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Abstract 
 

 Surrogate constraint methods have been embedded in a variety of mathematical 
programming applications over the past thirty years, yet their potential uses and underlying 
principles remain incompletely understood by a large segment of the optimization community. In 
a number of significant domains of combinatorial optimization, researchers have produced 
solution strategies without recognizing that they can be derived as special instances of surrogate 
constraint methods.  Once the connection to surrogate constraint ideas is exposed, additional 
ways to exploit this framework become visible, frequently offering opportunities for 
improvement. 
 We provide a tutorial on surrogate constraint approaches for optimization in graphs, 
illustrating the key ideas by reference to independent set and graph coloring problems, including 
constructions for weighted independent sets which have applications to associated covering and 
weighted maximum clique problems.  In these settings, the surrogate constraints can be 
generated relative to well-known packing and covering formulations that are convenient for 
exposing key notions. The surrogate constraint approaches yield widely used heuristics for 
identifying independent sets as simple special cases, and also afford previously unidentified 
heuristics that have greater power in these settings. Our tutorial also shows how the use of 
surrogate constraints can be placed within the context of vocabulary building strategies for 
independent set and coloring problems, providing a framework for applying surrogate constraints 
that can be used in other applications.   
 At a higher level, we show how to make use of surrogate constraint information, together 
with specialized algorithms for solving associated sub-problems, to obtain stronger objective 
function bounds and improved choice rules for heuristic or exact methods.  The theorems that 
support these developments yield further strategies for exploiting surrogate constraint 
relaxations, both in graph optimization and integer programming generally.  
 
*Published in the Journal of Heuristics 9: 175-227, 2003 
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1. Introduction. 
Surrogate constraint methods were originally introduced as a way to improve decision 

rules and bounding information in integer programming algorithms (Glover, 1965). They yield 
stronger relaxations for combinatorial optimization than Lagrangian methods, and have given 
rise to a well delineated duality theory (Greenberg and Pierskalla, 1970, 1973; Glover, 1975; 
Karwan and Rardin, 1979; Dyer, 1980; Fréville and Plateau, 1992, 1993; Fréville and Hanafi, 
2000).  While surrogate constraints have sometimes been used to drive exact solution methods 
(Dinkel and Kochenberger, 1980; Gavish and Pirkul, 1985; Joseph, Bryson and Gass, 1996), or 
to generate cutting planes (Glover, Sherali and Lee, 1999) their most prominent use results by 
applying them within heuristic methods (Kochenberger; McCarl and Wyman, 1973; Klingman 
and Karney, 1979; Hanafi, 1993; Glover and Kochenberger, 1996; Løkketangen and Glover, 
1997; Yu, 1998; Hanifi and Fréville, 2001; Osorio, Glover and Hammer, 2002).  
 Outside of methods that explicitly use surrogate constraint heuristics, there are many 
more that embody instances of such heuristics without formal recognition that a link to surrogate 
constraints exists.  Once such a connection is exposed, additional heuristic alternatives emerge 
that are typically more powerful. Opportunities to improve widely used heuristics have occurred 
particularly in applications such as covering, multidimensional knapsack problems, scheduling, 
binary quadratic programming, and satisfiability (SAT).  (See, e.g., the references cited above.)  
 The present tutorial addresses the use of surrogate constraint heuristics within 
optimization problems over graphs, focusing on independent set problems, with application to 
graph coloring and associated covering and clique problems, including their weighted versions.  
In these cases, the surrogate constraints can be generated relative to independent set formulations 
that have exceedingly simple structures as 0-1 packing or covering problems.  Commonly used 
procedures to create surrogate constraints simplify for these formulations to give a convenient 
basis for presenting basic surrogate constraint ideas.  The derivation yields heuristics that are 
often embedded in solution methods for independent set problems, and also yields other 
heuristics not previously considered for these problems. At more advanced levels, dynamic 
surrogate constraint approaches are introduced that simultaneously generate and solve surrogate 
constraint relaxations that include clique inequalities, and by extension, inequalities from 
structures called q-complete systems. As part of this development, we provide theorems that 
demonstrate how to obtain stronger bounds and improved decision criteria for surrogate 
constraint approaches in a wide range of optimization settings. 

2. Background and Motivation: Links Between Independent Set and Graph 
Coloring Problems. 

 Maximum cardinality independent set problems and minimum cardinality coloring 
problems in graphs are usefully interrelated. Methods for finding maximum independent sets can 
be embedded in methods for graph coloring, based on the fact that a set of nodes assigned a 
given color in a coloring problem constitutes an independent set, in which no two nodes are 
joined by an edge. Thus, it is natural in coloring problems to look for means of restructuring 
independent sets, which correspond to different assigned colors, to increase the overall average 
set size and thus reduce the total number of sets (and colors).  Successful methods for coloring 
problems that utilize this relationship between colorings and independent sets have been 
developed by Hertz and de Werra (1987), Fleurent and Ferland (1995), Morgenstern (1996), 
Dorne and Hao (1998) and Galinier and Hao (1999).  Independent set problems are also of 
interest because of their equivalence to maximum cardinality clique problems and associated 
covering problems.  An examination of these problems from a surrogate constraint perspective 
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has the useful consequence of yielding results that readily generalize to weighted versions of 
independent set, clique and covering problems. 
 To further motivate the use of surrogate constraint strategies in these applications, we 
stress the utility of applying a vocabulary building process to generate sub-graphs over which 
independent sets are sought. The vocabulary building framework (Glover and Laguna, 1993; 
Glover, 1999; Glover, Laguna and Marti, 2000) affords a means to generate specific sub-
problems and solutions as a foundation for solving larger problems in which these problems are 
embedded. Within the present setting such a process gives a natural way to generate and exploit 
sub-graphs to which the surrogate constraint methods are applied.  

3. Preliminary Surrogate Constraint Development:  Strategies for Finding a 
Maximum Independent Set. 

Surrogate constraint strategies are often conveniently developed by reference to standard 
mathematical programming formulations. As a starting point for illustrating this, we represent a 
selected graph of interest by G = (N,E), where N = {1,…, n} denotes the set of nodes of the 
graph and E denotes the set of edges.  

For each node i ∈ N, define  
 
           EdgeStar(i) = {{i,j} ∈ E},  
           NodeStar(i) = {j: {i,j} ∈ E}, 
           SizeStar(i) = |NodeStar(i)| (equivalently, |Edgestar(i)|) 
 
More generally, for any subset I of N, define 
 
           EdgeStar(I) = {{i,j} ∈ E: i ∈ I } and  
           NodeStar(I) = {j: {i,j} ∈ E, i ∈ I }. 
           SizeStar(I) = |NodeStar(I)| (equivalently, |Edgestar(I)|) 
 
By convention, if I is empty, then so are EdgeStar(I) and Nodestar(I). We also subsequently 
apply these definitions relative to an induced sub-graph G′ = (N′, E′) of G, where N′ is a subset 
of N and E′ is the (largest) subset of E determined by N′. 
 

The customary mathematical programming formulation for the maximum independent set 
problem associates a 0-1 integer variable xi with each node i ∈ N, where xi = 1 if and only if 
node i is chosen as an element of the independent set.  Then the problem can be expressed as an 
integer programming (IP) problem, as an instance of a packing problem, as follows.  
 

IP1: Maximize  xo    =  ∑ (xi : i ∈ N) 
              subject to  xi + xj  ≤ 1      {i,j} ∈ E 

                                                      xi binary               i ∈ N 
 
As also commonly observed, the problem can be transformed into an equivalent instance of a 
covering problem by defining yj = 1 - xj, whereupon the preceding formulation acquires the form 
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IP2:  Minimize  yo  =  ∑(yi: i ∈ N) 
 

  subject to       yi + yj ≥ 1        {i,j} ∈ E 
 

       yi binary              i ∈ N 

3.1  Foundation for a Surrogate Constraint Heuristic. 
A convenient type of surrogate constraint heuristic for such problems, when the goal is to 

generate approximate solutions quickly, results by weighting the original inequalities from 
simple normalizations to create the surrogate constraint. To do this, the inequalities are put in a 
form where all coefficients are nonnegative (as automatically happens here), and the weights are 
derived by reference to the right hand sides of the inequalities and the sums of their coefficients. 
The weighted inequalities are then summed to produce the surrogate constraint, which for the 
present formulations can be represented by 

 
∑(aixi: i ∈ N) ≤  ao    for IP1 
∑(biyi: i ∈ N) ≥  bo    for IP2 
 

Thus, we explicitly define the surrogate constraint coefficient values, we explicitly represent the 
associated surrogate constraint problems derived from IP1 and IP2 by 
 
 SC1: Maximize xo =    ∑(xi: i ∈ N)  
  subject to         ∑(aixi: i ∈ N) ≤  ao 
   xi binary   i ∈ N 
 
 SC2: Minimize yo =     ∑(yi: i ∈ N) 
  subject to          ∑(biyi: i ∈ N) ≥  bo 
   yi binary   i ∈ N 

 
A general way to produce normalization-based surrogate constraints for 0-1 problems, which we 
can use to identify the ai and bi coefficients for SC1 and SC2, and which will also be relevant to 
later concerns, may be summarized as follows. Consider a typical “≤ inequality” of a system 
such as IP1, indexed over some set h ∈ H and written in the form 

∑(ahixi: i ∈ N) ≤ aho.      
Assume the 0-1 variables xi are complemented as necessary to assure ahi  ≥ 0 for all i ∈ N (where 
the identity of variables complemented may differ for different constraints).  Then an appropriate 
weight wh to multiply by such an inequality to create a normalized constraint is 
  wh   =   (∑(ahi: i ∈ N) -  aho)/aho. 
The weight applies to the form of the original inequality in which the variables have not been 
complemented as well as to the form used to define wh.  

Similarly, we may consider a typical “≥ inequality” of a system such as IP2 written in the 
form 

∑(bhiyi: i ∈ N) ≥ bho. 
Again, assuming variables have been complemented as necessary to assure bhi ≥ 0 for all i ∈ N, a 
corresponding normalization weight is given by 
  wh   =   bho/(∑(bhi: i ∈ N) -  bho).  
Variations of such normalizations raise the indicated weights to some selected power. 
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Although we need not be concerned with problems that include both negative and 
positive coefficients here, we remark that advantages are gained for creating and processing 
surrogate constraints by explicitly complementing variables to maintain the problem in 
nonnegative-coefficient form.  Surrogate constraints can then include both original variables and 
their complements, which permits a more informed analysis and improved decision rules.  (See, 
for example, Lokketangen and Glover, 1997.) 

The special structure of the formulations IP1 and IP2 applicable to the independent set 
problem assure that the weights to produce the normalization all equal 1, and the normalized 
inequalities are the same as the original inequalities, thus creating what is called a simple-sum 
surrogate constraint which results by summing the original inequalities without modification. 
Consequently, the ao and bo values in the surrogate constraints for SC1 and SC2 equal the sum of 
the right hand sides (hence equal the number of inequality constraints), and the ai and bi values 
equal the sum of the unit coefficients for the xi and yi variables that appear in these constraints.  

By our preceding notation, this gives: 
ao = bo = |E| 
ai = bi = SizeStar(i) 

3.2.  A Simple Surrogate Constraint Choice Rule. 
A choice rule often used in first stage surrogate constraint heuristics can be applied to 

SC1 and SC2 by selecting the variable xr or yr that gives the best ratio (largest for maximization, 
smallest for minimization) of the objective function coefficient to the surrogate constraint 
coefficient. The selected variable is set equal to 1, and the problem is reduced by eliminating 
variables that receive forced value assignments and by removing redundant constraints.  Then a 
surrogate constraint is constructed relative to the new problem and the process repeats. 

Such a process becomes quite straightforward in the present setting due to the special 
structure of the problem.  Since all objective function coefficients are 1, the choice rule reduces 
to selecting xr and yr to yield ar = Min(ai) and br = Max(bi). In terms of the graph G the rule can 
be expressed as follows. 

Choose r ∈ N, for setting xr = 1 or yr = 1, by identifying 
Sizestar(r) = Min(SizeStar(i): i ∈ N)   for IP1 
Sizestar(r) = Max(SizeStar(i): i ∈ N)   for IP2 

 
 These simple choices for IP1 and IP2 correspond to decision rules frequently embedded 
in constructive strategies and branch and bound approaches applied to maximum independent set 
problems, as in the studies of Friden Hertz and de Werra (1989, 1990), Feo, Resende and Smith 
(1994), Homer and Peinado (1996), Dorne and Hao (1998), and Abello, Pardelos and Resende 
(1999) among others. (These rules were first proposed by Johnson (1974)1, about a decade after 
the introduction of surrogate constraint strategies.) 

As we will see, the surrogate constraint framework can be used to provide strategies that 
are substantially more advanced. First, however, we complete the preliminary connections by 
identifying the problem updates that occur both by reference to the mathematical programming 
formulations and the underlying graph structures. The outcomes illustrate a characteristic feature 
of surrogate constraint approaches applied to graph problems generally. Whenever the decision  
                                                           
1 This paper formulated such choice criteria for the maximum clique problem, but they translate directly into the 
rules described here.  More general cases of the covering problem were also considered in the same paper, similarly  
relying on a rule equivalent to the simple-sum surrogate constraint rule.  Such a rule is less effective for these cases 
than using more general normalizations, but the focus of Johnson (1974) was on complexity analysis rather than on 
heuristic efficacy. Similar proposals and an extended complexity analysis also appear in Chvatal (1979).  
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variables correspond to operations on a graph (such as adding or deleting nodes and edges), then 
the updated mathematical programming formulations and the new surrogate constraints that 
result from each choice can be expressed directly in terms of the corresponding graph update. 
Similarly, implications of the decision such as forcing particular variables to 0 or 1 and causing 
constraints to become redundant can also be reflected by corresponding changes in the graph 
structure.  

In the present case, according to the problem considered, the updates for problems IP1 
and IP2 correspond to simple graph reductions as follows.2  

 
IP1 Update: Setting xr = 1 in IP1 forces xj = 0 for the variables xj in each of the 

constraints xr + xj ≤ 1, which makes the updated form of these constraints redundant.  In the 
graph G this corresponds to dropping all the associated nodes j and their incident edges, thereby  
defining a new node set N′ and a new edge set E′ by 

N′ = N - NodeStar(r) 
E′ = E - EdgeStar(NodeStar(r))     

 
The reduced problem has exactly the same form as the original, by replacing G = (N,E) with the  
reduced graph G′ = (N′,E′).  Thus, defining SizeStar′(i) relative to G′, for each node  
i∈NodeStar(NodeStar(r)) yields 

NodeStar′(i) = NodeStar(i) - NodeStar(NodeStar(r)) 
EdgeStar′(i) = EdgeStar(i) - EdgeStar(NodeStar(r)). 

 
These outcomes can be directly identified by examining each j∈NodeStar(r) and then, for each  
i∈NodeStar(j), removing node j from NodeStar(i) and removing the edge {i,j} from EdgeStar(i)  
(reducing SizeStar(i) by 1 for each such step). Hence in the surrogate constraint SC1 the 
coefficients are changed so that 

a′i = ai - |NodeStar(i) ∩ NodeStar(r)| 
a′o = ao - SizeStar(NodeStar(r)).  

The problem can be further reduced by setting xj = 1 for all isolated nodes j∈N′ (all of whose 
constraints reduce to the form xj ≤ 1), and removing these nodes from N′.   
 

IP2 Update:  Setting yr = 1 in IP2 makes each inequality yr + yj ≥ 1 in which yr appears 
redundant.  Hence removing yr and these redundant constraints results in defining 

N′ = N - r  
E′ = E - EdgeStar(r). 
 

As in the case of IP1, the reduced problem has exactly the same form as the original, by 
replacing G = (N,E) with the reduced graph G′  = (N′,E′).  Defining SizeStar′(i) relative to G′  
yields 

SizeStar′(i) = SizeStar(i) - 1 for each i ∈ EdgeStar(r). 
Hence in the surrogate constraint SC2 the coefficients are changed so that 

b′i = bi - 1 for each i ∈ EdgeStar(r) 
b′o = bo - SizeStar(r).     

 

                                                           
2 Such reductions are now common.  We include them for completeness to show their connection with customary 
surrogate constraint processes and to provide a background for implementing procedures described later. 
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Nodes i that are isolated in N′ (i.e., that have no incident edges) correspond to variables that 
appear only in redundant inequalities of the form yi ≥ 0, and hence these nodes can all be 
dropped from N′ together with setting yi = 0. 

Additional dominance criteria can be applied to assign values to variables in IP1 and IP2.  
However, the illustrated surrogate constraint heuristics have the convenient feature that their 
choice criteria automatically assure each assignment is the same as if such dominance criteria 
had been explicitly identified and used to assign values to the variables. For classical definitions 
of dominance, this property holds not only for this special class of graph problems but for integer 
programming problems in general. 

