

TUTORIAL ON SURROGATE CONSTRAINT APPROACHES
FOR OPTIMIZATION IN GRAPHS

Fred Glover

Leeds School of Business
University of Colorado

Boulder, CO 80309-0419

December 2002

Abstract

 Surrogate constraint methods have been embedded in a variety of mathematical
programming applications over the past thirty years, yet their potential uses and underlying
principles remain incompletely understood by a large segment of the optimization community. In
a number of significant domains of combinatorial optimization, researchers have produced
solution strategies without recognizing that they can be derived as special instances of surrogate
constraint methods. Once the connection to surrogate constraint ideas is exposed, additional
ways to exploit this framework become visible, frequently offering opportunities for
improvement.
 We provide a tutorial on surrogate constraint approaches for optimization in graphs,
illustrating the key ideas by reference to independent set and graph coloring problems, including
constructions for weighted independent sets which have applications to associated covering and
weighted maximum clique problems. In these settings, the surrogate constraints can be
generated relative to well-known packing and covering formulations that are convenient for
exposing key notions. The surrogate constraint approaches yield widely used heuristics for
identifying independent sets as simple special cases, and also afford previously unidentified
heuristics that have greater power in these settings. Our tutorial also shows how the use of
surrogate constraints can be placed within the context of vocabulary building strategies for
independent set and coloring problems, providing a framework for applying surrogate constraints
that can be used in other applications.
 At a higher level, we show how to make use of surrogate constraint information, together
with specialized algorithms for solving associated sub-problems, to obtain stronger objective
function bounds and improved choice rules for heuristic or exact methods. The theorems that
support these developments yield further strategies for exploiting surrogate constraint
relaxations, both in graph optimization and integer programming generally.

*Published in the Journal of Heuristics 9: 175-227, 2003

2

1. Introduction.
Surrogate constraint methods were originally introduced as a way to improve decision

rules and bounding information in integer programming algorithms (Glover, 1965). They yield
stronger relaxations for combinatorial optimization than Lagrangian methods, and have given
rise to a well delineated duality theory (Greenberg and Pierskalla, 1970, 1973; Glover, 1975;
Karwan and Rardin, 1979; Dyer, 1980; Fréville and Plateau, 1992, 1993; Fréville and Hanafi,
2000). While surrogate constraints have sometimes been used to drive exact solution methods
(Dinkel and Kochenberger, 1980; Gavish and Pirkul, 1985; Joseph, Bryson and Gass, 1996), or
to generate cutting planes (Glover, Sherali and Lee, 1999) their most prominent use results by
applying them within heuristic methods (Kochenberger; McCarl and Wyman, 1973; Klingman
and Karney, 1979; Hanafi, 1993; Glover and Kochenberger, 1996; Løkketangen and Glover,
1997; Yu, 1998; Hanifi and Fréville, 2001; Osorio, Glover and Hammer, 2002).
 Outside of methods that explicitly use surrogate constraint heuristics, there are many
more that embody instances of such heuristics without formal recognition that a link to surrogate
constraints exists. Once such a connection is exposed, additional heuristic alternatives emerge
that are typically more powerful. Opportunities to improve widely used heuristics have occurred
particularly in applications such as covering, multidimensional knapsack problems, scheduling,
binary quadratic programming, and satisfiability (SAT). (See, e.g., the references cited above.)
 The present tutorial addresses the use of surrogate constraint heuristics within
optimization problems over graphs, focusing on independent set problems, with application to
graph coloring and associated covering and clique problems, including their weighted versions.
In these cases, the surrogate constraints can be generated relative to independent set formulations
that have exceedingly simple structures as 0-1 packing or covering problems. Commonly used
procedures to create surrogate constraints simplify for these formulations to give a convenient
basis for presenting basic surrogate constraint ideas. The derivation yields heuristics that are
often embedded in solution methods for independent set problems, and also yields other
heuristics not previously considered for these problems. At more advanced levels, dynamic
surrogate constraint approaches are introduced that simultaneously generate and solve surrogate
constraint relaxations that include clique inequalities, and by extension, inequalities from
structures called q-complete systems. As part of this development, we provide theorems that
demonstrate how to obtain stronger bounds and improved decision criteria for surrogate
constraint approaches in a wide range of optimization settings.

2. Background and Motivation: Links Between Independent Set and Graph
Coloring Problems.

 Maximum cardinality independent set problems and minimum cardinality coloring
problems in graphs are usefully interrelated. Methods for finding maximum independent sets can
be embedded in methods for graph coloring, based on the fact that a set of nodes assigned a
given color in a coloring problem constitutes an independent set, in which no two nodes are
joined by an edge. Thus, it is natural in coloring problems to look for means of restructuring
independent sets, which correspond to different assigned colors, to increase the overall average
set size and thus reduce the total number of sets (and colors). Successful methods for coloring
problems that utilize this relationship between colorings and independent sets have been
developed by Hertz and de Werra (1987), Fleurent and Ferland (1995), Morgenstern (1996),
Dorne and Hao (1998) and Galinier and Hao (1999). Independent set problems are also of
interest because of their equivalence to maximum cardinality clique problems and associated
covering problems. An examination of these problems from a surrogate constraint perspective

3

has the useful consequence of yielding results that readily generalize to weighted versions of
independent set, clique and covering problems.
 To further motivate the use of surrogate constraint strategies in these applications, we
stress the utility of applying a vocabulary building process to generate sub-graphs over which
independent sets are sought. The vocabulary building framework (Glover and Laguna, 1993;
Glover, 1999; Glover, Laguna and Marti, 2000) affords a means to generate specific sub-
problems and solutions as a foundation for solving larger problems in which these problems are
embedded. Within the present setting such a process gives a natural way to generate and exploit
sub-graphs to which the surrogate constraint methods are applied.

3. Preliminary Surrogate Constraint Development: Strategies for Finding a
Maximum Independent Set.

Surrogate constraint strategies are often conveniently developed by reference to standard
mathematical programming formulations. As a starting point for illustrating this, we represent a
selected graph of interest by G = (N,E), where N = {1,…, n} denotes the set of nodes of the
graph and E denotes the set of edges.

For each node i ∈ N, define

 EdgeStar(i) = {{i,j} ∈ E},
 NodeStar(i) = {j: {i,j} ∈ E},
 SizeStar(i) = |NodeStar(i)| (equivalently, |Edgestar(i)|)

More generally, for any subset I of N, define

 EdgeStar(I) = {{i,j} ∈ E: i ∈ I } and
 NodeStar(I) = {j: {i,j} ∈ E, i ∈ I }.
 SizeStar(I) = |NodeStar(I)| (equivalently, |Edgestar(I)|)

By convention, if I is empty, then so are EdgeStar(I) and Nodestar(I). We also subsequently
apply these definitions relative to an induced sub-graph G′ = (N′, E′) of G, where N′ is a subset
of N and E′ is the (largest) subset of E determined by N′.

The customary mathematical programming formulation for the maximum independent set
problem associates a 0-1 integer variable xi with each node i ∈ N, where xi = 1 if and only if
node i is chosen as an element of the independent set. Then the problem can be expressed as an
integer programming (IP) problem, as an instance of a packing problem, as follows.

IP1: Maximize xo = ∑ (xi : i ∈ N)
 subject to xi + xj ≤ 1 {i,j} ∈ E

 xi binary i ∈ N

As also commonly observed, the problem can be transformed into an equivalent instance of a
covering problem by defining yj = 1 - xj, whereupon the preceding formulation acquires the form

4

IP2: Minimize yo = ∑(yi: i ∈ N)

 subject to yi + yj ≥ 1 {i,j} ∈ E

 yi binary i ∈ N

3.1 Foundation for a Surrogate Constraint Heuristic.
A convenient type of surrogate constraint heuristic for such problems, when the goal is to

generate approximate solutions quickly, results by weighting the original inequalities from
simple normalizations to create the surrogate constraint. To do this, the inequalities are put in a
form where all coefficients are nonnegative (as automatically happens here), and the weights are
derived by reference to the right hand sides of the inequalities and the sums of their coefficients.
The weighted inequalities are then summed to produce the surrogate constraint, which for the
present formulations can be represented by

∑(aixi: i ∈ N) ≤ ao for IP1
∑(biyi: i ∈ N) ≥ bo for IP2

Thus, we explicitly define the surrogate constraint coefficient values, we explicitly represent the
associated surrogate constraint problems derived from IP1 and IP2 by

 SC1: Maximize xo = ∑(xi: i ∈ N)
 subject to ∑(aixi: i ∈ N) ≤ ao
 xi binary i ∈ N

 SC2: Minimize yo = ∑(yi: i ∈ N)
 subject to ∑(biyi: i ∈ N) ≥ bo
 yi binary i ∈ N

A general way to produce normalization-based surrogate constraints for 0-1 problems, which we
can use to identify the ai and bi coefficients for SC1 and SC2, and which will also be relevant to
later concerns, may be summarized as follows. Consider a typical “≤ inequality” of a system
such as IP1, indexed over some set h ∈ H and written in the form

∑(ahixi: i ∈ N) ≤ aho.
Assume the 0-1 variables xi are complemented as necessary to assure ahi ≥ 0 for all i ∈ N (where
the identity of variables complemented may differ for different constraints). Then an appropriate
weight wh to multiply by such an inequality to create a normalized constraint is
 wh = (∑(ahi: i ∈ N) - aho)/aho.
The weight applies to the form of the original inequality in which the variables have not been
complemented as well as to the form used to define wh.

Similarly, we may consider a typical “≥ inequality” of a system such as IP2 written in the
form

∑(bhiyi: i ∈ N) ≥ bho.
Again, assuming variables have been complemented as necessary to assure bhi ≥ 0 for all i ∈ N, a
corresponding normalization weight is given by
 wh = bho/(∑(bhi: i ∈ N) - bho).
Variations of such normalizations raise the indicated weights to some selected power.

5

Although we need not be concerned with problems that include both negative and
positive coefficients here, we remark that advantages are gained for creating and processing
surrogate constraints by explicitly complementing variables to maintain the problem in
nonnegative-coefficient form. Surrogate constraints can then include both original variables and
their complements, which permits a more informed analysis and improved decision rules. (See,
for example, Lokketangen and Glover, 1997.)

The special structure of the formulations IP1 and IP2 applicable to the independent set
problem assure that the weights to produce the normalization all equal 1, and the normalized
inequalities are the same as the original inequalities, thus creating what is called a simple-sum
surrogate constraint which results by summing the original inequalities without modification.
Consequently, the ao and bo values in the surrogate constraints for SC1 and SC2 equal the sum of
the right hand sides (hence equal the number of inequality constraints), and the ai and bi values
equal the sum of the unit coefficients for the xi and yi variables that appear in these constraints.

By our preceding notation, this gives:
ao = bo = |E|
ai = bi = SizeStar(i)

3.2. A Simple Surrogate Constraint Choice Rule.
A choice rule often used in first stage surrogate constraint heuristics can be applied to

SC1 and SC2 by selecting the variable xr or yr that gives the best ratio (largest for maximization,
smallest for minimization) of the objective function coefficient to the surrogate constraint
coefficient. The selected variable is set equal to 1, and the problem is reduced by eliminating
variables that receive forced value assignments and by removing redundant constraints. Then a
surrogate constraint is constructed relative to the new problem and the process repeats.

