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Tutorial on Nonlinear Backstepping: Applications to Ship Control

THOR I. FOSSEN{ and JANN PETER STRAND*
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The theoretical foundation of nonlinear backstepping designs is presented in a
tutorial setting, This includes a brief review of integral backstepping, extensions to
SISO and MIMO systems in strict feedback form and physical motivated case
studies. Parallels and differences to feedback linearization where it is shown how
so-called “good nonlinearities” can be exploited in the-design are also made.

Nonlinear, optimal and robust backstepping are discussed in a separate section
where parallels to linear quadratic optimal control and H..-control are drawn. In
addition, inverse optimality is discussed as a nonlinear design tool.

Physics is put into control by using mechanical systems like mass-damper-springs
and ship models in the case studies. Lyapunov theory is used to prove convergence
and stability for all control laws where energy dissipation is obtained by exploiting
physical model properties.

1. The idea of integral backstepping
1.1. A brief history of backstepping

Backstepping is a recursive design methodology for construction of both feedback
control laws and associated Lyapunov functions in a systematic manner. Nonlinear
backstepping designs are strongly related to feedback linearization. However, while
feedback linearization methods cancel all nonlinearities in the system it will be shown
that when applying the backstepping design methodology the designer obtain flexibility
to exploit “good” nonlinearities while “bad” or destabilizing nonlinearities are
dominated e.g. by adding nonlinear damping. Hence, additional robustness is obtained.
This is important in industrial control systems since cancellation of all nonlinearities
require precise models which are difficult to obtain in practise.

The idea of integrator backstepping seems to have appeared simultaneously, often
implicit, in the works of Koditschek (1987), Sonntag and Sussmann (1988), Tsinias
(1989), and Byrnes and Isidori (1989). Stabilization through an integrator (Kokotovic
and Sussmann, 1989) can be viewed as a special case of stabilization through an SPR
transfer function which is a frequently used technique in the early adaptive designs, see
Parks (1966), Landau (1979) and Narendra and Annaswamy (1989), for instance.
Extensions to nonlinear cascades by using passivity arguments have been done by
Ortega (1991) and Byrnes, Isidori and Willems (1991). Integrator backstepping
appeared as a recursive design technique in Saberi, Kokotovic and Sussmann (1990)
and it was further developed by Kanellakopoulos, Kokotovic and Morse (1992). The
relationship between backstepping and passivity has been established by Lozano,
Brogliato and Landau (1992). For the interested reader, a tutorial overview of
backstepping is given by Kokotovic (1991).
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Figure 1. 2nd-order nonlinear system with one single nonlineraity f(x,) and a pure integrator
at the input.

The first book describing the backstepping design methodology was published by
Krstic, Kanellakopoulos and Kokotovic (1995). In this book emphasis is placed on
adaptive and nonlinear control of SISO systems with extensions to MIMO systems in
component form. Parameter adaptation, tuning functions and modular designs for both
full state feedback and output feedback are also discussed.

Later a second book was published by Sepulchre, Jankovic and Kokotovic (1997).
This textbook is an extension to forwarding, passivity and cascaded designs. Stability
margins and optimality are also given a more detailed discussion.

More recently Krstic and Deng (1998) published a book with extension to stochastic
systems focusing on stochastic stability and regulation, stochastic adaptive backstep-
ping designs and disturbance attenuation.

The main difference of the material presented in the forthcoming sections and
existing textbooks are that the focus is made towards practical designs, implementation
considerations and examples based on mechanical systems and ship applications.
Full-scale experiments with tankers and supply vessels are used to demonstrate the
performance of the control systems. This is done by exploiting the nonlinear system
properties of mechanical systems like dissipativness (good damping), symmetry of the
inertia matrix and the skew-symmetric property of the Coriolis and centripetal matrix.
In addition, emphasis is placed on control design with integral action. Two techniques
for integral action in nonlincar systcms using backstepping designs are discussed
(Fossen, Loria and Teel, 1999) and a detailed analysis of the different techniques where
so-called good damping in mechanical systems is exploited. All results are presented
in a vectorial setting in order to exploit the structural properties of nonlinear MIMO
systems. This technique is referred to as vectorial backstepping, see Fossen and Berge
(1997) and Fossen and Grgvlen (1998). Backstepping designs applied to ship control
are described more closely in Strand (1999).

1.2. Integrator backstepping

The main idea of integrator backstepping can be demonstrated by considering a
simple nonlinear scalar system:

X1 =f(x1)+x2 )
X =u )
y =x 3)

wherex; € R, x; € R,y € Rand u € R. The second equation represent a pure integrator,
see Figure 1. Let the design objective be regulation of y(#) >0 as # = . The only
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equilibrium point with y=0 is (x, x2)=(0, —f(0)) corresponding to
% = f(x,)+x,=0. The design objective is to render the equilibrium point GAS or
GES. Since the nonlinear system (1)—(2) consists of two states x; and x,, this will be
a recursive design in 2 steps. We will therefore treat (1)—(2) as two cascaded systems
each with a single input and output. We start our recursive design with the system x;
and continues with x,. We will introduce a change of coordinates during the recursive

design process given by:
z=¢(x) ©)

where z=[z;, z2]7, x=[x1, x2]" and ¢(x):R">R" is a transformation to be
interpreted later. The backstepping transformation is a global diffemorphism, if the
mapping ¢(x) is on R with continuously differentiable functions ¢(x) and ¢ ~'(x),
and local if the inverse transformation:

x=¢ '(z) )

only exists on a subspace of R".

Step 1

For the first system (1) we choose the state x, as a virtual control input while we
recall that our design objective is to regulate the output y = x, to zero. Hence, the first
backstepping variable is chosen as:

Z1= X (6)

For the system (1) we will treat x; as a virtual control input. The virtual control
is defined as:

x28 04+ 22 Q)
where
or; = stabilizing function
Z2 =new state variable
Hence, the z,-system can be written:
L=fx))+o+z2 ®

The new state variable z, will not be used in the first step, but its presence is
important since z, is needed to couple the z;-system to the next system, that is the
Zo-system to be considered in the next step. Moreover, integrator backstepping implies
that the coordinates during the recursive design is changed from (x;, x2) to (21, z2).

We now turn our attention to the design of the stabilizing function o, which will
provide the necessary feedback for the z;-system. For instance, choosing the stabilizing
function as (feedback linearizing control):

oy = —ﬂx.)—k.z: (9)
yields:

L=~k tz (10)

A block diagram showing the stabilizing function and the new state variable is
shown in Figure 2. A Lyapunov function candidate for the z,-system is:
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Figure 2. Stabilization of the x,-system by means of the stabilizing function a; = &, (x; ). Note
that &,;(x,) when integrated cancels out the feedback term — o (x;).

1

1"1 ZEZ? (1)
Vi =zaiza
= —kizt+ 2122 (12)

where k, > 0 is the feedback gain. Hence, the z,-system is stabilized. We now turn our
attention to the z,-system.

Step 2
The z, dynamics is computed by time differentiation of (5):

2y =Xp—dy

=u— b, (13)

\ J

Figure 3. Stabilization of the x;-system by means of the control input « = u(é,, z,, 22).
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A Lyapunov function candidate for the z,-system is:

1
V, =V, +£Z% (14
Vo =Vi+ 42,
=(—kizl +z2122) + 7225
= —kizi + z2(z1 + 22)
= —kizf + z2(u— @, + z,) (15)

Since our system is described by only two states the control input  appears in the
second step. Hence, choosing the control law as:

u=d;—z —kizz (16)
with k, >0, yields:
Vo= —kiz}—kat3<0,Vz, #0, 2, #0 (17

Implementation aspects

When implementing the control law (16) it is important to avoid expressions
involving the time derivatives of the states. For this simple system only é&, must be
evaluated. This can be done by time differentiation of o (x,) along the trajectories of
the states. Moreover, we can compute ¢, without using the state derivatives:

&y, = —6%1))51 — kX
_ (9§;9+ k) () + x2) (18)

Hence, the final expression for the control law is:
_ af(x,)

“= ( ox i

If f(x1) = —x, (linear theory), we simply get:

+kl)(f(xl)+x2)_xl_kz(x2+ﬂx!)+klxl) (19)

u = _(_]+li(__xl +x2)—x|—kz(x2—x|+k|x|)
=~ Q+kika— ki —k2)x, — (ki + ks — 1)x, (20)

which is a standard PD-control law. The general expression for u is, however, a
nonlinear feedback control law depending on the nonlinear function S(xi).

Backstepping coordinate transformation
The backstepping coordinate transformation z = ¢(x) takes the form:

1) _|Ix ]

[Zz]_[xz-—f(xlj—k]xl_ @n
while the inverse transformation x = ¢ ~!(z) is:

Xif_ &1 ]

[xz] - [zz—f(z.)—k,z,_ 22
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The Final Check

If you have performed the backstepping design procedure correctly the dynamics
of the closed-loop system in (21, z2) coordinates can always be written as the sum of
a diagonal and skew-symmetric matrix times the state vector. This can be seen by
writing the resulting dynamics in the form:

R P 8 e I @
22 0 kz 22 -10 2
\_._v.—) ;\,_)
diagonal matrix skew-symmetrical matrix
or equivalently
= —-Kz+8Sz (24)
where z= [z, 2217, K= diag {k;, k2}>0 and:
01
= —8§7=
s=-s7=[ %, | @)

where S satisfies z/Sz = 0, Vz. In some cases the diagonal matrix will be a function
of the state, that is K () > 0. This is the case when nonlinear damping is added or when
some of the nonlinearities are not cancelled by the controller.

Investigation of stability

We also notice that:
1
Va =§zrz (26)
V, =2"(— Kz +8z)
= —z'Kz @27

Hence, Lyapunov’s direct method for autonomous systems ensurcs that the
equilibrium point (x;, x2) = (0, — f(0)) is GAS. In fact, this system will also be GES
since it can be shown that the state vector x(t) decays exponentially to zero by using
Theorem 5 in Appendix A, that is:

Ix()l): = e 2~ (to)l2 (28)

where = Amin(K) >0 is the convergence rate.
A generalization to a large class of lower triangular systems is done in the next
chapter.

1.2.1. Backstepping versus feedback linearization

The backstepping control law of the previous section is in fact equal to a Jeedback
linearizing controller since the nonlinear function f(x,) is perfectly compensated for
by choosing the stabilizing function as:

o =—fx)—kz (29

The disadvantage with this approach is that a perfect model of f(x,) is required. This
is impossible in practise. Consequently, an approach cancelling all the nonlinearities
may be sensitive for modelling errors.
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Exploiting “good” nonlinearities
One of the nice features of backstepping is that the stabilizing functions can be
modified to exploit so-called “good” nonlinearities. For instance, assume that:
fx)= —aoxl—ale_azlxllxl 30)

where ag, a, and a, are assumed to be unknown positive constants. Since both aox, and
az|x, [ x; tend to damp out the motion these two expressions should be exploited in
the control design and therefore not cancelled out. This can be done by choosing:

o =axi—kz 31)

which only cancels out the destabilizing term a,x2. Unfortunately, this approach is
sensitive for modelling errors since a, is not perfectly known. Hence, a better approach
would be to choose an expression for o, not depending on a;x?. This can be done by
adding nonlinear damping such that the term a,x? is dominated.