4.  More General Surrogate Constraint Heuristics. 
Beyond the fact that the two elementary strategies illustrated for IP1 and IP2 correspond 

to popular constructive procedures, it is easy to see that the heuristic described for IP2 can be 
applied directly to the IP1 formulation, since each choice yr = 1 corresponds to a choice xr = 0.  
The updated graph G′ for IP1 in this case is exactly as specified for IP2. This affords a way to 
extend the preceding approaches within the preliminary framework discussed so far. As 
characteristically done in surrogate constraint methods, the choice rules can be applied to select a 
variable to set either to 1 or to 0 at each step, an option that gives a more flexible heuristic than 
the two separate methods described for IP1 and IP2.   
 Additional possibilities result by taking fuller advantage of the surrogate constraint 
framework.  We can divide these into two main types of approaches.  The first involves the use 
of quickly executed look-ahead strategies, which are commonly used with surrogate constraint 
choice rules to identify the consequences of alternative assignments, enabling better choices to 
be made by accounting for these projected outcomes.  The second involves the use of bounding 
information, making it possible to exploit the fact that the surrogate constraint creates a 
relaxation for the original problem.  This provides a means to develop choice rules based on 
considerations that go beyond the considerations examined so far, giving an opportunity to 
develop more advanced forms of look-ahead strategies.  

Quickly executed strategies are important in a variety of settings, and although they do 
not provide the primary focus of this tutorial, we describe these types of surrogate constraint 
approaches in Appendix 1. Such methods can be used to supplement those we address in the 
following sections, where we begin with procedures that are fairly elementary, and which are 
likewise fast to execute (if not quite as fast as those in Appendix 1). 

5. Enhanced Choices Using Surrogate Constraint Bounding Information.  
We restrict the discussion in this and remaining sections of the paper to the formulation 

IP1 and the choice rules for setting xr = 1. Drawing on the preceding observations our comments 
also apply to the formulation IP2 and the choice rules for setting yr = 1 (or, equivalently, for 
setting xr = 0 in IP1). 

 
5.1 An Optimal Surrogate Constraint Solution. 

The “ratio choice rule” identified in Section 3 for successively choosing variables xr to 
set equal to 1 (which reduces in the present context to identifying r to yield the minimum ai 
value), also solves the linear programming relaxation of the surrogate constraint problem; i.e., it 
yields a solution to maximize xo subject to the surrogate constraint.  Due to the fact that the 
objective function for the maximum independent set problem contains only unit coefficients, we 
can also obtain an optimal IP solution to the surrogate constraint problem SC1.  
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Specifically, assume the coefficients ai are placed in ascending order.  Then the optimum 
value xo for the surrogate constraint relaxation SC1 is given by 

xo = Max(h:  a1 + ... + ah ≤ ao) 
which corresponds to the solution obtained by setting xj = 1 for j ≤ h, and xj = 0 for j > h. 3 

The bounding information from the solution to SC1 can be used to improve quickly 
implemented look-ahead rules, as discussed in Appendix 1. However, we can carry the analysis 
farther. The succeeding sections show how to generate information at another level. 

5.2 A Higher Level Surrogate Constraint Solution. 
An important strategy in surrogate constraint applications is to identify additional 

problem constraints, either explicit or implied, that can be adjoined to the surrogate constraint 
problem while creating a structure that permits the problem to be solved efficiently. Bounded 
sums of variables that satisfy a nesting property are useful for generating such a structure 
(Glover, 1971), and we can conveniently extract such constraints as a subset of the inequalities 
of IP1. As before, our comments for IP1 can be translated into related observations for IP2. In 
particular, we consider the special case of nesting where the component constraints are disjoint, 
i.e., the sums of variables are defined over disjoint sets. The corresponding surrogate constraint 
problem then becomes 

 
SC: Maximize  xo    =  ∑ (xi : i ∈ N) 
 subject to ∑ (aixi : i ∈ N)  ≤ ao 
 xi + xj  ≤ 1      {i,j} ∈ E′ 

                                                      xi binary               i ∈ N 
 
where the edges in E′ are pairwise node disjoint, and consequently each variable xi, i ∈ N, 
appears in at most one inequality of the collection. It is easy to see that an optimal solution to this 
problem results as follows. Under the assumed ascending order of the ai coefficients, define 
  N′ = N – { i ∈ N:  {i,j} ∈ E′ and i > j } 
Hence N′ is obtained from N by dropping exactly one node i from each edge {i,j} ∈ E′, which is 
associated with the larger (or equal) of the two corresponding coefficients in the surrogate 
constraint. 
 Then the auxiliary constraints over E′ can be removed and the problem reduces to: 
 
 SC′: Maximize    xo = ∑ (xi : i ∈ N′) 
  subject to ∑ (aixi : i ∈ N′) ≤ ao 

                                                      xi binary               i ∈ N′ 
 
Since SC′ has the same form as the original surrogate constraint problem SC1, we may identify 
an optimal solution exactly as in Section 5.1. However, since N′ removes roughly half the 
coefficients from N, the solution is more restricted and SC′ will generally yield a somewhat 
stronger bound on xo than SC1. 

                                                           
3 A useful observation in this setting often escapes notice. If the integer ai coefficients fall within a modest range, or 
do not have many gaps between them, they can be rapidly sorted by a single pass that records each index i ∈ N in a 
list for the associated integer v = ai . Then a pass of the integers v between Min(ai)  and Max(ai) recovers the ai 
coefficients in sorted order, stopping as soon as the “ah term” is identified.  (The popularity of more complex sorting 
techniques has obscured the merits of this simple alternative.)  Such an approach is also relevant for sorting integer 
values Uo(i) which are referenced by additional algorithms discussed later. 
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 A rule for implicitly choosing the set E′ to generate N′ and the reduced problem SC′ is as 
follows (again assuming the ai coefficients are in ascending order): 
 
 Method to Create SC′ from SC. 

1. Let i = 1 and N′ = N. 
2. Identify the first (smallest) j > i such that {i,j} ∈ E and j ∈ N′. 
    (a) If no such node j exists, proceed directly to Step 3. 
    (b) If node j exists, remove node j from N′ (implicitly, designating {i,j} to belong 
          to E′). 
3. Let i′ = Min {q : q > i and q ∈ N′}. If i′ does not exist, or is the last (largest index) 
    node in N′, stop: N′ now has its final form. Otherwise, let i : = i′ and return to step 2. 

 
The preceding method is designed to efficiently obtain a good N′ (and E′) to produce the reduced 
surrogate constraint problem. Each successive choice of i identifies a node that is undominated 
over choices of nodes to remain in N′, given choices previously made, and each choice of j is 
locally best for the associated node i. 
 An analogous method can go through the indexes i in reverse order, seeking the largest  
j < i such that {i, j} ∈ E and j ∈ N′. In this case node i is the one dropped from N′ and node j 
must be marked to prevent it from being chosen as a future node i. Other more complex variants 
are also possible, such as choosing an edge {i, j} at each step, for j > i, to minimize  
aj – ai, although such variants involve greater computation. 

6. Exploiting the Reduced Surrogate Constraint Problem. 
The reduced surrogate constraint problem SC′ can be exploited exactly as the original 

surrogate constraint problem, but we propose a more ambitious method for doing this. First we 
identify a subset N* of N that contains candidate nodes we wish to evaluate more fully. (For 
example, N* can be taken to have the form identified in the threshold-based strategy in 
Appendix 1, where the determination of node h in Section 5.1 is made relative to N′ rather than 
N.) The following method can be executed independently for each node i ∈ N*, and hence can 
be efficiently exploited by parallel processing. 

  
Node - Specific SC Bounding and Choice Rule 
1. For each i ∈ N*, tentatively perform the assignment xi = 1. Reduce the original 

problem IP1 as indicated in Section 3 to produce a problem denoted IP1(i). 
2. Generate the surrogate constraint problems SC and SC′ for IP1(i), representing these 

problems as SC(i) and SC′(i). Denote the optimum xo value for SC(i) and SC′(i) by 
xo (SC(i)). 

3. Identify r ∈ N* to give the choice xr = 1 by the rule 
xo (SC(r)) = Max (xo (SC(i)) : i ∈ N*) 
 

If the value xo (SC(i)) found in Step 2 above does not exceed xo*, the xo value for the best 
known solution to IP1, then the assignment xi = 0 is appropriate and the problem IP1 can be 
simplified. A strategy that presupposes a restrictive value for xo* can be useful to induce such a 
problem reduction heuristically. 

We now show how to strengthen the xo(SC(i)) values to obtain more restrictive bounds 
on xo and to yield more refined decisions. 
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7. First Principle of Conditionally Shared Limitations. 
 In this section we take advantage of what may be called the First Principle of 
Conditionally Shared Limitations, which may expressed as follows:  Knowledge of bounds on xo 
for conditionally constrained problems, where values (or bounds) are tentatively assigned to 
specific xi variables, can be used to derive stronger bounds on xo in other conditionally 
constrained problems, defined relative to assigning values (or bounds) to other xi variables. 
 To see how this principle can be applied in the present setting, let N(r) be the subset of N 
identifying the nodes i over which the surrogate problem SC(r) is defined (after the reduction of 
setting xr = 1), and let N′(r) be the further reduced set of nodes for the associated problem SC′(r).  
Also, let NO(r) be the optimal node set for SC′(r) (and hence SC(r)), where setting xi = 1 for 
i ∈ NO(r) yields an optimal solution to SC′(r). Consequently, |NO(r)| = xo(SC(r)). 

The value xo(SC(r)) provides an upper bound for  xo in the problem IP1 when xr = 1, and 
we undertake to find an improved bound, taking advantage of information about the composition 
of NO(r). In general, for an arbitrary node i, let Uo(i) denote an upper bound for  xo when xi = 1.  
Then, more precisely, we use the knowledge that Uo(i) ≤  xo(SC(i)), together with the 
composition of NO(r), to obtain a tighter value for Uo(r) than  xo(SC(r)).  
 The rationale underlying our approach may be sketched as follows. If   
xo(SC(i)) <  xo(SC(r)) for any node i ∈ NO(r), then node i cannot belong to an independent set of 
size  xo(SC(r)).  However, since node i has been used to yield xo(SC(r)) (by solving SC′(r)), this 
discloses that the value  xo(SC(r)) is larger than needed for Uo(r).  We can conclude that Uo(r) 
should be no larger than xo(SC(i)), or else node i should not belong to NO(r).  But the exclusion 
of node i from NO(r), hence from N(r), imposes an added restriction on the problem SC(r), 
compelling xi = 0.  Hence this exclusion also affords the possibility to reduce Uo(r) below  
xo(SC(r)). 
 Denote the set of nodes in NO(r) that create this possibility, by  

I(r) = {i ∈ NO(r): Uo(i) < Uo(r)}  
where initially we begin by setting Uo(i) =  xo(SC(i)) for all i ∈ N.  Let SC(r\i) denote the 
surrogate constraint problem SC(r) subject to xi = 1.  Then for any i ∈ I(r), the previous 
observations lead to the conclusion that we can compel Uo(r) to satisfy 
   Uo(r) ≤ Max( Uo(i),  xo(SC(r\i)). 
 We increase the generality of the foregoing observation as follows. Let SC(r\I) for an 
arbitrary subset I of N denote the surrogate constraint problem SC(r) subject to xi = 0 for i ∈ I. 
That is, in this problem all nodes of I are excluded from belonging to the same independent set as 
node r. Note that the solution of the problem SC(r\I) requires removing the nodes of I from N in 
the SC problem, i.e., setting xi = 0 for i ∈ I, before the transformation that creates SC' from SC. 
Then we can state the following result. 
 
 Theorem 1. If I is any nonempty subset of I(r), then a legitimate value for Uo(r) is given 
by 
   Uo(r)  = Max(xo(SC(r\I)), Max(Uo(i): i ∈ I)). 
 
 Proof:  The result follows directly from the reasoning already stated, together with the 
fact that either (a) xi = 0 for all i ∈ I or (b) xi = 1 for at least one i ∈ I. Condition (a) underlies the 
term xo(SC(r\I) and condition (b) underlies the term Max(Uo(i): i  ∈ I). �  
 
 The value xo(SC(r\I)) in the theorem can be replaced by xo(r\I), the corresponding value 
of xo in the original IP1 problem (i.e., the value in IP1 that results by setting xr = 1 and xi = 0  for 
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i ∈ I). This produces a tighter limit for Uo(r), but requires considerably more computational 
effort to exploit.  
   To take full advantage of Theorem 1, we seek to identify a set I that gives a smallest 
limiting value for Uo(r) by the stipulations of the theorem. This goal may be achieved as follows. 
 Assume I(r) is nonempty and denote the distinct values taken by the bounds Uo(1) for 
 i ∈ I(r), listed in ascending order, by u1 < … < uk, k ≥ 1. Define the collection of sets  
Ij = {i ∈ I(r): Uo(i) ≤ uj} for j = 1 to k. (Hence, each of these sets is contained in the next and  
Ik = I(r).) 
 
 Theorem 2. A set I = I* that yields a tightest bound for Uo(r) by Theorem 1, and the 
corresponding Uo(r) value, are given by: 
  (a) If u1 ≥  xo(SC(r\I1)), then I* = I1 and Uo(r) = u1  
  (b) If uk ≤  xo(SC(r\Ik)), then I* = Ik and Uo(r) =  xo(SC(r\Ik)) 
   (c) If neither (a) nor (b) apply, then define 
        p = Max(j: uj ≤  xo(SC(r\Ij)) 
       q = Min(j: uj >  xo(SC(r\Ij))  (q = p + 1) 
      If uq ≤  xo(SC(r\Ip)), then I* = Iq and Uo(r) = uq 
      Otherwise,  I* = Ip and  Uo(r) =  xo(SC(r/Ip)) 
 
   Proof:  First, we show that a tightest bound can be found by restricting attention to the 
sets Ij, j = 1, …, k, as candidates for I*. Assume that a given set I* is optimal, giving a smallest 
value for Uo(r) by Theorem 1. Identify the value uj such that uj = Max(Uo(i): i ∈ I*). Then 
Max(Uo(i): i ∈ I*) = Max(Uo(i): i ∈ Ij) and in addition, since I* ⊆ Ij, it follows that  
xo(SC(r\Ij)) ≤ xo(SC(r\I*)). Hence Ij must also qualify to be I*. Next, it is clear that if the 
conditions specified in either (a) or (b) hold, then the conclusions stipulated in these cases are 
valid. For (c), if j < p, then xo(SC(r\Ij)) ≥ xo(SC(r\Ip)), while if j > q then  
Max(Uo(i): i ∈ Ij) > Max(Uo(i): i ∈ Iq). Consequently, the Uo(r) value specified by Theorem 1 in 
each respective case cannot be smaller than that specified by taking I* = Ip or I* = Iq. The 
preferred choice between Ip and Iq therefore determines I*, as stipulated.  (The result is also valid 
if (c) is modified to replace "≤" by "<" and to replace ">" by "≥".) � 
 
 To implement Theorems 1 and 2, parallel processing can allow the determination of 
tightened Uo(r) values to be executed simultaneously for each r in N, or for each r in some 
candidate subset N* of N.  If improved Uo(i) values are produced for some indexes i, the entire 
process can be repeated to determine whether these values may again imply a smaller Uo(i) value 
for some i ∈ N.  The smallest Uo(i) value cannot change, and if the process is applied serially, 
going to the index i that yields the next largest Uo(i) value at each step, then exactly one pass of 
the nodes in N will complete the application.  However, a parallel approach will usually be 
significantly faster. 
 We will revisit Theorems 1 and 2 in Section 11, where we provide a generalization that 
derives still stronger bounds by reference to ideas introduced in the next three sections.   

8. Second Principle of Conditionally Shared Limitations 

 The Second Principle of Conditionally Shared Limitations complements the first, by 
undertaking to take advantage of it in a special way.  This second principle may be summarized 
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by the statement: Conditionally Shared Limitations can be exploited by creating a specific 
optimization problem that imposes conditional constraints on xo. 

We demonstrate this principle by showing how the bounds Uo(i) for i ∈ N(r) (the index set for 
SC(r)) can be embedded in an optimization problem that is specifically designed  to tighten the 
bound Uo(r). For convenience, we develop the relevant results in connection with the problem 
SC, understanding that they apply to SC(r) simply by enforcing xr  = 1 and redefining SC to be 
the new problem that results after the appropriate reductions. Noting that xo(SC) ≤ Uo(j) must 
hold for each j ∈ N such that xi = 1 in the solution that yields the optimum value xo(SC), we can 
formulate a secondary surrogate problem SS associated with the problem SC as follows: 

 SS: Maximize xo = ∑(xi: i ∈ N) 

 ∑(xi: i ∈ N)  ≤  Uo(j)xj + |N|(1-xj) j ∈ N 

 xi + xj  ≤  1    {i,j} ∈ E″ 

 xi binary    i ∈ N 

The inequalities for j ∈ N can also be replaced by the nonlinear inequality  

∑(xi: i ∈ N) ≤ Min (Uo(i): xi = 1, i ∈ N). 
 
