because of the integral over the latent
space. Variational methods overcome this by introducing a tractable lower-bound
called the evidence lower bound (ELBO) defined by

log p(x;ϕ) ≥ ELBOϕ(λ;x) := E
q(z;λ)

[log p(x | z;ϕ)]−DKL(q(z;λ) || p(z)), (3.1)

where q(z;λ) is a variational distribution over the latent space parameterized by λ
and p(z) is the prior. Given a sample x ∼ p(x) and fixed encoder’s parameters ϕ the
best lower bound λ? satisfying

log p(x) ≥ ELBOϕ(λ?;x) ≥ ELBOϕ(λ;x) (3.2)
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for all λ can be obtained by solving the optimization problem

λ?ϕ(x) ∈ arg max
λ

ELBO(λ;x, ϕ). (3.3)

Gaussians are a common choice of the variational distribution q(z;λ) is in Kingma
and Welling [2014], but may cause a loose inequality in eq. (3.2). Rezende and
Mohamed [2015], Cremer et al. [2018] explore more expressive distributions to help
make ELBO(λ?;x, ϕ) equal to log p(x).

Amortized VI (AVI) methods predict the solution to eq. (3.3) while stochastic
variational methods [Hoffman et al., 2013] explicitly solve it. AVI methods learn a
model λ̂θ : X → Λ with parameters θ, which is usually a feedforward neural network,
to predict the maximum value of the ELBO by optimizing the objective-based loss

arg max
θ

E
x∼p(x)

ELBOϕ(λ̂θ(x);x) (3.4)

where the expectation is usually approximated with a Monte Carlo estimate from
the samples.

Summary. This standard AVI formulation is therefore an amortized optimization
method AVAE := (−ELBO,Λ,X , p(x), λ̂θ,Lobj) over the (negated) ELBO where the
domain of the optimization problem is the variational parameter space Λ, the context
space X is the sample space for the generative model, the samples are given from
p(x), λ̂θ : X → Λ is the fully-amortized model optimized with the gradient-based loss
Lobj over −ELBO.

Extensions. Analyzing and extending the amortization components has been
a key development in AVI methods. Cremer et al. [2018] investigate suboptimality
in these models and categorize it as coming from an amortization gap where the
amortized model for eq. (3.4) does not properly solve it, or the approximation gap
where the variational posterior is incapable of approximating the true distribution.
Semi-amortization plays a crucial role in addressing the amortization gap and is
explored in the semi-amortized VAE (SAVAE) by Kim et al. [2018] and iterative
VAE (IVAE) by Marino et al. [2018b]. AVI methods are also used in hierarchical
[Sønderby et al., 2016] and sequential settings [Chung et al., 2015].

The full VAE loss. This section has left the parameterization ϕ of the model
p(x;ϕ) fixed to allow us to scope into the amortized optimization component in
isolation. For completeness, the final step necessary to train a VAE is to optimize
the ELBO over the training data of both p(x;ϕ) along with the λ̂θ(x) with

arg max
ϕ,θ

E
x∼p(x)

ELBOϕ(λ̂θ(x);x). (3.5)

3.2 Sparse coding

Another early appearance of amortized optimization has been in sparse coding
[Kavukcuoglu et al., 2010, Gregor and LeCun, 2010]. The connection to the broader
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amortized optimization and learning to optimize work has also been made by, e.g.,
Chen et al. [2021a]. Sparse coding methods seek to reconstruct an input from a sparse
linear combination of bases [Olshausen and Field, 1996, Chen et al., 2001, Donoho
and Elad, 2003]. Given a dictionary Wd of the basis vectors and an input x ∈ X , the
sparse code y? is typically recovered by solving the optimization problem

y?(x) ∈ arg min
y

E(y;x) E(y;x) :=
1

2
‖x−Wdy‖22 + α‖y‖1, (3.6)

where E is the regularized reconstruction energy and α ∈ R+ is a coefficient of the `1
term. Eq. (3.6) is traditionally solved with the Iterative Shrinkage and Thresholding
Algorithm (ISTA) such as in Daubechies et al. [2004]. Fast ISTA (FISTA) by Beck
and Teboulle [2009] improves ISTA even more by adding a momentum term. The
core update of ISTA methods is

yt+1 := hβ
(
Wex+ Syt

)
(3.7)

We := (1/L)W>d is the filter matrix, L is an upper bound on the largest eigen-
value of W T

d Wd, S := I − WeWd is the mutual inhibition matrix, and hβ(v) :=
sign(v) max {0, |v| − β} is the shrinkage function with threshold β, usually set to
α/L. ISTA methods are remarkably fast ways of solving eq. (3.6) and the machine
learning community has explored the use of learning to make ISTA methods even
faster that can be seen as instances of amortized optimization.

3.2.1 Predictive Sparse Decomposition (PSD) by Kavukcuoglu et al.
[2010]

PSD predicts the best sparse code using fully-amortized models of the form

ŷθ(x) := D tanh(Fx), (3.8)

where the parameters are θ = {D,F}. Then, given a distribution over vectors p(x),
PSD regresses the prediction onto the true sparse code y?(x) by solving

arg min
θ

E
x∼p(x)

‖ŷθ(x)− y?(x)‖22, (3.9)

where instead of solving for y?(x) directly with (F)ISTA, they also iteratively approx-
imate it while iteratively learning the model.

Summary. APSD := (E,Y,X , p(x), ŷθ,Lreg)

3.2.2 Learned ISTA (LISTA) by Gregor and LeCun [2010]

LISTA further explores the idea of predicting solutions to sparse coding problems
by proposing a semi-amortized model that integrates the iterative updates of ISTA
into the model. LISTA leverages the soft-thresholding operator h and considers a
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semi-amortized model over the domain Y that starts with x0
θ := 0 and iteratively

updates xt+1
θ := hβ(Fx+Gxtθ). Running these updates for K steps results in a final

prediction ŷ(x) := xKθ parameterized by θ = {F,G, β} that is also optimized with
the regression-based loss to the ground-truth sparse codes as in eq. (3.9).

Summary. ALISTA := (E,Y,X , p(x), ŷθ,Lreg)

3.3 Multi-task learning and meta-learning

Many multi-task learning and meta-learning methods also use amortized optimization
for parameter learning. This section takes a glimpse at this viewpoint, which has
also been observed before in Shu [2017], Gordon et al. [2019].

Background. Multi-task learning [Caruana, 1997, Ruder, 2017] methods use
shared representations and models to learn multiple tasks simultaneously. Meta-
learning methods [Ward, 1937, Harlow, 1949, Schmidhuber, 1987, Kehoe, 1988,
Schmidhuber, 1995, Thrun and Pratt, 1998, Baxter, 1998, Hochreiter et al., 2001,
Vilalta and Drissi, 2002, Lv et al., 2017, Li and Malik, 2017a,b, Lake et al., 2017,
Weng, 2018, Hospedales et al., 2020] seek to learn how to learn and are often used in
multi-task settings. Multi-task and meta-learning settings typically define learning
tasks T ∼ p(T ) that each consist of a classification or regression task. The tasks
could be different hyper-parameters of a model, different datasets that the model
is trained on, or in some cases different samples from the same dataset. Each task
has an associated task loss LT (ŷθ) that measures how well a parameterized model ŷθ
performs on it. There is typically a distribution over tasks p(T ) and the goal is to
find a model that best-optimizes the expectation over task losses by solving

arg min
θ

E
T ∼p(T )

LT (ŷθ). (3.10)

The motivation here is that there is likely shared structure and information present
between the tasks that learning methods can leverage. The next section goes through
methods that solve eq. (3.10) using objective-based amortized optimization methods.

3.3.1 Fully-amortized hyper networks (HyperNets)

HyperNEAT [Stanley et al., 2009] and Hypernetworks [Ha et al., 2017] predict the
optimal parameters to a network given a data sample and can be seen as fully-
amortized optimization. The tasks here T = (x, y?(x)) usually consist of a sample
from some data distribution x ∼ p(x) along with a target y?(x) for classification or
regression, inducing a task distribution p(T ). HyperNets propose to predict y?(x) with
a prediction model ŷϕ(x) parameterized by ϕ. Instead of learning this model directly,
they propose to use an amortization model ϕ̂θ(x) ∈ Φ to predict the parameters to
the model ŷϕ̂θ(x)(x) =: ŷθ(x) that best-optimize the task loss LT (ŷθ(x), y?(x)) for
each data point. The amortization model is usually a black-box neural network that
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is fully-amortized and predicts the parameters from only the task’s data without
accessing the task loss. The models are learned with an objective-based loss

arg min
θ

E
T ∼p(T )

LT (ŷθ(x), y?(x)). (3.11)

Summary. AHyperNet := (LT ,Φ, T , p(T ), ϕ̂θ,Lobj)

3.3.2 Learning to optimize (LM) by Li and Malik [2017a]

Li and Malik [2017a] consider three multi-task settings for logistic regression, robust
linear regression, and neural network classification where the different tasks are
different datasets the models are trained on. Given a dataset T = {xi, yi}Ni=1 to train
on, they again search for the parameters ϕ̂θ(T ) ∈ Φ of another prediction model
ŷϕ̂θ(T )(x) =: ŷθ(x) that performs well on a loss LT (ŷθ) that measures how well the
model fits to the dataset. In contrast to HyperNets, LM consider each task to be an
entire dataset rather than just a single data point, and LM considers semi-amortized
models that are able to iteratively refine the prediction. They use a semi-amortized
model that starts with an initial iterate ϕ̂0

θ(T ) and then predicts the next iterate
with

ϕ̂t+1
θ = gθ({ϕi,LT (ϕ̂i),∇ϕLT (ϕ̂i),∆i}), (3.12)

where the update model gθ takes the last i ∈ {t − H, . . . , t} ∩ Z≥0 iterates as the
input, along with the objective, gradient, and objective improvement as auxiliary
information. This model generalizes methods such as gradient descent that would
just use the previous iterate and gradient. The experiments use H = 25 and typically
run the model updates for 100 iterations. They want to learn the model with an
objective-based loss here and take the viewpoint that it can be seen as an MDP that
can be solved with the guided policy search [Levine and Koltun, 2013] method for
reinforcement learning. Li and Malik [2017b] further develops these ideas for learning
to optimize neural network parameters.

Summary. ALM := (LT ,Φ, T , p(T ), ϕ̂θ,LRL
obj)

3.3.3 Model-agnostic meta-learning (MAML) by Finn et al. [2017]

As discussed in section 2.1.2, MAML can be seen as a semi-amortized optimization
method. They also seek to predict the parameters ϕ̂θ(T ) ∈ Φ of prediction model
ŷϕ̂θ(T )(x) =: ŷθ(x) in a multi-task setting with tasks T ∼ p(T ). They propose to
only learn to predict an initial iterate ϕ̂0

θ(T ) = θ and then update the next iterates
with gradient-based updates such as

ϕ̂t+1
θ = ϕtθ − α∇ϕLT (ϕ̂tθ), (3.13)

where LT (ϕ) is the task loss obtained by the model ŷϕ parameterized by ϕ. MAML
optimizes this model with an objective-based loss through the final prediction.