Domination of destabilizing terms by adding nonlinear damping

The destabilizing term a,x} can be dominated by adding a nonlinear damping term
proportional to xi. Morcover:
o= — ki +n(z1)lzy (32)

where k; >0 and
ni(zi)=x,1zi=0 (33)
This is shown in Figure 4. Hence:

Z1 =flz) (o +z2)
= —ayz, ~alz?—az|z||zl—(k|+rc|z‘|")z|+22
= —(ao+arlz| +k)zi—a 12—k, +2, (34

\/

\& J

Figure 4. Domination of destabilizing terms by adding nonlinear damping.
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Consider the Lyapunov function:

1
Vi =§Zf (35)
Vl = —(a0+aIIZ|I +k1)z2|—a|2?—KlZ?+lez (36)
Next:

Vs =V+%Z% Gn
Vo = —(ao+ axl 21l + kDG —arzi — i Hza(z tu—dy) (38)

Choosing:
u=0d—kza— 21 39

finally yields:
Vo= —(@o+arl 21| + k) —ard — ka2l — ka2l (40)

This expression can be rewritten by completion of the squares. Moreover:

; a 2 af
V, = _(Evlzx-:z' + VKIZ%) +Z};:Z%'(ﬂo+azlzll +ki)zi — kazd

2
=g =@t alal +k)d -k (41)
1
at
< — (a0t~ - )i kod @2)
K
Hence, by choosing the controller gains according to:
i, >0 (43)
ky, > ‘i— (44)
' 4IC| do
k, >0 (45)

our design goal to render V, =0 is satisfied. Notice that the controller (39) with (32)
does not require any information of the unknown parameters ao, a: and a,. Hence, a
robust nonlinear controller is derived by using backstepping. This result is more
attractive than the one obtained from feedback linearization (perfect model cancel-
lation) if robustness is the issue.

2. Nonlinear backstepping
2.1. SISO backstepping

In order to write the backstepping control laws in a compact notation we will adopt
the notation of the Norwegian mathematician, Marius Sophus Lie (1842—1899), who
introduced the so-called Lie derivatives in his work.

Definition 1 (Lie Derivative) Ler h: R” =R be a smooth scalar function, and
£: R” — R" be a smooth vector field on R", x € N", then the Lie derivative of the function
h(x) with respect to the vector field £(x) is a scalar function defined by:

LA(x) &

ahx)
ox

f(x) (46)
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This definition is particularly useful when computing the time derivative of yalong
the trajectories of x for the nonlinear system:

x =f(x)+g(x)u (47)
y =h(x) (48)

LG
y Jx

dh(x)

= 0 +g(0u]

=Lh(x)+ L,h(x)u (49)

We will now introduce a new definition describing a class of SISO trian gular system
to be used in the forthcoming sections.

Definition 2 (SISO Strict Feedback Form) A nonlinear system:
=f(x) +g(x)u (50)
y =h(x) '&1))

wherex = [xi,...,x,]" € R", u € Randy € Rissaid to be in SISO strict feedback form
if it can be written in lower triangular form, see Figure 5.

X1 =filx)+ gi1(x))x2 (52)
X2 = fal(xy, x2) + ga(xy, x2)x3 (53)
X3 = fa(xy, X2, x3) + g3(x1, X2, X3)x4 (54
Kot =fa1(X1, Xapeiy Xa 1) F g1 (X1, Xayeesy X 1) X (55)
Xn = fu(X1, X200y Xe) + (X1, X2geeey Xp)ut (56)
y = h(x;) &7))
4 ™
“l, ate)so—{ D e}
fi(x)
\ J

Figure 5. Block diagram showing a 3rd-order nonlinear system in SISO strict feedback form.
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This model class can also be used for tracking by replacing (52) with:
é=Lah(x)+ Lgih(xi)x2— Ya (58)

where e =y — yis the tracking error and y (1) € C'is anr times differentable (smooth)
and bounded reference trajectory. Regulation of y to zero is obtained by choosing
¥,=ya=0 such that y=Lah(x\) + Lo h(x1)x,. In many cases y = x, which can be
obtained by choosing h(x,) = x\. Further, it is assumed that L h(x,) #0, Vx; and
g,-(x.. Xiyrnny x,-) * 0, foor (i = 2...”).

Notice that strict feedback systems are assumed to be affine (linear) in the states
x; and the input u. The system (52)—(57) is said to be a strict feedback system since the
nonlinearity fi(x1,..., ;) is “fed back” in the Xi-equation, see Figure 5.

Linear systems
Linearization of (52)-(57) yields a linear system:

x =Ax+bu 59)
y =¢'x (60)
where the structure of A is lower triangular. Moreover:

an b] 0 aen 0 0

a azn b, 0 0

A= 0.31 asz a33 e 0 (.}

an.l.l aﬂ.l.Q an'-l,-_‘ ver Qp- I-.n—-l bu. 1
| a1 ay,2 Ay, 3 cen An.n—1 Ann |

b= l_Os 0, 0!'“’ 0’ bl‘!]r
cT= 1; 0) 0)“‘; 0, 0]

where
i1 )
i = ax, i (61)
b, = agi(x1,..., Xi) 62)
Bx,- .

for (i,j=1...n).
Example 1 (Transfer functions and SISO strict feedback form) Consider the
transfer function:

4

M) =T v s+ »

A state-space realization is found by using the Matlab command: [A, B, C,
D] = tf2ss (4, [1 2 4 5]). This results in:

-2 -4 -5
1 0 0 [,b=

1

A= 0],c7=[004] (64)

0 1 0

0
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Changing the order of the states x; from 1-2-3 to 3-2—1 yields:

o 1 0
0 o0 1
-2 -4 -5

Hence, this system is in SISO strict feedback form.
A n-th order SISO backstepping control law for nonlinear systems in strict feedback
form is stated below.

Theorem 1 (n-th order SISO backstepping control law) The n-th order SISO
backstepping controller:

A=

0
],b=[ 0],cr=[400]
1

oy = L_gl_ﬁbid —Lph(x,)—kiz, — ni(z))zi]

1
o=

T g, xz)[d‘; —f2(x1, x2) — Lg1h(x1)z1 — kaz2 — n2(22) 25

@B=i<n)o;= )[fi.'—l —fiX 1y X)) = i1 (X1 ey Xim1)Zio

gl'(xhﬂos Xi

—kizi— ni(z)z

[ 4% =8?”—(J':l’."' xﬂ)[dn—] _fn(xl,---, x,,) _gn—l(xl,-.., X 2)&‘(_]

- ann - nn(Zn)Zn]
H= 0y

where 2, = h(x\) — ya, zi =xi — i~y (i =2...n) and the stabilizing functions o; are
chosen such that all nonlinearities are cancelled, yields a GES equilibrium pointz=10
Jor the system ((52)~(56). The controller gains must be chosen such that k;>0 and
ni(z;)=0 for (i=1...n).

Proof. The proof follows by induction for i=1, i=2 to i =n.

Error dynamics
The resulting error dynamics is written:
2= —K(z)z+8(x)z (65)
where z=[z,,..., z,]” and

K(z) =diag{ki+ni(z1), k2 +na(z2)...., kn+nn(z)}

0 Leh(xy) 0 0 0 0
Lgih(x;) 0 £2(xy, x2) 0 ] 0
0 = g2(x1, x3) 0 0 0 o
o : ' . _ ;
0 0 o 0 En—1(X1seeny Xn—1) 0

0 0 0 e Bn— Xty Xn—) 0 En(X1,eees Xy)
0 0 o ] =Bl Xiueecy Xp) 0

Hence, the equilibrium point z = 0 is GES since z'S(x)z = 0, Vx, z and K(z) and
K(z)>0, Vz, implies that:
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Figure 6. Supply vessel used in the North Sea. Length of ship: 76:2 m.

Va(z) =%zrz (66)
Vu(z) = —z2'K(z)z 67)

Notice that if the output mapping y = h(x,) is chosen as y=x;, the element
S12= — S = Ly h(x;) reduces to Siz= — Sz = g1(x1) which is consistent with the
other non-zero off-diagonal elements of S.

2.1.1. Nonlinear ship autopilot design

The yaw dynamics of a rudder controlled ship is described by the Nomoto model
(Fossen, 1994):

¥ o K(+Tss)
) = s(1+ T1s)(1 + Tas) (68)
K
- s(1+Ts) (69

where T, T, T5 and K are the Nomoto time and gain constants, T=T7, + T,—Tyis
the equivalent time constant, ¥ is the yaw angle (heading of the ship and & is the rudder
angle. This model is often extended to include nonlincar maneuvering characteristics
in order to describe both course-stable and course-unstable ships more accurate. We
will show how backstepping can be applied to both the 2nd and 3rd order models of
Nomoto.

The nonlinear model of Norrbin (1963)
Consider the nonlinear ship model:

T¥+ Hy(¥) =K (70)
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HN('.I}’)=H3§,3+H2¥.'2+H]§’+FIQ (?l)

where Hy(¥) is the nonlinear maneuvering characteristic. For a course-unstable ship
n; <0 whereas course-stable ship satisfies n, > 0. For single-screwed ships (one
propeller) ng # 0. Similarly, symmetry in the hull implies that n, = 0. The bias term n,
is usually compensated for by including integral action in the autopilot since this term
is impossible to compute due to an unknown component caused by the environmental
disturbances (wind, waves and currents). Hence, we propose to use the polynominal:

HN('P)=?I3¢‘3+H|'P (72)

in our design. Also notice that the term n; %2 is “good” dgmping since the ship-ambient
water system is dissipative while the linear term n, ¥ is destabilizing for course-
unstable ships. This is usually the case for large tankers whereas smaller ships are
course-stable. However, feedback from ¥ will stabilize course-unstable ships. We will
illustrate how the SISO backstepping control law can be derived by solving this problem
in 2 steps:

Step 1:
pLet the control objective be tracking of e = ¥ — ¥, to zero. Hence:
7 =e (73)
L =¥Y-¥
=r—¥, (74)
Taking r as virtual control:
rho;+z, (75)
where z; is a new state variable to be interpreted later, yields:
L= +2— ¥ (76)
Next, we choose the stabilizing function o, such that z, 0. Moreover:
al='Pd_k]ZI_nl(ZI)ZI )
yields:
L=~k +mz)lz + 22 (78)

where k, > 0and n,(z; ) = 0 are design parameters. A Lyapunov function candidate for
2, is:

Vi =2 zi )
Vi =212,
= — [k +ni(z)ld +z122 (80)

Step 2:
The second step stabilizes the z,-dynamics:

. . 1 . .
i=i =§5— HA() — i @1)
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The second Lyapunov function candidate is:

Vs =V:+;z% 82)
Vo, =V,+ 2.2,

= —[ky + ni(z1))2] + z2(z) +22)
= — [ki + ni(z)lz} + [ +ro-7 (-p)—a] ©
1 z)lzi 2| Za T THN !