 As in the case for the edge set E′ in problem SC, we assume E″ is a subset of E whose 
edges share no nodes in common (hence E″ is a matching on the graph G), and we will identify a 
way to quickly extract a good candidate for E″. The problem SS can be used to find a bound on 
xo for IP1, but our primary interest will be to use the version SS(r) when N is replaced by N(r) in 
order to identify an optimum value xo(SS(r)). This latter value, like the value xo(SC(r)), gives an 
upper bound Uo(r) for xo when xr = 1. 
 First we identify how to solve SS (and hence, using the same rules, to solve SS(r)).  
Although the structure of SS is significantly different from that of SC, an optimal solution can be 
obtained by a similar method. Just as the ai coefficients are indexed in ascending order to extract 
a good set E′ from E for SC, and to identify a reduced problem SC′, analogous operations are 
applied to extract a good set E″ from E for SS, and to identify a reduced problem SS″, but by 
reference to an ordering of the Uo(i) values. 
 
 Theorem 3. For each edge {i, j} ∈ E″, indexed so Uo(j) ≤ Uo(i), remove node j from N 
(setting xj = 0). Denote the set of nodes that remain by N″, and define SS″ to be the problem that 
results from SS by replacing N with N″ and by dropping the inequalities over E″.  Then problem 
SS″ shares at least one optimal solution in common with SS. 
 
 Proof:  Suppose there is an edge {i, j} where Uo(j) ≤ Uo(i) and xj = 1, xi = 0 in an optimal 
solution to SS while j  ∉ N″. But then the solution to SS can be changed by setting xj = 0 and 
 xi = 1 without violating any constraints and without altering xo (SS). Repeating the process 
ultimately yields a solution to SS″ with xo = xo(SS). But xo(SS″) ≤ xo(SS) since SS″ is more 
restricted than SS, and hence the resulting solution must be optimal for SS″. � 
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 Theorem 4. Index the values Uo(i), i ∈ N″ in  descending order (Uo(i) ≥ Uo(i+1) for 
i, i + 1 ∈ N″). Let p = Max(i ∈N″ : i ≤ Uo(i)). Then an optimal solution to SS″ is obtained by 
setting xi = 1 for i ∈ N″(r) if and only if i ≤ p, yielding xo (SS″) = p.  
 
 Proof: First, it is clear that the indicated solution is feasible for the inequalities  
∑(xi : i ∈ N″) ≤ Min (Uo(i): xi = 1, i ∈ N″). Moreover, if any xj = 1 for j > p, then Uo(j) ≤ Uo(p) 
and the foregoing inequality implies ∑(xj : i ∈N″) ≤ Uo(j), establishing that xo(SS″) ≤ p. � 
 
 The preceding theorems show that each problem SS(r) can be transformed into a problem 
SS″(r) and solved with essentially the same level of effort to transform SC(r) into SC′(r) and 
solve the result. Similarly, the solution of each SS(r) problem can be carried out in parallel. 
 Finally, we observe that an edge set E″ for SS can be generated by exactly the same rule 
for generating an edge set E′ for SC, by replacing the ai coefficients with the values Uo(i), and 
reversing the ordering. (The correspondence can be achieved more precisely by reference to an 
ascending ordering of the -Uo(i) values.)  

9.  Generalizations to Additional Optimization Problems 
 As already noted, the method based on the first principle of conditionally shared 
limitations is exceedingly general, and applies to a wide range of optimization problems. The 
method described for exploiting the second principle of conditionally shared limitations can 
similarly be generalized. 
 The procedure can immediately be extended from the maximum cardinality independent 
set problem to the maximum weight independent set problem, while exploiting the ability to 
create reductions of the surrogate constraint problem SC and the secondary surrogate problem 
SS. For this, it suffices to modify the previous formulations by introducing a positive weight ci 
associated with each node i in the objective function. 

9.1. The Weighted SC Problem 
 The weighted SC problem acquires the form 
 

W-SC: Maximize  xo    =  ∑ (cixi : i ∈ N) 
 subject to  ∑ (aixi : i ∈ N)  ≤ ao 
       xi + xj  ≤ 1      {i,j} ∈ E′ 
     xi binary                i ∈ N 
 

The edges in E′ are pairwise node disjoint, as before. We solve the continuous (LP) relaxation of 
this problem by allowing the binary conditions to be replaced by 0 ≤ xi ≤ 1, i ∈ N. In the case 
where the inequalities over E′ are not present, then as previously intimated an optimal continuous 
solution can be obtained by the following well-known rule. 
 
LP Knapsack Solution 

1. Index the variables so that ci/ai  ≥  ci+1/ai+1   for all i, i + 1 ∈ N. 
      Define A(0) = 0, and for p ∈ N; define A(p) = (∑ai : i ≤ p, i ∈ N) 
2.   Identify q = Max (p ∈ N : A(p) ≤ ao).  Then set 

  xi = 1 for i ≤ q  (if q ≥ 1) 
  xq+1 = (ao – A(q))/aq+1  (if q < n) 
  xi = 0 for i > q + 1 (if q + 1 < n) 
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The solution to W-SC can be obtained by a similar rule after a preliminary transformation to 
create a related problem W-SC′ defined over a set of nodes N′ with the inequalities over E′ 
removed. 
 
 Transforming W-SC into W-SC′ 

0. Begin with N′ = N. For each {i, j} ∈ E′, assume an indexing so that ci/ai  ≥  cj/aj, and  
if the  s are equal, then ai ≥ aj. 

1. For each {i, j} ∈ E′, if either ci ≥ cj or ai ≥ aj, then drop j from N′. Otherwise if cj > ci 
and aj > ai, create a new variable zi = xj + xi to replace xi. Then zi receives the 
coefficients ci and ai  formerly associated with xi, and xj receives new coefficients 
given by 

   cj : = cj – ci 
   aj : = aj – ai 

2. Problem W-SC′ is the resulting form of W-SC that drops the inequalities over E′ and 
replaces N by N′. 

 
We can now state: 
 
 Theorem 5: An optimal LP solution to W-SC is obtained by applying the LP Knapsack 
Solution Rule to W-SC′ (treating the zi variables in the same way as xi variables). If an xj 
variable is positive in this knapsack solution for some {i, j} ∈ E′, then the solution also yields  
zi = 1, and the corresponding optimal solution to W-SC assigns xi the value xi  : =  zi   -   xj. 
Optimal values for remaining variables in the W-SC solution are those specified by the knapsack 
solution, without modification. 
  

 Proof: First, under the assumed indexing of Step 0, we show that if ai ≥ aj for   
{i, j} ∈ E′, then xj  = 0 in an optimal LP solution to W-SC.  Let xi′ and xj′ be optimal LP values 
for xi and xj, and suppose xj′ > 0.  Consider a solution x″ where all variables except xi and xj 
retain their current values, while xj″ = 0 and xi″  = xi′ + (ai/aj)xj′ .  Then xi″ + xj″ = xi″ ≤ xi′ + xj′, 
and hence the solution satisfies the inequality xi + xj  ≤ 1.  Also it is easy to verify that  
  aixi″ + ajxj″ =  aixi′ + ajxj′ and cixi″ + cjxj″ =  cixi′ + cjxj′. 
Hence the solution x″ satisfies the knapsack constraint and gives an xo value at least as large as 
the solution x′. We therefore assume henceforth that aj > ai.   The indicated transformation of 
variables to create zi = xi + xj  (≤ 1) clearly yields a relaxation of W-SC, which becomes 
equivalent to W-SC if xi = zi – xj is assured to be nonnegative.  Denote the new coefficients for xj 
by cj′ = cj – ci and aj′ = aj – ai.  If ci > cj, then cj′ ≤ 0 and aj′ > 0, which implies xj = 0 in an 
optimal solution to the relaxation, and hence j may be discarded as specified in the theorem. We 
are left with the case cj′ > 0 and aj′ > 0.  The indexing assumptions imply ci/ai > cj′/aj′.  As a 
result, xj > 0 implies zi = 1 in the LP Knapsack Solution to W-SC′, and the feasibility (and hence 
optimality) of this solution for W-SC is established.4 � 
 

                                                           
4 A method equivalent to the approach provided by this theorem, but which does not introduce an explicit 
transformation of variables and which is slightly more cumbersome to state and prove, is provided in Glover (1971). 
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 Theorem 5 finds its usefulness in the present context by enabling maximum weight 
independent set problems to be handled in a manner analogous to maximum cardinality 
problems.  By the now-familiar design, we may create associated reduced problems by setting  
xr = 1 for candidate variables, and solving the resulting W-SC(r) problems in parallel. 
 An appropriate choice of an edge set E′ to be exploited by Theorem 5 can also be made 
by methods resembling those previously described for unweighted problems. The procedure by 
which N′ is generated from N (when W-SC is transformed into W-SC′) suggests that E′ be 
derived from E by successively choosing “best remaining ratios” to identify both i and j for the 
pair {i, j} ∈ E′.  
 
9. 2  The Weighted SS Problem 
 The weighted SS problem is expressed by 
 

 W-SS: Maximize  xo    =  ∑ (cixi : i ∈ N) 
 subject to ∑ (cixi : i ∈ N)  ≤ Uo(j)xj + Uo(1-xj)  j ∈ N 

   xi + xj  ≤ 1             {i,j} ∈ E″ 
  xi binary                       i ∈ N 
 
where Uo is an upper bound on xo (e.g. Uo = ∑ (ci : i ∈ N)). The Uo(i) terms are defined as 
before, taking into account the changed form of xo. Also, E″ is a set of node disjoint edges, and 
the inequalities over j ∈ N can alternately be expressed as  
  ∑ (cixi : i ∈ N)  ≤  Min(Uo(i) : xi = 1, i ∈ N). 
 In the absence of the inequalities over E″, the solution to W-SS, perhaps surprisingly, 
takes no account of the ci values in creating a priority ordering of the variables. 
 Specifically, define the version of W-SS that excludes the inequalities over E″ as the 
Conditional Objective Knapsack Problem (since the objective value is conditional upon the 
bounds Uo(i)). Then the continuous relaxation of this problem can be solved as follows. 
  
 LP Conditional Objective Knapsack Solution 
 1. Index the variables so that U0(1) ≥ U0(2) ≥ … ≥ U0(n). Define C(0) = 0 and for each  

     p ∈ N define C(p) = ∑ (ci : i <  p, i ∈ N) 
2. Define q = Max (p: C(p) < U0(p)) and set   

  xi = 1 for i < q    (if q ≥ 1) 
     If q  < n, then 
  (a) if C(q) ≥ U0(q+1) then xi = 0 for i > q and x0 = C(q) 
  (b) if C(q) < U0(q+1) then xq+1 = (U0(q+1) – C(q)) / cq+1, 
        xi = 0 for i  > q+1 (if q +1 < n) , and x0 = U0(q+1) 
 
 The division between the cases 2(a) and 2(b), and the fact that the indexing makes no 

reference to the ci values, constitute noteworthy differences between the rule for generating the 
LP Conditional Objective Knapsack Solution and the rule for generating the more traditional LP 
Knapsack Solution. Nevertheless, the computational effort is approximately the same. 

 To solve the more complex W-SS problem, which includes the constraints over E″, 
requires a method that departs in a still more significant way from the method for W-SC, 
although the execution is still exceedingly efficient.  In this case, W-SC is not transformed into a 
second problem in advance, but is solved directly by a method partly analogous to the preceding 
solution approach. 
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 A descending ordering of the U0(i) values again identifies a critical priority relationship 
for solving the problem.  This suggests that the set E″ can be generated by reference to this 
ordering, using rules similar to those previously described for generating node disjoint subsets of 
edges from E.  

 
Method for W-SS 

 1. Index the variables so U0(1) ≥ U0(2) ≥ … ≥ U0(n). Start with q = 1 and CSUM = 0. 
  2. (a)  If there exists an edge {i, q} ∈ E″ with i < q then: 
  (1) if ci ≥ cq, set xq = 0 
   (2) if ci < cq  let d = cq – ci. Then 
    (i)  if CSUM + d ≤ U0(q) set xq = 1, xi = 0 and CSUM := CSUM + d 
    (ii) if CSUM + d > U0(q) set xq = f and xi = 1 – f for f = (U0(q) – CSUM)/d 

        and then set CSUM = U0(q) 
     (b)  Otherwise, if there is no edge {i, q} ∈ E″ with i < q, then 
   (1) if CSUM + cq ≤ U0(q) set xq = 1 and CSUM : = CSUM + cq 
    (2) if CSUM + cq > U0(q) set xq = (U0(q) – CSUM)/cq and then set  

            CSUM = U0(q) 
 3. If q = n, x0 = CSUM and the method stops. Otherwise: 
     (a)  If CSUM ≥ U0(q+1) then x0 = CSUM, xi = 0 for i > q and the method stops. 

                (b)  If CSUM < U0(q+1), then set q: = q + 1 and return to Step 2. 
 
 Theorem 6.  The LP Conditional Objective Knapsack Solution and the Method for W-SS 
give optimal solutions for their respective problems. 
 
 Proof: The validity of the LP Conditional Objective Knapsack Solution can be verified 
by observing that if xi > 0 for any i > q in case 2(a), or for any i > q + 1 in case 2(b), then x0 is 
compelled to be no larger than specified in these cases.  Moreover, if xi is reduced in value for 
any i ≤ q or for i = q + 1 in Case 2(b), respectively, then xi > 0 for some i > q or i > q + 1, as 
previously identified.  The validity of the Method for W-SS rests on the validity of the LP  
Conditional Objective Knapsack Solution, and on the fact that each iteration of the method  
identifies an optimal allocation of values between xq and xi in the case where {i,q} is an edge 
of E″. � 
 
 As in the solution method for W-SC, the method for W-SS can be applied to evaluate the 
consequences of setting selected variables xr = 1, by solving associated problems W-SS(r) in 
parallel.  These methods give new ways to determine bounds and choice rules for weighted 
independent set problems, and can also be applied to other 0-1 problems by disregarding the 
special rules to handle constraints over the edges of E′ and E″ (in cases where such constraints do 
not exist). 

10. Surrogate Constraint Strategies for Additional Improvement 

 Returning to basics, we observe as in the surrogate constraint proposals of 
Glover (1965, 1971) that additional strengthening can be obtained by generating surrogate 
constraints from inequalities obtained as logical implications of the original constraints.  In the 
present setting, a well-known source of logical implications is provided by clique inequalities 
(Padberg, 1973).  Whenever a set C of nodes constitutes a clique, i.e., each pair of nodes in C is 
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joined by an edge, then clearly at most one of the nodes in C can belong to an independent set.  
Consequently, we can write 

∑ (xi : i ∈ C)  ≤ 1. 
If C contains more than two nodes, the clique inequality is stronger than any of the component 
inequalities 

xi + xj  ≤ 1     i ≠ j,    i, j ∈ C 
and can replace all of these inequalities.   

The clique inequality is also stronger than a simple surrogate constraint formed without 
reference to logical implications. To illustrate, consider a clique composed of nodes 1, 2 and 3, 
whose associated component inequalities are 

 x1 +  x2                 ≤  1           
 x1                +  x3       ≤  1     
           x2  +  x3     ≤  1.   

The simple-sum surrogate constraint for this system is 
2x1 + 2x2 + 2x3     ≤  3           

and is dominated by the logically derived clique inequality 
  x1  +   x2 +   x3     ≤  1.           

 Larger cliques provide still greater degrees of strengthening.  For example, the 
component inequalities for a clique on nodes 1, 2, 3 and 4 yield a simple-sum surrogate 
constraint of 

3x1 + 3x2 + 3x3 + 3x4    ≤  6. 
Evidently, this is only “half as strong” as the clique inequality 

  x1  +  x2  +  x3 +   x4    ≤  1. 
These observations show that the generation of surrogate constraints by including 

reference to logically implied inequalities is particularly relevant in the present setting. As a 
result of dominating the component two-variable inequalities that serve as their “building 
blocks,” the clique inequalities are preferable to use in the role of source inequalities for 
generating surrogate constraints over larger numbers of variables. Such surrogate constraints can 
then be used to create stronger versions of the sub-problems SC1 and SC2. These versions can be 
additionally improved by the opportunity to use surrogate constraint normalizations whose 
weights differ for clique inequalities over differing numbers of variables.  More general 
normalization rules such as those indicated in Section 3.1 become applicable. 
 Another important consequence derives from identifying clique inequalities.  Disjoint 
subsets of these inequalities can also be extracted to provide stronger sub-problem relaxations 
than the SC and SS models previously discussed. Using common terminology, a collection of 
disjoint sums of variables each bounded above by 1 is called a GUB (“generalized upper bound”) 
system, and thus by means of clique inequalities we find it useful to address more general GUB-
constrained versions of the SC and SS problems. 