Summary. AMAML := (LT ,Φ, T , p(T ), ϕ̂θ,Lobj)
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3.3.4 Protein MSA modeling with the Neural Potts Model

Sercu et al. [2021] proposes a fully-amortized solution to fit a Potts model to a
protein’s multiple sequence alignment (MSA). Each task consists of a finite MSA
M := {xi} and they use a fully-amortized model ϕθ(M) ∈ Φ to predict the optimal
parameters of a Potts model p(M;ϕ) fit to the data. The model ϕθ is a large
attention-based sequence model that takes the MSA as the input. Learning is done
with the objective-based loss

arg min
θ

E
M∼p(M)

LPL(ϕθ(M)) (3.14)

to optimize the pseudolikelihood LPL of the Potts model.
Sercu et al. [2021] surprisingly observes that amortization results in better solutions

than the classical method for the Potts model parameter optimization with a finite
MSA. They refer to this as the inductive gain and attribute it to the fact that they
only have a finite MSA from each protein and thus amortizing effectively shares
information between proteins

Summary. ANeuralPotts = (LPL,Φ,M, p(M), ϕ̂θ,Lobj)

3.3.5 Other relevant multi-task and meta-learning work

The literature of multi-task learning and meta-learning methods is immense and
often build on the preceding concepts. The following selectively summarizes a few
other relevant ideas:

1. Ravi and Larochelle [2017] also propose optimization-based semi-amortized
models that use a recurrent neural network to predict parameter updates for
meta-learning in multi-task learning settings.

2. Latent embedding optimization (LEO) by Rusu et al. [2019] and fast context
adaptation (CAVIA) by Zintgraf et al. [2019] perform semi-amortization over a
learned latent space. This uses the powerful insight that semi-amortizing over
the low-level parameters ϕ had a lot of redundancies and may not be able to
easily capture task-specific variations that can be learned in a latent space.

3. Andrychowicz et al. [2016] consider semi-amortized models based on recurrent
neural networks and show applications to amortizing quadratic optimization,
neural networks for MNIST and CIFAR-10 classification, and neural style
transfer.

4. Chen et al. [2017] consider RNN-based semi-amortized models in settings
where the gradient of the objective is not used as part of the model and show
applications in Bayesian optimization, Gaussian process bandits, control, global
optimization, and hyper-parameter tuning.
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5. Wichrowska et al. [2017] continue studying RNN-based semi-amortized models
for classification. They scale to Inception V3 [Szegedy et al., 2016] and ResNet
V2 [He et al., 2016] architectures and scale to classification tasks on ImageNet
[Russakovsky et al., 2015], presenting many insightful ablations along the way.

6. Franceschi et al. [2018] further analyze the bilevel optimization aspects of
gradient-based meta-learning and present new theoretical convergence results
and empirical demonstrations.

7. MetaOptNet [Lee et al., 2019b] and R2D2 [Bertinetto et al., 2019] consider
semi-amortized models based on differentiable optimization and propose to use
differentiable SVMs and ridge regression as part of the amortization model.

8. Almost No Inner Loop by Raghu et al. [2020] study what parameters should
be adapted within the amortization model and demonstrate settings where
adapting only the final layer performs well, indicating that the shared model
between tasks works well because it is learning shared features for all the tasks
to use.

9. Wang et al. [2021] further connect gradient-based meta learning methods to
multi-task learning methods.

10. HyperTransformer [Zhmoginov et al., 2022] study amortized models based on
transformers [Vaswani et al., 2017] and show applications to few-shot classifica-
tion.

11. Metz et al. [2021] study and emphasize the difficulty of optimizing objective-
based loss with just gradient information due to natural chaotic-based failure
models of the amortization model. They focus on iterated dynamical systems
and study where chaotic losses arise in physics and meta-learning. They identify
the spectrum of the Jacobian as one source of these issues and give suggestions
for remedying these undesirable behaviors to have learning systems that are
well-behaved and stable.

12. Metz et al. [2019b] learn optimizers for robust classification tasks. They find
that optimizers can uncover ways of quickly finding robust parameterizations
that generalize to settings beyond the corruptions used during training.

13. Metz et al. [2019a] study semi-amortized optimization of convolutional ar-
chitectures and identify and focus on key issues of 1) biased gradients from
truncated BPTT and 2) exploding gradient norms from unrolling for many
timesteps. They overcome both of these issues by optimizing the smoothed loss
in eq. (2.14) with a variant of the gradient estimator proposed in Parmas et al.
[2018] for reinforcement learning. This estimator re-weights reparameterization
gradients and likelihood ratio gradients using inverse variance weighting [Fleiss,
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1993]. Parmas and Sugiyama [2021] further unify the likelihood ratio and
reparameterization gradients by connecting them with the divergence theorem
which enables them to create a generalized estimator combining them.

14. Merchant et al. [2021] further build on the advancements of Metz et al. [2019a]
for semi-amortized atomic structural optimization, which is a setting rife with
poor local minima. Their models learn to “hop” out of these minima and are
able to generalize more efficiently to new elements or atomic compositions.

15. Zhang et al. [2019a], Knyazev et al. [2021] explore the fully-amortized HyperNets
for architecture search for predicting parameters on CIFAR-10 and ImageNet.
These models take a model’s compute graph as the context and use a graph
neural network to predict the optimal parameters of that architecture on a task.

16. Huang et al. [2022] show how to use information from existing classes of
“teacher” optimizers to learn a new “student” one that can result in even better
performance, which they refer to as optimizer amalgamation. This is done by
optimizing for the objective-based loss with additional regression-based terms
that encourage the learned optimizer to match one or more trajectories of the
existing optimizers.

17. Harrison et al. [2022] look at the stability of learned optimization methods
from a dynamical systems perspective and propose a number of modifications
to improve the stability and generalization.

18. Metz et al. [2022] continue scaling a semi-amortized learned optimizer that
predicts parameter updates for training machine learning models with millions
of parameters. They train the optimizer for four thousand ATP-months and
show that it outperforms many standard parameter optimization methods on
standard learning tasks. One standout feature is that their amortization model
does not assume a fixed-size context or prediction space but instead is able to
predict updates for models with varying numbers of parameters. The key insight
to supporting a variable number of parameters is to decompose the amortization
model across parameter groups using an LSTM and hyper-network.

3.4 Fixed-point computations and convex optimization

Definition 5 A fixed point y? ∈ Rn of a map g : Rn → Rn is where g(y?) = y?.

Continuous fixed-point problems as in definition 5 and illustrated in fig. 3.1 are
ubiquitous in engineering and science and amortizing their solutions is an activate
research area. Let R(y;x) := g(y;x) − y be the fixed-point residual with squared
norm N (y;x) := ‖R(y;x)‖22. Fixed-point computations are connected to continuous
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Figure 3.1: Illustration of the fixed points of a map f(x). The map is shown in black
and the fixed points (red stars) are where the map is equal to the identity (shown in
grey), i.e. f(x) = x.

unconstrained optimization as any fixed-point problem can be transformed into
eq. (1.1) by optimizing the residual norms with:

y?(x) ∈ arg min
y
N (y;x), (3.15)

and conversely eq. (1.1) can be transformed into a fixed-point problem via first-order
optimality to find the fixed-point of ∇f(y;x)−y = 0. Thus methods that to amortize
the solutions to eq. (1.1) can help amortize the solutions to fixed-point computations
definition 5.

Solving and accelerating fixed-point computations. Fixed points can be
found with fixed-point iterations yt+1 := f(yt) or by using Newton’s root-finding
method on the fixed-point residuals with

yt+1 := yt −
(
Dyg(yt)

)−1
g(yt). (3.16)

These methods can also be accelerated by using a sequence of past iterates instead of
just the most recent iterate. Anderson acceleration methods [Anderson, 1965, Walker
and Ni, 2011, Zhang et al., 2020] are standard and generate updates that combine
the previous M + 1 iterates {yi}ti=t−M with an update of the form

AA_Updatet({yi}, α, β) := β

M∑
i=0

αig(yt−M+i) + (1− β)

M∑
i=0

M∑
i=0

αiy
t−M+i, (3.17)

where β ∈ [0, 1] is a coefficient that controls whether the iterates or application of g
on the iterates should be used, and α ∈ RM+1 where 1>α = 1 are the coefficients
used to combine the previous iterates. A basic AA method sets β = 1 and solves

α? := arg min
α

‖R(yi)α‖2 subject to 1>α = 1 (3.18)

for i ∈ {t −M, t} with least squares. Other methods such as Broyden’s method
[Broyden, 1965] can also accelerate fixed-point computations by turning them into
root-finding problems.
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3.4.1 Neural fixed-point acceleration (NeuralFP) and conic opti-
mization with the splitting cone solver (NeuralSCS)

Neural fixed-point acceleration [Venkataraman and Amos, 2021] proposes a semi-
amortized method for computing fixed-points and use it for convex cone programming.
Representing a latent state at time t with ĥt, they parameterize the initial iterate(
ŷ0, ĥ0

)
= initθ(x) with an initialization model initθ and perform the fixed-point

computations
x̃t+1 = f(ŷt;x)(

ŷt+1, ĥh+1
)

= accθ(ŷ
t, x̃t+1, ĥt)

(3.19)

using an acceleration model accθ that is typically a recurrent model that predicts the
next iterate given the past sequence of iterates. Venkataraman and Amos [2021, Prop.
1] discuss how this model captures standard AA as an instance by setting the models
equal to the standard update that doesn’t use learning. They learn this model to
amortize eq. (3.15) over a distribution of contexts p(x) with an objective-based loss
that solves

arg min
θ

E
x∼p(x)

K∑
t=0

N (ŷtθ(x)), (3.20)

where the fixed-point residual norm N is scaled by a context-specific normalization
factor.

NeuralSCS [Venkataraman and Amos, 2021] applies this neural fixed-point accel-
eration to solve constrained convex cone programs solved by the splitting cone solver
(SCS) [O’donoghue et al., 2016] of the form

minimize cTx

s. t. Ax+ s = b

(x, s) ∈ Rn ×K

maximize −bT y
s. t. −AT y + r = c

(r, y) ∈ {0}n ×K∗
(3.21)

where x ∈ Rn is the primal variable, s ∈ Rm is the primal slack variable, y ∈ Rm is
the dual variable, and r ∈ Rn is the dual residual. The set K ∈ Rm is a non-empty
convex cone with dual cone K∗ ∈ Rm. where x ∈ Rn is the primal variable, s ∈ Rm is
the primal slack variable, y ∈ Rm is the dual variable, and r ∈ Rn is the dual residual.
The set K ∈ Rm is a non-empty convex cone. SCS uses the homogeneous self-dual
embedding to view eq. (3.21) as a fixed-point computation over Z = Rn×m×1 with a
scalar-valued scaling factor as the last component.

NeuralSCS proposes a semi-amortized model to predict the solution to the fixed
point of the self-dual embedding that solves eq. (3.21). Their semi-amortized model
ẑθ(φ) takes a context φ as the input and outputs a solution to the self-dual embedding
by composing the SCS iterations f with the learned fixed-point acceleration modules
(initθ, accθ).

Summary. ANeuralSCS :=
(
N ,Z, φ, p(φ), ẑθ,LΣ

obj

)
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3.4.2 Neural acceleration for matrix factorization (NeuralNMF)

Sjölund and Bånkestad [2022] use semi-amortized neural acceleration to find low-rank
factorizations of an input matrix V of the form:

V ≈WH>, W ≥ 0, H ≥ 0, (3.22)

where the basis matrix W ∈ Rm×r and mixture matrix H ∈ Rn×r are elementwise
non-negative matrices of rank r ≤ min(m,n). Let Z = (W,H). Taking the norm of
the residual of eq. (3.22) leads to the optimization formulation

Z?(V ) ∈ arg min
W,H≥0

NNMF(W,H;V ) NNMF(W,H;V ) :=
1

2
‖WH> − V ‖2F , (3.23)

which can be solved with ADMM [Boyd et al., 2011] using alternating steps on H and
V as done in Huang et al. [2016]. Given a distribution over input matrices V , Sjölund
and Bånkestad [2022], augment the ADMM approach from Huang et al. [2016] with
transformer-based initialization and acceleration modules. This semi-amortized model
is learned with an objective-based loss and unrolls through the ADMM iterations for
learning.