Such a process becomes quite straightforward in the present setting due to the special
structure of the problem. Since all objective function coefficients are 1, the choice rule reduces
to selecting xr and yr to yield ar = Min(ai) and br = Max(bi). In terms of the graph G the rule can
be expressed as follows.

Choose r ∈ N, for setting xr = 1 or yr = 1, by identifying
Sizestar(r) = Min(SizeStar(i): i ∈ N) for IP1
Sizestar(r) = Max(SizeStar(i): i ∈ N) for IP2

 These simple choices for IP1 and IP2 correspond to decision rules frequently embedded
in constructive strategies and branch and bound approaches applied to maximum independent set
problems, as in the studies of Friden Hertz and de Werra (1989, 1990), Feo, Resende and Smith
(1994), Homer and Peinado (1996), Dorne and Hao (1998), and Abello, Pardelos and Resende
(1999) among others. (These rules were first proposed by Johnson (1974)1, about a decade after
the introduction of surrogate constraint strategies.)

As we will see, the surrogate constraint framework can be used to provide strategies that
are substantially more advanced. First, however, we complete the preliminary connections by
identifying the problem updates that occur both by reference to the mathematical programming
formulations and the underlying graph structures. The outcomes illustrate a characteristic feature
of surrogate constraint approaches applied to graph problems generally. Whenever the decision

1 This paper formulated such choice criteria for the maximum clique problem, but they translate directly into the
rules described here. More general cases of the covering problem were also considered in the same paper, similarly
relying on a rule equivalent to the simple-sum surrogate constraint rule. Such a rule is less effective for these cases
than using more general normalizations, but the focus of Johnson (1974) was on complexity analysis rather than on
heuristic efficacy. Similar proposals and an extended complexity analysis also appear in Chvatal (1979).

6

variables correspond to operations on a graph (such as adding or deleting nodes and edges), then
the updated mathematical programming formulations and the new surrogate constraints that
result from each choice can be expressed directly in terms of the corresponding graph update.
Similarly, implications of the decision such as forcing particular variables to 0 or 1 and causing
constraints to become redundant can also be reflected by corresponding changes in the graph
structure.

In the present case, according to the problem considered, the updates for problems IP1
and IP2 correspond to simple graph reductions as follows.2

IP1 Update: Setting xr = 1 in IP1 forces xj = 0 for the variables xj in each of the

constraints xr + xj ≤ 1, which makes the updated form of these constraints redundant. In the
graph G this corresponds to dropping all the associated nodes j and their incident edges, thereby
defining a new node set N′ and a new edge set E′ by

N′ = N - NodeStar(r)
E′ = E - EdgeStar(NodeStar(r))

The reduced problem has exactly the same form as the original, by replacing G = (N,E) with the
reduced graph G′ = (N′,E′). Thus, defining SizeStar′(i) relative to G′, for each node
i∈NodeStar(NodeStar(r)) yields

NodeStar′(i) = NodeStar(i) - NodeStar(NodeStar(r))
EdgeStar′(i) = EdgeStar(i) - EdgeStar(NodeStar(r)).

These outcomes can be directly identified by examining each j∈NodeStar(r) and then, for each
i∈NodeStar(j), removing node j from NodeStar(i) and removing the edge {i,j} from EdgeStar(i)
(reducing SizeStar(i) by 1 for each such step). Hence in the surrogate constraint SC1 the
coefficients are changed so that

a′i = ai - |NodeStar(i) ∩ NodeStar(r)|
a′o = ao - SizeStar(NodeStar(r)).

The problem can be further reduced by setting xj = 1 for all isolated nodes j∈N′ (all of whose
constraints reduce to the form xj ≤ 1), and removing these nodes from N′.

IP2 Update: Setting yr = 1 in IP2 makes each inequality yr + yj ≥ 1 in which yr appears
redundant. Hence removing yr and these redundant constraints results in defining

N′ = N - r
E′ = E - EdgeStar(r).

As in the case of IP1, the reduced problem has exactly the same form as the original, by
replacing G = (N,E) with the reduced graph G′ = (N′,E′). Defining SizeStar′(i) relative to G′
yields

SizeStar′(i) = SizeStar(i) - 1 for each i ∈ EdgeStar(r).
Hence in the surrogate constraint SC2 the coefficients are changed so that

b′i = bi - 1 for each i ∈ EdgeStar(r)
b′o = bo - SizeStar(r).

2 Such reductions are now common. We include them for completeness to show their connection with customary
surrogate constraint processes and to provide a background for implementing procedures described later.

7

Nodes i that are isolated in N′ (i.e., that have no incident edges) correspond to variables that
appear only in redundant inequalities of the form yi ≥ 0, and hence these nodes can all be
dropped from N′ together with setting yi = 0.

Additional dominance criteria can be applied to assign values to variables in IP1 and IP2.
However, the illustrated surrogate constraint heuristics have the convenient feature that their
choice criteria automatically assure each assignment is the same as if such dominance criteria
had been explicitly identified and used to assign values to the variables. For classical definitions
of dominance, this property holds not only for this special class of graph problems but for integer
programming problems in general.

4. More General Surrogate Constraint Heuristics.
Beyond the fact that the two elementary strategies illustrated for IP1 and IP2 correspond

to popular constructive procedures, it is easy to see that the heuristic described for IP2 can be
applied directly to the IP1 formulation, since each choice yr = 1 corresponds to a choice xr = 0.
The updated graph G′ for IP1 in this case is exactly as specified for IP2. This affords a way to
extend the preceding approaches within the preliminary framework discussed so far. As
characteristically done in surrogate constraint methods, the choice rules can be applied to select a
variable to set either to 1 or to 0 at each step, an option that gives a more flexible heuristic than
the two separate methods described for IP1 and IP2.
 Additional possibilities result by taking fuller advantage of the surrogate constraint
framework. We can divide these into two main types of approaches. The first involves the use
of quickly executed look-ahead strategies, which are commonly used with surrogate constraint
choice rules to identify the consequences of alternative assignments, enabling better choices to
be made by accounting for these projected outcomes. The second involves the use of bounding
information, making it possible to exploit the fact that the surrogate constraint creates a
relaxation for the original problem. This provides a means to develop choice rules based on
considerations that go beyond the considerations examined so far, giving an opportunity to
develop more advanced forms of look-ahead strategies.

Quickly executed strategies are important in a variety of settings, and although they do
not provide the primary focus of this tutorial, we describe these types of surrogate constraint
approaches in Appendix 1. Such methods can be used to supplement those we address in the
following sections, where we begin with procedures that are fairly elementary, and which are
likewise fast to execute (if not quite as fast as those in Appendix 1).

5. Enhanced Choices Using Surrogate Constraint Bounding Information.
We restrict the discussion in this and remaining sections of the paper to the formulation

IP1 and the choice rules for setting xr = 1. Drawing on the preceding observations our comments
also apply to the formulation IP2 and the choice rules for setting yr = 1 (or, equivalently, for
setting xr = 0 in IP1).

5.1 An Optimal Surrogate Constraint Solution.

The “ratio choice rule” identified in Section 3 for successively choosing variables xr to
set equal to 1 (which reduces in the present context to identifying r to yield the minimum ai
value), also solves the linear programming relaxation of the surrogate constraint problem; i.e., it
yields a solution to maximize xo subject to the surrogate constraint. Due to the fact that the
objective function for the maximum independent set problem contains only unit coefficients, we
can also obtain an optimal IP solution to the surrogate constraint problem SC1.

8

Specifically, assume the coefficients ai are placed in ascending order. Then the optimum
value xo for the surrogate constraint relaxation SC1 is given by

xo = Max(h: a1 + ... + ah ≤ ao)
which corresponds to the solution obtained by setting xj = 1 for j ≤ h, and xj = 0 for j > h. 3

The bounding information from the solution to SC1 can be used to improve quickly
implemented look-ahead rules, as discussed in Appendix 1. However, we can carry the analysis
farther. The succeeding sections show how to generate information at another level.

5.2 A Higher Level Surrogate Constraint Solution.
An important strategy in surrogate constraint applications is to identify additional

problem constraints, either explicit or implied, that can be adjoined to the surrogate constraint
problem while creating a structure that permits the problem to be solved efficiently. Bounded
sums of variables that satisfy a nesting property are useful for generating such a structure
(Glover, 1971), and we can conveniently extract such constraints as a subset of the inequalities
of IP1. As before, our comments for IP1 can be translated into related observations for IP2. In
particular, we consider the special case of nesting where the component constraints are disjoint,
i.e., the sums of variables are defined over disjoint sets. The corresponding surrogate constraint
problem then becomes

SC: Maximize xo = ∑ (xi : i ∈ N)
 subject to ∑ (aixi : i ∈ N) ≤ ao
 xi + xj ≤ 1 {i,j} ∈ E′

 xi binary i ∈ N

where the edges in E′ are pairwise node disjoint, and consequently each variable xi, i ∈ N,
appears in at most one inequality of the collection. It is easy to see that an optimal solution to this
problem results as follows. Under the assumed ascending order of the ai coefficients, define
 N′ = N – { i ∈ N: {i,j} ∈ E′ and i > j }
Hence N′ is obtained from N by dropping exactly one node i from each edge {i,j} ∈ E′, which is
associated with the larger (or equal) of the two corresponding coefficients in the surrogate
constraint.
 Then the auxiliary constraints over E′ can be removed and the problem reduces to:

 SC′: Maximize xo = ∑ (xi : i ∈ N′)
 subject to ∑ (aixi : i ∈ N′) ≤ ao

 xi binary i ∈ N′

Since SC′ has the same form as the original surrogate constraint problem SC1, we may identify
an optimal solution exactly as in Section 5.1. However, since N′ removes roughly half the
coefficients from N, the solution is more restricted and SC′ will generally yield a somewhat
stronger bound on xo than SC1.

3 A useful observation in this setting often escapes notice. If the integer ai coefficients fall within a modest range, or
do not have many gaps between them, they can be rapidly sorted by a single pass that records each index i ∈ N in a
list for the associated integer v = ai . Then a pass of the integers v between Min(ai) and Max(ai) recovers the ai
coefficients in sorted order, stopping as soon as the “ah term” is identified. (The popularity of more complex sorting
techniques has obscured the merits of this simple alternative.) Such an approach is also relevant for sorting integer
values Uo(i) which are referenced by additional algorithms discussed later.

9

 A rule for implicitly choosing the set E′ to generate N′ and the reduced problem SC′ is as
follows (again assuming the ai coefficients are in ascending order):

 Method to Create SC′ from SC.

1. Let i = 1 and N′ = N.
2. Identify the first (smallest) j > i such that {i,j} ∈ E and j ∈ N′.
 (a) If no such node j exists, proceed directly to Step 3.
 (b) If node j exists, remove node j from N′ (implicitly, designating {i,j} to belong
 to E′).
3. Let i′ = Min {q : q > i and q ∈ N′}. If i′ does not exist, or is the last (largest index)
 node in N′, stop: N′ now has its final form. Otherwise, let i : = i′ and return to step 2.

The preceding method is designed to efficiently obtain a good N′ (and E′) to produce the reduced
surrogate constraint problem. Each successive choice of i identifies a node that is undominated
over choices of nodes to remain in N′, given choices previously made, and each choice of j is
locally best for the associated node i.
 An analogous method can go through the indexes i in reverse order, seeking the largest
j < i such that {i, j} ∈ E and j ∈ N′. In this case node i is the one dropped from N′ and node j
must be marked to prevent it from being chosen as a future node i. Other more complex variants
are also possible, such as choosing an edge {i, j} at each step, for j > i, to minimize
aj – ai, although such variants involve greater computation.