It may be possible that clique inequalities containing more than two variables are few in 
number or do not exist.  However, even where cliques beyond size 2 are rare, their discovery can 
be valuable. As the previous illustration has suggested, accounting for components of cliques 
separately rather than considering their combined implications produces a misleading evaluation, 
and an exaggeration of an accompanying estimate of the size of an independent set.  Effort spent 
to remove this element of exaggeration by identifying and exploiting clique inequalities can 
therefore be well rewarded. 

This raises two primary issues: (1) to identify collections of inequalities that lead to 
strong instances of GUB-constrained SC and SS models, and (2) to develop algorithms that solve 
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these models highly efficiently.  We show that it is possible to handle both of these 
considerations simultaneously, by a dynamic solution strategy that generates the clique 
inequalities for the GUB system and solves the associated sub-problems at the same time.  In 
addition, for problems that hide their complexity in structures more general or more subtle than 
cliques, we observe in Section 12 how these ideas can be extended to q-complete systems, which 
give rise to inequalities that include clique inequalities as a special case. 

11.  Creating and Exploiting Clique Inequalities Dynamically.  
 We represent a collection of disjoint cliques that will be generated dynamically by the 
notation 
  Clique(p):  p = 1,…,nc, 
 where the number of cliques nc is determined automatically by the process of generating the 
cliques themselves. The clique generation method is a constructive procedure embodied within 
the algorithm for exploiting the GUB system defined by the cliques.   
 The approaches to be described can also be advantageously used within multi-start 
methods by varying the choice rules of the dynamic generation process on different passes. Such 
a repeated application provides an opportunity to create a larger collection of cliques, which in 
turn can be used to produce stronger surrogate constraints. The solution procedures can also 
draw upon cliques from the pool already established, selecting new sub-collections of disjoint 
members from this pool rather than creating new ones.  Such a pool can also be created by 
preprocessing, using variations of the same processes embedded within a multi-start method. 
 The guidance provided by surrogate constraints in these processes additionally affords a 
means to supplement (or in some cases replace) the use of separation algorithms designed to 
identify cliques in branch and cut methods.  Such applications can take advantage of dual 
multipliers produced by solving LP problems within branch and cut methods, giving weights for 
generating surrogate constraints that can be further enhanced by procedures described in 
Appendix 2.  
 The first and simplest problem we address by a dynamic method is the GUB-constrained 
version of SC, which can be written as follows.   
 

SC:GUB: Maximize  xo    =  ∑ (xi : i ∈ N) 
          subject to                     ∑ (aixi : i ∈ N)  ≤ ao 

                                                     ∑ (xi : i ∈ Clique(p))  ≤ 1  for p = 1, …,nc 
                                                              xi binary               i ∈ N 
 
To describe the method for solving SC:GUB, we say that Clique(p) can be augmented by node i 
if adding node i to Clique(p) creates a larger clique, i.e., if {i, j} ∈ E for all j ∈ Clique(p).5 
The method applies as well to situations where cliques of size greater than 2 may not exist, by 
assembling good choices for cliques composed of the edges {i,j} ∈ E. (There is no requirement 
that the indicated cliques must include all nodes of N.) The basic method can be summarized in 
the following simple form. 
 

                                                           
5 Checking this condition is facilitated in the following method by keeping a bit matrix M(i,j), where M(i,j) = 1 if 
{i,j} ∈ E and M(i,j) = 0 otherwise. 
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 Dynamic Method for SC:GUB. 
 0.  Index the variables so that ai ≤ ai+1, for i, i+1 ∈ N.  Let xi = 0 for  i = 0 and i ∈ N , 

ASUM = 0 and i = 1. 
1. If ASUM + ai > ao, stop, the current solution is optimal.  
2. If some existing Clique(p), 1 ≤ p ≤ nc,  can remain a clique by adding node i, choose 

such a clique and add i to Clique(p). 
3. Otherwise, if no clique exits that can be augmented by node i, create a new clique to 

contain node i:  Set nc := nc + 1, Clique(nc) = {i}, xi = 1, xo := xo + 1, ASUM := 
ASUM + ai. 

4. If i = n, stop.  Otherwise set i := i + 1 and return to step 1. 
 
 In the preceding method, all variables start 0, and a variable xi is set to 1 if node i is the 
first node to become an element of a clique that is newly created.  For other nodes i subsequently 
added to the clique, the variables xi retain their initial 0 value. Once no more variables can be set 
to 1 without violating the surrogate constraint inequality, the method stops. It is possible at the 
end that one or more of the Clique(p) sets are extraneous, in the sense that they contain a single 
node i, whose corresponding clique inequality xi ≤ 1 is redundant. (The associated variables are 
nevertheless relevant in that they are assigned values of 1 in the solution process.)  

Various rules can be used in Step 2 for choosing the particular Clique(p) to augment by 
node i, when more than one choice exists. A simple rule is to examine the cliques either in 
ascending or descending order of the indexes p (i.e., in FIFO or LIFO order), and to choose the 
first (respectively, smallest or largest) p for which Clique(p) can be successfully augmented.  At 
the same level of simplicity, the method can alternate between FIFO and LIFO choices, and a 
variety of other rules are evidently possible. 

Since the foregoing method is very fast, and solves the SC:GUB problem at the same 
time that it generates it, an opportunity arises to implement more than one choice rule in Step 2 
and then select the best resulting bound for xo.  

In addition, the method can be accelerated by considering Clique(p) as a candidate to be 
augmented only if it does not exceed a specified size s.  Restricting s to 2 or 3 (i.e., restricting the 
largest clique size to 3 or 4), may appreciably speed the method, although the outcome depends 
on the problem instance.  Tradeoffs in the quality of the outcomes produced by restricting clique 
size enter into consideration, since larger cliques can more strongly constrain the set of feasible 
solutions.  An approach that keeps track of the sizes of cliques produced during successive 
passes of a multi-start method, accounting for the fact that clique sizes will drop as larger 
numbers of variables are assigned values, can provide reasonable choices for s on later passes as 
a result of information derived from earlier passes.  

 
11. 2 Solving the GUB-Constrained SS Problem. 
 In a manner analogous to the formulation of the SC:GUB problem, we may formulate a 
GUB-constrained version of the SS problem as follows. 
 

SS:GUB: Maximize  xo    =  ∑ (xi : i ∈ N) 
                 subject to ∑(xi: i ∈ N)  ≤  Uo(j)xj + |N|(1-xj) j ∈ N 
                                                     ∑ (xi : i ∈ Clique(p))  ≤ 1  for p = 1, …,nc 

                                                              xi binary               i ∈ N 
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As in the case of the SS problem, the inequalities over j ∈ N above can also be replaced by the 
nonlinear inequality 

∑(xi: i ∈ N) ≤ Min (Uo(i): xi = 1, i ∈ N). 
By direct extension of Theorem 4, the method for SS:GUB acquires a structure similar to that of 
the SC:GUB method, and can be expressed even slightly more succinctly. 
 
 Dynamic Method for SS:GUB. 

0. Index the variables so that Uo(i) ≥ Uo(i+1), for i, i+1 ∈ N.  Let xi = 0 for  i = 0 and 
i ∈ N , and i = 1.  

1. If xo > Uo(i), stop, the current solution is optimal.  
2. If some existing Clique(p), 1 ≤ p ≤ nc,  can remain a clique by adding node i, choose 

such a clique and add i to Clique(p). 
3. Otherwise, if no clique exits that can be augmented by node i, create a new clique to 

contain node i:  Set nc := nc + 1, Clique(nc) = {i}, xi = 1, xo := xo + 1. 
4. If i = n, stop.  Otherwise set i := i + 1 and return to step 1. 

 
 The previous comments about the choices in Step 2 of the SC:GUB method apply to the 
SS:GUB method as well. 
 
11. 3 The Weighted SS:GUB Problem. 
 The GUB-constrained version of the weighted SS problem, which we denote by 
W-SS:GUB, can be written 
 

W-SS:GUB: Maximize  xo     =  ∑ (cixi : i ∈ N) 
                 subject to ∑(cixi: i ∈ N)  ≤  Uo(j)xj + Uo(1-xj) j ∈ N 
                                                     ∑ (xi : i ∈ Clique(p))  ≤ 1  for p = 1, …,nc 

                                                              xi binary               i ∈ N 
 
where Uo is an upper bound on xo. This problem requires a somewhat more complex method 
than the SS:GUB problem, just as the W-SS problem requires a more complex method than the 
SS problem.  However, the earlier W-SS method extends smoothly to the GUB case.  The 
analysis of Theorem 6 discloses that the primary change required is to keep track of a special 
node for each Clique(p), which we denote by MaxWtNode(p), which is the node in Clique(p) 
with the largest ci (weight) value.  We identify how this is done as follows. 
 

Method for W-SS:GUB 
 1. Index the variables so U0(1) ≥ U0(2) ≥ … ≥ U0(n). Start with q = 1 and CSUM = 0. 

2. If some existing Clique(p), 1 ≤ p ≤ nc,  can be augmented by node q, choose such a 
clique and set i = MaxWtNode(p) (for MaxWtNode(p) as previously determined in 
Step 2(3) or 3(1)).  Then 

  (1) add q to Clique(p). 
             (2) if ci ≥ cq, set xq = 0 
  (3) if ci < cq  set MaxWtNode(p) = q, and let d = cq – ci. Then 
    (i)  if CSUM + d ≤ U0(q) set xq = 1, xi = 0 and CSUM := CSUM + d 
    (ii) if CSUM + d > U0(q) set xq = f and xi = 1 – f for f = (U0(q) – CSUM)/d 

        and then set CSUM = U0(q) 
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3. Otherwise, if no existing clique can be augmented by node q, then 

(1) create a new clique to contain node q:  Set nc := nc + 1, Clique(nc) = {q}, and 
MaxWtNode(nc) = q 

(2) if CSUM + cq ≤ U0(q) set xq = 1 and CSUM : = CSUM + cq 
   (3) if CSUM + cq > U0(q) set xq = (U0(q) – CSUM)/cq and then set  

      CSUM = U0(q) 
 4. If q = n, x0 = CSUM and the method stops. Otherwise: 
      (1)  If CSUM ≥ U0(q+1) then x0 = CSUM, xi = 0 for i > q and the method stops. 

                  (2)  If CSUM < U0(q+1), then set q: = q + 1 and return to Step 2. 
 
 The validity of this method derives by logical extension of the proof of Theorem 6.  As in 
the case of the simpler W-SS problem, the approach is directly applicable to solving weighted 
independent set problems, and can be adapted by a change of variables to give a method for 
solving the associated covering problems. 
 
11.4 The Weighted SC:GUB Problem. 
 We have inverted the order of considering the weighted versions of the SS:GUB problem 
and the SC:GUB problem, because the latter problem requires a somewhat more intricate method 
to handle.  We can write the problem to be addressed as follows. 
 

W-SC:GUB: Maximize   xo    =  ∑ (cixi : i ∈ N) 
   subject to        ∑ (aixi : i ∈ N)  ≤ ao 
                                                     ∑ (xi : i ∈ Clique(p))  ≤ 1  for p = 1, …,nc 
     xi binary                i ∈ N 

 
 To solve this problem, we proceed as in the case of the W-SC problem by transforming it 
into a new problem, which in the present instance we denote as T-SC (“T” for “transformed”).  
The new problem has the same form as W-SC:GUB, except that we change the values of some of 
the ci and ai coefficients, dropping some of the variables and removing the GUB constraints.  
Thus the problem acquires the form of an ordinary knapsack problem, and we can solve its 
continuous version by the LP Knapsack Solution rule.   
 Let Clique(p:q) be defined to be the subset of Clique(p) given by 
  Clique(p:q) = {i ∈ Clique(p): i > q}. 
The following transformation reindexes the elements of Clique(p), possibly more than once for 
some elements, and on each occasion Clique(p:q) is assumed to be defined relative to the current 
indexing.  As variables are dropped, their indexes are removed from Clique(p) and Clique(p:q), 
and hence also removed from N, leaving a residual N we denote by N′. 
 

Transforming W-SC:GUB into T-SC.  
0.  Begin with N′ = N, and record the original ci and ai values as ci

o and ai
o.  Perform the        

following steps for each Clique(p), 1 ≤ p ≤ nc, beginning the execution for each p by 
setting q = 0. 

1. For all i,j ∈ Clique(p:q), index the variables so that ci/ai  ≥  cj/aj, and  if the ratios are 
equal, then ai ≥ aj. 

2. Let i = Min(h∈ Clique(p:q)), and for all j ∈ Clique(p:i) such that either ci
o ≥ cj

o or 
ai

o ≥ aj
o, drop j from N′ (and hence from Clique(p) and Clique(p:i)).  
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3. If Clique(p:i) is now empty, the transformation for Clique(p) is complete.  Otherwise, 
replace xi by a new variable zi defined by zi = xi + ∑ (xj : j ∈ Clique(p:i)). Then zi 
receives the coefficients ci  and ai associated with xi, and each xj, j ∈ Clique(p:i), 
receives new coefficients given by 

   cj : = cj
o – ci

o 

   aj : = aj
o – ai

o 

  Let q = i and return to Step 1. 
4. Once the transformation is completed for every Clique(p), the final form of T-SC is 

defined by reference to the new zi variables and the xi variables that were not 
eliminated, where each variable receives the final ci and ai coefficients identified for 
that variable. 

 
 Theorem 7.  An optimal LP solution to W-SC:GUB is obtained by applying the LP 
Knapsack Solution Rule to the transformed problem T-SC (treating the zi variables in the same 
way as the xi variables).  Optimal solution values for the original xi variables are recovered by 
the rule: 

(1) xi = zi – zj for each i,j ∈ Clique(p) such that zj was created immediately following the             
creation of zi, and  

(2) xi = zi – xj if zi was the last z variable created for Clique(p), and xj was the single 
remaining variable not eliminated.  

All xi variables not transformed into z variables retain their assigned values. 
 
 Proof:  Follows by inductive application of the reasoning of the proof of Theorem 5. � 
 
 We now describe a method to take advantage of this theorem as the GUB sets are 
generated dynamically.  To facilitate the description, we introduce some additional arrays and 
make reference to a standard linked list Next(i) to order the variables.  The linked list, which 
orders the variables by starting with i = FirstIndex and visiting all i ∈ N by repeatedly setting  
i := Next(i), is constructed by the rule of defining Next(i) = h, for all i,h ∈ N, so that6 
  ci/ai ≥ ch/ah   and  ai ≥ ah if the ratios are equal. 
 As a clique is being dynamically constructed (or as its elements are being visited) in the 
sequence determined by the following algorithm, we keep track of the index i = Current(p) for 
each Clique(p) which identifies the “current xi” for that clique.  We also keep track of “Updated” 
nodes in the clique, by setting Update(j) = i, if xj has been processed by updating its coefficients 
according to the rule cj = cj

o
 – ci

o and aj = aj
o – ai

o. The update is not required for each xj for 
j ∈ Clique(p), because we can defer the update until xj is itself a candidate to be selected as xi.   
 Finally, we require an array CliqueID(j) to keep track of which clique a node j belongs to, 
setting CliqueID(j) = p if node j belongs to Clique(p), and setting CliqueID(j) = 0 if node j does 
not belong to a clique.  
 

                                                           
6 Because the GUB-Constrained Knapsack method changes some problem coefficients and thus changes the linking 
by Next(i), an accompanying reverse order linked list is useful to execute such changes.  
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 Dynamic GUB-Constrained Knapsack Method. 
0. To begin, set nc = 0, and for all j ∈ N, set:  xj = 0, Update(j) = 0, CliqueID(j) = 0.  
    Set ASUM = 0 and j = FirstIndex. Notationally, denote the last i ∈ N visited by the 

Next(i) ordering as LastIndex. 
 

1. Let p = CliqueID(j).  If p = 0, proceed to Step 2, and otherwise go to Step 3. 
2. (Node j does not yet belong to a clique.)  Check if node j can augment an existing 

clique: 
(a) Node j does not enlarge an existing clique (or no cliques exist):  Create a new   

clique to contain node j: Set nc := nc + 1, Clique(nc) = {j}, CliqueID{j} = nc, 
Current(nc) = j (xj  is treated as the current xi of the T-SC transformation) and 
Update(j) = j (xj is self-updated, and does not change its coefficients).  Set 
p = nc and proceed to Step 3. 

(b)  Node j augments an existing clique: Select such a Clique(p), add j to  
Clique(p), and set CliqueID(j) = p. 

3. (Node j belongs to the existing Clique(p).) Let i = Current(p) (identifying the node i 
of Clique(p) that qualifies as the current xi of the T-SC transformation).  Check if 
Update(j) = i: 

(a) Update(j) = i (xj has been updated by xi).  Assign xj its current value: 
(1) If ASUM + aj > ao, then 

      Set xj = (ASUM – ao)/aj  and  ASUM = ao. 
                       Otherwise: 

       Set xj = 1 and ASUM := ASUM + aj. 
(2) If j ≠ i (xj has not yet taken the role of xi), then: 

Set xi := xi – xj  and Current(p) = j (hence xj becomes the new xi     
for Clique(p)). 