Summary. ANeuralNMF :=
(
NNMF,Z, V, p(V ), Ẑθ,LΣ

obj

)
3.4.3 HyperAnderson acceleration and deep equilibrium models

(HyperDEQ)

Bai et al. [2022] similarly proposes a semi-amortized method for computing fixed-
points and use it to improve Deep equilibrium (DEQ) models [Bai et al., 2019,
2020, Gurumurthy et al., 2021]. Their learned variant of AA, called HyperAnderson
acceleration uses models that predict the initial point ŷ0

θ(x) and coefficients αθ(x;G)
and βθ(x;G) and result in iterations of the form

Gt+1
θ , ŷt+1

θ := AA_Update({ŷtθ}, αtθ(x;Gtθ), β
t
θ(x,G

t
θ)), (3.24)

where Gt := R(xt) is the fixed-point residual at iteration t and the model’s final
prediction is ŷθ(x) := xK . Learning is performed by optimizing a summed regression-
based loss that encourages the fixed-point iterations to converge as fast as possible
by optimizing

arg min
θ
LHyperAA(ŷθ) LHyperAA(ŷθ) := E

x∼p(x)

K∑
t=0

wt‖y? − ŷtθ‖22 + Ω(αt), (3.25)

where Ω is a regularizer on αt that is annealed to equal zero by the end of training
and the weights (wt) are set to be monotonically increasing to penalize the later
iterations for not reaching the fixed point.
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Deep equilibrium (DEQ) models [Bai et al., 2019, 2020] investigate implicit layers
that parameterize and solve fixed-point computations and have been a flagship for
“infinite depth” vision and language models. Given an input x ∈ X , such as an
image or language sequence to process, a DEQ model finds a fixed point y?(x) of
gϕ(y;x) to make a prediction for a task, such as regression or classification. This
fixed-point problem can again be interpreted as finding the minimum norm of the
residual N (y;x) := ||y − gϕ(y;x)||22 as

y?(x) ∈ arg min
x

N (y;x). (3.26)

Bai et al. [2022] propose to use the HyperAnderson Acceleration model and loss
to semi-amortize DEQs by learning the initial iterate and AA update coefficients,
resulting in a setup of the form AHyperDEQ := (N ,Y,X , p(x), ŷθ,LHyperAA).

3.4.4 Comparing NeuralFP and HyperAA

Neural fixed-point acceleration (NeuralFP) by Venkataraman and Amos [2021] and
HyperAnderson Acceleration (HyperAA) by Bai et al. [2022] can both generally
be applied to semi-amortize fixed-point computations by parameterizing updates
based on Anderson Acceleration, even though they are instantiated and evaluated on
very different classes of fixed-point computations. Here is a brief comparison of the
methods:

Neural fixed-point acceleration

• Learn the initial iterate
• Learn the entire update
• Use an objective-based loss

HyperAnderson Acceleration

• Learn the initial iterate
• Learn α, β for the update
• Use an regression-based loss

3.4.5 RLQP by Ichnowski et al. [2021]

RLQP [Ichnowski et al., 2021] amortizes solutions to constrained convex quadratic
optimization problems of the form

x?(φ) ∈ arg min
x

1

2
x>Px+ q>x subject to l ≤ Ax ≤ u, (3.27)

where x ∈ Rn is the domain of the optimization problem and φ = {P, q, l, A, u} is the
context or parameterization (from a larger space φ ∈ Φ) of the optimization problem
with P � 0 (symmetric positive semi-definite). They build on the OSQP solver
[Stellato et al., 2018] for these optimization problems, which is based on operator
splitting. Without over-relaxation, the core of OSQP uses updates that first solve
the system [

P + σI A>

A −diag(ρt)−1

] [
xt+1

vt+1

]
=

[
σxt − q

zt − diag(ρt)−1yt

]
(3.28)
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and then updates
z̃t+1 := zt + diag(ρt)−1(vt+1 − yt)
zt+1 := Π

(
z̃t+1 + diag(ρt)−1yt

)
yt+1 := xt + diag(ρ)

(
z̃t+1 − zt+ 1

)
,

(3.29)

where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, σ is a
regularization parameter, and ρt ∈ Rm+ is a step-size parameter. Combining all of the
variables into a state s := (y, λ, z̃, z) living in s ∈ S, the update can be written as
st+1 := OSQP_UPDATE(st, ρt).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the
iterates {st, ρt}. The propose to only parameterize and learn to predict the step size
ρt+1 := πθ(s

t), with a neural network amortization model πθ. They model the process
of predicting the optimal ρ as an MDP and define a reward RRLQP(s, ρ) that is −1 if
the QP is not solved (based on thresholds of the primal and dual residuals) and 0
otherwise, i.e. each episode rolls out the OSQP iterations with a policy predicting
the optimal step size. They solve this MDP with TD3 by Fujimoto et al. [2018] to
find the parameters θ.

Summary. ARLQP := (RRLQP,S × Rm+ ,Φ, p(φ), πθ,LRL
obj)

3.5 Optimal transport

Preliminaries. Optimal transport methods seek to optimally move mass between
measures. Standard references and introductions include Villani [2009], Santambrogio
[2015], Peyré et al. [2019], and this section concisely reviews key concepts. Given two
measures (α, β) supported on spaces (X ,Y), the Kantorovich problem (e.g. in Peyré
et al. [2019, Remark 2.13]) solves

π?(α, β, c) ∈ arg inf
π∈U(α,β)

∫
X×Y

c(x, y)dπ(x, y), (3.30)

where the coupling π is joint distributions over the product of the measures, U is the
set of admissible couplings, c is a cost. The dual of eq. (3.30), e.g. in Peyré et al.
[2019, Eq. 2.31], can be represented by

f?(α, β, c) ∈ arg sup
f

J(f) (3.31)

where the dual objective is defined by

J(f) :=

∫
X
f(x)dα(x) +

∫
Y
f c(y)dβ(y) (3.32)

over continuous dual potential functions f : X → R where

f c(y) := inf
x
c(x, y)− f(x) (3.33)
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is the c-transform operation. In Euclidean spaces with the negative inner product
cost [Villani, 2009, eq. 5.12], f is a convex function and the c-transform operation f c

in eq. (3.33) is the standard Legendre-Fenchel transform, also known as the convex
conjugate. When the measures α, β are discrete, a coupling π in the primal (eq. (3.30))
can be represented as a matrix, and the potential f in the dual (eq. (3.31)) can
be represented as a finite-dimensional vector and solved with a linear programming
formulation or Sinkhorn iterations [Cuturi, 2013] in the entropic setting.

The following sections overview methods that amortize these optimization prob-
lems arising for optimal transport. Section 3.5.1 discusses methods that amortize
multiple OT problems and map from the measures and cost to the optimal coupling
in eq. (3.30) or duals in eq. (3.31). Section 3.5.2 discusses methods that amortize the
c-transform operation in eq. (3.33) that arises as a repeatedly-solved subproblem when
solving a single OT problem. Section 3.5.3 overviews amortizing a slicing optimization
problem that arises when projecting measures down to a single dimension for more
computationally efficient solves.

Remark 5 The Wasserstein GAN (WGAN) by Arjovsky et al. [2017] is
not amortized optimization. While the continuous Wasserstein-1 potentials are
estimated using samples from the generated and real data distributions, this is not
performing amortized optimization because these potentials only optimize a single
optimization transport problem between the generated and real data distributions.
Changing the generated distribution indeed changes the optimal transport problem,
but it’s not important to solve the optimal transport problem between older generated
distributions. The WGAN potentials during training can better be interpreted as
warm-starting new optimal transport problems given by the generator’s distribution.

3.5.1 Amortizing solutions to optimal transport problems

Many computational OT methods focus on computing the solution mapping from
the measures and cost to the optimal coupling (eq. (3.30)) or duals (eq. (3.31)).
When repeatedly solving optimal transport problems, this solution mapping is an
optimization problem that can be amortized. These methods for predicting the
optimal duals of OT problems are also related to Dinitz et al. [2021], Khodak et al.
[2022], which predicts the dual solutions to matching problems. They are also related
to other heuristic-based initializations for OT problems that do not use amortization
such as Thornton and Cuturi [2022].

Meta Optimal Transport by Amos et al. [2022]

Meta OT proposes to use a hypernetwork for this amortization. Here, they consider
settings where there is a meta-distribution over the measures to couple and costs
to use, i.e. p(α, β, c) and map directly from representations of the input measures
and cost to the optimal dual variables, i.e. fθ(α, β, c). They instantiate this idea for
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optimal transport between discrete and continuous measures where the prediction
fθ warm-starts standard dual-based solvers and can then be mapped to the optimal
primal coupling π?.

Summary. AMetaOT := (g,F ,P(X × Y) × C,D,Lobj), where g is the dual
objective, F represents the space of dual potentials, i.e. f ∈ F , P(X × Y) is a space
of distributions over X × Y that α, β are sampled from, C is a representation of the
space of costs, and D is a meta-distribution over α, β, c.

Conditional Optimal Transport by Bunne et al. [2022]

CondOT parameterizes a partially input-convex neural network (PICNN) [Amos
et al., 2017] to condition the amortized OT solution on contextual information. They
focus primarily on the application of optimal transport in predicting the effect of
drugs on cellular populations for patients. One of their key insights is to observe that
OT problems need to be repeatedly solved in this setting for different combinations
of drugs and patients. Instead of conditioning the amortization model directly on
the input measures, they condition it using auxiliary information about the patient
and drug. This enables them to obtain an OT coupling and prediction of the drug
effect even without knowing the target measure! Parameterizing their amortization
model as a PICNN has connections to conditional neural processes [Garnelo et al.,
2018] and is especially useful for conditioning the high-dimensional potentials on the
contextual information.

Summary. ACondOT := (g,F ,Z,D,Lobj), where g is the dual objective, F
represents the space of dual potentials, i.e. f ∈ F , Z is contextual information for
the OT problems, and D is a meta-distribution over the contexts.

3.5.2 Amortized convex conjugates (AmorConj) and c-transforms

Most methods for computing the dual in eq. (3.31) between a single pair of measures
needs to repeatedly compute the c-transform in eq. (3.33) to evaluate the objective
value J in eq. (3.32). This transform is typically not a computational bottleneck in
discrete settings when the measures have a few thousand points, e.g. in Sinkhorn
solvers such as [Cuturi, 2013]. Otherwise in some continuous settings, the conjugate
operation may be computationally challenging because it is an optimization problem
that needs to be repeatedly solved from scratch to obtain a single Monte-Carlo
estimate of

∫
Y f

c(y)dβ(y) to evaluate J in eq. (3.32) once.
Scoping to computing the optimal transport maps between Euclidean measures

with the negative inner product cost [Villani, 2009, eq. 5.12], f is a convex function
and the c-transform operation f c in eq. (3.33) is the standard Legendre-Fenchel
transform. Taghvaei and Jalali [2019] discusses a lot of the theoretical foundations
underpinning Wasserstein-2 optimal transport and experimentally use a numerical
method that solves each conjugate operation from scratch. To alleviate the com-
putational bottleneck of this, many methods using similar theoretical foundations

47



amortize this conjugate operation [Dam et al., 2019, Makkuva et al., 2020, Korotin
et al., 2021, Amos, 2023]. The simplest instantiation of this amortization uses a
fully-amortized model x̂θ(y) trained with objective-based learning of the conjugate
objective. Amos [2023] further discusses the modeling and loss choices in this setting
and also discusses the idea of fine-tuning the amortized prediction with a numerical
solver to ensure the dual objective is accurately estimated.