6. Exploiting the Reduced Surrogate Constraint Problem.
The reduced surrogate constraint problem SC′ can be exploited exactly as the original

surrogate constraint problem, but we propose a more ambitious method for doing this. First we
identify a subset N* of N that contains candidate nodes we wish to evaluate more fully. (For
example, N* can be taken to have the form identified in the threshold-based strategy in
Appendix 1, where the determination of node h in Section 5.1 is made relative to N′ rather than
N.) The following method can be executed independently for each node i ∈ N*, and hence can
be efficiently exploited by parallel processing.

Node - Specific SC Bounding and Choice Rule
1. For each i ∈ N*, tentatively perform the assignment xi = 1. Reduce the original

problem IP1 as indicated in Section 3 to produce a problem denoted IP1(i).
2. Generate the surrogate constraint problems SC and SC′ for IP1(i), representing these

problems as SC(i) and SC′(i). Denote the optimum xo value for SC(i) and SC′(i) by
xo (SC(i)).

3. Identify r ∈ N* to give the choice xr = 1 by the rule
xo (SC(r)) = Max (xo (SC(i)) : i ∈ N*)

If the value xo (SC(i)) found in Step 2 above does not exceed xo*, the xo value for the best
known solution to IP1, then the assignment xi = 0 is appropriate and the problem IP1 can be
simplified. A strategy that presupposes a restrictive value for xo* can be useful to induce such a
problem reduction heuristically.

We now show how to strengthen the xo(SC(i)) values to obtain more restrictive bounds
on xo and to yield more refined decisions.

10

7. First Principle of Conditionally Shared Limitations.
 In this section we take advantage of what may be called the First Principle of
Conditionally Shared Limitations, which may expressed as follows: Knowledge of bounds on xo
for conditionally constrained problems, where values (or bounds) are tentatively assigned to
specific xi variables, can be used to derive stronger bounds on xo in other conditionally
constrained problems, defined relative to assigning values (or bounds) to other xi variables.
 To see how this principle can be applied in the present setting, let N(r) be the subset of N
identifying the nodes i over which the surrogate problem SC(r) is defined (after the reduction of
setting xr = 1), and let N′(r) be the further reduced set of nodes for the associated problem SC′(r).
Also, let NO(r) be the optimal node set for SC′(r) (and hence SC(r)), where setting xi = 1 for
i ∈ NO(r) yields an optimal solution to SC′(r). Consequently, |NO(r)| = xo(SC(r)).

The value xo(SC(r)) provides an upper bound for xo in the problem IP1 when xr = 1, and
we undertake to find an improved bound, taking advantage of information about the composition
of NO(r). In general, for an arbitrary node i, let Uo(i) denote an upper bound for xo when xi = 1.
Then, more precisely, we use the knowledge that Uo(i) ≤ xo(SC(i)), together with the
composition of NO(r), to obtain a tighter value for Uo(r) than xo(SC(r)).
 The rationale underlying our approach may be sketched as follows. If
xo(SC(i)) < xo(SC(r)) for any node i ∈ NO(r), then node i cannot belong to an independent set of
size xo(SC(r)). However, since node i has been used to yield xo(SC(r)) (by solving SC′(r)), this
discloses that the value xo(SC(r)) is larger than needed for Uo(r). We can conclude that Uo(r)
should be no larger than xo(SC(i)), or else node i should not belong to NO(r). But the exclusion
of node i from NO(r), hence from N(r), imposes an added restriction on the problem SC(r),
compelling xi = 0. Hence this exclusion also affords the possibility to reduce Uo(r) below
xo(SC(r)).
 Denote the set of nodes in NO(r) that create this possibility, by

I(r) = {i ∈ NO(r): Uo(i) < Uo(r)}
where initially we begin by setting Uo(i) = xo(SC(i)) for all i ∈ N. Let SC(r\i) denote the
surrogate constraint problem SC(r) subject to xi = 1. Then for any i ∈ I(r), the previous
observations lead to the conclusion that we can compel Uo(r) to satisfy
 Uo(r) ≤ Max(Uo(i), xo(SC(r\i)).
 We increase the generality of the foregoing observation as follows. Let SC(r\I) for an
arbitrary subset I of N denote the surrogate constraint problem SC(r) subject to xi = 0 for i ∈ I.
That is, in this problem all nodes of I are excluded from belonging to the same independent set as
node r. Note that the solution of the problem SC(r\I) requires removing the nodes of I from N in
the SC problem, i.e., setting xi = 0 for i ∈ I, before the transformation that creates SC' from SC.
Then we can state the following result.

 Theorem 1. If I is any nonempty subset of I(r), then a legitimate value for Uo(r) is given
by
 Uo(r) = Max(xo(SC(r\I)), Max(Uo(i): i ∈ I)).

 Proof: The result follows directly from the reasoning already stated, together with the
fact that either (a) xi = 0 for all i ∈ I or (b) xi = 1 for at least one i ∈ I. Condition (a) underlies the
term xo(SC(r\I) and condition (b) underlies the term Max(Uo(i): i ∈ I). �

 The value xo(SC(r\I)) in the theorem can be replaced by xo(r\I), the corresponding value
of xo in the original IP1 problem (i.e., the value in IP1 that results by setting xr = 1 and xi = 0 for

11

i ∈ I). This produces a tighter limit for Uo(r), but requires considerably more computational
effort to exploit.
 To take full advantage of Theorem 1, we seek to identify a set I that gives a smallest
limiting value for Uo(r) by the stipulations of the theorem. This goal may be achieved as follows.
 Assume I(r) is nonempty and denote the distinct values taken by the bounds Uo(1) for
 i ∈ I(r), listed in ascending order, by u1 < … < uk, k ≥ 1. Define the collection of sets
Ij = {i ∈ I(r): Uo(i) ≤ uj} for j = 1 to k. (Hence, each of these sets is contained in the next and
Ik = I(r).)

 Theorem 2. A set I = I* that yields a tightest bound for Uo(r) by Theorem 1, and the
corresponding Uo(r) value, are given by:
 (a) If u1 ≥ xo(SC(r\I1)), then I* = I1 and Uo(r) = u1
 (b) If uk ≤ xo(SC(r\Ik)), then I* = Ik and Uo(r) = xo(SC(r\Ik))
 (c) If neither (a) nor (b) apply, then define
 p = Max(j: uj ≤ xo(SC(r\Ij))
 q = Min(j: uj > xo(SC(r\Ij)) (q = p + 1)
 If uq ≤ xo(SC(r\Ip)), then I* = Iq and Uo(r) = uq
 Otherwise, I* = Ip and Uo(r) = xo(SC(r/Ip))

 Proof: First, we show that a tightest bound can be found by restricting attention to the
sets Ij, j = 1, …, k, as candidates for I*. Assume that a given set I* is optimal, giving a smallest
value for Uo(r) by Theorem 1. Identify the value uj such that uj = Max(Uo(i): i ∈ I*). Then
Max(Uo(i): i ∈ I*) = Max(Uo(i): i ∈ Ij) and in addition, since I* ⊆ Ij, it follows that
xo(SC(r\Ij)) ≤ xo(SC(r\I*)). Hence Ij must also qualify to be I*. Next, it is clear that if the
conditions specified in either (a) or (b) hold, then the conclusions stipulated in these cases are
valid. For (c), if j < p, then xo(SC(r\Ij)) ≥ xo(SC(r\Ip)), while if j > q then
Max(Uo(i): i ∈ Ij) > Max(Uo(i): i ∈ Iq). Consequently, the Uo(r) value specified by Theorem 1 in
each respective case cannot be smaller than that specified by taking I* = Ip or I* = Iq. The
preferred choice between Ip and Iq therefore determines I*, as stipulated. (The result is also valid
if (c) is modified to replace "≤" by "<" and to replace ">" by "≥".) �

 To implement Theorems 1 and 2, parallel processing can allow the determination of
tightened Uo(r) values to be executed simultaneously for each r in N, or for each r in some
candidate subset N* of N. If improved Uo(i) values are produced for some indexes i, the entire
process can be repeated to determine whether these values may again imply a smaller Uo(i) value
for some i ∈ N. The smallest Uo(i) value cannot change, and if the process is applied serially,
going to the index i that yields the next largest Uo(i) value at each step, then exactly one pass of
the nodes in N will complete the application. However, a parallel approach will usually be
significantly faster.
 We will revisit Theorems 1 and 2 in Section 11, where we provide a generalization that
derives still stronger bounds by reference to ideas introduced in the next three sections.

8. Second Principle of Conditionally Shared Limitations

 The Second Principle of Conditionally Shared Limitations complements the first, by
undertaking to take advantage of it in a special way. This second principle may be summarized

12

by the statement: Conditionally Shared Limitations can be exploited by creating a specific
optimization problem that imposes conditional constraints on xo.

We demonstrate this principle by showing how the bounds Uo(i) for i ∈ N(r) (the index set for
SC(r)) can be embedded in an optimization problem that is specifically designed to tighten the
bound Uo(r). For convenience, we develop the relevant results in connection with the problem
SC, understanding that they apply to SC(r) simply by enforcing xr = 1 and redefining SC to be
the new problem that results after the appropriate reductions. Noting that xo(SC) ≤ Uo(j) must
hold for each j ∈ N such that xi = 1 in the solution that yields the optimum value xo(SC), we can
formulate a secondary surrogate problem SS associated with the problem SC as follows:

 SS: Maximize xo = ∑(xi: i ∈ N)

 ∑(xi: i ∈ N) ≤ Uo(j)xj + |N|(1-xj) j ∈ N

 xi + xj ≤ 1 {i,j} ∈ E″

 xi binary i ∈ N

The inequalities for j ∈ N can also be replaced by the nonlinear inequality

∑(xi: i ∈ N) ≤ Min (Uo(i): xi = 1, i ∈ N).

 As in the case for the edge set E′ in problem SC, we assume E″ is a subset of E whose
edges share no nodes in common (hence E″ is a matching on the graph G), and we will identify a
way to quickly extract a good candidate for E″. The problem SS can be used to find a bound on
xo for IP1, but our primary interest will be to use the version SS(r) when N is replaced by N(r) in
order to identify an optimum value xo(SS(r)). This latter value, like the value xo(SC(r)), gives an
upper bound Uo(r) for xo when xr = 1.
 First we identify how to solve SS (and hence, using the same rules, to solve SS(r)).
Although the structure of SS is significantly different from that of SC, an optimal solution can be
obtained by a similar method. Just as the ai coefficients are indexed in ascending order to extract
a good set E′ from E for SC, and to identify a reduced problem SC′, analogous operations are
applied to extract a good set E″ from E for SS, and to identify a reduced problem SS″, but by
reference to an ordering of the Uo(i) values.

 Theorem 3. For each edge {i, j} ∈ E″, indexed so Uo(j) ≤ Uo(i), remove node j from N
(setting xj = 0). Denote the set of nodes that remain by N″, and define SS″ to be the problem that
results from SS by replacing N with N″ and by dropping the inequalities over E″. Then problem
SS″ shares at least one optimal solution in common with SS.