(3) If ASUM = ao or if j = LastIndex, the solution is complete. 
Otherwise, set j := Next(j) and go to Step 1. 

(b) Update(j) ≠ i (xj has not been updated by the current xi): 
(1) If cj

o ≤ ci
o or aj

o ≤ ai
o, then drop node j; i.e., xj retains its     

preassigned 0 value.  If j = LastIndex, stop.  Otherwise, set 
j := Next(j) and return to Step 1. 

(2) If cj
o > ci

o and aj
o > ai

o, then: Set cj = cj
o – ci

o, aj = aj
o – ai

o and 
Update(j) = i.  If j = LastIndex, stop.  Otherwise, set 
PossibleNext = next(j):  Reinsert j in its proper position on the linked 
list, based on its updated coefficients.  If j does not change its 
position, i.e., is still the first index on the list remaining to be 
examined, go to Step 3.  But if j is no longer in the first position, set 
j = PossibleNext (the node now in the first position), and go to 
Step 1. 
 

11.5 Generalized Results for Exploiting Conditionally Shared Limitations 
 
We now provide results that link the first and second principles of conditionally shared 
limitations, and allow them to be applied to more general contexts.  We start by giving a general 
problem formulation and identifying three related problems, followed by the main theorem that 
gives bounds for the original problem by reference to the others.  We also describe a method for 
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implementing the theorem and provide an example to demonstrate how the method can be 
applied. 
 We denote the problem we are interested in solving by 
 
  Problem P:     Maximize xo = f(x) 
    subject to      x ∈ X 
 
where x ∈ X implies xi = 0 or 1 for i ∈ I ⊆ N.7 Associated with Problem P, we identify the 
relaxed problem PR given by: 
 
  Problem PR:    Maximize xo = g(x) 
      subject to      x ∈ Xo 
 
The set Xo is a superset of X and the function g(x) is an overestimator of f(x), i.e.,  
Max(g(x): x ∈ Xo)  ≥ Max(f(x): x ∈ X). Define Uo(i) for i ∈ I to be a conditional upper bound 
for xo in Problem P when xi = 1, i.e., Uo(i) is a value that satisfies the inequality  

Uo(i) ≥ Max(f(x): x ∈ X, and xi = 1). 
Then we identify the special relaxation PR* of P given by: 
 
  Problem PR*:   Maximize xo = g(x) 
      subject to      x ∈ Xo 

     xo ≤ Min(Uo(i): xi > 0, i ∈ I) 
 
We observe that Problem PR* is a generalization of the problems SS and W-SS, including their 
GUB-constrained versions.   

Following our previous conventions, we let xo(P), xo(PR), etc., denote the optimum xo 
value for the corresponding problem. (We interpret xo to be -∞ if the associated problem has no 
feasible solution.) Given knowledge of a bound Uo on xo in Problem P as a result of solving PR 
(i.e., Uo = xo(PR)), we can always assume Uo(i) ≤ Uo.  For example, Uo can initially be obtained 
by solving PR (to give Uo = xo(PR)), accompanied by solving instances of PR in which selected 
xi variables are given the assignment xi = 1 to obtain associated values Uo(i) ≤ Uo, and we may 
take Uo(i) = Uo for the remaining xi variables for i ∈ I. 

It is clear that PR* is a valid relaxation of P.  Moreover, PR* is a stronger relaxation than 
PR if Uo(i) < Uo for at least one xi, i ∈ I, such that  xi > 0 in an optimal solution to PR.  
Consequently, we are interested in solving PR* to obtain a tighter bound Uo, and also in solving 
versions of PR* subject to xi = 1for selected variables xi, to obtain tighter bounds Uo(i) than 
would be possible by solving PR.  Since these latter “constrained versions” of PR* have the 
same form as PR* upon making the assignment xi = 1 and eliminating xi, we state all our results 
in terms of PR*.  
  

                                                           
7 The set I, which identifies the integer variables, is different from the set I of Section 7. 
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Let U be the set of the distinct values taken by the bounds Uo(i), i.e.,  
U = {u: u = Uo(i), i ∈ I}, and define I[u] = { i ∈ I: Uo(i) ≤ u}.  Then we identify a family of 
problems over u ∈ U 
 
  Problem PR[u]:    Maximize xo = g(x) 
          subject to      x ∈ Xo 

          xi = 0,    i ∈ I[u] 
 

Our main result, which generalizes and strengthens Theorems 1 and 2 of Section 7, 
demonstrates that solving PR[u] for any selected u = u* either gives an optimal solution to PR*, 
or else bounds xo(PR*) and allows U to be reduced in a manner that allows the best bound on 
xo(PR*) (and hence on xo(P)) to be found by a “better than binary” search.8 

 
Theorem 8.  Let u* be any element of U, and let x* denote an optimal solution to 

PR[u*], with xo* = xo(PR[u*]).  Then x* either solves PR* or the pair (u*, xo*) bounds xo(PR*) 
as follows. 
Case 1.  If u* ≤ xo*, then: 

(1) xo(PR*) ≤ xo*.   
(2)  Let u+ = Min(Uo(i): xi* > 0) (where u+ = ∞ if all xi* = 0).   

(a) If u+ ≥ xo*, then x* is optimal for PR* and xo(PR*) = xo*. 
(b) If u+ < xo*, then a stronger bound on xo(PR*) than xo* exists by solving PR[u] 

only if  u lies in the range u+ ≤ u < xo*.   
Case 2. If u* > xo*, then: 

(3) xo(PR*) ≤ u*.   
(4) Let u′ = Max(u ∈ U: u ≤ xo*).  If a stronger bound on xo(PR*) than u* exists by 

solving PR[u], then such a bound can be found for u in the range u′ ≤ u < u*. 
 
 Proof: Suppose xo(PR*) > xo*. Then since xi* = 0 for all Uo(i) ≤ u* by the formulation of 
PR[u*], we must have xi > 0 for some Uo(i)  ≤ u* in an optimal solution to PR*, which implies 
xo(PR*) ≤ u*.  This establishes xo(PR*) ≤ Max(u*, xo*), which implies both (1) and (3). Next, to 
establish 2(a), u+ ≥ xo* implies x* is feasible for PR*, since the constraint xo ≤ Min(U0(i): xi > 0) 
is satisfied by x* and xo*.  If x* is not optimal for PR*, i.e., if xo(PR*) > xo*, then an optimal 
solution x to PR* must satisfy xi > 0 for some i ∈ I[u*] (since otherwise the PR[u*] requirement 
that xi = 0 for  Uo(i) ≤ u* is compatible with optimality of x* for PR*). But then PR* requires xo 
≤ u* for feasibility, hence xo(PR*) ≤ xo*, a contradiction.  To establish 2(b), the previous 
justification of (1) and (3) shows that Max(u, xo(PR[u])) < xo* must hold if solving PR[u] gives a 
stronger bound than xo*.  Hence u < xo*, and in addition, xo(PR[u]) < xo* implies u > u*.  For u  
in the interval u* < u < u+, we have xo(PR[u]) = xo*, because x* remains feasible for PR[u] 
through this interval and PR[u] is more constrained than PR[u*].  Thus, u+ ≤ u < xo*.  It remains 
only to establish (4).  To obtain a tighter bound than u* on xo(PR*) we must have 
u* > Max(u, xo(PR[u])), hence u < u*, which implies in turn that xo(PR[u]) ≥ xo(PR[u*]) = xo*.  
Since xo* < u* in Case 2, w also have xo(PR[u]) ≥ xo*, hence xo(PR[u]) ≥ u, for all u ≤ xo*.  Thus 
                                                           
8 To increase the usefulness of this result for the general case, the variables xi of the original problem can be 
complemented where appropriate to assure that Uo(i) is the tighter of the two upper bounds for xo when xi is 
alternately assigned the values 0 and 1. The result further applies to general mixed integer programming problems 
by allowing “xi = 0 or 1” to be a shorthand notation for “xi ≤ v or xi ≥ v + 1,” for some integer variable xi and a 
chosen integer value v. 
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for u ≤ xo* the strongest bound results for u = u′ = Max(u ∈ U: u ≤ xo*), which confirms the 
conclusion of (4). � 
 
 The usefulness of the conditions of Theorem 8 for finding a best pair (u*, xo*) for 
bounding xo(PR*) can be seen by noting that only part of these conditions, the inequalities 
u < xo* in 2(b) and u < u* in (4), are sufficient to allow such a pair to be found by a binary search 
over elements of U.  The remaining inequalities in 2(b) and (4), as well as those in 2(a) for 
identifying optimality, additionally constrain the search. 
 In many applications, particularly graph problems such as the independent set problem, 
the relevant values of u will be relatively small in number.  For example, values beyond a certain 
size are not likely to be useful for the goal of restricting xo(P), and hence can be disregarded (set 
to Uo) in the formulation of PR*.  Consequently, the set U will often contain only a fairly small 
number of elements, and a search guided by Theorem 8 can quickly identify the best one. 

To conveniently describe a method for implementing Theorem 8, we enlarge U to contain 
one additional element uo = - ∞, and index the elements of U so that U = {uo, u1, u2, …, uk},  
where uo < u1 < u2 < … < uk.9  We observe that I[uo] is empty and hence PR[uo] is the problem 
PR. Also, uo ≤ xo(PR[uo]) = xo(PR), and hence Theorem 8 remains valid for this enlarged 
form of U.  

It is also useful to create an additional element uk+1 = ∞, although uk+1 is not added to U.  
This convention obviates the need to include special qualifications in the descriptions of results 
and methods that follow.  We first state a Corollary of Theorem 8, which is a direct 
generalization of Theorems 1 and 2. 

Corollary.  For all u* ∈ U, and for x* and xo* (= xo(PR[u*])) as in Theorem 8: 

xo(P) ≤ xo(PR*) ≤ Max(u*, xo*) 

Further, identify the index h such that uh = u*. Then x* solves PR* if xo* ≤ uh+1 (or if xo* = uh, as 
a special case).  Finally, let p = Max(j: 0 ≤ j ≤ k: uj ≤ xo(PR[uj])). Then the best bound by 
Theorem 8 is given by 
   xo(PR*) ≤ Min(xo(PR[up]), up+1). 
 
 Proof:  The assertions follow at once from Theorem 8. � 
 
 We now extract additional elements of Theorem 8 to provide a method that efficiently 
identifies the strongest bound on xo(PR*). Let xo

# denote the best candidate value for xo(PR[up]), 
and u# denote the best candidate value for up+1.   
 

Fast Determination of the Bound on xo(PR*)  
0. Begin with xo

# = u# = ∞, kMin = 0, kMax = k. 
1. Select h:  kMin ≤ h ≤ kMax, and let u* = uh. 
2. Solve PR[u*], and denote the solution by x*,  with xo* = xo(PR[u*]). 

(1) If u* ≤ xo*, then: Let xo
#  = xo* and uj = Min(Uo(i): xi* > 0) (or j = k +1, hence 

uj = ∞, if all xi* = 0). 
(a) If uj ≥ xo*, then xo(PR) = xo* and the search ends. 
(b) If uj < xo*, then set kMin = j and kMax := Max(q ≤ kMax: uq < xo*). 

                                                           
9 By this organization, the set I[uj] for j > 0 constitutes a generalized form of the set Ij of Section 7. 
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                    (2) If u* > xo*, then: let u# = u* and if ukMin ≤ xo*, set  
                          kMin = Max(q ≤ kMax: uq ≤ xo*).  Set kMax := h – 1. 

3. If kMin > kMax, the search ends and xo(PR*) ≤ Min(xo
#, u#).   

   Otherwise, return to Step 1. 

The condition “kMin > kMax” of Step 3 is checked each time kMin or kMax changes in Step 2, 
and the search ends as indicated if the condition holds. 
A Numerical Example. 
 To illustrate the foregoing method, we consider a problem that includes the constraints of 
both the SC and SS problems of Section 7.  Instead of being compelled to solve these problems 
separately, to obtain a (possibly different) bound on xo from each, we are able to combine the 
two problems into a single new problem by taking advantage of Theorem 8.  SC takes the role of 
the relaxed problem PR, and the associated problem PR* thereby combines SC and SS. The 
formulation of PR*, where in this instance f(x) = g(x) and I = N, is: 
 

  PR*: Maximize  xo    =  ∑ (xi : i ∈ N) 
 subject to ∑ (aixi : i ∈ N)  ≤ ao 

 xi + xj  ≤ 1      {i,j} ∈ E′ 
                                                      xi binary               i ∈ N 

                    ∑(xi: i ∈ N) ≤ Min (Uo(i): xi > 0, i ∈ N).10 
 
 The following two tables illustrate the solution of the problems PR[u] for various values 
of u, as a means of bounding xo(PR*). Table 1 gives the numerical data for a 16 variable 
problem, where the variables are indexed for convenience to that the edges {i,j} ∈ E′ (extracted 
as a set of node-disjoint edges from E) are {1,2}, {3,4}, {5,6}, etc. 

Table 2 gives the solution values for the xi variables for each problem PR[u], where the 
values of u range over U = {- ∞, 2,3,4,5,6,7,8} (corresponding to the different Uo(i) values 
identified in the first table, together with uo = - ∞). Variables that are forced to 0, by the 
restriction xi = 0 for i ∈ I[u], are shown by an “X entry” in Table 2.  Zero-one solution values for 
remaining variables are as indicated.  The variables are pre-indexed in an order that makes it 
easy to see the solution to SC at each stage (obtained by successively setting xi = 1 in the order 
from smaller to larger ai values, allowing at most one assignment xi = 1 for each edge, until no 
more assignments can be made subject to ∑aixi ≤ ao = 72).11 
 
Table 1.  Problem Data 
 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
ai 3 12 7 11 12 16 13 15 17 30 18 29 31 34 32 33 ≤72 
U0(i) 3 4 3 3 4 8 2 3 5 7 3 6 7 4 3 7  

 

                                                           

10 This constraint is equivalent to the constraint ∑(xi: i ∈ N) ≤ Min (Uo(i): xi = 1, i ∈ N) of Problem SS, since x is a 
binary vector in the SC formulation. As noted before, if a bound on setting xi = 0 is more limiting than Uo(i) for 
setting xi = 1, the variable is simply complemented to define Uo(i) relative to yi = 1 – xi, since yi = 1 when xi = 0. 
11 The Uo(i) values of Table 1 may be assumed to come from setting xi = 1 in an original problem P (not shown), 
followed by generating and solving an associated PR problem. Or less stringently, they can come from setting xi = 1 
in PR and solving the resulting problem. Similarly, the current PR* problem itself may come from setting xr = 1 in P 
or PR for some xr (e.g., x17) to produce the data in Table 1, for the goal of obtaining a stronger bound Uo(r). 
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Table 2.  Solution Values ( )ix for PR[u] 
 

u x0 1       2 3       4 5       6 7       8 9     10 11     12 13     14 15     16 Σaixi 
- ∞   6 1       0 1       0 1       0 1       0 1       0   1       0   0       0   0       0       70 
   2   6 1       0 1       0 1       0 X      1 1       0   1       0   0       0   0       0       72 
   3   4 X      1 X     X 1       0 X     X 1       0   X      1   0       0   X      0       70 
   4   3 X     X X     X X      1 X     X 1       0   X      1   0      X   X      0       62 
   5   2 X     X X     X X      1 X     X X      0   X      1   0      X   X      0       45 
   6   2 X     X X     X X      1 X     X X      1   X     X   1      X   X      0       61 
   7   1 X     X X     X X      1 X     X X     X   X     X   X     X   X     X       16 
   8   0 X     X X     X X     X X     X X     X   X     X   X     X   X     X         0 

 
 Proceeding down the rows of Table 2, the progression by which xo decreases as u 
increases becomes evident.  If the solution method first selects u = 4, then the method reduces 
kMax and increases kMin so that the only remaining value of u to examine is u = 3, and the 
solution to PR[3] immediately confirms that xo(PR*) = 4.  If u = 3 is chosen first, the method at 
once verifies that the associated solution is optimal.   

If instead of first picking a “middle” u value, the solutions are generated by starting from 
u = - ∞, and successively increasing the value of u, then the value of kMax progressively drops 
as u and kMin increase.  Proceeding in the opposite direction, the value of kMin increases as u 
and kMax decrease. 

If the SC and SS problems are solved independently of each other, then xo(SC) = 6 and 
xo(SS) = 5, and hence the bound xo(PR*) = 4 obtained above proves to be better than available 
from these component problems (as may be expected). In addition, the foregoing approach can 
be applied in a stronger way by allowing the set E′ to be regenerated from the original problem 
to exploit the knowledge that xi is forced to 0 for Uo(i)  ≤ u. Such a strategy is facilitated by the 
fact that all variables xi compelled to be 0 for u = ukMin are 0 for all larger values of u, and since 
kMin progressively grows, these xi are also compelled to be 0 on all subsequent iterations. The 
effort of applying the approach can also be reduced by only regenerating E′ for the values of u 
that give the strongest bounds when the regeneration process is not applied. 