Summary. AAmorConj := (c(·, y)− f(·),X ,Y, β, x̂θ,Lobj).

Remark 6 Separate from amortizing the convex conjugate for optimal transport,
Garcia et al. [2023] proposes to amortize the solution to a convex conjugation problem
arising when computing the natural gradient. Also related is Bae et al. [2022], which
amortizes the solution to a proximal optimization problem for updating parameters
and can also amortize the solution to the natural gradient update (but doesn’t explicitly
go through the convex conjugate perspective).

3.5.3 Amortized Sliced Wasserstein (A-SW) by Nguyen and Ho
[2022]

Computing the Wasserstein distance between measures is computationally challenging.
The max-sliced Wasserstein distance [Deshpande et al., 2019] approximates W (α, β)
between measures with X = Y = Rd by linearly projecting (or slicing) the atoms of
the measures down into 1-dimensional measures where the 1-Wasserstein distance
has a closed-form solution. Max-sliced Wasserstein distances search over slices on the
d-dimensional sphere Sd−1 with

Max-SW(α, β) := max
θ∈Sd−1

W (θ;α, β) W (θ;α, β) := W (θ#α, θ#β), (3.34)

where θ#α is the push-forward measure of µ through Tθ(x) = θ>x. Nguyen and Ho
[2022] proposal to amortize eq. (3.34) over mini-batches D of size m sampled from
each measure.

Summary. ASW := (W (θ),Sd−1,Xm × Ym,D,Lobj).

3.6 Policy learning for control and reinforcement learn-
ing

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 1.2 and 3.2.

Distinction. This section is on amortization for reinforcement learning and
control and not the opposite direction of using reinforcement learning for amortization
that section 2.2.3 discusses for parameter learning.
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Q(x, u)

Deterministic Policy
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πθ(x)Q(x, u)

Stochastic Policy

Figure 3.2: Many policy learning methods amortize optimization problem over the
Q-values. Given a fixed input state x, the policy πθ(x) predicts the maximum value
π?(x). A stochastic policy predicts a distribution that minimizes some probabilistic
distance to the Q-distribution, such as the expected value or KL.

3.6.1 Background

Preliminaries in Markov decision processes.

Definition 6 A Markov decision process (MDP) can be represented withM :=
(X ,U , p, r), where X are the continuous states, U are the continuous actions or
controls, p(x′ | x, u) is the transition dynamics (also referred to as the system,
model, or world model), which is a Markov kernel providing the probability
the next state x′ given the current state-action (x, u), and r : X × U is the reward
function.

This section scopes to methods that control a fully-observable and continuous MDP.
A policy π that controls the MDP provides a distribution over actions to sample from
for every state x and induces state and state-control marginals ρπt (·) for each time
step t, which can be constrained to start from an initial state x0 as ρt(·|x). In the
non-discounted, infinite-horizon case an optimal policy π? maximizes the reward over
rollouts of the MDP with

π?(x) ∈ arg max
π

E
x∼pinit(x)

V π(x) V π(x) :=
∑
t

E
(xt,ut)∼ρπt (·|x)

r(xt, ut), (3.35)

where pinit is the initial state distribution and V π(x) is the expected value of a policy
π starting from a state x and that is taken over all possible future rewards induced
by the stochastic policy and dynamics. Given the action-conditional value Q of a
policy defined by

Qπ(x, u) := r(x, u) + E
x′∼p(·|x,u)

[
V π(x′)

]
. (3.36)

In the deterministic setting with a fixed Q function, an optimal policy can be obtained
by solving the max-Q optimization problem

π?(x) ∈ arg max
u

Q(x, u), (3.37)

which is the form that can be used to interpret many control and reinforcement
learning methods as amortized optimization. Instead of amortizing the solution to
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eq. (3.37), methods such as Lowrey et al. [2019], Ryu et al. [2020] explicitly solve the
max-Q problem.

Control of deterministic MDPs with deterministic policies. If all of the
components of the MDP are known, no learning needs to be done to obtain an
optimal policy and standard model predictive control (MPC) methods often work
well. In deterministic MDPs, the dynamics are deterministic and can be written
as x′ := p(x, u). These can be solved with deterministic policies, which turns the
expected value and marginal distributions into Dirac delta distributions that can
be computed with single rollout. An optimal controller from an initial state x1 can
thus be obtained by solving the finite-horizon problem over the (negated) value
approximated with a horizon length of H timesteps with

u?1:H(x1) := arg min
u1:H

∑
t

Ct(xt, ut) subject to xt+1 = p(xt, ut), (3.38)

where the cost C at each time is usually the negated reward Ct(xt, ut) := −r(xt, ut).
The field of optimal control studies methods for solving control optimization problems
of the form eq. (3.38) and standard references include Bertsekas [2000], Kirk [2004],
Camacho and Alba [2013]. Eq. (3.38) induces the policy π(x) := u?1(x) that solves the
MDP if the horizon H is long enough. Using a terminal cost at the end of the horizon
can also give the controller information about how the system will perform beyond the
finite-horizon rollouts being used, for example with CH(xH , uH) := −Qπ(xH , uH).

Reinforcement learning when the dynamics aren’t known. Optimal con-
trol methods work well when the dynamics p of the MDP are known, which is an
unfortunately strong assumption in many settings where the system can only be
sampled from. In these settings reinforcement learning (RL) methods thrive and solve
the MDP given access to only samples from the dynamics. While summarizing all of
the active RL methods is out-of-scope for this tutorial, the core of these methods is
typically on 1) policy evaluation to estimate the value of a policy given only samples
from the system, and 2) policy improvement to improve the policy using the value
estimation.

Extensions in stochastic control. The max-Q problem in eq. (3.37) can be
extended to the stochastic optimization settings section 2.3.1 briefly covered when
the policy π represents a distribution over the action space U . The most common
objectives for stochastic policies are 1) the expected Q-value under the policy with

π?(x) ∈ arg max
π∈Π

EQ(π;x) EQ(π;x) := E
u∼π(·)

Q(x, u), (3.39)

or 2) the KL distance

π?(x) ∈ arg min
π∈Π

DQ(π;x) DQ(π;x) := DKL(π(·) || Q(x, ·)), (3.40)

where Q(x, ·) ∝ exp {Q(x, ·)/α} is a Q-distribution induced by the Q values that is
inversely scaled by α ∈ R+. The policy π is usually represented as the parameters of
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a distribution and thus Π becomes the space of these parameters. In most cases, π
is a Gaussian N (µ,Σ) with a diagonal covariance Σ and thus eqs. (3.39) and (3.40)
can be turned into unconstrained continuous optimization problems of the form
eq. (1.1) by projecting onto the Gaussian parameters. Stochastic value gradient
methods such as Heess et al. [2015] often amortize eq. (3.39), while Levine and Koltun
[2013], Haarnoja et al. [2018] propose methods that build on eq. (3.40), often adding
additional softening and entropic terms to encourage the policy and value estimate
to explore more and not converge too rapidly to a suboptimal minima. One last note
is that the smoothing that the policy performs in eq. (3.39) is nearly identical to the
objective smoothing considered in section 2.2.3, except in that setting the variance of
the smoother remains fixed.

Connecting stochastic control back to deterministic control. This por-
tion shows that taking stochastic policies to be Dirac delta distributions in eqs. (3.39)
and (3.40) recovers the solutions to the deterministic control problem in eq. (3.37).
Taking a larger classes of policy distributions, such as Gaussians, can then be inter-
preted as smoothing the Q values to avoid 1) falling into poor local optima and 2)
unstable regions where only a few actions have high value, but the rest have poor
values. For the following, let δu(·) be Dirac delta distribution with a parameter
u ∈ Rn indicating the location of the mass.

Proposition 1 Let π be a Dirac delta distribution δu(·). Then the solution π?(x)
to the expected Q problem in eq. (3.39) is the solution to the deterministic max-Q
problem in eq. (3.37).

Proof Let Π = Rn be the parameter space of π and transform eq. (3.39) to optimize
over it:

π?(x) ∈ arg max
u∈Rn

E
ũ∼δu(·|x)

Q(x, ũ). (3.41)

The expectation over the Dirac evaluates to

E
ũ∼δu(·|x)

Q(x, ũ) = Q(x, u) (3.42)

and thus eq. (3.41) which is the max-Q operation in eq. (3.37).

Similarly for the for the KL problem in eq. (3.40):

Proposition 2 Let π be a Dirac delta distribution δu(·). Then the solution π?(x) to
the KL problem in eq. (3.40) is the solution to the deterministic max-Q problem in
eq. (3.37).

Proof Let Π = Rn be the parameter space of π and transform eq. (3.40) to optimize
over it:

π?(x) ∈ arg min
u∈Rn

DKL(δu(·) || Q(x, ·)). (3.43)
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Expanding the KL distance then gives the density of Q at the mass:

DKL(δu(·) || Q(x, ·)) = E
ũ∼δu(·)

[log δu(ũ)− logQ(x, ũ)]

= − logQ(x, u) + C

= − log
1

Zx
exp {Q(x, u)}+ C

= −Q(x, u) + logZx + C

(3.44)

where C is a constant that does not depend on u, Q(x, u) is the density at u, and
Zx is the normalization constant for Q(x, ·) that does not depend on u. Putting
eq. (3.44) back into eq. (3.43) and removing the constants that do not depend on u
gives

π?(x) ∈ arg min
u∈Rn

−Q(x, u), (3.45)

which is the max-Q operation in eq. (3.37).

3.6.2 Behavioral cloning and imitation learning

This section starts in the setting where regression-based amortization is done to
predict the solution of a controller that solves eq. (3.35). These settings assume
access to a controller, or samples from it, that uses traditional methods, and not
learning, to solve eq. (3.35) with the true or approximated dynamics. These solutions
are typically available as samples from a policy π?(x) that provides the solution to
the max-Q problem in eq. (3.37) for regression-based amortization. In some settings
these methods also use the optimal finite-horizon sequence u?1:H(x) from a solution
to eq. (3.38).

Imitation learning methods such as behavioral cloning can be seen as a regression-
based amortization that seek to distill, or clone, the expert’s behavior into a learned
model πθ(x) that predicts the expert’s action given the state x [Osa et al., 2018,
Chapter 3]. Deterministic BC methods often regress onto the expert’s state-action
pairs (x, π?(x)) sampled some distribution of states p(x) with

arg min
θ

E
x∼p(x)

‖π?(x)− πθ(x)‖22, (3.46)

where, for example, the model πθ could be a neural network. Thus BC in this
setting performs regression-based amortization ABC := (−Q,U ,X , p(x), πθ,Lreg).
Extensions from this setting could include when 1) the model πθ is a sequence
model that predicts the entire sequence u?1:H , and 2) the MDP or policy is stochastic
and eq. (3.46) turns into an amortized maximum likelihood problem rather than a
regression problem.
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Warning. One crucial difference between behavioral cloning and all of the other
applications considered here is that behavioral cloning does not assume knowledge
of the original objective or cost used by the expert. This section assumes that an
optimal objective exists for the purposes of seeing it as regression-based amortization.
Settings such as inverse control and RL explicitly recover the expert’s objective, but
are beyond the scope of our amortization focus.