Since the input & appears in V2 we can predescribe a value for é such that V,becomes
negative definite. For instance:

T 1 .
5= 2o~ o+ ma(elea =2 |+ gHa(P) (89
where k; >0 and n,(z;) =0 are design parameters. Hence:

Va = — [k +ni(z)lzi — [ka + na(z2)123
<0,Vz;#0,2:#0 (85)

When implementing the control law, &; is rewritten as:

. | .
=Y¥,— [k. + -%](a. +z2— Wa) (86)
1
in order to avoid the state derivatives in the control law.
Also notice that, the SISO backstepping control law can be found directly from

Theorem 1 with n= 2, that is:

oy =ya— kizi —mi(zi)zy @7
T 1
" =l—(.(65|*Zl+?HN(X2)“R222'?12(22)22) (88)
where y;= ¥, and
0=V (89)
xo=r=Y¥ (90)

Resulting error dynamics
The resulting error dynamics is written:

RGN N1
z = —K(z)z+Sz ©n

Hence, the resulting system is GES since:

Va(z) = -‘2—sz 92)
Va(z) =2'[— K(z)+S)z
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= —2"K(z)
<0,Vz#0 93)

where we have used the skew-symmetric property 278z =0, Vz.
We will now extend this result to the 3rd order model.
The nonlinear model of Bech and Wagner Smith (1969)
Consider the nonlinear ship model:
T, 1,99 + (T) + T5) ¥+ KHe(¥) =K(6 + T36) 94)
Hu(¥) =b¥°+ 5,02 +b, ¥ + b ©93)

where Hy(¥) is the nonlinear maneuvering characteristic.
The 3rd-order yaw dynamics (94) can be written in SISO strict feedback form as:

X =x2 (96)
X2 =x3 97)
X3 = f(x;)+axz+ bu (98)
y =x 99)
where f(x,) = — TII;";H a(x2),a= — T;_;%Z , b= _T{;'z and:
xp =Y (100)
| x,=r=Y (101)
‘ x3 =r=V¥ (102)
| u=30+T: (103)
The rudder angle 6 is computed by numerical integration of:
b= — 1:3(.5 —u) (104)
with u given by the backstepping control law (Theorem 1):
oy =ya—kizi —ni(z1)zy (105)
02 =& — 21 — k222 — n2(22)22 (106)
u = ;)'(5!2 — 2, — f(x2) — ax3 — kazz — n3(z3)z3) (107)

| Hence z; =y — y,. Feedback from the yaw angle ¥ and yaw rate r = ¥ can be
‘ realized since these signals are easily measured by a gyro compass and a rate gyro.
However, the signal 7 is not available for feedback unless a state observer is constructed.

2.2. MIMO vecrorial backstepping

In this chapter we will show how the backstepping control laws for nonlinear
systems in SISO sirict feedback form can be generalized to MIMO systems.
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2.2.1. Vectorial backstepping

It is straightforward to extend the results of the previous section by writing the
nonlinear system equations in a vectorial setting. In order to do this we will call a vector
function f: " — R" a vector field in R". Similarly, the stabilizing functions o;: R" >N
will now be replaced by stabilizing vector fields o;: R"—> R".

Motivated by the definition of the SISO strict feedback form we will now dcfine
a model class for MIMO nonlinear systems in lower block triangular form. In order to
simplify the notation, we will introduce the Jacobian of a vector field.

Definition 3 (Jacobian) Let h: R"— R" be a smooth vector field, x € R", then the
Jacobian of h(x) is denoted by:

Vh(x) & % (108)

The Jacobian is an n X n matrix of elements Vh(x);; = ohi/ 0x;. [fh: R" > R"(m <n),
we will refer to Vh(x) as a m X n matrix of partial derivatives.

Definition 3 together with the SISO results in the previous section motivates the
following definition:

Definition 4 (MIMO strict feedback form) A MIMO nonlinear system:
x =f(x)+G(x)u (109)
y =h(x) (110)

where x =[x, xJ,..., x}1" € R", u€ R and y € R" (r =m) is said to be in MIMO
strict feedback form if it can be written in lower block triangular form:

%1 =hi(x) + Gi(x1)x2 ain
X; = (X, X2) + G2(X1, X2)X3 (112)
%3 =1f3(X, X2, X3) + G3(X1, X2, X3)X4 (113)
Xp—1 =0 1(X1, X25ee0y Xp—1) F G 1(X1, X250y Xu— 1) X (114)
%, =[(x1, X2,..., X,) + G.(X], Xa,..., X,)U (115)
y =h(x)) (116)
with:

dim y =dim x, =dim x;=...= dimx,= dimu 1))

This model class can be used for tracking control by replacing (111) with:
é=Vh(x)) f;(x;)+ Vh(x,)G; (x)x2— ¥4 (118)

where e =y — y is the tracking error only ya(t) is an r times differentiable (smooth)
and bounded reference trajectory. Regulation of y to zero is obtained by choosing
¥a=Ya=0 such that e =y. It is assumed that both VhG (VhG)" and G,G] for
(i=2...n) are invertible for all x; such that

(VhG )" =(VhG )" [(Vh G )(Vh G)'] ! (119)
Gl =G/(GGD ! (120)

exist.
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Example 2 (MIMO strict feedback form) Consider the MIMO nonlinear system:

X = —xitx (121)
X2 = —x1— X2t x3+2u,+u, (122)
X3 =xi+x+x3+u, (123)
y =x (129

which can be written as two subsystems X, = [x,] and X» = [x2, X317 according to:

%= —xi+[1 0] [x"] (125)
X3

X _ —xl—xg+x3] [2 1] [Hl]
[n] [xf+x2+x3 + 0 1) Lu, (126)
Yy =x (127)

Since
VhG,(VhG ) =G, GT=1 (128)
and
Ty — 5 ] —

det(G,G) =det L =4 (129)

this system is in MIMO strict feedback form.
The MIMO recursive design procedure is similar to the SISO case. The main result
is stated in the following theorem:

Theorem 2 (MIMO backstepping control law) The MIMO backstepping controller:

a; =(Vh(x))G;(x:)'[ys— Vh(x)f(x,) — Kz, — N,(2:)z,]
o = G (X, x2)[a; — F2(x4, x2) = Vh(x,)G(x1)z, — K2z,

—N2(z2)2,]

(3 Ei(u) @ = Gf!l(x]""! xl’)[&i 1~ fi(xb-"' xl’) - Gj—](X],-.., X; l)zi—l
—K,z;— Ni(z;)z]

[~ P G;(Kh..., X,)¢R—| - rﬂ(x[,..., X,,) - Gu ](X],..., X,, - ])Z,.—]
—K.,z,—N.(z,)z.]
u—a,

where 2y =h(x,) — Y4 Z; — ;i (i =2...n) and the stabilizing vector fields a; are
chosen such that all nonlinearities are cancelled, yields a GES equilibrium point z = 0
Jor the system (111)-(115) if the controller gains satisfy K;>0 and Ni(z;)=0
(i=1...n).

Proof. The proof follows by induction fori=1,i=2t0i=n.
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Figure 7. SISO nonlinear mass-damper-spring system.

Error Dynamics
The resulting error dynamics is written:

z= —K(z)z+8S(x)z (130)
where z=[2,,..., 2;]" and
K!"’Nl(ll) 4] O
0 K +No(z;) ... 4]
K
: H k 4]
i} 0 0 Ki+Niz)
] ?h(n.]G.(m} ] are 0 0 0
Vhix)G,(x,) 1] Go(xy, xz) .. 0 Y] o
0 = Ga(X1, X3) 0 0 0 1]
8= 3 : : : 5 :
0 0 o 0 [EFENT TN PHY | 0
0 0 0 o G (K, X)) 0 Go(Xyenny X9)
4] 0 0 o - G(Xy,..., X7) [}

2.2.2. Example: nonlinear mass-damper-spring system
Consider a MIMO nonlinear mass-damper-spring system in the form:

q=v 131)
M+ D(v)v + K(g)y =Bu (132)

where € R" is the position vector, v € R" is the velocity vector, u € R” (r=n) is the
control input vector, D(v) € R"*" represents a matrix of damping coefficients,
K () € R"*" is a matrix of spring stiffness coefficients, M € R"*" is the inertia matrix
and B € R"*" is the input matrix. Hence, backstepping can be performed in two
vectorial steps.

Step 1:
Let v be the virtual control vector:

vAs+a, (133)
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where

s=v+ AV New state vector used for tracking control
o) Stabilizing vector field to be defined later

Here ¥=v—v, and =9 —n, are the velocity and position tracking errors,
respectively and A is a diagonal matrix of positive elements. The definition of the
s-vector is motivated by Slotine and Lie (1987) who introduced s as a measure of
tracking when designing their adaptive robot controller. It turns out that this
transformation has the nice property of transformation the nonlinear state-space model
to the form:

M3+ Ds =My +D(v)y — M, — D(v)v,
= Bu — My, — D(v)v, — K(n) (134)

where v, can be interpreted as a “virtual” reference trajectory:

V., =v—s
=v,— Ajj (135)
The position error dynamics of Step 1 can therefore be written:
i": =VTVa
=s+a;—vy (ti=v,=v—38)
= —Aijj+s (136)
Hence
P KT
Vi =5 K, 7, K, =K, >0 (137
and
V| =ﬁTKré
=i"K,(— Afj +s)
= — ' K,Afj +s"K,jj (138)
Step 2:

In the second step we choose a Lyapunov function candidate motivated by the
“pseudo” kinetic energy, that is:

V:=V1+;STMS. M=M">0 (139)
Vz = V| + STMé
—s"(Bu—Myv,— Dv)v,— K(n)g — D(v)s) — 7 K, A5+ s"K, i
=s'DW)s+s" (Bu—Mv, —D(w)v, — Ky +K, i) — i K,Afj  (140)
Hence, we are ready to propose a control law e.g.:
Bu=Mi, +Dw)v, + K(m)n,— K, 5§ ~ K s (141)
where K ;> 0. This results in:

Vo = —s"(D(v) +Ko)s — 7 (K() + K,A)if
<0,Vs#0,i+0 (142)

o

Since V; is positive definite and V, is negative definite it follows from Theorem 5
that the equilibrium point (i, s) = (0, 0) is GES. Morcover, convergence of s+ 0 and
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# — 0 implies that ¥ — 0. When implementing the control law (141) it is assumed that
B has an inverse (r =n):

B'=B'(BB") ! (143)
or that B ! exists for the square case r = n. Hence;
u=B'[Mv,+D(v)v, + K()n,— K,i — K;s] (144)

Error dynamics
The error dynamics z, = # and z, = s becomes non-autonomous:

l‘c],, 131] [:;] ?I _[K(q);KPA D(v)0+Kd] [:;]J'[—ol(,, 1;,,] [:;]
M

—A(v,mz+Sz (145)

The error dynamics is GES since:

V(z) =;zrﬂz (146)
V(z) =2"[— H (v, n)z+ Sz]

=—z' A (v, n)z

<0,Vz+#0 (147)

where we have used the skew-symmetric property z.%z =0, Vz.