To show how the strengthening can occur, suppose we undertake to re-generate (a part 
of) E′ in order to re-evaluate the solution for u = 3, which is the value that previously determined 
the strongest bound for xo(PR*).  Also assume the edge set E contains the edge {2,5}.  Applying 
the rule in Section 7 for choosing E′, we introduce this edge into E′ for u = 3 in place of edge 
{5,6}. (The rule makes this choice since the edge {1,2} no longer exists when u = 3, as a result 
of compelling x1 = 0.) Then the inequality x2 + x5 ≤ 1 yields a solution with xo(PR[3]) = 3, which 
the method at once confirms to be optimal, and hence which tightens the bound given by xo(PR*) 
from 4 to 3.  
 

12. Q-Complete Systems and Associated Inequalities  
 We undertake to show that the ideas of the preceding sections can readily be adapted to 
exploit more general structures, giving rise to inequalities that can either be used to generate 
surrogate constraints or that can be embedded in a dynamic solution process. 
 
12. 1  Inequalities for q-Complete Systems. 
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 Consider a system of inequalities 
 (V:m)    ∑ (xi: i ∈ Q) ≤ m,      Q ∈ S(V) 

where S(V) is a specified collection of subsets of the set V. We say the system (V:m) is  
q-complete (relative to S(V)) if S(V) consists of all q-element subsets of V; i.e., if  
S(V) = {Q ⊆ V: |Q| = q}.  We assume the inequality is non-trivial, i.e., m ≥ 1, and also assume 
q ≥ m + 1. This latter inequality represents a non-redundancy condition in the case where the 
variables are 0-1. 
 For independent set problems, if E(C) ⊆ E is the set of edges over a clique C, then the 
collection of inequalities 
   xi + xj  ≤ 1,   {i,j} ∈ E(C) 
constitutes a 2-complete system. (That is, the edges {i,j} constitute the sets Q, and C takes the 
role of V.)   

The fact that this system implies the clique inequality 
   ∑(xi: i ∈ C) ≤ 1 
is a manifestation of a simple but useful result that applies more generally to any q-complete 
system of inequalities for which the variables are non-negative and integer-valued.  
 To see how this occurs, we first note that if (V:m) is q-complete and |V| = q+1, then 
∑(xi: i ∈ V) ≤ m. This inequality results by creating a simple-sum surrogate from the  
q + 1 inequalities ∑ (xi: i ∈ Q) ≤ m of (V:m) as Q ranges over q-element subsets of V.  Each 
variable xi appears in q of these q + 1 inequalities, and so the simple-sum surrogate constraint is 
given by q(∑(xi: i ∈ V)) ≤ (q + 1)m, or equivalently (∑(xi: i ∈ V)) ≤ ((q + 1)/q)m. The 
assumption q ≥ m +1 implies the right hand side is less than m + 1, and thus the inequality  
∑(xi: i ∈ V) ≤ m follows.   

The same result holds more generally without restricting the size of V.  
 
Remark 1.  If (V:m) is q-complete (for any V such that |V| ≥ q), then  

∑(xi: i ∈ V) ≤ m. 
 
 The remark may be justified by our preceding observations as follows. Since the 
inequality holds when  |V| = q + 1 (and trivially when |V| = q), it suffices when |V| > q + 1 to 
create the inequalities ∑(xi: i ∈ Q′) ≤ m for all q + 1 element supersets Q′ of Q in V.  Then, 
letting Q range over these sets Q′ establishes that (V:m) is “q + 1 complete” and  the process is 
repeated for q := q + 1, continuing until q + 1 = |V|.  (As in the case of clique inequalities, the 
inequality of Remark 1 dominates the separate inequalities of (V:m) and hence can replace 
them.) 

Related (but slightly different) results also hold for “≥” inequality systems, as represented 
by 

  (V: ≥m)      ∑(xi: i ∈ Q) ≥ m    Q ∈ S(V) 
 (For notational symmetry, the system (V:m) may alternately be represented by (V: ≤m).) 
Corresponding to our previous definition, we likewise define the system (V: ≥m) to be q-
complete (relative to S(V)) if  S(V) consists of all q-element subsets of V. We continue to 
assume m ≥ 1 and q ≥ m + 1.  (The latter represents an additional non-triviality assumption in the 
case of 0-1 problems, since q < m is infeasible and q = m forces xi = 1 for all i ∈ Q.)  

As a variation on our earlier observation, we cannote in the present case that if (V: ≥m) is 
q-complete and |V| = q+1, then ∑(xi: i ∈ V) ≥ m + 1. The inequality again results by creating a 
simple-sum surrogate constraint, this time from the q + 1 inequalities of (V: ≥m), which gives 
(∑(xi: i ∈ V)) ≥ ((q + 1)/q)m. The assumptions m ≥ 1 and q ≥ m + 1 insure that the right hand 
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side lies strictly between m and m + 1, producing ∑(xi: i ∈ V) ≥ m + 1.  But the result again is 
more general, extending to any V (such that |V| ≥ q) and we can state   

 
Remark 2.  If (V: ≥m) is q-complete, then ∑(xi: i ∈ V) ≥ m + (|V| – q).  

 
Remark 2 follows from the same reasoning that establishes Remark 1, noting that the right hand 
side grows by 1 each time q is incremented by setting q := q + 1.   

For the “≥ case” considered here, removing the limitation q ≥ m + 1 (which is relevant for 
0-1 problems), permits the inequality derived from the simple-sum surrogate constraint to be 
stronger. The derivation of a succession of such inequalities when |V| > q + 1 (by considering 
successively larger sets within V) similarly produces a stronger inequality than the one given in 
Remark 2.  Nevertheless, even by retaining the limitation q ≥ m + 1 it is clear that in the 0-1 case 
the inequality of Remark 2 dominates the inequalities of the system (V: ≥m) and can replace 
them. Without requiring q ≥ m + 1, but retaining the assumption q ≥ 2 (previously implicit), the 
stronger inequality that can result by the simple-sum surrogate constraint likewise dominates the 
inequalities of (V: ≥m). 

 
12. 2  Weak q-Complete Systems. 

We generalize the previous observations for the “≤ case” to increase their applicability. 
Corresponding results can be stated for the “≥ case,” by applying arguments related to those that 
follow, employing the pattern of development in Section 12.1.  (In the situation where the 
variables are 0-1, associated results for the “≥ case”can be obtained by the device of 
complementing the variables.)   

 Consider the system   
 [V:m]    ∑ (xi: i ∈ Q ∪ P(Q))  ≤ m,      Q ∈ S(V) 

where each P(Q), whose identity may vary according to the identity of Q, can be any subset of 
N – Q, and where, as before, S(V) is a specified collection of subsets of the set V. We say [V:m] 
is a weak q-complete system (relative to S(V)) if the removal of each set P(Q) would make [V:m] 
a q-complete system. In other words, we stipulate once again that S(V) consists of all q-element 
subsets of V;  hence S(V) = {Q ⊆ V: |Q| = q}.  Also, as before, we assume m ≥ 1 and q ≥ m + 1.   

We observe at once that the conclusion of Remark 1 holds if [V:m] replaces (V:m), i.e., 
the inequality ∑(xi: i ∈ V) ≤ m is still valid, since  ∑ (xi: i ∈ Q ∪ P(Q))  ≤ m implies  
∑ (xi: i ∈ Q)  ≤ m. This observation, although entirely apparent, is useful for making it possible 
to derive new inequalities by Remark 4, without requiring that all “component inequalities” take 
precisely the form of those in a q-complete system.  However, we can increase the relevance of 
Remark 4 more significantly by translating its basic observations into a stronger result.  

For this, let R(Q) = P(Q) – V and let R(V) =  ∪ (R(Q): Q ∈ S(V)).  Then define  
R = {j ∈ R(V): ∃ at least one i ∈ V such that j ∈ R(Q) for every Q that contains i}. (Or more 
formally, if Si(V) = {Q ∈ S(V): i ∈ Q} and Rj(V) = {Q ∈ S(V): j ∈ R(Q)}, then 
R = {j  ∈ R(V):  ∃ at least one i ∈ V such that Si(V) ⊆ Rj(V)}.)  
 

Theorem 9.  If [V:m] is a weak q-complete system, then 
∑ (xi: i ∈ V ∪ R)  ≤ m. 
 
 Proof:  The preceding arguments establish that the inequality of Theorem 9 holds with R 
removed.  Moreover, each xj, j ∈ R, appears in all inequalities that some xi, i ∈ V would appear 
in, if the system [V:m] were relaxed by setting coefficients of xi to 0 for i ∈ V – Q in each of the 
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inequalities ∑ (xi: i ∈ Q ∪ P(Q))  ≤ m.  The simple-sum surrogate constraints used to derive 
Remark 1 give xi a unit coefficient in the inequality ∑ (xi: i ∈ V)  ≤ m, based only on whether or 
not i ∈ Q holds for specified sets Q. Hence each variable xj must receive a coefficient at least as 
large as an associated xi variable in this surrogate constraint. Consequently, xj must receive a 
positive coefficient in the inequality of Theorem 9 over V ∪ R. � 
 
 We observe several consequences of this result that further extend its utility. 
 
 Corollary 9.1. The conclusion of Theorem 9 holds for a weak q-complete system whose 
inequalities are given by  
  ∑ (xi: i ∈ Q ∪ Po(Q)) + ∑ (xj: j ∈ R)  ≤ m,     Q ∈ S(V) 
where R ⊆ N – V and Po(Q) ⊆ V for each Q ∈ S(V). 
 
 Proof:  The Corollary is readily verified to be a special case of the theorem.� 
 

The next result demonstrates that inequalities of greater strength are “hidden” within the 
statement of Theorem 9.  
 
  Corollary 9.2. Assume [V:m] is a weak q-complete system for q > m + 1. Define 
q* = m + 1, and let V* be any proper subset of V containing |V| – (q – q*) elements. Then the 
weak q*-complete system [V*:m], given by ∑ (xi: i ∈ Q* ∪ P(Q*))  ≤ m for Q* ∈ S(V*), where 
S(V*) = {Q* ⊆ V*: |Q*| = q*}, yields an inequality that dominates the inequality of Theorem 9. 
In particular, the inequality 
  ∑ (xi: i ∈ V* ∪ R*)  ≤ m 
for R* defined relative to V* as R is defined relative to V, is at least as strong as the inequality  
  ∑ (xi: i ∈ V ∪ R)  ≤ m 
taken directly from [V:m], as determined by V ∪ R ⊆ V* ∪ R*. 
 
 Proof: The result follows by noting that every q*-element subset Q* of V* is contained a 
q element subset Q of V, where the system [V:m] can be written as  

∑ (xi: i ∈ (Q* ∪ (Q – Q*)) ∪ P(Q))  ≤ m,      Q ∈ S*    (1) 
∑ (xi: i ∈ Q ∪ P(Q))  ≤ m,      Q ∈ S(V) – S*                 (2) 

and where S* = {Q ∈ S(V): Q* ⊂ Q for some Q* ∈ S(V*)}.  The system [V*:m], given by 
∑ (xi: i ∈ Q* ∪ P(Q*))  ≤ m,      Q* ∈ S(V*) 

is in fact the same as inequality (1) of [V:m], i.e., P(Q*) = (Q – Q*) ∪ P(Q).  No element  
j ∈ Q – Q* in [V:m]  qualifies to belong to R (since this element is in Q), whereas all elements of 
Q – Q* belong to R*.  Moreover, if P(Q) for Q ∈ S(V) contains any j ∈ R, the fact that (1) 
ranges over a proper subset of the inequalities for [V:m] assures that j ∈ R*, and hence we 
conclude V ∪ R ⊆ V* ∪ R*, which establishes that the inequality over V* ∪ R* is at least as 
strong as the one over V ∪ R. � 
 
 Corollary 9.2 is useful not only for the opportunity to obtain stronger inequalities, but for 
the fact that it permits the search for a weak q-complete system to be carried out by restricting 
attention to q = m + 1, which involves less work than the search for such a system with a larger 
value of q. 
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12. 3  Expansions by Lower Order Progressions 
Theorem 9 and the associated observation of Corollary 9.2 have a further important 

implication, which involves the ability to expand the inequality ∑ (xi: i ∈ V ∪ R)  ≤ m by a 
progression that creates new inequalities over lower order systems. In particular, consider any 
inequality ∑ (xi: i ∈ V1)  ≤ m (where V1 may be given by V1 =  V ∪ R from Theorem 9 or 
V1 = V* ∪ R* from Corollary 9.2). We seek to enlarge V1 to include one or more additional 
variables, i.e., to find some j ∉ V1 that can be added to V1 and still permit ∑ (xi: i ∈ V1)  ≤ m to 
hold.  We show that repeated application of Theorem 9 makes this possible and also has the 
added benefit of restricting attention to smaller values of q than given by the stipulated lower 
bound of q ≥ m + 1.  This not only saves effort in searching for such systems, but gives a 
systematic design for strengthening the inequality ∑ (xi: i ∈ V1)  ≤ m by enlarging V1 step by 
step. 
 The mechanism for achieving this may be described as follows.  If we assume 
|V1| ≥ m + 1, then our previous results show that ∑ (xi: i ∈ V1)  ≤ m is equivalent to a collection 
of associated inequalities ∑ (xi: i ∈ Q)  ≤ m, where Q ranges over all q-element subsets of V1, for 
some q ≥ m + 1.  Thus, if j ∉ V1 and we are able to identify a set of inequalities  
∑ (xi: i ∈ Q) + xj ≤ m,  Q ∈ S(V1) = {Q ⊆ V1: |Q| = q},  but where q now is only required to 
satisfy q ≥ m,  then this identifies system that is equivalent to a set of inequalities over all subsets 
of  q ≥ m + 1 elements of V1 ∪ {j}. 
 By means of this observation, the ability to expand an inequality system by looking at 
lower order systems (for smaller values of q) can be expressed as follows, where we replace j 
more generally by a set of elements R1 from N – V1 to take fuller advantage of Theorem 9. 
 
 Corollary 9.3. (First Expansion by Lower Order)  Assume V1 ⊂ N, |V1| ≥ m + 1,  
R1 ⊆ N – V1 and |R1| ≥ 1.  Then the two-part system 

∑ (xi: i ∈ V1)  ≤ m   
  ∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R1)   ≤ m,    Q ∈ S1(V1) 
where S1(V1) = {Q: Q ⊆ V1 and |Q| = q}, for some q ≥ m, implies the inequality 
  ∑ (xi: i ∈ V1) + ∑ (xj: j ∈ R1)   ≤ m. 
 
 Proof: Follows by preceding arguments.� 
 

The ability to take advantage of smaller order systems does not stop here, and we can 
express the result at a deeper level as follows. 

 
 Corollary 9.4. (Second Expansion by Lower Order)  For V1 and R1 as given in Corollary 
C, assume V2 ⊂ V1, |V2| ≥ m, R2 ⊆ V1 – V2 and |R2| ≥ 1.  Then the three-part system 

∑ (xi: i ∈ V1)  ≤ m   
  ∑ (xi: i ∈ V2) + ∑ (xj: j ∈ R1)   ≤ m   
  ∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R1 ∪ R2)   ≤ m,    Q ∈ S2(V2) 
where S2(V2) = {Q: Q ⊆ V2 and |Q| = q}, for some q ≥ m – 1, implies the inequality 
  ∑ (xi: i ∈ V2) + ∑ (xj: j ∈ R1 ∪ R2)  ≤ m. 
 
 Proof: Follows by preceding arguments.� 
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Comparison of Corollaries 9.3 and 9.4 discloses the pattern for going to deeper levels.  
The result applicable to an arbitrary level h, for h ≥ 2, identifies a corresponding (h+1)-part 
system based on stipulating Vh ⊂ Vh-1, |Vh| ≥ m + 2 – h,  Rh ⊆ Vh-1 – Vh, |Rh| ≥ 1, and  
Sh(Vh) = {Q: Q ⊆ Vh and |Q| ≥ m +1 – h}.    
 
12. 4  Inequalities from Sub-Complete Systems. 
 The basic surrogate constraint analysis that led to Theorem 9 and its corollaries can be 
carried a step farther. We develop a more general inequality system by reference to building 
blocks that exhibit features analogous to the building blocks of q-complete systems, which are 
the simplest non-trivial forms of these systems where |V| = q + 1.  These minimal q-complete 
systems are a special case of a structure we call q-sub-complete systems. We identify the special 
character of these more general systems and the inequalities they generate as follows. 
 Consider the system 

 (V:m,r)  
∑ (xi: i ∈ V)  ≤ m                                                             

   ∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R)   ≤ m,    Q ∈ S(V)                
where R ≠ ∅, R ∩ V = ∅ and R ∩ Q = ∅ for Q ∈ S(V).  (If the set Ro = ∩(Q – V: Q ∈ S(V)) is 
nonempty, then we replace each Q by Q – Ro and add Ro to R.)  