3.6.3 The deterministic policy gradient

The policy learning of many model-free actor-critic reinforcement learning algorithms
on continuous spaces can be seen as objective-based amortization of the max-Q
operation in eq. (3.37). This includes the policy improvement step for deterministic
policies as pioneered by the deterministic policy gradient (DPG) by Silver et al. [2014],
deep deterministic policy gradient (DDPG) by Lillicrap et al. [2016], and and twin
delayed DDPG (TD3) by Fujimoto et al. [2018]. All of these methods interweave 1)
policy evaluation to estimate the state-action value Qπθ of the current policy πθ, and
2) policy improvement to find the policy that best-optimizes the max-Q operation
with

arg max
θ

E
x∼p(x)

Q(x, πθ(x)). (3.47)

Summary. The DPG family of methods perform objective-based amortization
of the max-Q optimization problem with

ADPG := (−Q,U ,X , p(x), πθ,Lobj). (3.48)

3.6.4 The stochastic value gradient and soft actor-critic

This amortization viewpoint can be extended to stochastic systems and policies
that use the stochastic value gradient (SVG) and covers a range of model-free to
model-based method depending on how the value is estimated [Byravan et al., 2019,
Hafner et al., 2020, Byravan et al., 2022, Amos et al., 2021]. As observed in Haarnoja
et al. [2018], Amos et al. [2021], the policy update step in the soft actor-critic can also
be seen as a model-free stochastic value gradient with the value estimate regularized
or “softened” with an entropy term. These methods learn policies πθ that amortize
the solution to a stochastic optimization problem, such as eqs. (3.39) and (3.40),
over some distribution of states p(x), such as the stationary state distribution or an
approximation of it with a replay buffer. Taking the expected value under the policy
gives the policy loss

arg max
θ

LSVG,E(πθ) LSVG,E(πθ) := E
x∼p(x)

E
u∼πθ(·|x)

Q(x, u), (3.49)

and taking the minimum KL distance gives the policy loss

arg min
θ
LSVG,KL(πθ) LSVG,KL(πθ) := E

x∼p(x)
DKL(πθ(· | x) || Q(x, ·)), (3.50)

53



which softens the policy and value estimates with an entropy regularization as in
Haarnoja et al. [2018], Amos et al. [2021]. Eq. (3.50) can be seen as an entropy-
regularized value estimate by expanding the KL

∇ E
x∼p(x)

DKL(πθ(· | x) || Q(x, ·)) =

∇ E
x∼p(x)

E
u∼πθ(u|x)

[log(πθ(u | x))−Q(x, u)/α] .
(3.51)

Mohamed et al. [2020] discusses standard ways of optimizing eqs. (3.49) and (3.50),
which could be with a likelihood ratio gradient estimator [Williams, 1992] or via
reparameterization.

Summary. The policy update of methods based on the SVG and SAC perform
objective-based amortization of a stochastic control optimization problem with

ASVG := (DQ or − EQ,P(U),X , p(x), πθ,LKL).

SVG-based amortization for model-free and model-based methods. SVG-
based policy optimization provides a spectrum of model-free to model-based algo-
rithms depending on if the value estimate is approximated in a model-free or model-
based way, e.g. with rollouts of the true or approximate dynamics. Heess et al. [2015]
explored this spectrum and proposed a few key instantiations. Byravan et al. [2019],
Amos et al. [2021] use learned models for the value approximation. The variation
in Hafner et al. [2020] amortizes a model-based approximation using the sum of the
value estimates of a model rollout. Henaff et al. [2019] explore uncertainty-based
regularization to amortized policies learned with value gradients. Xie et al. [2021]
consider hierarchical amortized optimization that combine a higher-level planner
based on CEM with a lower-level fully-amortized policy learned with stochastic value
gradients. Byravan et al. [2022] perform a large-scale evaluation of amortization
methods for control and study algorithmic variations and generalization capabilities,
and consider methods based on the stochastic value gradient and behavioral cloning.

3.6.5 PILCO by Deisenroth and Rasmussen [2011]

PILCO is an early example that uses gradient-based amortization for control. They
assume that only samples from the dynamics model are available, fit a Gaussian
process to them, and then use that to estimate the finite-horizon Q-value of a
deterministic RBF policy πθ. The parameters θ are optimized by taking gradient
steps to find the policy resulting in the maximum value over some distribution of
states p(x), i.e.

arg max
θ

E
x∼p(x)

Q(x, πθ). (3.52)

Summary. APILCO := (−Q,U ,X , p(x), πθ,Lobj)
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3.6.6 Guided policy search (GPS)

The GPS family of methods [Levine and Koltun, 2013, Levine and Abbeel, 2014,
Levine et al., 2016, Montgomery and Levine, 2016] fits an approximate dynamics
model to data and then amortizes the solutions of a controller that solves the MPC
problem in eq. (3.38) within a local region of the data to improve the amortization
model. Given samples of π? from a controller that solves eq. (3.40), GPS methods
typically optimize the KL divergence between the controller and these samples with

arg min
θ

E
x∼p(x)

DKL(πθ(· | x) || π?(· | x)) (3.53)

Summary. AGPS := (DQ,P(U),X , p(x), πθ,LKL)
Related methods such as Sacks and Boots [2022] study learning to optimize

for imitating other controllers and are capable of working in cases when derivative
information isn’t available.

3.6.7 POPLIN by Wang and Ba [2020]

POPLIN explores behavioral cloning methods based on regression and generative
modeling and observes that the parameter space of the amortized model is a reasonable
space to solve new control optimization problems over. The methods discussed here

Distillation and amortization. POPLIN first trains a fully-amortized model
on a dataset of trajectories with behavioral cloning or generative modeling. This
section only consider the BC variant trained with ABC, which provides an optimal
fully-amortized model πθ? .

Control. Next they explore ways of using the learned policy πθ? to solve the
model predictive control optimization problem in eq. (3.38). The POPLIN-A variant
(“A” stands for “action”) uses πθ? to predict an initial control sequence û0

1:H that is
then passed as an input to a controller based on the cross-entropy method over the
action space that uses a learned model on the trajectories. The POPLIN-P variant
(“P” stands for “parameter”) suggests that the parameter space of the fully-amortized
model has learned useful information about the structure of the optimal action
sequences. As an alternative to solving the MPC problem in eq. (3.38) over the action
space, POPLIN-P proposes to use CEM to find a perturbation ω to the optimal
parameters θ? that maximizes the value from a state x with

ω?(x) ∈ arg max
ω

Q(x, u;πθ?+ω). (3.54)

Thus the action produced by πθ?+ω?(x) is a solution the control problem in eq. (3.38)
obtained by adapting the policy’s parameters to the state x.

Summary. POPLIN is an extension of of behavioral cloning that amortizes
control optimization problems with

APOPLIN := (−Q,U ,X , p(x), πθ,Lreg). (3.55)
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The initial phase is fully-amortized behavioral cloning. The second fine-tuning phase
can seen as semi-amortization that learns only the initialization θ and finds ω with
CEM, with a regression-based loss Lreg that only has knowledge of the initial model
and does not include the adaptation.

3.6.8 The differentiable cross-entropy method by Amos and Yarats
[2020]

Differentiable control [Amos et al., 2018] is a budding area of work with the goal of
integrating controllers into end-to-end modeling pipelines to overcome problems such
as objective mismatch [Lambert et al., 2020]. The differentiable cross-entropy method
(DCEM) was created towards the goal of doing this with controllers based on the
cross-entropy method. Otherwise, as in Wang and Ba [2020], CEM needs to be done
as a secondary step after learning and the learning process is not aware of the final
policy that running CEM will induce. The key step to differentiate through CEM is to
make the top-k operation smooth and differentiable by using the differentiable top-k
operation proposed in Amos et al. [2019] called the limited multi-label projection
layer.

Amos and Yarats [2020] considers a semi-amortized learning setting that learns a
latent domain for control, which can be seen as a similarly-motivated alternative to
the parameter-space control done in POPLIN. The key piece of latent control is to
learn a decoder ϕθ : Z → UH that maps from a low-dimensional latent space Z to
the H-step control space that solves eq. (3.38). Learning a latent space is useful if
there are many redundancies and possibly bad local minima on the original control
space UH that the latent space can get rid of. Given an initial state x1, the optimal
latent representation can be obtained by solving the control optimization problem
over Z with

ẑθ(x1) ∈ arg min
z∈Z

Cθ(z;x1) (3.56)

where Cθ(z;x1) is the expected cost of rolling out the control sequence u1:H = ϕ(z)
from the initial state x1, for example on deterministic systems C could be the sum of
negated rewards

C(z;x) := −
H∑
t=1

r(xt, xt) subject to xt+1 = p(xt, ut) and x1:H = ϕθ(z) (3.57)

Solving eq. (3.56) with DCEM enables the optimal solution ẑθ(x) to be differentiated
with respect to the parameters θ of the decoder ϕθ. The final predicted control
sequence can be obtained with the decoder û1:H(x; θ) := ϕθ(ẑθ(x)) and the decoder
can be learned by regressing onto ground-truth control sequences u?(x) with

arg min
θ
LDCEM(û1:H(·; θ)) (3.58)
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where the loss is given by

LDCEM(û1:H(·; θ)) := E
x∼p(x)

‖u?1:H(x)− û1:H(x; θ)‖22. (3.59)

Figure 3.3 visualizes an example on the cartpole task where this is able to learn a
latent space that captures the cyclic and smoothness structure of the optimal control
sequence space.

Overview. Learning a latent domain with the differentiable cross-entropy method
is a semi-amortization method with

ADCEM := (−Q,U ,X , p(x), πθ,Lreg), (3.60)

where the decoder ϕθ shows up from the policy πθ solving the latent optimization
problem with DCEM.

3.6.9 Iterative amortized policy optimization (IAPO) by Marino
et al. [2021]

IAPO takes a probabilistic view and starts with the observation that DPG and
SVG methods are amortized optimization problems with fully-amortized models
with an objective-based loss. They then suggest to replace the model with an
iterative semi-amortized model where the policy πθ internally takes gradient steps on
the actions of the underlying control optimization problem, and explore this semi-
amortized policy in model-free and model-based reinforcement learning settings. Thus
in the deterministic setting IAPO performs semi-amortized optimization AIAPO :=
(−Q,U ,X , p(x), πθ,Lobj).

Warning. There’s an interplay between the accuracy and quality of the policy
optimizer and the value estimator. Because the value estimator is used to create it’s
own target estimates, a better policy optimizer and controller can exploit optimistic
inaccuracies in the value network. In other words, a seemingly better policy optimizing
an inaccurate value estimate may result in a worse policy on the real system. This
issue also arises when fully-amortized policies over-optimize the value estimate too
early on in training, but is exacerbated with semi-amortized and iterative policies.