2.2.3. Dynamic positioning of ships

Conventional ship control systems are designed under the assumption that the
kinematic and dynamic equations of motion can be linearized such that gain-scheduling
techniques and optimal control theory can be applied. This is not a good assumption
for tracking applications where the surge and sway positions (x, y) and yaw angle ¥
must be controlled simultaneously, see Fossen and Grgvlen (1997). The main reason
for this, is that the rotation matrix in yaw J(#), typically must be linearized about 36
operating points (steps of 10 degrees) to cover the whole circle arc with adequate
accuracy. In addition to this, assumptions like linear damping and negligible Coriolis
and centripetal forces are only good for low-speed applications, that is station-keeping
and dynamic positioning (DP). These limitations clearly motivate a nonlinear design.
MIMO nonlinear backstepping designs can be used for this purpose by exploiting
nonlinear system properties like symmetry of the inertia matrix, dissipative damping
and skew-symmetry of the Coriolis and centripetal matrix, see Fossen (1994), and
Fossen and Fjellstad (1995).

Vectorial backstepping of ships in 3 DOF
Consider a surface ship described by the following model class, Fossen (1994):

7 =3y (148)
My + C(v)v+D(v)y =Bu (149)
This model describes the motion of a surface ship in 3 degrees of freedom (DOF)
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wherev = [u, v, r]"is the velocity vector decomposed in the body-fixed reference frame,
n = [x,y, W1 is the position/attitude vector decomposed in Earth-fixed coordinates and
u € N" is a vector of control inputs (azimuth thrusters, main propellers and tunnel
thrusters). It is assumed that B € R3*" and r = 3 such that the ship is fully actuated or
overactuated. The model matrices are defined according to (Fossen, 1994);

[ m— X, 0 0
M= 0 m—Y, mxg—Y,
0 mxg—Y;, I,—N,
- 0 0 —(m—=Y)v—(mxg—Y:)r
Cv) = 0 0 (m—X)u
(m—Ywt(mxc—Y)r —(m—X)Du 0
-X, 0 0
D(v) = 0 —Y, —Y, |+D.(v)
0 -Y, —N,|
[ cos¥ —sin¥ 0
Jop) =] sin¥ cos¥Y 0O
0 0 1

where D,(v)=0 is a matrix of nonlinear damping terms. The nonlinear system
(148)—(149) satisfy the following propertics:

(i) M =M is positive definite=>x"Mx >0, Vx# 0
(ii) C(v) = — C’(v) is skew symmetrical =>x"C(v)x =0, Vx
(iii) D(v) is strictly positive = x"D(v)x = %x"[D(v) +D'(MIx>0,Vx#0
(iv) BB is non-singular
(v) J(n) is the rotation matrix in yaw=J ~'(5) =J"(n)

The control objective is to track a smooth bounded reference trajectory given by
ijd, f]d and Ha.

New state variables
The main difference between the ship tracking control problem and the nonlinear
mass-damper-spring system is that the kinematic equation # = J(#)v is nonlinear for
the ship. This problem can, however, be solved by applying a nonlinear state
transformation motivated by the mass-damper-spring example in Section 2.2.2. Define
two virtual reference rrajectories as:
i Aija— A (150)
v, 2317, (151)

where # = 5§ — n4is the Earth-fixed tracking error and A > 0 is adiagonal design matrix.
Furthermore, let s denote a measure of tracking defined according to:

sAdq—i, =i+ Aj (152)

The marine vehicle dynamics (148)-(149) can then be written, Fossen (1994):
M, (1)ij + C, (v, myip + Dy(v, )i =3 " () Bu (153)
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Figure 8. Nonlinear vectorial backstepping applied to dynamic positioning of ships.

where the Earth-fixed model matrices are defined as:

M, () =3 " ()MI ()
Co(v, ) =3 "ICO)—MI " (MIMIT (1)
D, (v, 1) =3 (D) '(n)

Hence, the marine vehicle dynamics takes the following form:

M,(n)$ = —C,(v, ))s—D,(v,m)s+J "(y)Bu
- Mn(ﬂ)’lr - C'?(v» 'J)'}r - Dlj(v: ',)'}r

or equivalently:

(154)

M,()s§= —C,(v, g)s — D, (v, g)s+J "(3)[Bu— Mv, — Cv)v, —D(v)v,] (155)

Step 1:
Define the virtual control vector:
p=J(vLis+a,
where a, is a stabilizing vector field which can be chosen as:
oy =, =, A'_f
Hence (156) can be written:
= —Ap+s

Consider the Lyapunov function candidate:

|
Vi =E'!?qu

(156)

157)

(158)

(159)
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V= "ITKP"; == ifTKpAﬁ?-KPS
where K, =K} >0 is a design matrix.
Step 2:
Next consider the Lyapunov function candidate:
— 1 T
V, =V, +2-s M,(n)s

. - - ~ l Y
Vo= —i"K,Aj +ST[K,,I]+M,,(}1)$+EM,,(:])S]

Substitution of (155) into the expression from V; yields:

. 1.

Vo = ="K, A +s"[K, 5 + EM-:S —Cy(v, m)s—Dy(v, n)ls
+s'J "(g)[Bu—Mv, — C(v)v,— D(v)v,]

Using the fact that, Fossen (1994):

1.
sT(zM,,(q)—C,,(v, q))s=0, Vs

implies that (163) reduces to:

Vo = =i’ KAl —s"Dy(v, 3)s
+s" T (K, ij + Bu— My, — C(v)v, —D(v)v,]

This suggests that the control law should be chosen as:
u=B'[Mv, + C(v)v, + D()v, — I (NKas — I (K, jj]
where B' is the pseudo-inverse:
B'=B'(BB") !
Hence, the resulting expression for V, takes the form:

Va = —ii"K,Afj— s"(D,(v, 1) + K,)s
<0, Vij#0,s+0

Error dynamics
The error dynamics z, = # and z, = s becomes non-autonomous:

[[((}p M.,o(q)] [:;]

1% comimomerd [
[ WL
_K,, 0 Zy

M ()2

—H (v, )L+ S
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(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)
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Set-point regulation (station-keeping)
A special case of DP is station-keeping which is obtained by choosing:

14 = constant (171)

For this case, the DP control law takes the following form:

T =M, + C(v)v, +D(W)v, — J ()Kis — I (K, 172)
u =Bt (173)
where
s =ig—Aj=J()v—Aj (174)
ve =3 (m)ig, =3 () (175)
a = — Ajj (176)

3. Locally optimal backstepping design

Optimal and robust control of linear systems is well established. For nonlinear
systems, however, optimal control design is a relatively new field of research. The main
obstacle in achieving optimal control of nonlinear systems is obtaining a solution to the
Hamilton-Jacobi-Bellman (HIB) equation, and in the case of robust optimal control,
obtaining a solution of the Hamilton-Jacobi-Isaacs (HII) equation. This can be
circumvented by an inverse optimal approach.

In contrast to linear methods, where the cost functional to be minimized is specified
in advance, the inverse approach is to first find a stabilizing control law and then
determine the cost functional which is minimized by that particular control law. Using
Lyapunov methods, these inverse designs construct the value function which solves the
corresponding HIB or HJI equations. In Ezal, Pan and Kokotovi¢ (1997) a locally
optimal and globally inverse optimal design methodology were derived for SISO
nonlinear systems in strict-feedback form. This is a constructive design procedure
which permits the control designer to specify the local behavior of the system. In this
design, the cost functional for the linearized system is specified, and at the same time
a solution for global stability and optimality of the nonlinear system is sought. Thus,
this new method is an extension of well-known lincar quadratic (LQ) and 5 .-methods
to nonlinear systems in strict feedback form.

The new design methodology is called locally optimal backstepping (LOB) and it
includes two design mechanisms. First, the system is transformed into new coordinates
by recursive backstepping. Here, each stabilizing function consists of one linear term
and one nonlinear term. The linear term is pre-defined, since the behavior close to the
working point is given by the linear cost functional. Simultaneously, the nonlinear term

-of the stabilizing functions are used in an inverse optimal manner.

The LOB design for SISO systems presented below is based on the Ph.D.
dissertation of Ezal (1998). In this work, it is demonstrated that the LOB design can
be extended to tracking and output feedback control. In Strand, Ezal, Fossen and
Kokotovié (1998) the LOB procedure was extended to MIMO systems in block-strict-
feedback form by applying the LOB design methodology to nonlinear optimal MIMO
control of moored and free-floating ships.
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Y Vv (swav)

u (surge)

Figure 9. Free floating tanker.

3.1. SISO optimal backstepping
3.1.1. Notation
For SISO systems the following notation is adopted:

The i X i upper left sub-matrix of a matrix A € R"*” is defined for all i = 1...n as:

an ... Qy
Ap-| ¢ - ¢
aig ... Gy
and the same notation is used for subsets of a state vector and a vector field, i.e. a state

vector containing the first i-th element of x € R" as:

X = [-xlv ey xi]T

With a slight abuse of notation, the i-th row vector of A; will be denoted as:

ag = laa, ..., aill

The zero matrix of dimension i X i is denoted Oy; for all i =1...n and O € R"*",

3.1.2. Model Class
In this section we consider SISO strict-feedback systems in the following form:

i = filx) + x2 (77)
X2 = fox1, x2) + x3 (178)
Xa = fa(x1, X2, X3) + X4 179)
Xy =fai(xe, X2, ooy X)) T X, (180)
j"n =fn(xh X2y eney xk) +bnu (181)
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This can be written compactly as:
x = f(x) + bu (182)

Here x =[xy, ..., x,]" € M", u € R. It is assumed that f; are sufficiently smooth and that
S0, ..., 0) = 0. Notice that this definition of strict-feedback systems deviates from
Definition 2 in Section 2.1. The difference is that here all terms gixi, ...,x) =1
(i=1..n—1) and g,(x1, X2, ..., X) = b

The system (182) can be re-written as:

% = Ax + bu + f(x) (183)
where
an 1 0 0
ay axn 1 0 0
_of = as as; as ... 0 0
IX |x=0 : : P : . (184)
y—1,) Ou—12 Qn-13 --- An—1,n—1 1
an‘l aﬂ.2 anj. sas an‘n =1 au‘" i
_ T
b=1[0,0, ..., bl (185)

and f(x) = f(x) — Ax.