 Proof: Suppose there is an edge {i, j} where Uo(j) ≤ Uo(i) and xj = 1, xi = 0 in an optimal
solution to SS while j ∉ N″. But then the solution to SS can be changed by setting xj = 0 and
 xi = 1 without violating any constraints and without altering xo (SS). Repeating the process
ultimately yields a solution to SS″ with xo = xo(SS). But xo(SS″) ≤ xo(SS) since SS″ is more
restricted than SS, and hence the resulting solution must be optimal for SS″. �

13

 Theorem 4. Index the values Uo(i), i ∈ N″ in descending order (Uo(i) ≥ Uo(i+1) for
i, i + 1 ∈ N″). Let p = Max(i ∈N″ : i ≤ Uo(i)). Then an optimal solution to SS″ is obtained by
setting xi = 1 for i ∈ N″(r) if and only if i ≤ p, yielding xo (SS″) = p.

 Proof: First, it is clear that the indicated solution is feasible for the inequalities
∑(xi : i ∈ N″) ≤ Min (Uo(i): xi = 1, i ∈ N″). Moreover, if any xj = 1 for j > p, then Uo(j) ≤ Uo(p)
and the foregoing inequality implies ∑(xj : i ∈N″) ≤ Uo(j), establishing that xo(SS″) ≤ p. �

 The preceding theorems show that each problem SS(r) can be transformed into a problem
SS″(r) and solved with essentially the same level of effort to transform SC(r) into SC′(r) and
solve the result. Similarly, the solution of each SS(r) problem can be carried out in parallel.
 Finally, we observe that an edge set E″ for SS can be generated by exactly the same rule
for generating an edge set E′ for SC, by replacing the ai coefficients with the values Uo(i), and
reversing the ordering. (The correspondence can be achieved more precisely by reference to an
ascending ordering of the -Uo(i) values.)

9. Generalizations to Additional Optimization Problems
 As already noted, the method based on the first principle of conditionally shared
limitations is exceedingly general, and applies to a wide range of optimization problems. The
method described for exploiting the second principle of conditionally shared limitations can
similarly be generalized.
 The procedure can immediately be extended from the maximum cardinality independent
set problem to the maximum weight independent set problem, while exploiting the ability to
create reductions of the surrogate constraint problem SC and the secondary surrogate problem
SS. For this, it suffices to modify the previous formulations by introducing a positive weight ci
associated with each node i in the objective function.

9.1. The Weighted SC Problem
 The weighted SC problem acquires the form

W-SC: Maximize xo = ∑ (cixi : i ∈ N)
 subject to ∑ (aixi : i ∈ N) ≤ ao
 xi + xj ≤ 1 {i,j} ∈ E′
 xi binary i ∈ N

The edges in E′ are pairwise node disjoint, as before. We solve the continuous (LP) relaxation of
this problem by allowing the binary conditions to be replaced by 0 ≤ xi ≤ 1, i ∈ N. In the case
where the inequalities over E′ are not present, then as previously intimated an optimal continuous
solution can be obtained by the following well-known rule.

LP Knapsack Solution

1. Index the variables so that ci/ai ≥ ci+1/ai+1 for all i, i + 1 ∈ N.
 Define A(0) = 0, and for p ∈ N; define A(p) = (∑ai : i ≤ p, i ∈ N)
2. Identify q = Max (p ∈ N : A(p) ≤ ao). Then set

 xi = 1 for i ≤ q (if q ≥ 1)
 xq+1 = (ao – A(q))/aq+1 (if q < n)
 xi = 0 for i > q + 1 (if q + 1 < n)

14

The solution to W-SC can be obtained by a similar rule after a preliminary transformation to
create a related problem W-SC′ defined over a set of nodes N′ with the inequalities over E′
removed.

 Transforming W-SC into W-SC′

0. Begin with N′ = N. For each {i, j} ∈ E′, assume an indexing so that ci/ai ≥ cj/aj, and
if the s are equal, then ai ≥ aj.

1. For each {i, j} ∈ E′, if either ci ≥ cj or ai ≥ aj, then drop j from N′. Otherwise if cj > ci
and aj > ai, create a new variable zi = xj + xi to replace xi. Then zi receives the
coefficients ci and ai formerly associated with xi, and xj receives new coefficients
given by

 cj : = cj – ci
 aj : = aj – ai

2. Problem W-SC′ is the resulting form of W-SC that drops the inequalities over E′ and
replaces N by N′.

We can now state:

 Theorem 5: An optimal LP solution to W-SC is obtained by applying the LP Knapsack
Solution Rule to W-SC′ (treating the zi variables in the same way as xi variables). If an xj
variable is positive in this knapsack solution for some {i, j} ∈ E′, then the solution also yields
zi = 1, and the corresponding optimal solution to W-SC assigns xi the value xi : = zi - xj.
Optimal values for remaining variables in the W-SC solution are those specified by the knapsack
solution, without modification.

 Proof: First, under the assumed indexing of Step 0, we show that if ai ≥ aj for
{i, j} ∈ E′, then xj = 0 in an optimal LP solution to W-SC. Let xi′ and xj′ be optimal LP values
for xi and xj, and suppose xj′ > 0. Consider a solution x″ where all variables except xi and xj
retain their current values, while xj″ = 0 and xi″ = xi′ + (ai/aj)xj′ . Then xi″ + xj″ = xi″ ≤ xi′ + xj′,
and hence the solution satisfies the inequality xi + xj ≤ 1. Also it is easy to verify that
 aixi″ + ajxj″ = aixi′ + ajxj′ and cixi″ + cjxj″ = cixi′ + cjxj′.
Hence the solution x″ satisfies the knapsack constraint and gives an xo value at least as large as
the solution x′. We therefore assume henceforth that aj > ai. The indicated transformation of
variables to create zi = xi + xj (≤ 1) clearly yields a relaxation of W-SC, which becomes
equivalent to W-SC if xi = zi – xj is assured to be nonnegative. Denote the new coefficients for xj
by cj′ = cj – ci and aj′ = aj – ai. If ci > cj, then cj′ ≤ 0 and aj′ > 0, which implies xj = 0 in an
optimal solution to the relaxation, and hence j may be discarded as specified in the theorem. We
are left with the case cj′ > 0 and aj′ > 0. The indexing assumptions imply ci/ai > cj′/aj′. As a
result, xj > 0 implies zi = 1 in the LP Knapsack Solution to W-SC′, and the feasibility (and hence
optimality) of this solution for W-SC is established.4 �

4 A method equivalent to the approach provided by this theorem, but which does not introduce an explicit
transformation of variables and which is slightly more cumbersome to state and prove, is provided in Glover (1971).

15

 Theorem 5 finds its usefulness in the present context by enabling maximum weight
independent set problems to be handled in a manner analogous to maximum cardinality
problems. By the now-familiar design, we may create associated reduced problems by setting
xr = 1 for candidate variables, and solving the resulting W-SC(r) problems in parallel.
 An appropriate choice of an edge set E′ to be exploited by Theorem 5 can also be made
by methods resembling those previously described for unweighted problems. The procedure by
which N′ is generated from N (when W-SC is transformed into W-SC′) suggests that E′ be
derived from E by successively choosing “best remaining ratios” to identify both i and j for the
pair {i, j} ∈ E′.

9. 2 The Weighted SS Problem
 The weighted SS problem is expressed by

 W-SS: Maximize xo = ∑ (cixi : i ∈ N)
 subject to ∑ (cixi : i ∈ N) ≤ Uo(j)xj + Uo(1-xj) j ∈ N

 xi + xj ≤ 1 {i,j} ∈ E″
 xi binary i ∈ N

where Uo is an upper bound on xo (e.g. Uo = ∑ (ci : i ∈ N)). The Uo(i) terms are defined as
before, taking into account the changed form of xo. Also, E″ is a set of node disjoint edges, and
the inequalities over j ∈ N can alternately be expressed as
 ∑ (cixi : i ∈ N) ≤ Min(Uo(i) : xi = 1, i ∈ N).
 In the absence of the inequalities over E″, the solution to W-SS, perhaps surprisingly,
takes no account of the ci values in creating a priority ordering of the variables.
 Specifically, define the version of W-SS that excludes the inequalities over E″ as the
Conditional Objective Knapsack Problem (since the objective value is conditional upon the
bounds Uo(i)). Then the continuous relaxation of this problem can be solved as follows.

 LP Conditional Objective Knapsack Solution
 1. Index the variables so that U0(1) ≥ U0(2) ≥ … ≥ U0(n). Define C(0) = 0 and for each

 p ∈ N define C(p) = ∑ (ci : i < p, i ∈ N)
2. Define q = Max (p: C(p) < U0(p)) and set

 xi = 1 for i < q (if q ≥ 1)
 If q < n, then
 (a) if C(q) ≥ U0(q+1) then xi = 0 for i > q and x0 = C(q)
 (b) if C(q) < U0(q+1) then xq+1 = (U0(q+1) – C(q)) / cq+1,
 xi = 0 for i > q+1 (if q +1 < n) , and x0 = U0(q+1)

 The division between the cases 2(a) and 2(b), and the fact that the indexing makes no

reference to the ci values, constitute noteworthy differences between the rule for generating the
LP Conditional Objective Knapsack Solution and the rule for generating the more traditional LP
Knapsack Solution. Nevertheless, the computational effort is approximately the same.

 To solve the more complex W-SS problem, which includes the constraints over E″,
requires a method that departs in a still more significant way from the method for W-SC,
although the execution is still exceedingly efficient. In this case, W-SC is not transformed into a
second problem in advance, but is solved directly by a method partly analogous to the preceding
solution approach.

16

 A descending ordering of the U0(i) values again identifies a critical priority relationship
for solving the problem. This suggests that the set E″ can be generated by reference to this
ordering, using rules similar to those previously described for generating node disjoint subsets of
edges from E.

Method for W-SS

 1. Index the variables so U0(1) ≥ U0(2) ≥ … ≥ U0(n). Start with q = 1 and CSUM = 0.
 2. (a) If there exists an edge {i, q} ∈ E″ with i < q then:
 (1) if ci ≥ cq, set xq = 0
 (2) if ci < cq let d = cq – ci. Then
 (i) if CSUM + d ≤ U0(q) set xq = 1, xi = 0 and CSUM := CSUM + d
 (ii) if CSUM + d > U0(q) set xq = f and xi = 1 – f for f = (U0(q) – CSUM)/d

 and then set CSUM = U0(q)
 (b) Otherwise, if there is no edge {i, q} ∈ E″ with i < q, then
 (1) if CSUM + cq ≤ U0(q) set xq = 1 and CSUM : = CSUM + cq
 (2) if CSUM + cq > U0(q) set xq = (U0(q) – CSUM)/cq and then set

 CSUM = U0(q)
 3. If q = n, x0 = CSUM and the method stops. Otherwise:
 (a) If CSUM ≥ U0(q+1) then x0 = CSUM, xi = 0 for i > q and the method stops.

 (b) If CSUM < U0(q+1), then set q: = q + 1 and return to Step 2.

 Theorem 6. The LP Conditional Objective Knapsack Solution and the Method for W-SS
give optimal solutions for their respective problems.

 Proof: The validity of the LP Conditional Objective Knapsack Solution can be verified
by observing that if xi > 0 for any i > q in case 2(a), or for any i > q + 1 in case 2(b), then x0 is
compelled to be no larger than specified in these cases. Moreover, if xi is reduced in value for
any i ≤ q or for i = q + 1 in Case 2(b), respectively, then xi > 0 for some i > q or i > q + 1, as
previously identified. The validity of the Method for W-SS rests on the validity of the LP
Conditional Objective Knapsack Solution, and on the fact that each iteration of the method
identifies an optimal allocation of values between xq and xi in the case where {i,q} is an edge
of E″. �

 As in the solution method for W-SC, the method for W-SS can be applied to evaluate the
consequences of setting selected variables xr = 1, by solving associated problems W-SS(r) in
parallel. These methods give new ways to determine bounds and choice rules for weighted
independent set problems, and can also be applied to other 0-1 problems by disregarding the
special rules to handle constraints over the edges of E′ and E″ (in cases where such constraints do
not exist).