3.6.10 Learning the value function

The Q-value function eq. (3.36) for finding an MDP policy is often unknown and
needs to be estimated from data along with the policy π that is amortizing it, e.g.
in eq. (3.37). Actor-critic methods are a common reinforcement learning approach
that jointly learn a policy π (the actor) and Q-value estimate (the critic) [Konda
and Tsitsiklis, 1999, Sutton and Barto, 2018]. The policy amortizes the current Q
estimate, e.g. by using an approach previously discussed in this section, and the Q
function is fit to data sampled from the system. One way of learning the Q function
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is to replace the value estimate V π in eq. (3.36) with the Q-value estimate to yield
the relationship

Qπ(x, u) := r(x, u) + E
x′∼p(·|x,u),u′∼π(x′)

[
Qπ(x′, u′)

]
, (3.61)

which is referred to as the Bellman equation [Bellman, 1966, Sutton and Barto, 2018].
Eq. (3.61) is an equality that should hold over all states and actions in the system
and a value estimate can be parameterized and learned to satisfy the relationship.
While the best way of learning the Q estimate is an open research topic [Watkins and
Dayan, 1992, Baird, 1995, Ernst et al., 2005, Maillard et al., 2010, Scherrer, 2010,
Geist et al., 2017, Le et al., 2019, Fujimoto et al., 2022], a common way is to optimize
residual of eq. (3.61) with

arg min
φ

E
(x,u)∼D

∣∣∣∣Qπφ(x, u)−
(
r(x, u) + E

x′∼p(·|x,u),u′∼π(x′)
Qπφ̄(x′, u′)

)∣∣∣∣2 , (3.62)

where φ̄ is a detached version of the rolling mean of the parameters.
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Figure 3.3: The differentiable cross-entropy method (DCEM) [Amos and Yarats,
2020] can be used to create semi-amortized controllers that learn a latent space Z
over control sequences. This visualization taken from the DCEM paper shows the
samples that CEM and DCEM generate to solve the cartpole task starting from the
same initial system state. The plots starting at the top-left show that CEM initially
starts with no temporal knowledge over the control space whereas the latent space
learned through DCEM generates a more feasible distribution over control sequences
in each iteration that make them smooth and cyclic. The contours on the bottom
show the controller’s cost surface C(z;x) for an initial state x where the lighter colors
show regions with lower costs.
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Chapter 4
Implementation and software examples

Turning now to the implementation details, this section looks at how to develop and
analyze amortization software. The standard and easiest approach in most settings is
to use automatic differentiation software such as Maclaurin et al. [2015a], Al-Rfou et al.
[2016], Abadi et al. [2016], Bezanson et al. [2017], Agrawal et al. [2019b], Paszke et al.
[2019], Bradbury et al. [2020] to parameterize and learn the amortization model. There
are many open source implementations and re-implementations of the methods in
chapter 3 that provide a concrete starting point to start building on them. This section
looks closer at three specific implementations: section 4.1 evaluates the amortization
components behind existing implementations of variational autoencoders section 3.1
and control section 3.6 and section 4.2 implements and trains an amortization
model to optimize functions defined on a sphere. Table 4.1 summarizes the concrete
dimensions of the amortization problems considered here and section 4.3 concludes
with other useful software references. The source code behind this section is available
at https://github.com/facebookresearch/amortized-optimization-tutorial.

4.1 Amortization in the wild: a deeper look

This section shows code examples of how existing implementations using amortized op-
timization define and optimize their models for variational autoencoders (section 4.1.1)
and control and policy learning (sections 4.1.2 and 4.1.3). The amortization compo-
nent in these systems is often a part of a larger system to achieve a larger task: VAEs
also reconstruct the source data after amortizing the ELBO computation in eq. (3.5)
and policy learning methods also estimate the Q-value function in section 3.6.10. This
section scopes to the amortization components to show how they are implemented. I
have also added evaluation code to the pre-trained amortization models from existing
repositories and show that the amortized approximation often obtains a solution up
to 25000 times faster than solving the optimization problems from scratch on an
NVIDIA Quadro GP100 GPU.
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Table 4.1: Dimensions for the settings considered in this section

Setting Context dimension |X | Solution dimension |Y|

VAE on MNIST (4.1.1) 784 (=28 · 28, MNIST digits) 20 (parameterizing a 10D Gaussian)
Model-free control (4.1.2) 45 (humanoid states) 17 (action dimension)
Model-based control (4.1.3) 45 (humanoid states) 51 (=17 · 3, short action sequence)
Sphere (4.2) 16 (c-convex function parameterizations) 3 (sphere)
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Figure 4.1: Runtime comparison between Adam and an amortized encoder λ̂θ to
solve eq. (3.3) for a VAE on MNIST. This uses a batch of 1024 samples and was run
on an unloaded NVIDIA Quadro GP100 GPU. The values are normalized so that
λ(x) = 0 takes a value of -1 and the optimal λ? takes a value of 0. The amortized
policy is approximately 25000 times faster than solving the problem from scratch.

4.1.1 The variational autoencoder (VAE)

This section looks at the code behind standard VAE [Kingma and Welling, 2014]
that follows the amortized optimization setup described in section 3.1.1. While there
are many implementations for training and reproducing a VAE, this section will use
the implementation at https://github.com/YannDubs/disentangling-vae, which
builds on the code behind Dupont [2018] at https://github.com/Schlumberger/
joint-vae. While the repository is focused on disentangled representations and
extensions of the original VAE formulation, this section only highlights the parts
corresponding to the original VAE formulation. The code uses standard PyTorch in
a minimal way that allow us to easily look at the amortization components.

Training the VAE. Figure 4.2 paraphrases the relevant snippets of code to
implement the main amortization problem in eq. (3.4) for image data where the
likelihood is given by a Bernoulli. Figure 4.2a defines an encoder λ̂θ, to predicts a
solution to the ELBO implemented in fig. 4.2b, which is optimized in a loop over the
training data (images) in fig. 4.2c. The README in the repository contains instructions
for running the training from scratch. The repository contains the binary of a model
trained on the MNIST dataset [LeCun, 1998], which the next portion evaluates.

Evaluating the VAE. This section looks at how well the amortized encoder λ̂
approximates the optimal encoder λ? given by explicitly solving eq. (3.3), which is
referred to the amortization gap [Cremer et al., 2018]. eq. (3.3) can be solved with a
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1 class Encoder(nn.Module): # From disvae.models.encoders
2 def forward(self, x): # x is the amortization context: the original data
3 mu_logvar = self.convnet(x)
4 mu, logvar = mu_logvar.view(-1, self.latent_dim, 2).unbind(-1) # Split
5 return (mu, logvar) # = latent_dist or \lambda

(a) Forward definition for the encoder λ̂θ(x). self.convnet uses the architecture from
Burgess et al. [2018].

1 # From disvae.models.losses.BetaHLoss with a Bernoulli likelihood
2 def estimate_elbo(data, latent_dist):
3 mean, logvar = latent_dist
4
5 reconstructed_batch = sample_and_decode(latent_dist)
6 log_likelihood = -F.binary_cross_entropy(
7 reconstructed_batch, x, reduce=False).sum(dim=[1,2,3])
8
9 # Closed-form distance to the prior
10 latent_kl = 0.5 * (-1 - logvar + mean.pow(2) + logvar.exp())
11 kl_to_prior = latent_kl.sum(dim=[-1])
12
13 loss = log_likelihood - kl_to_prior
14 return loss.mean()

(b) Definition of the ELBO in eq. (3.1)

1 model = Encoder()
2 for batch in iter(data_loader):
3 latent_dist = model(batch)
4 loss = -estimate_elbo(batch, latent_dist)
5 self.optimizer.zero_grad()
6 loss.backward()
7 self.optimizer.step()

(c) Main VAE training loop for the encoder

Figure 4.2: Paraphrased PyTorch code examples of the key amortization components
of a VAE from https://github.com/YannDubs/disentangling-vae.
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Figure 4.3: Decoded reconstructions of the variational distribution optimizing for the
ELBO. Adamn corresponds to the distribution from running Adam for n iterations,
λ̂θ is the amortized approximation, and the ground-truth data, i.e. the context, is
shown in the bottom row.

gradient-based optimizer such as SGD or Adam [Kingma and Ba, 2015]. Figure 4.4
shows the key parts of the PyTorch code for making this comparison, which can
be run on the pre-trained MNIST VAE with code/evaluate_amortization_speed_
function_vae.py.

Figure 4.1 shows that the amortized prediction from the VAE’s encoder predicts
the solution to the ELBO 25000 times faster (!) than running 2k iterations of Adam
on a batch of 1024 samples. This is significant as every training iteration of the VAE
requires solving eq. (3.3), and a large model may need millions of training iterations
to converge. Amortizing the solution makes the difference between the training code
running in a few hours instead of a few months if the problem was solved from scratch
to the same level of optimality. Knowing only the ELBO values is not sufficient to
gauge the quality of approximate variational distributions. To help understand the
quality of the approximate solutions, fig. 4.3 plots out the decoded samples alongside
the original data.

4.1.2 Control with a model-free value estimate

This section dives into the training and evaluation code for learning a deterministic
model-free policy πθ : X → Y to amortize a model-free value estimateQ for controlling
the humanoid MDP from Brockman et al. [2016] visualized in fig. 1.2. This MDP has
|X | = 45 states (angular positions and velocities describing the state of the system)
and |Y| = 17 actions (torques to apply to the joints). A model-free policy π maps
the state to the optimal actions that maximize the value on the system. Given a
known action-conditional value estimate Q(x, u), the optimal policy π? solves the
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1 # amortization_model: maps contexts to a solution
2 # amortization_objective: maps an iterate and contexts to the objective
3
4 adam_lr, num_iterations = ...
5 contexts = sample_contexts()
6
7 # Predict the solutions with the amortization model
8 predicted_solutions = amortization_model(contexts)
9 amortized_objectives = amortization_objective(
10 predicted_solutions, contexts
11 )
12
13 # Use Adam (or another torch optimizer) to solve for the solutions
14 iterates = torch.nn.Parameter(torch.zeros_like(predicted_solutions))
15 opt = torch.optim.Adam([iterates], lr=adam_lr)
16
17 for i in range(num_iterations):
18 objectives = amortization_objective(iterates, contexts)
19 opt.zero_grad()
20 objective.backward()
21 opt.step()

Figure 4.4: Evaluation code for comparing the amortized prediction ŷ to the true
solution y? solving eq. (1.1) with a gradient-based optimizer. The full instrumented
version of this code is available in the repository associated with this tutorial at
code/evaluate_amortization_speed_function.py.

optimization problem in eq. (3.37) that the learned policy π tries to match, e.g. using
policy gradient in eq. (3.47).

The codebase behind Amos et al. [2021] at https://github.com/facebookresearch/
svg contains trained model-free policy and value estimates on the humanoid in ad-
dition to model-based components the next section will use. The full training code
there involves parameterizing a stochastic policy and estimating many additional
model-based components, but the basic training loop for amortizing a deterministic
policy from the solution there can be distilled into a form similar to fig. 4.2.

This section mostly focuses on evaluating the performance of the trained model-
free policy in comparison to maximizing the model-free value estimate eq. (3.37)
from scratch for every state encountered. An exhaustive evaluation of a solver for
eq. (3.37) would need to ensure that the solution is not overly adapted to a bad
part of the Q estimate space — because Q is also a neural network susceptible to
adversarial examples, it is very likely that directly optimizing eq. (3.37) may result
in a deceptively good policy when looking at the Q estimate that does not work well
on the real system. For simplicity, this section ignores these issues and normalizes
the values to [−1, 0] where −1 will correspond to the value from taking a zero action
and 0 will correspond to the value from taking the expert’s action. (This is valid in
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Figure 4.5: Runtime comparison between Adam and a learned policy πθ to solve
eq. (3.37) on the humanoid MDP. This was evaluated as a batch on an expert
trajectory with 1000 states and was run on an unloaded NVIDIA Quadro GP100
GPU. The values are normalized so that π(x) = 0 takes a value of -1 and the optimal
π? takes a value of 0. The amortized policy is approximately 1000 times faster than
solving the problem from scratch.

this example because the zero action and expert action never coincide.)
Figure 4.5 shows that the amortized policy is approximately 1000 times faster

than solving the problem from scratch. The Q values presented there are normalized
and clamped so that the expert policy has a value of zero and the zero action has
a value of -1. This example can be run with code/evaluate_amortization_speed_
function_control.py, which shares the evaluation code also used for the VAE in
fig. 4.4.