To complete the characterization of the system, define Si(V) = {Q ∈ S(V): i ∈ Q} and let 
r(i) = |Si(V)|, that is, r(i) is the number of inequalities from the subsystem  

∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R)   ≤ m,    Q ∈ S(V)   
in which xi appears with a unit coefficient.  If i ∉ Q for all Q ∈ S(V), then Si(V) = ∅ and by 
convention r(i) = 0. 

The rank r of (V:m,r) is then defined by 
  r = Min(r(i): i ∈ V).  

We assume r ≥ 1, which is equivalent to the requirement that the sets Q ∈ S(V) cover V, i.e.,  
V ⊆ ∪(Q ∈ S(V)).   

Finally, we define q = |S(v)|, hence q is the number of inequalities of (V:m,r) excluding  
∑ (xi: i ∈ V)  ≤ m.  Clearly q ≥ r, and we may suppose q > r, or else V ⊆ Q for all Q ∈ S(V) and 
the inequality ∑ (xi: i ∈ V)  ≤ m is redundant.  
 We call (V:m,r) a q-sub-complete system when the foregoing assumptions hold; i.e., in 
summary, when R ≠ ∅, R ∩ V = ∅, R ∩ Q = ∅ for Q ∈ S(V), and q = |S(v)| > r ≥ 1. 
 
 Remark 3.  A minimal q-complete system (V:m) (for |V| = q + 1) is a q-sub-complete 
system (V:m,r) of rank r = q – 1. 
 
 This observation, which follows directly from the preceding definitions and comments, 
shows the increased generality afforded by q-sub-complete systems as building blocks for 
generating inequalities.  Our key result for exploiting the generality provided by these systems 
may be expressed as follows. 
 
 Theorem 10.  The q-sub-complete system (V:m,r) implies the inequality 

  ∑ (xi: i ∈ V) + ∑ (xj: j ∈ R)   ≤ m 
for any m that satisfies m < q/(q – r) (where q = |S(V)|).   
 
 Proof: To establish the theorem, create a surrogate constraint that gives a weight of q – r 
to ∑ (xi: i ∈ V) ≤ m, and a weight of 1 to each of the remaining inequalities of (V:m,r).  This 
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yields a surrogate constraint ∑ (aixi: i ∈ Qo) + ∑ (ajxj: j ∈ R)   ≤ ao, where Qo = ∪(Q ∈ S(V)), 
and by construction ai = (q – r) + r(i) (≥  q) for each  i ∈ V, aj = q for each j ∈ R,  and 
ao = (q – r)m + qm.  We relax the surrogate constraint by setting ai = q for i ∈ V (if any 
coefficients exist with ai  > q) and by discarding variables xi for i ∈ Qo – V (whose coefficients 
are smaller than q).12 Thus, we obtain 
   q(∑ (xi: i ∈ V) + ∑ (xj: j ∈ R))   ≤ (q – r)m + qm 
or equivalently  

∑ (xi: i ∈ V) + ∑ (xj: j ∈ R)   ≤ ((q – r)/q)m + m 
In consequence, we then have 

     ∑ (xi: i ∈ V) + ∑ (xj: j ∈ R)   ≤ m 
provided the right hand side ((q – r)/q)m + m of the surrogate constraint is less than m + 1, or in 
short, provided m < q/(q – r) as stipulated.� 
 
 For the special case of a minimal q-complete system, where r = q – 1, the condition 
m < q/(q – r) of the theorem translates into the familiar condition q ≥ m + 1.   
 Theorem 10 evidently remains valid if the inequality ∑ (xi: i ∈ V) ≤ m of (V:m,r)  
is replaced by ∑ (xi: i ∈ V ∪ Vo) ≤ m,  for any set Vo. For a statement of the theorem that 
involves such a replacement, we may assume Vo ∩ R = ∅ to avoid triviality, and we may also 
suppose r(i) < r for i ∈ Vo (since any i ∈ Vo such that r(i) ≥ r can be moved from Vo to V, to give 
a stronger inequality by Theorem 10). 
 
12. 5  Inequalities for Special Sub-Complete Systems. 
 Two special sub-complete systems, those for m = 1 and those for zero-one variables, 
provide additional results.  
 We first observe that m = 1 is a privileged value for m, since the condition m < q/(q – r) 
always hold for this case.  Consequently, we have the following immediate outcome of 
Theorem 10. 
 
 Corollary 10.1. If S(V) is any collection of sets Q that cover V, then the inequalities 
   ∑ (xi: i ∈ V)  ≤ 1 and   

∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R)   ≤ 1,   Q ∈ S(V) 
imply 

∑ (xi: i ∈ V) + ∑ (xj: j ∈ R)   ≤ 1. 
 
The strongest form of the inequality produced by the preceding corollary of course results by 
restricting attention to minimal covers. A more restricted special case arises in the situation 
where the inequalities of Corollary 10.1 represent clique inequalities. Then Corollary 10.1 yields 
the following outcome. 
 
 Corollary 10.2.  Let V and the sets Q ∈ S(V) be cliques on a graph G, and assume the 
elements of S(V) provide a cover of V.  Then the expanded set V ∪ R is also a clique, for 
R = ∩(Q – V: Q ∈ S(V)).     
 

                                                           
12 These steps correspond to including inequalities xi ≥ 0, in the form – xi ≤ 0, within the surrogate constraint 
construction. 
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 These rather apparent corollaries are accompanied by a less obvious result for 0-1 
problems. 
 
 Corollary 10.3.   Let r′(i), i ∈ V, be a set of values such that r′(i) ≥ r(i), and let  
r′ = Min(r′(i): i ∈ V).  Assume r′  > r and define s = ∑ (r′(i) – r(i): i ∈ V).  Then for a 0-1 
problem, a q-sub-complete system (V:m,r) implies the inequality 

∑ (xi: i ∈ V) + ∑ (xj: j ∈ R)   ≤ m 
provided m < (q – s)/(q – r′).   
 
 Proof:  We modify the surrogate constraint construction in the proof of Theorem 10 by 
adding a subset of the inequalities xi ≤ 1, i ∈ V, to yield a new surrogate constraint.  To do this, 
we identify indexes i which include those such that r(i) = r, and add a quantity to each of these 
r(i) values to give new values r′(i), as specified.  For the value r′ that results, the associated 
surrogate constraint created by the construction in the proof of Theorem 10 becomes 
   q(∑ (xi: i ∈ V) + ∑ (xj: j ∈ R))   ≤ (q – r′)m + qm + s 
or equivalently  

∑ (xi: i ∈ V) + ∑ (xj: j ∈ R)   ≤ ((q – r′)m + s)m + m. 
The right hand side is less than m + 1 if and only if m < (q – s)/(q – r′), which yields the 
conclusion of the Corollary.� 
  
 The potential improvement provided by Corollary 10.3 is constrained by relationships 
between r′, r, s and q, as disclosed by the following observation, whose proof is immediate.  
 
  Remark 4. The limit on m given in Corollary 10.3 is less restrictive than the limit  
m < q/(q – r) of Theorem 10 only if q(r′ – r) > s(q – r).   
 
 The potential strengthening that arises by Corollary 10.3 can also be undertaken by an 
alternative device, which often yields an inequality at least as strong and applies to a more 
general system where the variables are not required to be 0-1. 

To see how this occurs, define a q-sub-complete system to be tight if q cannot be reduced 
except by reducing r; i.e., no inequality over Q ∈ S(V) can be discarded without reducing 
Min(r(i): i ∈ V), or equivalently, for every Q ∈ S(V) there is at least one i ∈ Q such that r(i) = r.  
The following result shows that tight systems yield the best opportunities for strengthening a set 
of inequalities by Theorem 10 and also impose limitations on the relationship between q and r. 
 
 Corollary 10.4.  Let (V:m,r) satisfy the conditions of a q-sub-complete system, and let v 
denote the number of variables xi, i ∈ V, such that r(i) = r.  Then if (V:m,r) is tight, q ≤ r + v – 1. 
Moreover, if (V:m,r) is not tight, then it is possible to identify a set Q′  ∈ S(V) and remove the 
associated inequality  

  ∑ (xi: i ∈ Q′) + ∑ (xj: j ∈ R)   ≤ m,    
by redefining S(V) := S(V) – Q′, so that the new resulting (V:m,r) system imposes less restrictive 
conditions on m to yield a valid inequality by Theorem 10.   
 
 Proof:  The relationship q ≤ r + v – 1 for a tight (V:m,r) system can be established by 
induction on v, first observing that v = 1 implies q = r.  For the remaining part of the proof, it 
suffices to choose Q′ to be any element of S(V) such that r(i) > r for all i ∈ Q′.  The rest of the 
argument is apparent.� 
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The key to applying the foregoing results is to focus on denser sub-matrices within the 

coefficient matrix for a system of inequalities.  The generation of new inequalities relative to 
these sub-matrices then introduces new sub-matrices of increased density  (relative to variables 
with unit coefficients in the new inequalities), thus potentially allowing a repetition of the 
process to generate additional new inequalities. 

In general, the significance of Theorem 10 for q-sub-complete systems lies in providing a 
structure to create inequalities that are more comprehensive than those produced by the simpler 
forms of q-complete systems. 

13.  Embedded Approaches Using Vocabulary Building 
The results of preceding sections can be incorporated within vocabulary building 

strategies to provide additional approaches for independent set and graph coloring problems. 
Vocabulary building operates by creating a pool of solution fragments, which are successively 
assembled, disassembled and modified to produce new fragments that are ultimately transformed 
into trial solutions. A useful analogy exists to the use of surrogate constraint processes to build a 
pool of inequalities, following the types of designs previously discussed.  As shown in Section 
12, it is possible to derive inferences for obtaining stronger inequalities – better members of the 
pool – by a process of joining smaller sub-systems before proceeding to larger ones.  In the same 
way, vocabulary building applied to pools of solutions gains advantages by decomposing 
solutions into components, and then proceeding through stages of building larger components 
from smaller ones. Prominent application of vocabulary building methods occurs, for example, 
by creating structured combinations of solution fragments (Glover 1994), where the values 
assigned to variables become votes that are translated into decision criteria and objective 
functions for methods to generate new solutions.   

Simple ways to create sub-problems associated with solution fragments in the present 
setting consist of generating sub-graphs by extracting them as unions, intersections and 
differences of independent sets derived from previously generated solutions (primarily elite 
solutions and solutions chosen for their diversity). In the simplest case, the pool of sub-graphs 
can be generated from independent sets obtained from a single current solution structure.  
 Applied to maximum independent set problems, such an approach is entirely 
straightforward, by assembling sub-graphs composed of selected independent sets from a 
vocabulary building pool.  The goal is simply to find larger independent sets within these sub-
graphs in order to identify new candidates for the maximum independent set.  
 In the context of coloring problems, the process has additional features. The sub-graphs 
in this case may be composed of a chosen number of independent sets determined by a selected 
coloring, or determined by a partial coloring derived as an assembly from a vocabulary pool. 
(The number of sets selected to compose such a sub-graph can be as small as 2, and generally 
may be allowed to range over an interval of values.) Then, by generating larger independent sets 
within such a sub-graph, the process gives a means for achieving the goal of reducing the total 
number of independent sets, and thus reducing the number of colors required.  

Within the body of such a procedure, an auxiliary objective may appropriately be 
introduced that simultaneously seeks to assign nodes to other pre-existing independent sets 
determined by current graph colorings. For example, if the sub-graph under consideration is 
derived from independent sets from a single coloring, then nodes of this sub-graph that are 
excluded from the new independent set should include as many as possible that can be assigned 
to other independent sets for the coloring.  Choices that set variables xr = 0 (or yr = 1 in the IP2 
formulation) may accordingly be biased in favor of nodes r that can be added to such other 
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independent sets, or which connect to as few nodes as possible in one of these sets.  If a current 
re-coloring attempt does not succeed, some node assignments may violate the condition that all 
sets are independent.  In such cases, the sub-graph selected by the processes described here may 
include component node sets that are not independent.   

These auxiliary choice criteria can be handled by focusing on assignments of the form  
xr = 0 during the first steps of the procedure for extracting an independent set from G, for the 
purpose of initially removing some number of nodes from G that can be re-assigned to other 
independent sets.  Such criteria can alternatively be brought into play as tie breaking rules which 
are invoked only when the current choices do not offer any strong winner for a node to be added 
or excluded from the independent set under construction. 

Similarly, if a current sub-graph is drawn from node sets that belong to more than one 
coloring, then the auxiliary criteria can undertake to assign excluded nodes (determined by 
choices xr = 0) to independent sets from each of the colorings considered, eventually focusing 
on the coloring to which this assignment proves most successful. 

A key premise underlying these types of strategies, both for coloring and independent set 
problems, is that a method which focuses on creating desired structures from sub-graphs rather 
than from the entire graph will have a greater likelihood of success, provided the selected sub-
graphs are appropriately chosen. (This is one of the motivating premises of vocabulary building 
processes generally.)  

The indicated strategies are highly compatible with a variety of metaheuristic procedures.  
For example, adaptive memory approaches can be used to control the choices of sub-graphs 
treated, and evolutionary procedures can be used to provide combined solutions as sources of the 
fragments within the vocabulary building pool. By considering different numbers and choices of 
fragments simultaneously, the strategy is susceptible to incorporation in a multilivel cooperative 
search process, employing designs such as proposed in Toulouse, Thulasiram and Glover (1999) 
and Ouyang et al. (2000a, 2000b). 

14. Additional Surrogate Constraint Refinements and Uses. 
Surrogate constraints can be generated in additional ways apart from the use of 

normalizations.  For example, the solution to the dual of the linear programming relaxation of an 
IP problem gives a valid surrogate constraint.  A stronger surrogate constraint can be generated 
by applying a method described in Glover (1965), which solves the knapsack problem created by 
the surrogate constraint, and then increases the weights on violated constraints by a specified 
formula, repeating until either all original constraints are satisfied or conditions disclose that the 
strongest surrogate constraint has been obtained.  (A description of this method appears in 
Appendix 2.) 

In the setting of independent set problems, a similar approach can be used to modify the 
choices made by the constructions described in the preceding sections.  At the conclusion of 
generating a trial solution that yields an independent set (which will be maximal, but not  
necessarily maximum), a composite surrogate constraint can be generated from the collection of 
surrogate constraints used to make the choices that produced this solution.  One possibility is to 
sum each of these prior surrogate constraints to create the composite constraint. (This would 
normally require the weights that produce these surrogate constraints to be applied to the original 
problem constraints.  In this case, however, the surrogate constraints at each stage are generated 
relative to some subset of the original constraints, rather than to a reduced form of these 
constraints. Hence no “recovery step” is needed.) 

 Such an approach will give greater emphasis to those original inequalities that have 
endured through a larger number of iterations before being eliminated as redundant.  
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Consequently, the resulting surrogate constraint will amplify the size of the ai coefficients for 
variables that are among the last to be given values, either by choice or by a forced assignment.  
As a result, these variables that most recently received their current values will appear least 
attractive to receive these assignments (by comparison to assignments selected for other 
variables) and hence will appear to be the best candidates for changing their assignments. 

Such a bias can have undesirable consequences.  A better surrogate constraint for 
analyzing current choices is likely to be obtained by recovering and using an earlier surrogate 
constraint in which a number of tied evaluations appeared. Rather than bothering to recover the 
constraint, however, the choice process can be simplified by keeping track of prior evaluations, 
as they have evolved over successive iterations.  

This type of memory (also used in tabu search) can be useful for more advanced 
strategies.  For example, choices that received high evaluations throughout a series of iterations 
may be implemented at an earlier stage of a subsequent constructive pass.  This early stage  
implementation of such choices can cause other ensuing evaluations to change, leading to 
different choices at later stages and thus producing different final solutions. Choices that  
received enduring high evaluations, but which eventually were discarded (and hence never 
implemented) as a result of making other choices, particularly invite examination. (Systematic 
ways to apply these types of strategies are described in Glover, 2000.) Alternatively, evaluations 
for current choices can be generated relative to surrogate constraints produced by subgradient 
updates, as also elaborated in Appendix 2.  

15.  Conclusions. 
Surrogate constraint approaches can be applied in a variety of ways for optimization 

problems in graphs, by mechanisms that also afford an understanding of how these methods can 
be used in a number of other settings. The basic ideas underlying these approaches are especially 
convenient to illustrate in application to independent set problems, by strategies that seek 
maximum independent sets over strategically selected sub-graphs. 

A useful relationship for exploiting surrogate constraint strategies in graphs derives from 
the fact that each value assignment in a standard mathematical programming formulation 
corresponds to a natural modification of the graph structure, so that the outcome is again a graph 
and all evaluation criteria and updating operations can be carried out by reference to this same 
structure. The ability to take advantage of the representational properties of graphs provides a 
particularly efficient basis for implementation.  