10. Surrogate Constraint Strategies for Additional Improvement

 Returning to basics, we observe as in the surrogate constraint proposals of
Glover (1965, 1971) that additional strengthening can be obtained by generating surrogate
constraints from inequalities obtained as logical implications of the original constraints. In the
present setting, a well-known source of logical implications is provided by clique inequalities
(Padberg, 1973). Whenever a set C of nodes constitutes a clique, i.e., each pair of nodes in C is

17

joined by an edge, then clearly at most one of the nodes in C can belong to an independent set.
Consequently, we can write

∑ (xi : i ∈ C) ≤ 1.
If C contains more than two nodes, the clique inequality is stronger than any of the component
inequalities

xi + xj ≤ 1 i ≠ j, i, j ∈ C
and can replace all of these inequalities.

The clique inequality is also stronger than a simple surrogate constraint formed without
reference to logical implications. To illustrate, consider a clique composed of nodes 1, 2 and 3,
whose associated component inequalities are

 x1 + x2 ≤ 1
 x1 + x3 ≤ 1
 x2 + x3 ≤ 1.

The simple-sum surrogate constraint for this system is
2x1 + 2x2 + 2x3 ≤ 3

and is dominated by the logically derived clique inequality
 x1 + x2 + x3 ≤ 1.

 Larger cliques provide still greater degrees of strengthening. For example, the
component inequalities for a clique on nodes 1, 2, 3 and 4 yield a simple-sum surrogate
constraint of

3x1 + 3x2 + 3x3 + 3x4 ≤ 6.
Evidently, this is only “half as strong” as the clique inequality

 x1 + x2 + x3 + x4 ≤ 1.
These observations show that the generation of surrogate constraints by including

reference to logically implied inequalities is particularly relevant in the present setting. As a
result of dominating the component two-variable inequalities that serve as their “building
blocks,” the clique inequalities are preferable to use in the role of source inequalities for
generating surrogate constraints over larger numbers of variables. Such surrogate constraints can
then be used to create stronger versions of the sub-problems SC1 and SC2. These versions can be
additionally improved by the opportunity to use surrogate constraint normalizations whose
weights differ for clique inequalities over differing numbers of variables. More general
normalization rules such as those indicated in Section 3.1 become applicable.
 Another important consequence derives from identifying clique inequalities. Disjoint
subsets of these inequalities can also be extracted to provide stronger sub-problem relaxations
than the SC and SS models previously discussed. Using common terminology, a collection of
disjoint sums of variables each bounded above by 1 is called a GUB (“generalized upper bound”)
system, and thus by means of clique inequalities we find it useful to address more general GUB-
constrained versions of the SC and SS problems.

It may be possible that clique inequalities containing more than two variables are few in
number or do not exist. However, even where cliques beyond size 2 are rare, their discovery can
be valuable. As the previous illustration has suggested, accounting for components of cliques
separately rather than considering their combined implications produces a misleading evaluation,
and an exaggeration of an accompanying estimate of the size of an independent set. Effort spent
to remove this element of exaggeration by identifying and exploiting clique inequalities can
therefore be well rewarded.

This raises two primary issues: (1) to identify collections of inequalities that lead to
strong instances of GUB-constrained SC and SS models, and (2) to develop algorithms that solve

18

these models highly efficiently. We show that it is possible to handle both of these
considerations simultaneously, by a dynamic solution strategy that generates the clique
inequalities for the GUB system and solves the associated sub-problems at the same time. In
addition, for problems that hide their complexity in structures more general or more subtle than
cliques, we observe in Section 12 how these ideas can be extended to q-complete systems, which
give rise to inequalities that include clique inequalities as a special case.

11. Creating and Exploiting Clique Inequalities Dynamically.
 We represent a collection of disjoint cliques that will be generated dynamically by the
notation
 Clique(p): p = 1,…,nc,
 where the number of cliques nc is determined automatically by the process of generating the
cliques themselves. The clique generation method is a constructive procedure embodied within
the algorithm for exploiting the GUB system defined by the cliques.
 The approaches to be described can also be advantageously used within multi-start
methods by varying the choice rules of the dynamic generation process on different passes. Such
a repeated application provides an opportunity to create a larger collection of cliques, which in
turn can be used to produce stronger surrogate constraints. The solution procedures can also
draw upon cliques from the pool already established, selecting new sub-collections of disjoint
members from this pool rather than creating new ones. Such a pool can also be created by
preprocessing, using variations of the same processes embedded within a multi-start method.
 The guidance provided by surrogate constraints in these processes additionally affords a
means to supplement (or in some cases replace) the use of separation algorithms designed to
identify cliques in branch and cut methods. Such applications can take advantage of dual
multipliers produced by solving LP problems within branch and cut methods, giving weights for
generating surrogate constraints that can be further enhanced by procedures described in
Appendix 2.
 The first and simplest problem we address by a dynamic method is the GUB-constrained
version of SC, which can be written as follows.

SC:GUB: Maximize xo = ∑ (xi : i ∈ N)
 subject to ∑ (aixi : i ∈ N) ≤ ao

 ∑ (xi : i ∈ Clique(p)) ≤ 1 for p = 1, …,nc
 xi binary i ∈ N

To describe the method for solving SC:GUB, we say that Clique(p) can be augmented by node i
if adding node i to Clique(p) creates a larger clique, i.e., if {i, j} ∈ E for all j ∈ Clique(p).5
The method applies as well to situations where cliques of size greater than 2 may not exist, by
assembling good choices for cliques composed of the edges {i,j} ∈ E. (There is no requirement
that the indicated cliques must include all nodes of N.) The basic method can be summarized in
the following simple form.

5 Checking this condition is facilitated in the following method by keeping a bit matrix M(i,j), where M(i,j) = 1 if
{i,j} ∈ E and M(i,j) = 0 otherwise.

19

 Dynamic Method for SC:GUB.
 0. Index the variables so that ai ≤ ai+1, for i, i+1 ∈ N. Let xi = 0 for i = 0 and i ∈ N ,

ASUM = 0 and i = 1.
1. If ASUM + ai > ao, stop, the current solution is optimal.
2. If some existing Clique(p), 1 ≤ p ≤ nc, can remain a clique by adding node i, choose

such a clique and add i to Clique(p).
3. Otherwise, if no clique exits that can be augmented by node i, create a new clique to

contain node i: Set nc := nc + 1, Clique(nc) = {i}, xi = 1, xo := xo + 1, ASUM :=
ASUM + ai.

4. If i = n, stop. Otherwise set i := i + 1 and return to step 1.

 In the preceding method, all variables start 0, and a variable xi is set to 1 if node i is the
first node to become an element of a clique that is newly created. For other nodes i subsequently
added to the clique, the variables xi retain their initial 0 value. Once no more variables can be set
to 1 without violating the surrogate constraint inequality, the method stops. It is possible at the
end that one or more of the Clique(p) sets are extraneous, in the sense that they contain a single
node i, whose corresponding clique inequality xi ≤ 1 is redundant. (The associated variables are
nevertheless relevant in that they are assigned values of 1 in the solution process.)

Various rules can be used in Step 2 for choosing the particular Clique(p) to augment by
node i, when more than one choice exists. A simple rule is to examine the cliques either in
ascending or descending order of the indexes p (i.e., in FIFO or LIFO order), and to choose the
first (respectively, smallest or largest) p for which Clique(p) can be successfully augmented. At
the same level of simplicity, the method can alternate between FIFO and LIFO choices, and a
variety of other rules are evidently possible.

Since the foregoing method is very fast, and solves the SC:GUB problem at the same
time that it generates it, an opportunity arises to implement more than one choice rule in Step 2
and then select the best resulting bound for xo.

In addition, the method can be accelerated by considering Clique(p) as a candidate to be
augmented only if it does not exceed a specified size s. Restricting s to 2 or 3 (i.e., restricting the
largest clique size to 3 or 4), may appreciably speed the method, although the outcome depends
on the problem instance. Tradeoffs in the quality of the outcomes produced by restricting clique
size enter into consideration, since larger cliques can more strongly constrain the set of feasible
solutions. An approach that keeps track of the sizes of cliques produced during successive
passes of a multi-start method, accounting for the fact that clique sizes will drop as larger
numbers of variables are assigned values, can provide reasonable choices for s on later passes as
a result of information derived from earlier passes.

11. 2 Solving the GUB-Constrained SS Problem.
 In a manner analogous to the formulation of the SC:GUB problem, we may formulate a
GUB-constrained version of the SS problem as follows.

SS:GUB: Maximize xo = ∑ (xi : i ∈ N)
 subject to ∑(xi: i ∈ N) ≤ Uo(j)xj + |N|(1-xj) j ∈ N
 ∑ (xi : i ∈ Clique(p)) ≤ 1 for p = 1, …,nc

 xi binary i ∈ N

20

As in the case of the SS problem, the inequalities over j ∈ N above can also be replaced by the
nonlinear inequality

∑(xi: i ∈ N) ≤ Min (Uo(i): xi = 1, i ∈ N).
By direct extension of Theorem 4, the method for SS:GUB acquires a structure similar to that of
the SC:GUB method, and can be expressed even slightly more succinctly.

 Dynamic Method for SS:GUB.

0. Index the variables so that Uo(i) ≥ Uo(i+1), for i, i+1 ∈ N. Let xi = 0 for i = 0 and
i ∈ N , and i = 1.

1. If xo > Uo(i), stop, the current solution is optimal.
2. If some existing Clique(p), 1 ≤ p ≤ nc, can remain a clique by adding node i, choose

such a clique and add i to Clique(p).
3. Otherwise, if no clique exits that can be augmented by node i, create a new clique to

contain node i: Set nc := nc + 1, Clique(nc) = {i}, xi = 1, xo := xo + 1.
4. If i = n, stop. Otherwise set i := i + 1 and return to step 1.

 The previous comments about the choices in Step 2 of the SC:GUB method apply to the
SS:GUB method as well.

11. 3 The Weighted SS:GUB Problem.
 The GUB-constrained version of the weighted SS problem, which we denote by
W-SS:GUB, can be written

W-SS:GUB: Maximize xo = ∑ (cixi : i ∈ N)
 subject to ∑(cixi: i ∈ N) ≤ Uo(j)xj + Uo(1-xj) j ∈ N
 ∑ (xi : i ∈ Clique(p)) ≤ 1 for p = 1, …,nc

 xi binary i ∈ N

where Uo is an upper bound on xo. This problem requires a somewhat more complex method
than the SS:GUB problem, just as the W-SS problem requires a more complex method than the
SS problem. However, the earlier W-SS method extends smoothly to the GUB case. The
analysis of Theorem 6 discloses that the primary change required is to keep track of a special
node for each Clique(p), which we denote by MaxWtNode(p), which is the node in Clique(p)
with the largest ci (weight) value. We identify how this is done as follows.

Method for W-SS:GUB
 1. Index the variables so U0(1) ≥ U0(2) ≥ … ≥ U0(n). Start with q = 1 and CSUM = 0.