3.1.3. Control Objectives

O1: Global Objective. The ultimate control objective is to design a globally
asymptotically stabilizing feedback control law u = p(x) which minimizes the cost
functional:

J= L [g(x) + r(x)u’]dt (186)
subject to the system dynamics (182). Here g(x) and r(x) are not specified
beforehand, rather constructed during the control design. Thus this is an inverse
approach that obtains an inverse optimal control law. The requirements are:

q(x) is positive definite and r(x) >0 Vx (187)

02: Local Objective. The second control objective is to find a control law that
minimizes the cost functional

Ji= I [x" Qx + Rujldt (188)
0
locally, i.e. near the origin x = 0, subject to the linearized system dynamics:
x = Ax + by, (189)

Here, local behavior of the closed-loop system is designed by specifying the state
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Plant
z = f(x)+bu T
r=Azx+bu
Control Law Mapping
u| u=—7F'@bAz | 2 z=d(T)

Cost functional

J= j: [g@) + 7 @y 1dt

J=[ 1a'Qu+Ru 1dt

Figure 10. Relationship between linear LQ control (lower blocks) and nonlinear optimal
backstepping (upper blocks).

cost matrix Q =Q">0 and the cost R >0 on control effort. Although not specified
beforehand, g(x) and r(x) in O1 must satisfy the local objective by requiring that
r0)=R

1 9%

x=0

3.1.4. Locally Optimal Backstepping (LOB)

A linear control law , that meets the local control objective O2 can easily be found
by solving the algebraic Riccati equation (ARE):

PA+A'P—PbR D' P+Q=0 (190)

with P = P"> (. This solution exists provided that (A, b) is controllable and (A, Q)is
observable. This linear quadratic (LQ) controller is:

w= —R 'bPx (191)

The global objective O1 can be met for systems in SISO strict-feedback form
(177)-(181) by the LOB procedure. A mapping:

z = P(x) (192)

into a new set of variables z is constructed by backstepping. It will be shown that this
diffeomorphism can be written as:

z=Lx + &(x) (193)
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where ®(x) contains higher order terms. The constant matrix L is found by factorization
of P into":

P—L7AL (194)
where
4 0 0
_ 0 -52 O = diag {61, .-., 6} (195)
0 .0
- 0 0
L— —:Iu _1 0 (196)
|l _I""""_‘ 1

Applying the transformation z = Lx to the linear system (189) yields:

z=Az+bu (197
where A = LAL ", The structure of A is
an 1 0 0
B Gy dp 1 :
A=| 0 (198)
an—l,n—l 1
Qnl  ses  an- (7 7 -

By replacing P with L"AL, and pre-multiplying with L.~ " and post-multiplying with
L', the ARE (190) transforms to:

A’/ A+AA—AbR 'D’A+Q=0 (199)

where Q =L""QL '=Q">0.

The linear part Lx of the diffeomorphism (193) is given by the factorization of P.
For the nonlinear system (186), however, the transformation into new variables must
be done by a recursive backstepping procedure, which is the topic of the next section.
It will be shown that the nonlinear system (186) can be represented as:

z=Az+bu+1i@) (200)
where
. T
f(z)= [0, o,..., f,,(z)] (201)

Inrecursive backstepping each stabilizing function o; must be chosen to match the linear
mapping, whereas the nonlinear terms can be chosen freely. For simplicity we choose
to cancel the nonlinearities at each step i = 1...n — 1. It is, however, possible to keep
“good damping” terms at each step of the backstepping.

"It can be shown that A"2L =U "7, where U is a unique Cholesky factor of P~'=U"U.
Therefore the pair (A, L) is unique. Matlab command: U = chol(inv(P)).
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Lyapunov design

Let:
V=z"Az (202)
be a Lyapunov function for the transformed system (200). Thus:
V=2"(ATA+ AA)z + 2ub"Az + 2f7(z)Az (203)
By substitution of the ARE (199) we get:
V= —2"Qz+z"AbR 'b"Az+ 2ub”Az + 2f7(z)Az (204)

Due to the structure of f(z) and b we get:

z"AbR "'b"Az =R 'b262z2
%ubTAz =2b,6,uz,
2f7(2)Az = 2f .(2)0 .2

such that:
V= —27Qz+R 'b28222 + 2b,8,uz, + 2f (2)6 2, (205)
By adding and subtracting 7(z)u? and completion of the squares such that
F(z)u?+2b,6,uz, = F(z) (u+r "(2)b,6,2,)> +r "(2)b262z2
the expression for V becomes:

V=—2"Qz+#(z) (u+tr "(2)b,0,2.)>
—(r () — R )bi67 25+ 2f n(2)0nzn — F(2)14? (206)

The second term in (206) is rendered equal to zero by choosing the optimal control law
as:

u=—7 '(z)b"Az= —r ' (z)b,0,2, (207)
Hence:

V= N 27Qz — (7 ~'(2) — R ~")b26222 + 2f (2)d 12, — F(2)12 (208)
-4

It remains to show that §(z) is a positive definite function and 7(z) is a strictly positive
function. This is necessary for obtaining local optimality and global inverse optimality.

Cost functional weights
Based on (208) it remains to determine §(z) and 7(z) such that

g(z) is positive definite, and 7(z) >0 Vz (209)
which locally satisfies
r(0) =R
i 194(z)
720y =53 =Q

z=0
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The solution is completion of the squares and “stealing” positive definiteness from Q.
It will be shown that g(z) can be written as:

G(z) = go(z) + (r '(z) —R ' —5(2))b}63z} (210)
where @(0) =0 and §o(z) is positive definite. If #(z) is chosen such that:
P (z) =R '+ a(z), 211)
7#(0) =R, (212)
(z) >0 Vg, (213)

then g(z) is positive definite and the origin z =0 of the nonlinear system (200) is
rendered globally asymptotically stable (GAS).
Proof
Let z'Qz be written:
Qu-n (_ll] [zlu—ll]
T = z n H [ —
2'Qz =[z{,-n 2zl i g z
=2 11Quu-nZin— 1+ 22,4120 -1 + G2k (2149)

where z;; denotes a vector of the i first vector elements of z and Q,;; denotes the i-th
upper sub-matrix of Q. The expression f,.(z) can be factorized to:

Fl(2) = 01(@) 201+ 12(2)20 (215)

By completion of the squares with respect to z,,— ) such that Vno longer contains
cross-terms of z;,-; and z, we get:

—27Qz + 2f (2)8 20
= =2 1Quu-1Ztn- 11— 2208 { Ztn 11— G225 + 28,711(2) 20Z1n -1y
+26,72(2) 23
= =2 0Qun- 12— 11— 2001 — 81 (2)) 20Zin— 11 — G220+ 28,772(2) 2,

~Ztn- 1+ Qe (@ — 801 ()20 (G2~ Quln@nz?
tn1)
+ 26,72(2)2k — 26,81 Q- i (2) 2% + 8251 () QL i (2) 27

Define:

Go(2) = |Zpn—n + Qi (@l — 8,31(2)) 20

E (G- @lQutnanNz?  (216)
n—11

Here the first term in (216) is obviously positive definite and the second term is also
positive, due to the positive definiteness of Q. Hence, the expression for Vin (208)
can be written'

V= —Go@)+(F (z)—R ' — a(z))bzﬁﬂzn — F(z)u?

A
—§g(z)

where possible non-positive terms are collected into a new variable &(z) which is:
a(2)=2b, 28, '#i2(z) — 2b, 26, 'q{Qp.— ni1(2) + b, 5:1(2)Qp. " nii{ (z) (217)
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Choice of 7#(z)
For the control law
u=—i " (2)b"Az= -7 "(2)b,8.2,
several possible choices for 7(z) that satisfies (211)—(213).

® One choice is

F(z)=(R "+a(z)*+&(z)) ? (218)
where £(z) is positive definite and guarantees that 7(0) = R, for instance:
s, GX(2)
E(z)= .11 +5%a) where Ae (0, 1] (219)
® A leaner choice of F(z) is:
o _[R'+E@) ' 6(z)=0
Fz)= [ R . 5(z)<0 (220)

which dominates R ™' + 5(z) only when neccssary.

Inverse optimality

From (208) it is seen that the control law (207) is inverse optimal with respect to
the cost functional

J= I [G(z) + F(z)u?di @21
1]
which locally satisfies

Iy = f [27Qz + Ru?\dt (222)

(4]
which in original coordinates equals to (189).

Extension to a larger class of nonlinear systems
A straightforward extension of the LOB design to a statc dependent g,,(x), that is

Xn = fr(X) + ga(x)it
where g, (x) # 0, Vx and g,(0) = b,, can be found by defining the control input to be:
_ b,
u= g_,.(ic)u

In this case the resulting cost functional becomes

J= Lu [q(x) + r(x)(g:g‘—))zuz]dt

3.L.5. Recursive backstepping procedure
Linear backstepping
Although the linear part z=1Lx of the diffcomorphism is already known, the

mapping in the framework of backstepping must be described in order to prepare for
the nonlinear backstepping at the next stage. We first rewrite the linearized system (189)

as
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X =apXpm+txier i=l.n—1 (223)
Ko =Xyt ba - (224)
where ag; is the i-th row vector of Apy
an= [aiis.-., aiil (225)
Moreover, define the row vector:
&g = I L'
where the row vectors l;; are extracted from Ly;; according to:
l[r’] =ity s il (226)
for i=1...n— 1. The error coordinates are given as
FARR 3| (227)
zi =xi—lp—uXg-1u, i=2...n (228)

which are given by the transformation z = Lx, where z = [z1,...z.]"-

Property 3.1. For 1 < k=n:
Zy = LigX where Ly is invertible.

Property 3.2. For 1 =k<n:

_ 0
im=Amzlk1+[ z“r "]

k+1
Step 1
The dynamics of z, is:

Zi=anzi +x3=(am+apm)zm +(x2— o) (229)
where the stabilizing function &,(z1) = &p121- Thus, the z;,-subsystem can be written
as:

Zi=amzm+ 22, agp=aytay (230)
Step i
Define z; = x; — &;—1(Zgi— ). The dynamics of z; are given by:
. _ 01 | = 0
Zi— a;;,L[,-,‘z[.-; +Xiv _a—'l' [A[i— 1NZ[i—1] + [ ! 2]]] (231)
Zii-1) Zi
By selecting 8,(z;;) = &i1Z1i) = I[;]Ll,']lZm this simplifies to:
Zi=apzZitziv (232)
where, by using Properties 3.1 and 3.2, yields:
ap=amLa' + &= [Bu-nAu-n8i-1i-1] (233)

Here &;y ;- is defined as the (i — 1)-th element of ;).