Surrogate constraint approaches can be applied in quickly executed strategies that 
generate trial solutions very rapidly, or can be the basis for more advanced strategies that exploit 
bounding information at multiple levels. As our development has shown, the power of surrogate 
constraint approaches can be amplified by making use of principles that involve conditionally 
shared limitations. Theorems for exploiting these principles offer new constructions to generate 
bounds and associated choice rules, while still affording advantages of efficient implementation.  
These procedures generalize to the setting of GUB-constrained surrogate constraint relaxations, 
where the GUB systems come from clique inequalities.  Additional advantage can be taken of 
these GUB-constrained relaxations by dynamic solution approaches that generate the relevant 
inequalities and also solve the surrogate constraint problems based on them at the same time.  
We have further observed how these approaches can be applied with more general quasi-clique 
inequalities, and can take advantage of useful structures called q-complete (and sub-complete) 
systems. The underlying results carry over to additional settings, including zero-one and general 
integer programming. 
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Finally, we have noted how surrogate constraint heuristics such as those illustrated in the 
preceding sections acquire additional scope by implementing them within the framework of 
vocabulary building methods.  This affords a mechanism to identify sub-problems that give rise 
to new trial solutions by strategically isolating relevant sub-graphs of the problem graph.  Such 
an integration of surrogate constraint approaches with vocabulary building methods can also 
conveniently be exploited by metaheuristics such as tabu search, evolutionary methods and 
multilevel cooperative search.  
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APPENDIX 1:  Fast Look-Ahead Methods  
 
 We sketch the foundations for creating quickly implemented procedures of the type that 
are natural accompaniments of more advanced surrogate constraint approaches.   

Look-Ahead Criteria for Setting xr = 1. 
A natural goal in making a choice of the form xr = 1 is to create as many small NodeStar sets as 
possible, since the existence of nodes i with small values of SizeStar(i) produces stronger choices 
on subsequent steps (by the criterion of minimizing ai values). This goal may be pursued by 
seeking an assignment xr = 1 that will cause a maximum number of edges to be removed from G.  
Consequently, a useful auxiliary rule for choosing r is as follows.  Let I be a subset of N that 
includes the nodes that qualify to be selected as node r, i.e., that yield a minimum value for 
SizeStar(i).  Then we choose r so that 

SizeStar(NodeStar(r)) = Max(SizeStar(NodeStar(i)): i ∈ I). 
This rule requires additional effort to apply, beyond the simple rule of the preceding section, 
although the effort can be reduced by restricting I to be somewhat smaller than N, as in the 
extreme case by limiting consideration to nodes that yield Min(SizeStar(i)).  Specifically, for 
each such i, the rule requires examining each j in NodeStar(i) and accumulating the sum of the 
values SizeStar(j).  (Alternately, for the same amount of work, the operation can identify 
Max(SizeStar(j): j∈NodeStar(i)), and use this value to choose a node i that yields a maximum of 
these values.)  Other choice rules can be similarly based on the idea of reducing SizeStar(i)  for 
the choices that will be made in future steps.   

Look-Ahead Criteria for Setting xr = 0. 
Similarly, in selecting xr = 0, we may seek to leave the largest NodeStar(i) undiminished in size, 
or to leave as many of the large NodeStar(i) sets undiminished as possible, as a basis for enabling 
future choices of the form xr = 0 to be as strong as possible.  Thus, requiring I in this case to 
include the set of nodes i that yield the maximum value of NodeStar(i), we look for a node r in I 
that yields 

Min(SizeStar(i): i∈I) 
or 

Min(Max(SizeStar(j): j∈NodeStar(i)): i∈I). 
 

The identification of such an r requires the same order of work as in the choice of r for setting    
xr = 1.  For a strategy that alternates decisions of the form xr = 1 with those of the form xr = 0, 
the rule for choosing r can be amended by reference to criteria similar to those identified.  
 
Thresholding Approach. 
 

Further refinement results by establishing an upper bound threshold value a* for the 
coefficients ai, and defining the node set N* = {i ∈ N: ai ≤ a*}.  For example, we may define a* 
= Max (ai : ai + ... + ah-1 + ai ≤ ao), where the ai coefficients are arranged in ascending order and 
the index h identifies an optimal xo value for SC1, i.e.,  

xo = Max(h:  a1 + ... + ah ≤ ao) 
as noted in Section 5.1. 
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 Clearly, in order for a variable xi to be able to receive an assignment xi = 1 in an optimal 
solution to SC1, it is necessary for i to be in N*. Consequently, we are motivated to modify the 
look-ahead choice criterion by treating N* as a candidate list to identify possible "next choices" 
for  xr, for at least some number of steps after the current choice.  Hence, instead of examining 
the effect of the forced assignments xj = 0 on all nodes k ∈ NodeStar(j) (for those assignments 
forced by currently setting  xr = 1), it is relevant to examine the effect only on nodes k that 
belong to SubStar(j) = NodeStar(j) ∩ N*.   

To be precise, for each node i ∈ I, for the set I as identified in Section 4.1, identify each 
j ∈ NodeStar(i) (which corresponds to an xj to be forced to 0 if i is chosen as r).  Then, sum the 
values |SubStar(j)| to find the total reduction in ak values produced by setting xi = 1.  The 
coefficient ai itself will be reduced to 0 by this, and so to adjust for the effect on ai (in the case 
where I is allowed to contain coefficients other than those with a minimum ai value), the choice 
criterion becomes to choose r ∈ I to 

Maximize(∑(|SubStar(j)|: j ∈ NodeStar(i)) - SizeStar(i)): i ∈ I) 
(This uses the fact that ai = NodeStar(i).) The amount of work to apply this refined look-ahead 
rule is approximately the same as to apply the simpler rule in Section 4.1. 

We may also choose a* to be smaller than specified above, motivated by the observation 
that the set N* will contain more elements than contained in an optimal surrogate constraint 
solution, except in the special case where |N*| = xo(SC1).  (Even then, N* will contain more 
elements than found in an optimal solution to the original problem, unless there is no surrogate 
duality gap, and xo(SC1) is the actual optimum objective function value for this problem.) The 
value of a* may therefore be reduced to yield a set N* that one hopes to contain fewer elements 
which are not part of an optimal solution. 

A counter to this rationale derives from considering that if a* is not reduced (or even 
increased) and N* is "too large," there may be elements in this larger set that are missing from 
the smaller one and that will be in an optimal solution. To account for the effect of these 
elements, it is reasonable to occasionally select a larger a*. However, attending this, N* will 
contain a larger number of nodes that are certain not to be in an optimal solution.  Empirical 
testing may be useful to determine a good balance between these competing concerns. 
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APPENDIX 2:  Iterative Surrogate Constraint Generation  

 
Surrogate constraints derived from normalizations are typically better than those based 

on simple-summing, but they are still subject to a number of weaknesses. For example, if some 
inequalities are copies or “near-copies” of others, after scaling, then these closely related 
inequalities can receive a distorted emphasis – e.g., by an over-representation analogous to 
including a particular inequality multiple times within the overall collection.  More generally, it 
is characteristically preferable to give emphasis to constraints that are binding at optimality. A 
lack of knowledge about the identity of such constraints also limits the value of normalizations, 
which are myopic in their handling of such considerations. To give a more sophisticated basis for 
creating surrogate constraints, it is therefore useful to consider iterative constructions, where trial 
solutions generated relative to the surrogate constraints provide feedback to guide the creation of 
modified forms of these constraints.  

To describe fundamental ideas for iterative surrogate constraint generation, we introduce 
some notation and also review parts of the general perspective underlying the use of surrogate 
constraints.  Consider the integer programming problem in the form  

(IP) Maximize cx 
s.t. Ax ≤ b 

  x ∈ X 
where c is a lxn vector, A is an mxn matrix, b is an mxl vector, and x is an nxl vector of variables. 
The stipulation x ∈ X is understood to restrict the components xj of x to be non-negative integers, 
and in addition may impose other restrictions such as bounds and supplementary constraints that 
are convenient to keep separate. 

At the most basic level, a surrogate constraint for the problem (IP) consists of a non-
negative linear combinations of its component constraints 

Aix ≤ bi, i ∈ M = {1, ..., m}, 
where Ai represents the ith row of A. Surrogate constraints may also include cutting planes 
iteratively derived from the original constraints and their linear combinations, which we may 
imagine as appended to enlarge the system Ax ≤ b and hence the index set M (Glover, 1965). At 
any given point in the process, we may therefore represent a surrogate constraint relative to the 
current A matrix as 

wAx ≤ wb 
where w is a non-negative lxm vector. The goal of generating such a constraint is to capture 
useful information not present in the individual constraints Aix ≤ bi, taken in isolation.  
  The associated surrogate constraint relaxation of (IP) given by 

(SR) Maximize cx 
s.t. wAx ≤ wb  
 x ∈ X 

A strongest surrogate constraint (or a strongest (SR)), is one that is most restrictive relative to the 
shared objective of (IP) and (SR) and hence that yields the minimum value of the objective 
Maximize cx.  
 
Basic Results for Generating Surrogate Constraints. 

The iterative generation of surrogate constraints by subgradient approaches enjoys a 
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special advantage that is not shared by Lagrangian versions of such approaches: the ability to 
identify precisely a step size, given any relevant direction vector, that will assure an 
improvement in the strength of the relaxation (if improvement in the specified direction is 
possible).  

Let w = w* denote a currently selected vector for generating a surrogate constraint, and 
denote the associated surrogate constraint relaxation by (SR:w*).  If x* is optimal for (SR:w*) 
and is also feasible for (IP), then evidently x* is optimal for (IP) and (SR:w*) automatically 
qualifies as a strongest relaxation. Also, if x* is “approximately optimal” for (SR:w*) by a 
heuristic procedure, and is feasible for (IP), we may consider (SR:w*) to be a heuristically 
strongest relaxation (relative to the procedure employed). In general, it is useful to include the 
goal of generating heuristically strong surrogate constraints, and associated relaxations (SR), 
which give restrictive bounds on cx within the margin of error determined by the efficacy of the 
heuristic involved. 

When a solution x* for (SR:w*) is not feasible for (IP), the possibility of obtaining a 
form of (SR) stronger than (SR:w*) depends on identifying the constraints of (IP) that are  
violated by x*. For this purpose, define the index sets of violated, exactly satisfied and strictly 
satisfied constraints as: 

V = {i ∈ M: Aix* > bi} 
E = {i ∈ M: Aix* = bi} 
S = {i ∈ M: Aix* < bi}. 

A step toward strengthening (SR) is to modify w* by increasing the weights associated with 
violated constraints. The nature and definition of a subgradient, however, is different from that 
for the Lagrangian case, as shown in Glover (1975). Let d denote a direction vector designed to 
produce such a change in w*, and let v denote a scalar step-size for moving in the direction d, so 
that the new vector w that replaces w* may be represented as 

w = w* + vd. 
 

It is possible to allow d to be any vector such that dAx > db. However, it is usually preferable to 
have 

di >0 ,  i ∈ V 
di ≥ 0,   i ∈ E 
di = 0,   i ∈ S 

A reason for choosing d ≥ 0 (and specifically di = 0 for i ∈ S) is to avoid the need for stepwise 
changes in d as v increases, which otherwise might be required to prevent one or more 
components of w* from becoming negative. However, there is a further advantage to choosing 
values for the di coefficients that yield d ≥ 0. 
 

Remark 1. A simple choice that assures dAx* > db and d ≥ 0 is as follows. First, create 
an initial surrogate constraint with all weights positive. Then, each time a new surrogate 
constraint is to be generated (from a weight vector w = w* + vd), select 

di = wi* for i ∈ V 
di = 0 or wi* for i ∈ E 
d1= 0 for i ∈ S 

 
Implications of Remark 1 will be noted subsequently. 

The strongest surrogate constraint that can be generated in the direction d (i.e., the 
strongest constraint that can be generated from w = w* + vd, for some nonnegative step-size v) 
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can be determined as follows. Let ε refer to an arbitrarily small positive value. The main result 
consists of two parts. 

 
Theorem (Strongest Surrogate Relaxation). 
(I) Assume w* ≥ 0, x* is feasible for (SR:w*) and d is a direction vector such that dAx* > 

db. Then x* is also feasible for (SR:w* + vd), for all nonnegative step-sizes v satisfying v ≤ v*, 
where 

v* = w*(b - Ax*)/d(Ax* - b). 
(II) Let v′ = v* + ε and define w′ = w* + v′d, for w*, x* and v* as given in (I). Further 

assume x* is optimal for (SR:w*), x′ is optimal for (SR:w′) and d ≥ 0. 
(a) If cx* < cx′, then dAx′ ≤ db, and the relaxation (SR:w*) is the strongest             

surrogate relaxation in the direction d. 
(b) If dAx′ ≤ db and cx* > cx′ then (SR:w′) is a strongest surrogate relaxation in the 

direction d. 
 

Proof: For part (I) of the theorem, the solution x* will remain feasible for (SR) in the 
direction d if and only if wAx* ≤ wb for w = w* + vd, hence if and only if  
w*Ax* + vdAx* ≤ w*b + vdb. Rearranging gives v(dAx* - db) ≤ w*(b - Ax*), and the fact that 
dAx* > db leads to the conclusion v ≤ v*. 

For part (II), d ≥ 0 implies that dAx ≤ db is a surrogate constraint, and the problem 
(SR:w* + vd) results by assigning a unit weight to the surrogate constraint w*Ax ≤ w*d and 
adding v times the surrogate constraint dAx < db that is, (SR:w* + vd) is a surrogate constraint 
relaxation of the two-inequality problem whose constraints are w*Ax ≤ w*d and dAx ≤ db. For 
(a), dAx′ ≤ db implies x′ is feasible for the second surrogate constraint, and x′ must also be 
feasible for all relaxations (SR:w* + vd) such that v ≥ v′. Hence cx′ ≤ cx for optimal solutions x to 
all such relaxations, and (SR:w′) must be the strongest of these relaxations. Consequently, for 
(b), the condition dAx′ ≤ db assures that (SR:w*) or (SR:w′) or both give a strongest relaxation in 
the direction d, according to the relative size of cx′ and cx*. But if dAx′ > db, then x′ must be 
feasible for (SR:w*), and hence cx′ ≤ cx*. � 

 
Corollary 1. Repeated application of Theorem 1, maintaining d unchanged and 

repetitively choosing v′ = v* + ε to generate new surrogate constraints, will produce a succession 
of relaxations (SR:w′) and associated solutions x′ with the following properties: 

(a) Each solution x′ is different from all previous solutions generated (including the 
original x*). 

(b) The value cx′ is monotonically nonincreasing and each relaxation (SR:w′) is as strong 
or stronger than the previous one, until a first (critical) w′ is reached such that the solution x′ 
satisfies dAx′ ≤ db. 

(c) Denote the predecessor to the critical w′ of (b) by w″, and denote the solution 
corresponding to w″ by x″. Then (SR:w′) or (SR:w″) is a strongest relaxation in the direction d, 
according to whether cx′ ≤ cx″ or cx′ ≥ cx″. 

 
Corollary 2. Assume the surrogate constraint w*Ax ≤ w*b, where w* has at least two 

positive components, is divided into two component surrogate constraints 
   w1*Ax ≤ w1*b   and  w2*Ax ≤ w2*b 
where w1* + w2*  = w*, and w1* and w2* are both nonnegative and nonzero. Then a strongest 
surrogate constraint that can be created from these two surrogate constraints occurs either for 
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w = v1w1* + w2* or for w = w1* + v2w2*, where vk is the smallest nonnegative value such that an 
optimal solution to (SR:w) satisfies wk*Ax ≤ wk*b, for k = 1, 2. 
 

Remark 2. Assume that d is chosen as indicated in Remark 1, and let w* be given as in 
Corollary 2 so that w* = w1* + w2*, based on selecting w2* = d. Then, the vector w′ of 
Theorem 1 results by  
 w1′ = w1*    and   w2′ =  (u + ε)w2*, 
where u = w2*(b - Ax*)/w1*(Ax* - b). 
 

Corollary 1 and Corollary 2 follow directly from Theorem 1, and Remark 2 follows from 
the definition of v′ in Theorem 1, upon substituting and simplifying terms. Remark 1 and 
Remark 2 are the basis for the special case of Theorem 1 proved in Glover (1965), which also 
implies a special instance of Corollary 1.  

These results raise the question of how many iterated applications of Theorem 1 are 
likely to be required to generate a strongest relaxation in the direction d. Empirical outcomes for 
special cases of Theorem 1 indicate that by using the value v* to guide a modified binary search, 
the total number of iterations is often only 3 to 8 (Gavish, Glover and Pirkul, 1991; Fréville and 
Plateau, 1993). However, Theorem 1 can clearly be applied by generating a new direction d 
before obtaining the greatest possible improvement in a given direction, and in general the 
theorem provides a variety of unexplored options that invite empirical examination. 