2. If some existing Clique(p), 1 ≤ p ≤ nc, can be augmented by node q, choose such a
clique and set i = MaxWtNode(p) (for MaxWtNode(p) as previously determined in
Step 2(3) or 3(1)). Then

 (1) add q to Clique(p).
 (2) if ci ≥ cq, set xq = 0
 (3) if ci < cq set MaxWtNode(p) = q, and let d = cq – ci. Then
 (i) if CSUM + d ≤ U0(q) set xq = 1, xi = 0 and CSUM := CSUM + d
 (ii) if CSUM + d > U0(q) set xq = f and xi = 1 – f for f = (U0(q) – CSUM)/d

 and then set CSUM = U0(q)

21

3. Otherwise, if no existing clique can be augmented by node q, then

(1) create a new clique to contain node q: Set nc := nc + 1, Clique(nc) = {q}, and
MaxWtNode(nc) = q

(2) if CSUM + cq ≤ U0(q) set xq = 1 and CSUM : = CSUM + cq
 (3) if CSUM + cq > U0(q) set xq = (U0(q) – CSUM)/cq and then set

 CSUM = U0(q)
 4. If q = n, x0 = CSUM and the method stops. Otherwise:
 (1) If CSUM ≥ U0(q+1) then x0 = CSUM, xi = 0 for i > q and the method stops.

 (2) If CSUM < U0(q+1), then set q: = q + 1 and return to Step 2.

 The validity of this method derives by logical extension of the proof of Theorem 6. As in
the case of the simpler W-SS problem, the approach is directly applicable to solving weighted
independent set problems, and can be adapted by a change of variables to give a method for
solving the associated covering problems.

11.4 The Weighted SC:GUB Problem.
 We have inverted the order of considering the weighted versions of the SS:GUB problem
and the SC:GUB problem, because the latter problem requires a somewhat more intricate method
to handle. We can write the problem to be addressed as follows.

W-SC:GUB: Maximize xo = ∑ (cixi : i ∈ N)
 subject to ∑ (aixi : i ∈ N) ≤ ao
 ∑ (xi : i ∈ Clique(p)) ≤ 1 for p = 1, …,nc
 xi binary i ∈ N

 To solve this problem, we proceed as in the case of the W-SC problem by transforming it
into a new problem, which in the present instance we denote as T-SC (“T” for “transformed”).
The new problem has the same form as W-SC:GUB, except that we change the values of some of
the ci and ai coefficients, dropping some of the variables and removing the GUB constraints.
Thus the problem acquires the form of an ordinary knapsack problem, and we can solve its
continuous version by the LP Knapsack Solution rule.
 Let Clique(p:q) be defined to be the subset of Clique(p) given by
 Clique(p:q) = {i ∈ Clique(p): i > q}.
The following transformation reindexes the elements of Clique(p), possibly more than once for
some elements, and on each occasion Clique(p:q) is assumed to be defined relative to the current
indexing. As variables are dropped, their indexes are removed from Clique(p) and Clique(p:q),
and hence also removed from N, leaving a residual N we denote by N′.

Transforming W-SC:GUB into T-SC.
0. Begin with N′ = N, and record the original ci and ai values as ci

o and ai
o. Perform the

following steps for each Clique(p), 1 ≤ p ≤ nc, beginning the execution for each p by
setting q = 0.

1. For all i,j ∈ Clique(p:q), index the variables so that ci/ai ≥ cj/aj, and if the ratios are
equal, then ai ≥ aj.

2. Let i = Min(h∈ Clique(p:q)), and for all j ∈ Clique(p:i) such that either ci
o ≥ cj

o or
ai

o ≥ aj
o, drop j from N′ (and hence from Clique(p) and Clique(p:i)).

22

3. If Clique(p:i) is now empty, the transformation for Clique(p) is complete. Otherwise,
replace xi by a new variable zi defined by zi = xi + ∑ (xj : j ∈ Clique(p:i)). Then zi
receives the coefficients ci and ai associated with xi, and each xj, j ∈ Clique(p:i),
receives new coefficients given by

 cj : = cj
o – ci

o

 aj : = aj
o – ai

o

 Let q = i and return to Step 1.
4. Once the transformation is completed for every Clique(p), the final form of T-SC is

defined by reference to the new zi variables and the xi variables that were not
eliminated, where each variable receives the final ci and ai coefficients identified for
that variable.

 Theorem 7. An optimal LP solution to W-SC:GUB is obtained by applying the LP
Knapsack Solution Rule to the transformed problem T-SC (treating the zi variables in the same
way as the xi variables). Optimal solution values for the original xi variables are recovered by
the rule:

(1) xi = zi – zj for each i,j ∈ Clique(p) such that zj was created immediately following the
creation of zi, and

(2) xi = zi – xj if zi was the last z variable created for Clique(p), and xj was the single
remaining variable not eliminated.

All xi variables not transformed into z variables retain their assigned values.

 Proof: Follows by inductive application of the reasoning of the proof of Theorem 5. �

 We now describe a method to take advantage of this theorem as the GUB sets are
generated dynamically. To facilitate the description, we introduce some additional arrays and
make reference to a standard linked list Next(i) to order the variables. The linked list, which
orders the variables by starting with i = FirstIndex and visiting all i ∈ N by repeatedly setting
i := Next(i), is constructed by the rule of defining Next(i) = h, for all i,h ∈ N, so that6
 ci/ai ≥ ch/ah and ai ≥ ah if the ratios are equal.
 As a clique is being dynamically constructed (or as its elements are being visited) in the
sequence determined by the following algorithm, we keep track of the index i = Current(p) for
each Clique(p) which identifies the “current xi” for that clique. We also keep track of “Updated”
nodes in the clique, by setting Update(j) = i, if xj has been processed by updating its coefficients
according to the rule cj = cj

o
 – ci

o and aj = aj
o – ai

o. The update is not required for each xj for
j ∈ Clique(p), because we can defer the update until xj is itself a candidate to be selected as xi.
 Finally, we require an array CliqueID(j) to keep track of which clique a node j belongs to,
setting CliqueID(j) = p if node j belongs to Clique(p), and setting CliqueID(j) = 0 if node j does
not belong to a clique.

6 Because the GUB-Constrained Knapsack method changes some problem coefficients and thus changes the linking
by Next(i), an accompanying reverse order linked list is useful to execute such changes.

23

 Dynamic GUB-Constrained Knapsack Method.
0. To begin, set nc = 0, and for all j ∈ N, set: xj = 0, Update(j) = 0, CliqueID(j) = 0.
 Set ASUM = 0 and j = FirstIndex. Notationally, denote the last i ∈ N visited by the

Next(i) ordering as LastIndex.

1. Let p = CliqueID(j). If p = 0, proceed to Step 2, and otherwise go to Step 3.
2. (Node j does not yet belong to a clique.) Check if node j can augment an existing

clique:
(a) Node j does not enlarge an existing clique (or no cliques exist): Create a new

clique to contain node j: Set nc := nc + 1, Clique(nc) = {j}, CliqueID{j} = nc,
Current(nc) = j (xj is treated as the current xi of the T-SC transformation) and
Update(j) = j (xj is self-updated, and does not change its coefficients). Set
p = nc and proceed to Step 3.

(b) Node j augments an existing clique: Select such a Clique(p), add j to
Clique(p), and set CliqueID(j) = p.

3. (Node j belongs to the existing Clique(p).) Let i = Current(p) (identifying the node i
of Clique(p) that qualifies as the current xi of the T-SC transformation). Check if
Update(j) = i:

(a) Update(j) = i (xj has been updated by xi). Assign xj its current value:
(1) If ASUM + aj > ao, then

 Set xj = (ASUM – ao)/aj and ASUM = ao.
 Otherwise:

 Set xj = 1 and ASUM := ASUM + aj.
(2) If j ≠ i (xj has not yet taken the role of xi), then:

Set xi := xi – xj and Current(p) = j (hence xj becomes the new xi
for Clique(p)).

(3) If ASUM = ao or if j = LastIndex, the solution is complete.
Otherwise, set j := Next(j) and go to Step 1.

(b) Update(j) ≠ i (xj has not been updated by the current xi):
(1) If cj

o ≤ ci
o or aj

o ≤ ai
o, then drop node j; i.e., xj retains its

preassigned 0 value. If j = LastIndex, stop. Otherwise, set
j := Next(j) and return to Step 1.

(2) If cj
o > ci

o and aj
o > ai

o, then: Set cj = cj
o – ci

o, aj = aj
o – ai

o and
Update(j) = i. If j = LastIndex, stop. Otherwise, set
PossibleNext = next(j): Reinsert j in its proper position on the linked
list, based on its updated coefficients. If j does not change its
position, i.e., is still the first index on the list remaining to be
examined, go to Step 3. But if j is no longer in the first position, set
j = PossibleNext (the node now in the first position), and go to
Step 1.

11.5 Generalized Results for Exploiting Conditionally Shared Limitations

We now provide results that link the first and second principles of conditionally shared
limitations, and allow them to be applied to more general contexts. We start by giving a general
problem formulation and identifying three related problems, followed by the main theorem that
gives bounds for the original problem by reference to the others. We also describe a method for

24

implementing the theorem and provide an example to demonstrate how the method can be
applied.
 We denote the problem we are interested in solving by

 Problem P: Maximize xo = f(x)
 subject to x ∈ X

where x ∈ X implies xi = 0 or 1 for i ∈ I ⊆ N.7 Associated with Problem P, we identify the
relaxed problem PR given by:

 Problem PR: Maximize xo = g(x)
 subject to x ∈ Xo

The set Xo is a superset of X and the function g(x) is an overestimator of f(x), i.e.,
Max(g(x): x ∈ Xo) ≥ Max(f(x): x ∈ X). Define Uo(i) for i ∈ I to be a conditional upper bound
for xo in Problem P when xi = 1, i.e., Uo(i) is a value that satisfies the inequality

Uo(i) ≥ Max(f(x): x ∈ X, and xi = 1).
Then we identify the special relaxation PR* of P given by:

 Problem PR*: Maximize xo = g(x)
 subject to x ∈ Xo

 xo ≤ Min(Uo(i): xi > 0, i ∈ I)

We observe that Problem PR* is a generalization of the problems SS and W-SS, including their
GUB-constrained versions.

Following our previous conventions, we let xo(P), xo(PR), etc., denote the optimum xo
value for the corresponding problem. (We interpret xo to be -∞ if the associated problem has no
feasible solution.) Given knowledge of a bound Uo on xo in Problem P as a result of solving PR
(i.e., Uo = xo(PR)), we can always assume Uo(i) ≤ Uo. For example, Uo can initially be obtained
by solving PR (to give Uo = xo(PR)), accompanied by solving instances of PR in which selected
xi variables are given the assignment xi = 1 to obtain associated values Uo(i) ≤ Uo, and we may
take Uo(i) = Uo for the remaining xi variables for i ∈ I.

It is clear that PR* is a valid relaxation of P. Moreover, PR* is a stronger relaxation than
PR if Uo(i) < Uo for at least one xi, i ∈ I, such that xi > 0 in an optimal solution to PR.
Consequently, we are interested in solving PR* to obtain a tighter bound Uo, and also in solving
versions of PR* subject to xi = 1for selected variables xi, to obtain tighter bounds Uo(i) than
would be possible by solving PR. Since these latter “constrained versions” of PR* have the
same form as PR* upon making the assignment xi = 1 and eliminating xi, we state all our results
in terms of PR*.