Step n
At the last step we define: |
anxn_&u l(z[n—l) (234) |
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where the dynamics is given as:

oa,, n
z‘,.za[,.]L_'Z‘I—b..u;— oc ][A[u—llz[ﬂ 1]+[0[ 2]]] (235)
aZ[,.. 1 Zn

which by using (233) yields the dynamics:
Zn=az+ bu (236)

The linear system can now be written compactly asz = Az + bu in the new coordinates.

Nonlinear backstepping

Now that the recursive steps of the linear backstepping are described, we are ready
to perform the nonlinear backstepping. In the linear case the stabilizing functions were
chosen as a;(z(;)) = &;jz;- In the nonlinear case we add a nonlinear term, &;(z;), to
the linear one. For simplicity these nonlinear terms are selected to cancel the
nonlinearities that appears at each step. However, this procedure can be modified such
that “good” nonlinear damping terms are exploited. With the completion of each step
a new state z; = ¢;(x;;)) is defined. At the last step, the recursive backstepping creates
a lower-triangular diffeomorphism z = @(x) which can be separated into a linear term
Lx and a nonlinear term ®(x) = ®(x) — Lx.

Step 1
Let z; = x;. Thus
=) +x=ann+filzi) +x (237)
wherefl(zl) =fi(z1)—anz, and fl(O) = 0. In the general setting this is written:
&= apzm +fi(zm) +x2 (238)

The stabilizing function is chosen as &,(z(,)) = &2z, + &, (z;;;) where the first term
is due to the linear backstepping and the latter term is a nonlinear term to be chosen.
Now we get:

& =amzm +f1(20) + 8 (2m) + (X2 — &1 (zqy)) (239)

At each step we choose to cancel the nonlinear term, and at the first step this is obtained
by & (zu) = — f1(zq). Thus, the second error variable is:

Zz=xz—&l(zlu):xz-ﬁmzm+}‘|(Z[|1) (240)
and
ZLi=amzm +z2 (241)
Step i

Define z;= ¢i(zy) = xi— & 1(z1;— 1) where & (Zi—1) =& nZp—n + &
(zgi-1)). In the recursive steps we get:

Zi= Az + flzp) + (i — 8(Z0) (242)

where aj;) is given by (233) and
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Filzn) =azm) + anPu(zn) + Fi( @' (xm))

Ot [-— 0[.‘—2]]] 001
- A i— i-n+ - f i Zpi- 243
oz L U2 1) Z P n(Zii-n) (243)
and !i’[,'](![,‘])' = ¢[¥}](X|gl) - L[-,']’Zh'] contains Dllly higher-order terms.

As in Step 1 we choose &;(z;) to eliminate fi(z;) by:

@izp) = — anPa(zn) +fil( @i (X))

a&i 1 [— 0[i i]}] a&i—I -3
— | A i-n+ — 1t Zyi— 244
32y 1) i-1Zi-1y Z EY ti-1n(Z-1) ( )
such that
Zi=anzZitzin (245)

where & is given by (233).

Step n
At the final step we define z,, = ¢,(X) =x, — &%n-1(Z»-1)) such that:

Zn=Apz + fa(z) + bou (246)
where a, is given by (233) for i = n. Here:
frz) =am¥@)+f(@ ' (x)

08— [- [01,.—21]] 0,1
- n— a-nt - fl‘!" n— 24
9z, A[ 11Z[n—-1] - 9z [ 1](2[ n) (247)

where ¥(z) = & '(x) — L 'z contains higher order terms. With this procedure the
construction of the diffeomorphism z = @(x) is completed and the original system
(181) has been transformed into the form:

z=Az+1(z)+bu
where
f(z)=10, 0...0, f.(2))"
Example 3 (2nd-order nonlinear system) Consider the nonlinear system:

f.=x?+xg
x'2=l!

In the linear case, the mapping to new state variables z is given by:
4 1 0] [x
[Zz] - [ —fll ]] [xz]
Find the diffeomorphism z = ®(X) using backstepping. Write the transformed
dynamics in new coordinates.
Solution. Let z; = x;. Now:
H=x=xt+xa=luzi +(x+xt—Iuz))

Hence:

Z2=x2+x%_l'uzi
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ooo-| 2, S]]+ []

LZi=lhnatz
Time differentiation of z; yields:

Now:

Zo =Xt 272171 — Iz,
=u+2lyzi+2zuz0—thz — lhze

Note that the nonlinear terms in 7, corresponds to f . in (247).

3.1.6. Summary
The locally optimal procedure can be summarized as follows:

1. Given a nonlinear system in SISO strict feedback form:
x = f(x) + bu
Linearize it to:
x=Ax+bu+ i'(x)

2. Given the linear cost functional:
J;=j [x"Qx + Rulldt
0

find the positive definite matrix P by solving the ARE.
3. Factorize P into:
P=L'AL
using Cholesky factorization of P!, and compute L and A.
4. Find the diffeomorphism:
z =M(x)

by recursive backstepping of the nonlinear system, as described in Section 3.1.5.
The original system is now written in new coordinates

z=Az+bu+f(z)
where
Jf@=10,0,...,0,/.@)"
and f,(z) is given by (247).

5. Factorize f,(z) into:

Jl@) =01 @2y 12Dz,
6. Compute the analytic expression for:
6(z) = 2b, 28, 'H2(2) — 2by %8, ' §1Qp- i@ + b, 1@ Q11T (@)
where Q =L "QL "'
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7. The control law is given by:
u= —F '(@b'Az= — 7' (@bnnzn

where two possible choices for 7~ ' (z) are given in (218) and (220). The control
law in x-coordinates is:

u= —r "(@x)b'L "PL'®(x)
3.1.7. Example: Nonlinear Mass-Damper-Spring System
Consider the 2nd-order system:
X1 = X2 (248)
X = —k(x)x; —d(x2)xz + u (249)

which is a mass-damper-spring system with nonlinear damping and nonlinear spring
stiffness (for simplicity the mass, m = 1). This system can be a moored ship moving
in one degree of freedom, e.g., surge.

The linearized system is:

.l'fl = X2 (250)
X2 = —koX\ —dox2+ Uy (251)
where
ko — ak(xl) , d‘, —_ ad(xz) (252)
dx; |x =0 0x2  |xp=0
Given a state cost matrix
—|9n q:z]= 7> 253
Q de Q (253)

and a scalar cost on control effort R while P can be computed by solving the ARE (190).
Next, P is written as P = L"AL where:

o BRSSP as
The original state vector x is mapped into z-variables by z =Lx, or:
Z1=Xx1, 2=X2—liux (255)
The linear system in new coordinates becomes:
7=Az+bu (256)
where
A=LAL"! =[ hu ! ] (257)
_ko_lll__dalll '_lll_do
and

Q=L "QL"' (258)
=[Q||+f1|4u+(9|2+31|q'n)111 Q|2+Inq:z:|
gzt lign g2

(259)
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— [G_‘ll ?Iz] (260)
412 4qn
Backstepping
Step 1: As in the linear case select z, = x, such that:
Zimanznr+ (- Ilnzd)=lnzi+ 22 (261)

where the second variable is z, =x, — I, 2.
Step 2: Time differentiation of z, and substitution for ¥, yields
Z22=X%—luii= —k(z))z1 —d@)x tu— 1z — Ihze (262)

Now, substituting for x; = z, + I, 2, and adding and subtracting k,z,, d,l,1z: and d,z,
to obtain Ay, z; and Ay z,, yields:

La=(—ko—dolyy — )z, + (— 1y —dy)z2 + u+f"2(z) (263)
where fz(z) can be written:
F2(@) = 11(21, 22021 + 221, 22)22 (264)
where
M11(z1,22) = ko — k(21)] + [d, — d(z2 + Lnz)ln (265)
72(21,22) = [d, — d(z2 + 1112))] (266)

which satisfies #,(0,0) =0 and #(0,0) = 0. Since the nonlinearities in this example
appear in the last equation only, the diffcomorphism z = @®(x) is equal to the linear
mapping, i.e., z=Lx. The total system is:

z2=Az+bu+F(2)z (267)
where
)= [ﬁl(z(l),Zz) fh(:,Zz) (268)
Stability Analysis
A Lyapunov function for the system is:
V=2"Az= 8,2} + 8,23 (269)
The LOB control law is:
u= —i '(z)0222 (270)
where 7(z) must satisfy:
F'@=R '"+d(2) (271)
and where &(z) is given by (217) as:
G(z) =267 '2(2) — 2605 'Gr2guini(2) + G271 (2) (272)

This can be obtained by using one of the alternatives (218) or (220). Thus, V can be
written as:

V= —g(z) — i(z)u’ (273)
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where
4@ =q,(@) +F '@ —R "' —5(@)d%z3 (2749
and g,(z) is given by (3.37) as:
Go@ =21+ " @z — S2i@)zallf,, + (G2 — G12411")2E (275)
The control law in original coordinates is:
u= —7F "(OX))d2(x2— I1x)) (276)

From V we conclude that the system is GAS and LES. Morcover, both the optimality
objectives O1 and O2 are satisfied.

Comment: Notice that the 2nd-order system in this example is equivalent to the
autopilot example in Chapter 2.1 if:

k(x,))=0
n

d(x;) = %?x% + ’i;xz +2

u=Kb

and no=0.