4.1.3 Control with a model-based value estimate

Extending the results of section 4.1.2, this section compares the trained humanoid
policy from https://github.com/facebookresearch/svg to solving a short-horizon
(H = 3) model-based control optimization problem defined in eq. (3.38). The optimal
action sequence solving eq. (3.38) is u?1:H can be approximated by interleaving a model-
free policy πθ with the dynamics f . While standard model predictive control method
are often ideal for solving for u?1:H from scratch, using Adam as a gradient-based
shooting method is a reasonable baseline in this short-horizon setting.

Figure 4.6 shows that the amortized policy is approximately 700 times faster than
solving the problem from scratch. This model-based setting has the same issues with
the approximation errors in the models and the model-based value estimate is again
normalized and clamped so that the expert policy has a value of zero and the zero
action has a value of -1. The source code behind this example is also available in
code/evaluate_amortization_speed_function_control.py.
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Figure 4.6: Runtime comparison between Adam and a learned policy πθ to solve a
short-horizon (H = 3) model-based control problem (eq. (3.38)) on the humanoid
MDP. This was evaluated as a batch on an expert trajectory with 1000 states and
was run on an unloaded NVIDIA Quadro GP100 GPU. The amortized policy is
approximately 700 times faster than solving the problem from scratch.

4.2 Training an amortization model on a sphere

This section contains a new demonstration that applies the insights from amortized
optimization to learn to solve optimization problems over spheres of the form

y?(x) ∈ arg min
y∈S2

f(y;x), (4.1)

where S2 is the surface of the unit 2-sphere embedded in R3 as S2 := {y ∈ R3 |
‖y‖2 = 1} and x is some parameterization of the function f : S2 ×X → R. Eq. (4.1)
is relevant to physical and geographical settings seeking the extreme values of a
function defined on the Earth or other spaces that can be approximated with a sphere.
The full source code behind this experiment is available in code/train-sphere.py.

Amortization objective. Eq. (4.1) first needs to be transformed from a con-
strained optimization problem into an unconstrained one of the form eq. (1.1). In
this setting, one way of doing this is by using a projection:

y?(x) ∈ arg min
y∈R3

f(πS2(y);x), (4.2)

where πS2 : R3 → S2 is the Euclidean projection onto S2, i.e.,

πS2(x) := arg min
y∈S2

‖y − x‖2

= x/‖x‖2.
(4.3)

c-convex functions on the sphere. A synthetic class of optimization problems
defined on the sphere using the c-convex functions from Cohen et al. [2021] can be
instantiated with:

f(y;x) = minγ

{
1

2
d(x, zi) + αi

}m
i=1

(4.4)
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f(y;x) contours Optimal y?(x) Predictions ŷθ(x) throughout training

Figure 4.7: Visualization of the predictions of an amortized optimization model
predicting the solutions to optimization problems on the sphere.

where m components define the context x = {zi} ∪ {αi} with zi ∈ S2 and αi ∈ R,
d(x, y) := arccos(x>y) is the Riemannian distance on the sphere in the ambient
Euclidean space, and minγ(a1, . . . , am) := −γ log

∑m
i=1 exp(−ai/γ) is a soft mini-

mization operator as proposed in Cuturi and Blondel [2017]. The context distribution
p(x) is sampled with zi ∼ U(S2), i.e. uniformly from the sphere, and αi ∼ N (0, β)
with variance β ∈ R+.

Amortization model. The model ŷθ : X → R is a fully-connected MLP. The
predictions to eq. (4.1) on the sphere can again be obtained by composing the output
with the projection πS2 ◦ ŷθ.

Optimizing the gradient-based loss. Finally, it is reasonable to optimize the
gradient-based loss Lobj because the objective and model are tractable and easily
differentiable. Figure 4.7 shows the model’s predictions starting with the untrained
model and finishing with the trained model, showing that this setup indeed enables
us to predict the solutions to eq. (4.1) with a single neural network ŷθ(x) trained
with the gradient-based loss.

Summary. Asphere := (f ◦ πS2 ,R3,X , p(x), ŷθ,Lobj)

4.3 Other useful software packages

Implementing semi-amortized models are usually more challenging than fully-amortized
models. Learning an optimization-based model that internally solves an optimization
problem is not as widespread as learning a feedforward neural network. While most
autodiff packages provide standalone features to implement unrolled gradient-based
optimization, the following specialized packages provide crucial features that further
enable the exploration of semi-amortized models:

• cvxpylayers [Agrawal et al., 2019a] allows an optimization problem to be
expressed in the high-level language CVXPY [Diamond and Boyd, 2016] and
exported to PyTorch, JAX, and TensorFlow as a differentiable optimization
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layers.

• jaxopt [Blondel et al., 2021] is a differentiable optimization library for JAX and
implements many optimization settings and fixed-point computations along
with their implicit derivatives.

• higher [Grefenstette et al., 2019] is a PyTorch library that adds differentiable
higher-order optimization support with 1) monkey-patched functional torch.nn
modules, and 2) differentiable versions of torch.optim optimizers such as Adam
and SGD. This enables arbitrary torch modules and optimizers to be unrolled
and used as as a semi-amortized model.

• TorchOpt provides a functional and differentiable optimizer in PyTorch and
has higher performance than higher in some cases.

• functorch [He and Zou, 2021] is a PyTorch library providing composable function
transforms for batching and derivative operations, and for creating functional
versions of PyTorch modules that can be used in optimization algorithms. All
of these operations may arise in the implementation of an amortized opti-
mization method and can become computational bottlenecks if not efficiently
implemented.

• DiffOpt.jl provides differentiable optimization in Julia’s JuMP [Dunning et al.,
2017].

• Torchmeta [Deleu et al., 2019] and learn2learn [Arnold et al., 2020] are PyTorch
libraries and collection of meta-learning algorithms that also focus on making
data-loading and task definitions easy.

• hypertorch [Grazzi et al., 2020] is a PyTorch package for computing hypergra-
dients with a large focus on providing computationally efficient approximations
to them.
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Chapter 5
Discussion

Many of the specialized methods discuss tradeoffs and limitations within the context
of their application, and more generally papers such as Chen et al. [2021a], Metz et al.
[2021] provide even deeper probes into general paradigms for learning to optimize. This
section emphasizes a few additional discussion points around amortized optimization.

5.1 Surpassing the convergence rates of classical meth-
ods

Theoretical and empirical optimization research often focuses on discovering algo-
rithms with theoretically strong convergence rates in general or worst-case scenarios.
Many of the algorithms with the best convergence rates are used as the state-of-the-art
algorithms in practice, such as momentum and acceleration methods. Amortized opti-
mization methods can surpass the results provided by classical optimization methods
because they are capable of tuning the initialization and updates to the best-case
scenario within the distribution of contexts the amortization model is trained on.
For example, the fully amortized models for amortized variational inference and
model-free actor-critic methods for RL presented in section 4.1 solve the optimization
problems in constant time with just a single prediction of the solution from the
context without even looking at the objective! Further theoretical characterizations
of this are provided in Khodak et al. [2022] and related literature on algorithms with
predictions.

5.2 Generalization and convergence guarantees

Despite having powerful successes of amortized optimization in some settings, the field
struggles to bring strong success in other domains. Despite having the capacity of
surpassing the convergence rates of other algorithms, oftentimes in practice amortized
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optimization methods can deeply struggle to generalize and converge to reasonable
solutions. In some deployments this inaccuracy may be acceptable if there is a
quick way of checking the quality of the amortized model, e.g. the residuals for
fixed-point and convex problems. If that is the case, then poorly-solved instances can
be flagged and re-solved with a standard solver for the problem that may incur more
computational time for that instance. Banert et al. [2021], Prémont-Schwarz et al.
[2022] add provable convergence guarantees to semi-amortized models by guarding the
update and ensuring the learned optimizer does not does not deviate too much from a
known convergent algorithm. A practical takeaway is that some models are more likely
to result in convergent and stable semi-amortized models than others. For example,
the semi-amortized model parameterized with gradient descent (which has some mild
converge guarantees) in Finn et al. [2017] is often more stable than the semi-amortized
model parameterized by a sequential model (without many convergence guarantees)
in [Ravi and Larochelle, 2017]. Other modeling and architecture tricks such as layer
normalization [Ba et al., 2016] help improve the stability of amortized optimization
models.

5.3 Measuring performance

Quantifying the performance of amortization models can be even more challenging
than the choice between using a regression- or objective-based loss and is often tied
to problem-specific metrics that are important. For example, even if a method is able
to attain low objective values in a few iterations, the computation may take longer
than a specialized algorithm or another amortization model that can reach the same
level of accuracy, thus not making it useful for the original goal of speeding up solves
to eq. (1.1).

5.4 Successes and limitations of amortized optimization

While amortized optimization has standout applications in variational inference,
reinforcement learning, and meta-learning, it struggles to bring value in other settings.
Often, learning the amortized model is computationally more expensive than solving
the original optimization problems and brings instabilities into a higher-level learning
or optimization process deployed on top of potentially inaccurate solutions from the
amortized model. This section summarizes principles behind successful applications
of amortized optimization and characterize limitations that may arise.

Characteristics of successful applications

• Objective f(y;x) is smooth over the domain Y and has unique solu-
tions y?. With objective-based learning, non-convex objectives with few poor
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local optima are ideal. This behavior can be encouraged with smoothing as is
often done for meta-learning and policy learning (section 2.2.3).

• A higher-level process should tolerate sub-optimal solutions given
by ŷ in the beginning of training. In variational encoders, the suboptimal
bound on the likelihood is still acceptable to optimize the density model’s pa-
rameters over in eq. (3.5). And in reinforcement learning policies, a suboptimal
solution to the maximum value problem is still acceptable to deploy on the
system in early phases of training, and may even be desirable for the exploration
induced by randomly initialized policies.

• The context distribution p(x) is not too big and well-scoped and
deployed on a specialized class of sub-problems. For example, instead
of trying to amortize the solution to every possible ELBO maximization, VAEs
amortize the problem only over the dataset the density model is being trained on.
And in reinforcement learning, the policy πθ doesn’t try to amortize the solution
to every possible control problem, but instead focuses only on amortizing the
solutions to the control problems on the replay buffer of the specific MDP.

• In semi-amortized models, parameterizing the initialization and spe-
cialized components for the updates. While semi-amortized models are a
thriving research topic, the most successful applications of them:

1. Parameterize and learn the initial iterate. MAML [Finn et al., 2017]
only parameterizes the initial iterate and follows it with gradient descent
steps. Bai et al. [2022] parameterizes the initial iterate and follows it with
accelerated fixed-point iterations.

2. Parameterize and learn specialized components of the updates.
In sparse coding, LISTA [Gregor and LeCun, 2010] only parameterized
{F,G, β} instead of the entire update rule. Bai et al. [2022] only param-
eterizes α, β after the initial iterate, and RLQP [Ichnowski et al., 2021]
only parameterizing ρ.

While using a pure sequence model to update a sequence of iterations is possible
and theoretically satisfying as it gives the model the power to arbitrarily update
the sequence of iterates, in practice this can be unstable and severely overfit
to the training instances. Metz et al. [2021] observes, for example, that semi-
amortized recurrent sequence models induce chaotic behaviors and exploding
gradients.