7 The set I, which identifies the integer variables, is different from the set I of Section 7.

25

Let U be the set of the distinct values taken by the bounds Uo(i), i.e.,
U = {u: u = Uo(i), i ∈ I}, and define I[u] = { i ∈ I: Uo(i) ≤ u}. Then we identify a family of
problems over u ∈ U

 Problem PR[u]: Maximize xo = g(x)
 subject to x ∈ Xo

 xi = 0, i ∈ I[u]

Our main result, which generalizes and strengthens Theorems 1 and 2 of Section 7,
demonstrates that solving PR[u] for any selected u = u* either gives an optimal solution to PR*,
or else bounds xo(PR*) and allows U to be reduced in a manner that allows the best bound on
xo(PR*) (and hence on xo(P)) to be found by a “better than binary” search.8

Theorem 8. Let u* be any element of U, and let x* denote an optimal solution to

PR[u*], with xo* = xo(PR[u*]). Then x* either solves PR* or the pair (u*, xo*) bounds xo(PR*)
as follows.
Case 1. If u* ≤ xo*, then:

(1) xo(PR*) ≤ xo*.
(2) Let u+ = Min(Uo(i): xi* > 0) (where u+ = ∞ if all xi* = 0).

(a) If u+ ≥ xo*, then x* is optimal for PR* and xo(PR*) = xo*.
(b) If u+ < xo*, then a stronger bound on xo(PR*) than xo* exists by solving PR[u]

only if u lies in the range u+ ≤ u < xo*.
Case 2. If u* > xo*, then:

(3) xo(PR*) ≤ u*.
(4) Let u′ = Max(u ∈ U: u ≤ xo*). If a stronger bound on xo(PR*) than u* exists by

solving PR[u], then such a bound can be found for u in the range u′ ≤ u < u*.

 Proof: Suppose xo(PR*) > xo*. Then since xi* = 0 for all Uo(i) ≤ u* by the formulation of
PR[u*], we must have xi > 0 for some Uo(i) ≤ u* in an optimal solution to PR*, which implies
xo(PR*) ≤ u*. This establishes xo(PR*) ≤ Max(u*, xo*), which implies both (1) and (3). Next, to
establish 2(a), u+ ≥ xo* implies x* is feasible for PR*, since the constraint xo ≤ Min(U0(i): xi > 0)
is satisfied by x* and xo*. If x* is not optimal for PR*, i.e., if xo(PR*) > xo*, then an optimal
solution x to PR* must satisfy xi > 0 for some i ∈ I[u*] (since otherwise the PR[u*] requirement
that xi = 0 for Uo(i) ≤ u* is compatible with optimality of x* for PR*). But then PR* requires xo
≤ u* for feasibility, hence xo(PR*) ≤ xo*, a contradiction. To establish 2(b), the previous
justification of (1) and (3) shows that Max(u, xo(PR[u])) < xo* must hold if solving PR[u] gives a
stronger bound than xo*. Hence u < xo*, and in addition, xo(PR[u]) < xo* implies u > u*. For u
in the interval u* < u < u+, we have xo(PR[u]) = xo*, because x* remains feasible for PR[u]
through this interval and PR[u] is more constrained than PR[u*]. Thus, u+ ≤ u < xo*. It remains
only to establish (4). To obtain a tighter bound than u* on xo(PR*) we must have
u* > Max(u, xo(PR[u])), hence u < u*, which implies in turn that xo(PR[u]) ≥ xo(PR[u*]) = xo*.
Since xo* < u* in Case 2, w also have xo(PR[u]) ≥ xo*, hence xo(PR[u]) ≥ u, for all u ≤ xo*. Thus

8 To increase the usefulness of this result for the general case, the variables xi of the original problem can be
complemented where appropriate to assure that Uo(i) is the tighter of the two upper bounds for xo when xi is
alternately assigned the values 0 and 1. The result further applies to general mixed integer programming problems
by allowing “xi = 0 or 1” to be a shorthand notation for “xi ≤ v or xi ≥ v + 1,” for some integer variable xi and a
chosen integer value v.

26

for u ≤ xo* the strongest bound results for u = u′ = Max(u ∈ U: u ≤ xo*), which confirms the
conclusion of (4). �

 The usefulness of the conditions of Theorem 8 for finding a best pair (u*, xo*) for
bounding xo(PR*) can be seen by noting that only part of these conditions, the inequalities
u < xo* in 2(b) and u < u* in (4), are sufficient to allow such a pair to be found by a binary search
over elements of U. The remaining inequalities in 2(b) and (4), as well as those in 2(a) for
identifying optimality, additionally constrain the search.
 In many applications, particularly graph problems such as the independent set problem,
the relevant values of u will be relatively small in number. For example, values beyond a certain
size are not likely to be useful for the goal of restricting xo(P), and hence can be disregarded (set
to Uo) in the formulation of PR*. Consequently, the set U will often contain only a fairly small
number of elements, and a search guided by Theorem 8 can quickly identify the best one.

To conveniently describe a method for implementing Theorem 8, we enlarge U to contain
one additional element uo = - ∞, and index the elements of U so that U = {uo, u1, u2, …, uk},
where uo < u1 < u2 < … < uk.9 We observe that I[uo] is empty and hence PR[uo] is the problem
PR. Also, uo ≤ xo(PR[uo]) = xo(PR), and hence Theorem 8 remains valid for this enlarged
form of U.

It is also useful to create an additional element uk+1 = ∞, although uk+1 is not added to U.
This convention obviates the need to include special qualifications in the descriptions of results
and methods that follow. We first state a Corollary of Theorem 8, which is a direct
generalization of Theorems 1 and 2.

Corollary. For all u* ∈ U, and for x* and xo* (= xo(PR[u*])) as in Theorem 8:

xo(P) ≤ xo(PR*) ≤ Max(u*, xo*)

Further, identify the index h such that uh = u*. Then x* solves PR* if xo* ≤ uh+1 (or if xo* = uh, as
a special case). Finally, let p = Max(j: 0 ≤ j ≤ k: uj ≤ xo(PR[uj])). Then the best bound by
Theorem 8 is given by
 xo(PR*) ≤ Min(xo(PR[up]), up+1).

 Proof: The assertions follow at once from Theorem 8. �

 We now extract additional elements of Theorem 8 to provide a method that efficiently
identifies the strongest bound on xo(PR*). Let xo

denote the best candidate value for xo(PR[up]),
and u# denote the best candidate value for up+1.

Fast Determination of the Bound on xo(PR*)
0. Begin with xo

= u# = ∞, kMin = 0, kMax = k.
1. Select h: kMin ≤ h ≤ kMax, and let u* = uh.
2. Solve PR[u*], and denote the solution by x*, with xo* = xo(PR[u*]).

(1) If u* ≤ xo*, then: Let xo
= xo* and uj = Min(Uo(i): xi* > 0) (or j = k +1, hence

uj = ∞, if all xi* = 0).
(a) If uj ≥ xo*, then xo(PR) = xo* and the search ends.
(b) If uj < xo*, then set kMin = j and kMax := Max(q ≤ kMax: uq < xo*).

9 By this organization, the set I[uj] for j > 0 constitutes a generalized form of the set Ij of Section 7.

27

 (2) If u* > xo*, then: let u# = u* and if ukMin ≤ xo*, set
 kMin = Max(q ≤ kMax: uq ≤ xo*). Set kMax := h – 1.

3. If kMin > kMax, the search ends and xo(PR*) ≤ Min(xo
#, u#).

 Otherwise, return to Step 1.

The condition “kMin > kMax” of Step 3 is checked each time kMin or kMax changes in Step 2,
and the search ends as indicated if the condition holds.
A Numerical Example.
 To illustrate the foregoing method, we consider a problem that includes the constraints of
both the SC and SS problems of Section 7. Instead of being compelled to solve these problems
separately, to obtain a (possibly different) bound on xo from each, we are able to combine the
two problems into a single new problem by taking advantage of Theorem 8. SC takes the role of
the relaxed problem PR, and the associated problem PR* thereby combines SC and SS. The
formulation of PR*, where in this instance f(x) = g(x) and I = N, is:

 PR*: Maximize xo = ∑ (xi : i ∈ N)
 subject to ∑ (aixi : i ∈ N) ≤ ao

 xi + xj ≤ 1 {i,j} ∈ E′
 xi binary i ∈ N

 ∑(xi: i ∈ N) ≤ Min (Uo(i): xi > 0, i ∈ N).10

 The following two tables illustrate the solution of the problems PR[u] for various values
of u, as a means of bounding xo(PR*). Table 1 gives the numerical data for a 16 variable
problem, where the variables are indexed for convenience to that the edges {i,j} ∈ E′ (extracted
as a set of node-disjoint edges from E) are {1,2}, {3,4}, {5,6}, etc.

Table 2 gives the solution values for the xi variables for each problem PR[u], where the
values of u range over U = {- ∞, 2,3,4,5,6,7,8} (corresponding to the different Uo(i) values
identified in the first table, together with uo = - ∞). Variables that are forced to 0, by the
restriction xi = 0 for i ∈ I[u], are shown by an “X entry” in Table 2. Zero-one solution values for
remaining variables are as indicated. The variables are pre-indexed in an order that makes it
easy to see the solution to SC at each stage (obtained by successively setting xi = 1 in the order
from smaller to larger ai values, allowing at most one assignment xi = 1 for each edge, until no
more assignments can be made subject to ∑aixi ≤ ao = 72).11

Table 1. Problem Data

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ai 3 12 7 11 12 16 13 15 17 30 18 29 31 34 32 33 ≤72
U0(i) 3 4 3 3 4 8 2 3 5 7 3 6 7 4 3 7

10 This constraint is equivalent to the constraint ∑(xi: i ∈ N) ≤ Min (Uo(i): xi = 1, i ∈ N) of Problem SS, since x is a
binary vector in the SC formulation. As noted before, if a bound on setting xi = 0 is more limiting than Uo(i) for
setting xi = 1, the variable is simply complemented to define Uo(i) relative to yi = 1 – xi, since yi = 1 when xi = 0.
11 The Uo(i) values of Table 1 may be assumed to come from setting xi = 1 in an original problem P (not shown),
followed by generating and solving an associated PR problem. Or less stringently, they can come from setting xi = 1
in PR and solving the resulting problem. Similarly, the current PR* problem itself may come from setting xr = 1 in P
or PR for some xr (e.g., x17) to produce the data in Table 1, for the goal of obtaining a stronger bound Uo(r).

28

Table 2. Solution Values ()ix for PR[u]

u x0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Σaixi
- ∞ 6 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 70
 2 6 1 0 1 0 1 0 X 1 1 0 1 0 0 0 0 0 72
 3 4 X 1 X X 1 0 X X 1 0 X 1 0 0 X 0 70
 4 3 X X X X X 1 X X 1 0 X 1 0 X X 0 62
 5 2 X X X X X 1 X X X 0 X 1 0 X X 0 45
 6 2 X X X X X 1 X X X 1 X X 1 X X 0 61
 7 1 X X X X X 1 X X X X X X X X X X 16
 8 0 X X X X X X X X X X X X X X X X 0

 Proceeding down the rows of Table 2, the progression by which xo decreases as u
increases becomes evident. If the solution method first selects u = 4, then the method reduces
kMax and increases kMin so that the only remaining value of u to examine is u = 3, and the
solution to PR[3] immediately confirms that xo(PR*) = 4. If u = 3 is chosen first, the method at
once verifies that the associated solution is optimal.