3.2. Locally Optimal and Robust Backstepping Design
3.2.1. Model Class

A bounded unknown disturbance signal w(z,x): [0, %) X R"— R" is added to the
triangular system:

X1 =fi(x)) +xz + hi(x)w 277)
X2 = fo(x1,x2) + x3 + Wi (x,, X)W 278)
K3 =f30x1,x2,X3) + x4 + B (1, %2, X3)W 279)
x-n 1:fn—I(xlvx:!t“‘rxu—l)+xn+h: l(xth)"‘-xn I)“|I (280)
Xn=fu(1, X2, o, Xn) + by -+ hI(x, x0, 00, X)W (281)

which can be written compactly as:

% = £(x) + bu + Hx)w (282)

This system can be rewritten as:
%= AX + bu + How + f(x) + Hx)w (283)
where A and b are defined in Section 3.1 and
H(x)=HX) —H,, H,=H0)
The linear part of this system is:
x = AX + bu; + H,ow, (284)
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It is assumed that f;, g; and h; are sufficiently smooth, and that fi(0) = 0. In addition,
let h,; = h;(0) e R' >,

3.2.2. Control Objectives

OR1: Global Objective. The ultimate control objective is to design a globally
asymptomatically stabilizing feedback control law u = u(x) which minimizes
the cost functional:

J= I [g(x) + r(x)u® — y*w w]dt (285)
0

subject to the system dynamics:
% = f(x) + bu + HX)w (286)

The desired disturbance attenuation level is represented by the scalar y>0. As
in the previous section it will be required that:

g(x) is positive definite, and r(x) >0 Vx

OR2: Local Objective. The second control objective is to find a control law that
minimizes the cost functional:

Jy= J [x"Qx + Ruf — y>wiw,]dt (287)
1]

locally, i.e. near the origin x =0, subject to the linearized system dynamics:
X = Ax + by, + H,w, (288)

As in the previous section it will be required that g(x) and r(x) in OR]1 satisfies
the local objectives:

r(0)=R
_1&qm|
qn(o _2 axz x—O_Q

3.2.3. Locally Optimal and Robust Backstepping

A linear control law u, that meets the local control objective O2 for the worst-case
disturbance can easily be found by solving the generalized algebraic Riccati equation
(GARE):

PA+A'P+ P(;Pl2 H,H;—bR"~ 'hT)P +Q=0 (289)

where P =P">0. This solution exists for all y>y*>0 assuming that (A,b) is
controllable and (A, Q) is observable. Here y* denotes the optimal disturbance
attenuation level and y the desired attenuation level. The linear 5 ..-controller is:

u=—R 'b'Px (290)

By factorization of P as in Section 3.1 the linear system under the transformation z = Lx
becomes:

z=Az+bu,+H,w, (291)
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Plant
z = f(x)+bu+ Ha)w o

z=Axz+bu+Huw

Control Law Mapping

~

U U—--? (z}bAz 2 z=d(x)
U= —R 'b'Az z=Lz

U

Cost functional

J I [q(m)+'r(:c)u —Y‘w’w]dt

- I[a‘.Q:c+Ru y’ww]d’t -

Figure 11.  Relationship between linear 3 «.-control (lower blocks) and nonlinear optimal and
robust backstepping (upper blocks).

where H, =L "H,. Similarly the GARE (289) can be transformed to:
ATA+ A&+A(-;iﬁ,ﬁ3,“—bﬁ-‘b?),s+(}=o (292)
As in the previous section the diffeomorphism z = ®(x) is constructed by recursive
backstepping. In new coordinates the nonlinear system (286) becomes:
= Az + bu + f(z) + A(z)w (293)

where i‘(z) and H(z) are constructed during the steps of backstepping. The final control
law is:

u=—7 '@b"Az= — 7 ' (2)b,6,2x

where
PN @) =R""+5(z) (294)
FO)=R (295)
F(z)>0 Vz (296)
which can be achieved by any of the choices for 7~ '(z) in (218) or (220). If
V=12"Az
is a Lyapunov function for the nonlinear system (2806), f/ can be written as:
V= —g@— i@’ —y'w'w (297)

which demonstrates that the inverse optimal objective OR1 is satisfied.
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Figure 12.  Ship and spread mooring system.

il

Thus, the only difference between the LOB design in Section 3.1 and the robust LOB
is that here we solve the GARE instead of the ARE, and that the contents of f(z) and
& (z) takes into account the additional disturbances.

3.2.4. Recursive Backstepping Procedure

The linear part of the backstepping is equivalent to the procedure in Section 3.1.5.
However, due to the additional disturbances in the system, the recursive backstepping
procedure in this case becomes more elaborate. The interested reader is referred to Ezal,
Pan and Kokotovi¢ (1997) or Ezal (1998) for more details. The locally optimal and
robust backstepping design will be demonstrated on a ship control design example in
the forthcoming section.

3.3. Locally Optimal Control of Moored Ships
The locally optimal and robust backstepping designs can be extended to MIMO
systcms in block-strict-feedback form. In this section the robust LOB design is applied
to ship control. The results presented here are based on a paper by Strand et al. (1998).
The ship model (148)~(149) in Section 2.2 can be extended to moored ships by
adding a restoring term in the model. The deviation from the desired position and
heading #4= [x,4,y4,¥4]" decomposed in vessel parallel coordinates is:

e=Ji(Va)(m—na) (298)
where
cosyy —sinyy O:I

_ cosy —sing 0
Ji(Ya) =|singpy, cosyy Of, J.(Y)A|singy cosyy 0O
0 0 1 0 0 1

and Y = § — J,. In this example regulation is considered, such that 19, = constant. The
ship model can be formulated as:

e=J.0)w (299
M5+ D(@)v + C(v)v + G(e)e = i + JI(§)w (300)
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where G(e)e is a nonlinear restoring term, due to the mooring system. In dynamic
positioning G(e) = 0. This system can be linearized about the origin ¢ = 0, » =0 such
that:

J.(O)=1L DO)=D, C0)=0, GO)=G,

Hence, the linear system becomes:

é=v (301)
p=-M 'Dr—M 'Ge+M 'u;+w (302)

or compactly written:
x = Ax+ B, +H,w, (303)

where x = [¢”, #"]" with obvious choice of A, B and H,.. Similarly, the nonlinear system
(299)—(300) can be formulated as:

% = f(x) + Bu + Hx)w (304)
The control objective is to find an inverse optimal control law that minimizes the cost
functional

J= f [g(x) + a"R.(x)u — y*w' w]dt (305)
o

where
q(x) is positive definite and R.(x) = Ri(x) >0, Vx

The local optimal objective requires that:

19%()

2 ox?

where Q = Q" >0 and R = R">0 are design cost matrices.

Since the ship model is in MIMO strict feedback form, the design methodology is
quite similar to the LOB for SISO systems. A positive definite matrix P =P’ >0 can
be found by solving the GARE:

R0)=R, g.(0)= ®=Q

PA+ATP+P(%HOH§—BR' 'BT)P+Q=0 (306)

As in the SISO case P can be factored into
P=L"AL

where the block diagonal entries of L consists of identity matrices and the block
diagonal entries of A contains positive definite sub-matrices A;. In this particular case
we have:

I 0 0

Lz[—L“ l]' A:[Ali Az] Gon

where all sub-matrices are of dimension 3 X 3, and A, A; are positive definite. Using
the transformation z = Lx the linear part of the system (303) becomes:
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z=Az+Bu+H,w (308)
and
A | _
A=LAL—'=[_" _ ] H,=L 'H,
A Ay (309)
where
A|1=L||,

Ay=-M'DL,-M'G,— L%,
Azz= -M _FD,,—'L".
As in the previous sections the GARE (306) can be transformed into
ATA+AA+A(§5ﬁnﬁ§—BR' 'BT)A+Q=0 (310)
where Q=L "QL '=Q">0.

Nonlinear Backstepping
The nonlinear system is transformed into new coordinates by backstepping.

Step 1: Let z, = e. Hence

z = Jov=a,z)+ (J.v— @(z)) (311)

where
n=J.v—a(z) (312)

Thus:
Zi=Lpz,+ 2z, (313)

Now, the stabilizing vector fields are chosen as @;(z,) = L, z,.
Step 2: From (312) we get:
=1+ Jv—Luz +JM 'Jw
at which we substitute the ship model (300) for # and get:
L= — M 'D@)r—JM 'C@)r— JM 'G@)zu
+IM "o+ Jov—Lhz — Loz + IM ' Jw (314)
Using J. v =2, + L7, yields:
7= —JM D@L,z — JLM D))z,
—JM 'C(»)J Lz, — JM 'C) )iz,
—JIM ™' G2z + LI Lz + )3z,
+JM 'i— Lz~ Lyz+JM 'Jw

By adding and subtracting Az, and Az, we get:
7= Apz + Any + Ni@)zy + No(@)z, + I M ™'+ I M Jiw
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where z = [z],27]" and
Ni(@z) = —JM " 'D(»)J/Lo+ M 'DLy
-M 'GEz)+M'G
—JIM ' C@ Lo+ J Ly, (315)

Ny@) = —JM 'D@J +M 'D

—JIM'COI+ 1Y (316)
which satisfies N;(0) = 0 and N,(0) = 0. The transformed system can be written:
z = Az + B(@)i + N(z)z + Hx)w 317

where

B - | Je;,’[- ) wor- [ﬁ?(z) ﬁ‘:(z)]

Locally Optimal and Robust Backstepping
Let:

V=2"Az=z]A\z, + LA 2,
be a Lyapunov function for the system (317). Thus:
V=2"(A"A+ AA)z + 20'M ' JT Ayz,
+ 2w I M JT Az, + 2w I .M T X Aoz,
+ 22X A, N\(2)z; + 225 A;N2 (2)2,. (318)

By using the GARE (310) and the identities:
2

20°M 1 JT Az, = — ' Ru(@)a + i+ RS ' @M "Il Az,

R.®
—ZAJIM 'R @M I A2,

1
WIM Y Az =yww + FZ%"AzJeM )i Az,

2

1
—9? "W - FJeM_ 137 A2,

we get:
] 2
V= —2"Qz— 0"R.(z)i + y’w'w + uﬁ +R.'M™ 'JE‘AzzzI
Ry(@)
2

2 +Z§A2M_IR_]M-"|A212

1
w— ?2J¢'M_ IJ{AZZZ

-7

1
— _Fz.;AgM 2Nz + %Z;AZJ.:M 2 Asz,

- TAZJ.:M N Iﬁ.._ I'h‘l ) IJ{AQZ*Z + 225A2N| ) + h{AzNzZ‘z. (319)
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By rewriting 2’ Qz as:
z'Qz=12{Q 1z +22]Q 22, + 2[Q2;,

completing the squares for:

~21Quz +225(AN, — Q)2 = —|lzy — Qii ' (AN, — Qu)zll3,,

+2f(N[AQii ' AN, — NTAQ11' Q12 — Q1Q1i ' ANz, + 25Q L Q11 ' Quoze
and introducing:
5@ = N{A Qi ' AN, + AN, + NIA, — NTA, Qi Q2
—QLQii'AN, — ylg AM A, + ;1-. A J M 2YIA,, (320)

which satisfies =,(0) = 0, we obtain:

V= - Ilzs — Qi (AN, — le)zzuﬁn —7(Q2— Q12Q1'Q1)z,

2

—U'R.@)i+ y*w'w+ [0+ R, "M ' JTAz,
Ru(2)
1 ? _ _ _
-y w— ?JeM_ Az —¢o"RI'@ - R, '@2)—2@)e  (321)
where
@ =M""'JAzz,,
R, 'z)=MJ/M 'R"'M 'JM
S@)=MJ'A; 'S,(2)A; 'J.M. (322)
If the control law is chosen according to:
=R, '"@M 'JI Az, (323)
and R.(z) is chosen such that:
RI'@) =R, @)+ E(2) (324)
then
2
V= g~ FR wTw— |~ LM S A
= —g(z) — 0" R.(@)i + y*w'w (325)
where

G(@) = llz: — Qi (A7 — Q)22 +23(Q2. — QLQ 1 ' Q)22
+o' (R '(2)— R, ') — E@)e. (326)
From (325) it is clear that the system is input-to-state stable. In the absence of
disturbances, w =0, the equilibrium z = 0 is rendered GAS and LES. Moreover, the dual

objective of local optimality and global inverset optimality is achieved with respect to
the cost functional:

J= I (G@) + 0"R.(2)i — y*w'w) dt 327
0

where G(z) and R.(z) are selected to satisfy the locally optimal requirements.
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One possible choice for R.(z) that makes sure that the matrix is invertible and
continuous for all z is:

R, (@)= m@I+ p@R, '(2) (328)
where
pi(z) =max{0, 1,(z)},
_ 1 : (@)= — 1(2)
Ha(@) = {(1 +| @+ 2@ :  otherwise
2@ = Ao E@),  12(2) = Auax (R, '(2))

for any k= 0. Here, Anx(-) denotes the largest eigenvalue of R, ' (z) and 3 (z) for the
current value of z. By this choice of £(z) the control effect will be reduced in cases
where the nonlinearities are helpful for stability.