Limitations and failures

• Amortized optimization does not magically solve otherwise intractable
optimization problems! At least not without significant insights. In most
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successful settings, the original optimization problem can be (semi-)tractably
solved for a context x with classical methods, such as using standard black-box
variational inference or model-predictive control methods. Intractabilities in-
deed start arising when repeatedly solving the optimization problem, even if
a single one can be reasonably solved, and amortization often thrive in these
settings to rapidly solve problems with similar structure.

• The combination of p(x) and y?(x) are too hard for a model to learn.
This could come from p(x) being too large, e.g. contexts of every optimization
problem in the universe, or the solution y?(x) not being smooth or predictable.
y?(x) may also not be unique, but this is perhaps easier to handle if the loss is
carefully set up, e.g. objective-based losses handle this more nicely.

• The domain requires accurate solutions. Even though metrics that mea-
sure the solution quality of ŷ can be defined on top of eq. (1.1), amortized
methods typically cannot rival the accuracy of standard algorithms used to
solve the optimization problems. In these settings, amortized optimization still
has the potential at uncovering new foundations and algorithms for solving
problems, but is non-trivial to successfully demonstrate. From an amortization
perspective, one difficulty of safety-critical model-free reinforcement learning
comes from needing to ensure the amortized policy properly optimizes a value
estimate that (hopefully) encodes safety-critical properties of the state-action
space.

5.5 Some open problems and under-explored directions

In most domains, introducing or significantly improving amortized optimization is
extremely valuable and will likely be well-received. Beyond this, there are many
under-explored directions and combinations of ideas covered in this tutorial that can
be shared between the existing fields using amortized optimization, for example:

1. Overcoming local minima with objective-based losses and connec-
tions to stochastic policies. Section 2.2.3 covered the objective smoothing
by Metz et al. [2019a], Merchant et al. [2021] to overcome suboptimal local
minima in the objective. These have striking similarities to stochastic policies in
reinforcement learning that also overcome local minima, e.g. in eq. (3.39). The
stochastic policies, such as in Haarnoja et al. [2018], have the desirable property
of starting with a high variance and then focusing in on a low-variance solution
with a penalty constraining the entropy to a fixed value. A similar method is
employed in GECO [Rezende and Viola, 2018] that adjusts a Lagrange mul-
tiplier in the ELBO objective to achieve a target conditional log-likelihood.
These tricks seem useful to generalize and apply to other amortization settings
to overcome poor minima.
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2. Widespread and usable amortized convex solvers. When using off-the-
shelf optimization packages such as Diamond and Boyd [2016], O’donoghue
et al. [2016], Stellato et al. [2018], users are likely solving many similar problem
instances that amortization can help improve. Venkataraman and Amos [2021],
Ichnowski et al. [2021] are active research directions that study adding amorti-
zation to these solvers, but they do not scale to the general online setting that
also doesn’t add too much learning overhead for the user.

3. Improving the wall-clock training time of implicit models and dif-
ferentiable optimization. Optimization problems and fixed-point problems
are being integrated into machine learning models, such as with differentiable
optimization [Domke, 2012, Gould et al., 2016, Amos and Kolter, 2017, Amos,
2019, Agrawal et al., 2019a, Lee et al., 2019b] and deep equilibrium models [Bai
et al., 2019, 2020]. In these settings, the data distribution the model is being
trained on naturally induces a distribution over contexts that seem amenable
to amortization. Venkataraman and Amos [2021], Bai et al. [2022] explore
amortization in these settings, but often do not improve the wall-clock time it
takes to train these models from scratch.

4. Understanding the amortization gap. Cremer et al. [2018] study the
amortization gap in amortized variational inference, which measures how well
the amortization model approximates the true solution. This crucial concept
should be analyzed in most amortized optimization settings to understand the
accuracy of the amortization model.

5. Implicit differentiation and shrinkage. Chen et al. [2020], Rajeswaran
et al. [2019] show that penalizing the amortization objective can significantly
improve the computational and memory requirements to train a semi-amortized
model for meta-learning. Many of the ideas in these settings can be applied in
other amortization settings, as also observed by Huszár [2019].

6. Distribution shift of p(x) and out-of-distribution generalization. This
tutorial has assumed that p(x) is fixed and remains the same through the
entire training process. However, in some settings p(x) may shift over time,
which could come from 1) the data generating process naturally changing, or
2) a higher-level learning process also influencing p(x). Furthermore, after
training on some context distribution p(x), a deploy model is likely not going
to be evaluated on the same distribution and should ideally be resilient to
out-of-distribution samples. The out-of-distribution performance can often
be measured and quantified and reported alongside the model. Even if the
amortization model fails at optimizing eq. (1.1), it’s detectable because the
optimality conditions of eq. (1.1) or other solution quality metrics can be
checked. If the solution quality isn’t high enough, then a slower optimizer could
potentially be used as a fallback.
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7. Amortized and semi-amortized control and reinforcement learning.
Applications of semi-amortization in control and reinforcement learning covered
in section 3.6 are budding and learning sample-efficient optimal controllers
is an active research area, especially in model-based settings where the dy-
namics model is known or approximated. Amos and Yarats [2020] shows how
amortization can learn latent control spaces that are aware of the structure of
the solutions to control problems. Marino et al. [2021] study semi-amortized
methods based on gradient descent and show that they better-amortize the
solutions than the standard fully-amortized models.

5.6 Related work

5.6.1 Other tutorials, reviews, and discussions on amortized opti-
mization

My goal in writing this tutorial was to provide a perspective of existing amortized
optimization methods for learning to optimize with a categorization of the modeling
(fully-amortized and semi-amortized) and learning (gradient-based, objective-based,
or RL-based) aspects that I have found useful and have not seen emphasized as
much in the literature. The other tutorials and reviews on amortized optimization,
learning to optimize, and meta-learning over continuous domains that I am aware of
are excellent resources:

• Chen et al. [2021a] captures many other emerging areas of learning to optimize
and discuss many other modeling paradigms and optimization methods for
learning to optimize, such as plug-and-play methods [Venkatakrishnan et al.,
2013, Meinhardt et al., 2017, Chang et al., 2017, Zhang et al., 2017]. They
emphasize the key aspects and questions to tackle as a community, including
model capacity, trainability, generalization, and interpretability. They propose
Open-L2O as a new benchmark for learning to optimize and review many
other applications, including sparse and low-rank regression, graphical models,
differential equations, quadratic optimization, inverse problems, constrained
optimization, image restoration and reconstruction, medical and biological
imaging, wireless communications, seismic imaging.

• Shu [2017] is a blog post that discusses fully-amortized models with gradient-
based learning and includes applications in variational inference, meta-learning,
image style transfer, and survival-based classification.

• Weng [2018] is a blog post with an introduction and review of meta-learning
methods. After defining the problem setup, the review discusses metric-based,
model-based, and optimization-based approaches, and discusses approximations
to the second-order derivatives that come up with MAML.
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• Hospedales et al. [2020] is a review focused on meta-learning, where they catego-
rize meta-learning components into a meta-representation, meta-optimizer, and
meta-objective. The most relevant connections to amortization here are that
the meta-representation can instantiate an amortized optimization problem
that is solved with the meta-optimizer.

• Kim [2020] is a dissertation on deep latent variable models for natural language
and contextualizes and studies the use of amortization and semi-amortization
in this setting.

• Marino [2021] is a dissertation on learned feedback and feedforward information
for perception and control and contextualizes and studies the use of amortization
and semi-amortization in these settings.

• Monga et al. [2021] is a review on algorithm unrolling that starts with the
unrolling in LISTA [Gregor and LeCun, 2010] for amortized sparse coding, and
then connects to other methods of unrolling specialized algorithms. While some
unrolling methods have applications in semi-amortized models, this review also
considers applications and use-cases beyond just amortized optimization.

• Banert et al. [2020] consider theoretical foundations for data-driven nonsmooth
optimization and show applications in deblurring and solving inverse problems
for computed tomography.

• Liu et al. [2022] study fully-amortized models based on deep sets [Zaheer
et al., 2017] and set transformers [Lee et al., 2019a]. They consider regression-
and objective-based losses for regression, PCA, core-set creation, and supply
management for cyber-physical systems.

5.6.2 Amortized optimization over discrete domains

A significant generalization of eq. (1.1) is to optimization problems that have discrete
domains, which includes combinatorial optimization and mixed discrete-continuous
optimization. I have chosen to not include these works in this tutorial as many methods
for discrete optimization are significantly different from the methods considered here,
as learning with derivative information often becomes impossible. Key works in
discrete and combinatorial spaces include Khalil et al. [2016, 2017], Jeong and Song
[2019], Bertsimas and Stellato [2019], Shao et al. [2021], Bertsimas and Stellato [2021],
Cappart et al. [2021] and the surveys [Lodi and Zarpellon, 2017, Bengio et al., 2021,
Kotary et al., 2021] capture a much broader view of this space. Banerjee and Roy
[2015] consider repeated ILP solves and show applications in aircraft carrier deck
scheduling and vehicle routing. For architecture search, Luo et al. [2018] learn a
continuous latent space behind the discrete architecture space. Many reinforcement
learning and control methods over discrete spaces can also be seen as amortizing or
semi-amortizing the discrete control problems, for example: Cauligi et al. [2020, 2021]
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use regression-based amortization to learn mixed-integer control policies. Fickinger
et al. [2021] fine-tune the policy optimizer for every encountered state. Tennenholtz
and Mannor [2019], Chandak et al. [2019], Van de Wiele et al. [2020] learn latent
action spaces for high-dimensional discrete action spaces with shared structure.

5.6.3 Learning-augmented and amortized algorithms beyond opti-
mization

While many algorithms can be interpreted as solving an optimization problems or
fixed-point computations and can therefore be improved with amortized optimization,
it is also fruitful to use learning to improve algorithms that have nothing to do with
optimization. Some key starting references in this space include data-driven algorithm
design [Balcan, 2020], algorithms with predictions [Dinitz et al., 2021, Sakaue and
Oki, 2022, Chen et al., 2022a, Khodak et al., 2022], learning to prune [Alabi et al.,
2019], learning solutions to differential equations [Li et al., 2021a, Poli et al., 2020,
Karniadakis et al., 2021, Kovachki et al., 2021, Chen et al., 2021b, Blechschmidt and
Ernst, 2021, Marwah et al., 2021, Berto et al., 2022] learning simulators for physics
[Grzeszczuk et al., 1998, Ladickỳ et al., 2015, He et al., 2019, Sanchez-Gonzalez et al.,
2020, Wiewel et al., 2019, Usman et al., 2021, Vinuesa and Brunton, 2021], and
learning for symbolic math [Lample and Charton, 2020, Charton, 2021, Charton et al.,
2021, Drori et al., 2021, d’Ascoli et al., 2022] Salimans and Ho [2022] progressively
amortizes a sampling process for diffusion models. Schwarzschild et al. [2021] learn
recurrent neural networks to solve algorithmic problems for prefix sum, mazes, and
chess.

5.6.4 Continuation and homotopy methods

Amortized optimization settings share a similar motivation to continuation and
homotopy methods that have been studied for over four decades [Richter and Decarlo,
1983, Watson and Haftka, 1989, Allgower and Georg, 2012]. These methods usually
set the context space to be the interval X = [0, 1] and simultaneously solve (without
learning) problems along this line. This similarity indicates that problem classes
typically studied by continuation and homotopy methods could also benefit from the
shared amortization models here.
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