Comment: This example is equivalent to the MIMO mass-damper-spring example in
Chapter 2 if:

J.=I, a=Bu, Hx)=0

Appendix A. Stability Theory
In this appendix we will briefly review some useful results for stability and
convergence:

® Appendix A.1: Lyapunov stability of nonlinear autonomous systems x = f(x),
that is systems where f(x) does not explicitly depend on the time ¢.

® Appendix A.2: Lyapunov stability of nonlinear non-autonomous systems
% = f(x, 1), that is systems where f(x, ) does depend on ¢ explicitly.

A.1. Lyapunov Stability for Autonomous Systems

Before stating the main Lyapunov theorems for autonomous systems we will briefly
review the concepts of stability and convergence (Khalil, 1996).

A.1.1. Stability and Convergence
Consider the nonlinear time-invariant system:

% = f(x), x(0) = xo (A.D)
where x € " and f: R"— R" is assumed to be locally Lipschitz in X, that is:
“f(x) - r(y)ll = L"X - YIlr Vx, y (A.2)

where L can be interpreted as the Lipschitz constant. Let x, denote the equilibrium point
of (A.1) given by:

f(x.)=0 (A3)
The solutions of x(r) of (A.1) are:

® bounded, if there exist a non-negative function y(x()) such that:
k@l =<yx@), V=0 (A4)
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In addition, the equilibrium point x, of (A.1) is:
® stable, if, for each € >0, there exists a 6( €) such that:
[xOll<é(€)=lxml< €, vi=0 (A.5)
® unstable, if it is not stable.
® aitractive, if there exists an r(x(¢)) such that:
[Ix(O)| <r(x()= lim|x()]| = 0 (A.6)
Moreover, attractivity implies convergence of x(t) — 0.

® (locally) asymprotically stable (AS), if the equilibrium point x, is stable and
attractive.

® globally stable (GS), if the equilibrium point x, is stable and if all the solutions
x(t) of (A.1) are bounded.

® global asymptotically stable (GAS), if the equilibrium point x, is stable for all
x(0) (region of attraction R").

® (locally) exponentially stable (ES), if there exist positive constants o, A and  such
that:
[x@ | <r=||x(0)]| < xexp( — An||x©)], V=0 (A7)

® globally exponential stable (GES), if there exist positive constants o, A and r such
that for all x(0) (region of attraction R").

x| < aexp(— D|[x©@|, V=0 (A.8)

Different theorems for investigation of stability and convergence will now be
presented. A guideline for which theorem should be chosen is given in Table A.1
whereas the different theorems are listed in the forthcoming sections.

Notice that for non-autonomous systems GAS is replaced by global uniform
asympiotic stability (GUAS) since uniformity is a necessary requirement in the case of
time-varying nonlinear systems (Khalil, 1996).

A.1.2. Lyapunov’'s Direct Method

Theorem 3 (Lyapunov’s Direct Method) Ler x, be the equilibrium point of (A.1)
and assume that £(x) is locally Lipschitz in X. Let V: R"—> R, be a continuously
differentiable function V(X) satisfying:

® V(x) >0 (positive definite) and V(0) =0 (A.9)
o Voo =" Pt = W =0 (A10)
® V(x)— « as ||x||— « (radially unbounded) (A.11)

Table Al. Classification of theorems for stability and convergence

Autonomous V>0,V<0 Lyapunov's direct method GAS
systems V>0,V=0 LaSalle's theorem GAS

Non-autonomous V>0,V<0 LaSalle-Yoshizawa’s theorem  GUAS
systems V=0,V=0 Barbalat’s lemma convergence
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then the equilibrium point x. is GS if W(x) =0 (positive semi-definite) and GAS if
W(x) >0 (positive definite).l

The requirement that W(x) >0 (or V(x) <0) is in many cases difficult to satisfy.
This is illustrated in the following example.

Example 4 (Stability of a Mass-Damper-Spring System) Consider the mass-
damper-spring system:
x=v (A.12)
mv+dwy+kx?=0 (A.13)
where m >0, d{v) >0, Vv and k>0, see Figure A.1.
Choosing V(x) as the sum of kinetic energy smv? and potential energy ;kx?:
V() =%(mv2 +kx?) :; x’"['g f]x
where x = [v,x]", results in
V(x) = mw + kxx
= y(mv + kx)
= —d(W?

daw) 0]
[

X707 ol
Hence, only stability can be concluded from Theorem 3 since V(x) is negative

semi-definite. However, GAS can in many cases also be proven for systems with a
negative semi-definite V(X) thanks to the invariant set theorem of LaSalle.

(A.14)

A.1.3. La Salle’s Invariant Set Theorem
The theorem of LaSalle can be used to check if a nonlinear autonomous system is
GAS even through V(x) is only negative semi-definite.

Theorem 4 (LaSalle’s Invariant Set Theorem) Let V:R"— R, be a continuously
differentiable function V(x) such that:

V(x)— « as|x||— « (A.15)
kx
— VNNV
y m I >
dwvyp T

Figure 13. Mass-damper-spring system.
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Vix)=< 0, Vx (A.16)
Let Q be the set of all points where V(x) =0, that is:
Q={xe R"V(x) =0} (A.17)

and M be the largest invariant set in Q, then all solutions x(t) converge to M and the
equilibrium point X, of (A.1) is GAS.R

Example 5 (Cont. Example 4: Stability of a Mass-Damper-Spring System) Again
consider the mass-damper-spring system of Example 4. The set Q is found by requiring
that

Vx)= —dwpw’=0 (A.18)
which is true for v=0. Therefore:
Q={xeR,v=0)} (A.19)

Nowv =0, implies thatmv = — kxwhich is non-zero as long as x # 0. Hence, the system
cannot get “stuck” at an equilibrium point value other than x = 0. Since the equilibrium
point of the mass-damper-spring system is (x,v) = (0, 0), the largest invariant set M in
Q contains only one point, namely (x,v) = (0, 0). Hence, the equilibrium point of (A.1)
is GAS according to Theorem 4.1

A.1.4. Global Exponential Stability

When performing backstepping Lyapunov stability analysis often results in a
system which not only is GAS but also globally exponentially stable (GES). The
following theorem is useful to check exponential convergence.

Theorem 5 (Global Exponential Stability) Let x. be the equilibrium point of (A.1)
and assume that f(x) is locally Lipschitz in x. Let V:'R"—> R, be a continuously
differentiable and radially unbounded function V(x) satisfying:

Vix)= %xTPx (A.20)

Vx)= —x"Qx (A21)

with constant matrices P = P> 0and Q = Q" >0, then the equilibrium point x . is GES
and the state vector satisfies:

A (P) 5t —1g)
[ee)fl> = ) Ix(z)l2 (A22)
where
_ Aan(Q)
o= >0 (A.23)

is the convergence rate.
Proof. Since V(x) is bounded by:
0 < Lain(PX'X=V(X) < Lo (P)X'%, VX F0 (A24)
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we have that: |
—xTx= —
xX'x= (D) V(x) (A.25)
Hence, it follows from (A.20) that:
V)= —x'Qx
= - Amin(Q)xrx
_ Q)
= ho (P) V(x) (A.26)
Integration of V(x) yields:
V(x(1)) < e ““~OV(x(0)) (A.27)
Finally ||, = V'x"x and (A.24) implies:
k@l = ing) e 2 Ixto)f, (A.28)

g.e.d. This shows that |jx|; will converge exponentially to zero with convergence
rate o.Ml

A.2. Lyapunov Stability of Non-Autonomous System

In this section we will briefly review some uscful theorems for convergence and
stability for time-varying nonlinear systems:

% = f(x, 1), x(0) = X (A.29)
where x € R”, r e R, and £: R" X R, > N" is assumed to be locally Lipschitz in X.

A.2.1. Barbaldat's Lemma
Lemma 1 (Barbilat’s Lemma) Ler ¢: R, — R be a uniformly continuous function
and suppose that lim,_, .. [’ f(t)dr exists and is finite, then:
lim¢@)=0 (A.30)
Proof. See Barbilat (1959).1
Notice that Barbdlat’s lemma only guarantees global convergence. This result is

particularly useful if there exists a uniformly continuous function V: R"—> R, 5N,
satisfying:

i) Vx,n=0

ii) V(x,1)=0

iii) V(x,1) is uniformly continuous (A.31)
Hence, according to Barbilat’s lemma lim,_, »V(x,7) = 0. The requirement that V
should be uniformly continuous can easily be checked by using:

V(x,1) is bounded = V(x,) is uniformly continuous (A.32)

A.2.2. LaSalle-Yoshizawa’s Theorem

For non-autonomous systems the following theorem of LaSalle (1996) and
Yoshizawa (1968) is quite useful:
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Theorem 6 (LaSalle-Yoshizawa’s Theorem) Let x, = 0 be the equilibrium point of
(A.29) and assume that £(x,1) is locally Lipschitz in x. Let V:R"X R, 5 R, bea
continuously differentiable function V(x,t) satisfying:

® V(x,1)> 0 (positive definite) and V(0) =0 (A.33)
® V(x,1)= %;:’Q + 9 ‘ig n fx, )= -WwWx)=0 (A34)
® V(x,t)— e as |[x|| > o (radially unbounded) (A.35)

where W(X) is a continuous function, then all solutions x(t) of (A.29) are globally
uniformly bounded and:

ll_ip; Wx)=0 (A.36)

In addition, if W(x) > 0 (positive definite), then the equilibrium point x. =0 of (A.29)
is GUAS.

Proof. See LaSalle (1996) and Yoshizawa (1968). |
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