If instead of first picking a “middle” u value, the solutions are generated by starting from
u = - ∞, and successively increasing the value of u, then the value of kMax progressively drops
as u and kMin increase. Proceeding in the opposite direction, the value of kMin increases as u
and kMax decrease.

If the SC and SS problems are solved independently of each other, then xo(SC) = 6 and
xo(SS) = 5, and hence the bound xo(PR*) = 4 obtained above proves to be better than available
from these component problems (as may be expected). In addition, the foregoing approach can
be applied in a stronger way by allowing the set E′ to be regenerated from the original problem
to exploit the knowledge that xi is forced to 0 for Uo(i) ≤ u. Such a strategy is facilitated by the
fact that all variables xi compelled to be 0 for u = ukMin are 0 for all larger values of u, and since
kMin progressively grows, these xi are also compelled to be 0 on all subsequent iterations. The
effort of applying the approach can also be reduced by only regenerating E′ for the values of u
that give the strongest bounds when the regeneration process is not applied.

To show how the strengthening can occur, suppose we undertake to re-generate (a part
of) E′ in order to re-evaluate the solution for u = 3, which is the value that previously determined
the strongest bound for xo(PR*). Also assume the edge set E contains the edge {2,5}. Applying
the rule in Section 7 for choosing E′, we introduce this edge into E′ for u = 3 in place of edge
{5,6}. (The rule makes this choice since the edge {1,2} no longer exists when u = 3, as a result
of compelling x1 = 0.) Then the inequality x2 + x5 ≤ 1 yields a solution with xo(PR[3]) = 3, which
the method at once confirms to be optimal, and hence which tightens the bound given by xo(PR*)
from 4 to 3.

12. Q-Complete Systems and Associated Inequalities
 We undertake to show that the ideas of the preceding sections can readily be adapted to
exploit more general structures, giving rise to inequalities that can either be used to generate
surrogate constraints or that can be embedded in a dynamic solution process.

12. 1 Inequalities for q-Complete Systems.

29

 Consider a system of inequalities
 (V:m) ∑ (xi: i ∈ Q) ≤ m, Q ∈ S(V)

where S(V) is a specified collection of subsets of the set V. We say the system (V:m) is
q-complete (relative to S(V)) if S(V) consists of all q-element subsets of V; i.e., if
S(V) = {Q ⊆ V: |Q| = q}. We assume the inequality is non-trivial, i.e., m ≥ 1, and also assume
q ≥ m + 1. This latter inequality represents a non-redundancy condition in the case where the
variables are 0-1.
 For independent set problems, if E(C) ⊆ E is the set of edges over a clique C, then the
collection of inequalities
 xi + xj ≤ 1, {i,j} ∈ E(C)
constitutes a 2-complete system. (That is, the edges {i,j} constitute the sets Q, and C takes the
role of V.)

The fact that this system implies the clique inequality
 ∑(xi: i ∈ C) ≤ 1
is a manifestation of a simple but useful result that applies more generally to any q-complete
system of inequalities for which the variables are non-negative and integer-valued.
 To see how this occurs, we first note that if (V:m) is q-complete and |V| = q+1, then
∑(xi: i ∈ V) ≤ m. This inequality results by creating a simple-sum surrogate from the
q + 1 inequalities ∑ (xi: i ∈ Q) ≤ m of (V:m) as Q ranges over q-element subsets of V. Each
variable xi appears in q of these q + 1 inequalities, and so the simple-sum surrogate constraint is
given by q(∑(xi: i ∈ V)) ≤ (q + 1)m, or equivalently (∑(xi: i ∈ V)) ≤ ((q + 1)/q)m. The
assumption q ≥ m +1 implies the right hand side is less than m + 1, and thus the inequality
∑(xi: i ∈ V) ≤ m follows.

The same result holds more generally without restricting the size of V.

Remark 1. If (V:m) is q-complete (for any V such that |V| ≥ q), then

∑(xi: i ∈ V) ≤ m.

 The remark may be justified by our preceding observations as follows. Since the
inequality holds when |V| = q + 1 (and trivially when |V| = q), it suffices when |V| > q + 1 to
create the inequalities ∑(xi: i ∈ Q′) ≤ m for all q + 1 element supersets Q′ of Q in V. Then,
letting Q range over these sets Q′ establishes that (V:m) is “q + 1 complete” and the process is
repeated for q := q + 1, continuing until q + 1 = |V|. (As in the case of clique inequalities, the
inequality of Remark 1 dominates the separate inequalities of (V:m) and hence can replace
them.)

Related (but slightly different) results also hold for “≥” inequality systems, as represented
by

 (V: ≥m) ∑(xi: i ∈ Q) ≥ m Q ∈ S(V)
 (For notational symmetry, the system (V:m) may alternately be represented by (V: ≤m).)
Corresponding to our previous definition, we likewise define the system (V: ≥m) to be q-
complete (relative to S(V)) if S(V) consists of all q-element subsets of V. We continue to
assume m ≥ 1 and q ≥ m + 1. (The latter represents an additional non-triviality assumption in the
case of 0-1 problems, since q < m is infeasible and q = m forces xi = 1 for all i ∈ Q.)

As a variation on our earlier observation, we cannote in the present case that if (V: ≥m) is
q-complete and |V| = q+1, then ∑(xi: i ∈ V) ≥ m + 1. The inequality again results by creating a
simple-sum surrogate constraint, this time from the q + 1 inequalities of (V: ≥m), which gives
(∑(xi: i ∈ V)) ≥ ((q + 1)/q)m. The assumptions m ≥ 1 and q ≥ m + 1 insure that the right hand

30

side lies strictly between m and m + 1, producing ∑(xi: i ∈ V) ≥ m + 1. But the result again is
more general, extending to any V (such that |V| ≥ q) and we can state

Remark 2. If (V: ≥m) is q-complete, then ∑(xi: i ∈ V) ≥ m + (|V| – q).

Remark 2 follows from the same reasoning that establishes Remark 1, noting that the right hand
side grows by 1 each time q is incremented by setting q := q + 1.

For the “≥ case” considered here, removing the limitation q ≥ m + 1 (which is relevant for
0-1 problems), permits the inequality derived from the simple-sum surrogate constraint to be
stronger. The derivation of a succession of such inequalities when |V| > q + 1 (by considering
successively larger sets within V) similarly produces a stronger inequality than the one given in
Remark 2. Nevertheless, even by retaining the limitation q ≥ m + 1 it is clear that in the 0-1 case
the inequality of Remark 2 dominates the inequalities of the system (V: ≥m) and can replace
them. Without requiring q ≥ m + 1, but retaining the assumption q ≥ 2 (previously implicit), the
stronger inequality that can result by the simple-sum surrogate constraint likewise dominates the
inequalities of (V: ≥m).

12. 2 Weak q-Complete Systems.

We generalize the previous observations for the “≤ case” to increase their applicability.
Corresponding results can be stated for the “≥ case,” by applying arguments related to those that
follow, employing the pattern of development in Section 12.1. (In the situation where the
variables are 0-1, associated results for the “≥ case”can be obtained by the device of
complementing the variables.)

 Consider the system
 [V:m] ∑ (xi: i ∈ Q ∪ P(Q)) ≤ m, Q ∈ S(V)

where each P(Q), whose identity may vary according to the identity of Q, can be any subset of
N – Q, and where, as before, S(V) is a specified collection of subsets of the set V. We say [V:m]
is a weak q-complete system (relative to S(V)) if the removal of each set P(Q) would make [V:m]
a q-complete system. In other words, we stipulate once again that S(V) consists of all q-element
subsets of V; hence S(V) = {Q ⊆ V: |Q| = q}. Also, as before, we assume m ≥ 1 and q ≥ m + 1.

We observe at once that the conclusion of Remark 1 holds if [V:m] replaces (V:m), i.e.,
the inequality ∑(xi: i ∈ V) ≤ m is still valid, since ∑ (xi: i ∈ Q ∪ P(Q)) ≤ m implies
∑ (xi: i ∈ Q) ≤ m. This observation, although entirely apparent, is useful for making it possible
to derive new inequalities by Remark 4, without requiring that all “component inequalities” take
precisely the form of those in a q-complete system. However, we can increase the relevance of
Remark 4 more significantly by translating its basic observations into a stronger result.

For this, let R(Q) = P(Q) – V and let R(V) = ∪ (R(Q): Q ∈ S(V)). Then define
R = {j ∈ R(V): ∃ at least one i ∈ V such that j ∈ R(Q) for every Q that contains i}. (Or more
formally, if Si(V) = {Q ∈ S(V): i ∈ Q} and Rj(V) = {Q ∈ S(V): j ∈ R(Q)}, then
R = {j ∈ R(V): ∃ at least one i ∈ V such that Si(V) ⊆ Rj(V)}.)

Theorem 9. If [V:m] is a weak q-complete system, then
∑ (xi: i ∈ V ∪ R) ≤ m.

 Proof: The preceding arguments establish that the inequality of Theorem 9 holds with R
removed. Moreover, each xj, j ∈ R, appears in all inequalities that some xi, i ∈ V would appear
in, if the system [V:m] were relaxed by setting coefficients of xi to 0 for i ∈ V – Q in each of the

31

inequalities ∑ (xi: i ∈ Q ∪ P(Q)) ≤ m. The simple-sum surrogate constraints used to derive
Remark 1 give xi a unit coefficient in the inequality ∑ (xi: i ∈ V) ≤ m, based only on whether or
not i ∈ Q holds for specified sets Q. Hence each variable xj must receive a coefficient at least as
large as an associated xi variable in this surrogate constraint. Consequently, xj must receive a
positive coefficient in the inequality of Theorem 9 over V ∪ R. �

 We observe several consequences of this result that further extend its utility.

 Corollary 9.1. The conclusion of Theorem 9 holds for a weak q-complete system whose
inequalities are given by
 ∑ (xi: i ∈ Q ∪ Po(Q)) + ∑ (xj: j ∈ R) ≤ m, Q ∈ S(V)
where R ⊆ N – V and Po(Q) ⊆ V for each Q ∈ S(V).

 Proof: The Corollary is readily verified to be a special case of the theorem.�

The next result demonstrates that inequalities of greater strength are “hidden” within the
statement of Theorem 9.

 Corollary 9.2. Assume [V:m] is a weak q-complete system for q > m + 1. Define
q* = m + 1, and let V* be any proper subset of V containing |V| – (q – q*) elements. Then the
weak q*-complete system [V*:m], given by ∑ (xi: i ∈ Q* ∪ P(Q*)) ≤ m for Q* ∈ S(V*), where
S(V*) = {Q* ⊆ V*: |Q*| = q*}, yields an inequality that dominates the inequality of Theorem 9.
In particular, the inequality
 ∑ (xi: i ∈ V* ∪ R*) ≤ m
for R* defined relative to V* as R is defined relative to V, is at least as strong as the inequality
 ∑ (xi: i ∈ V ∪ R) ≤ m
taken directly from [V:m], as determined by V ∪ R ⊆ V* ∪ R*.

 Proof: The result follows by noting that every q*-element subset Q* of V* is contained a
q element subset Q of V, where the system [V:m] can be written as

∑ (xi: i ∈ (Q* ∪ (Q – Q*)) ∪ P(Q)) ≤ m, Q ∈ S* (1)
∑ (xi: i ∈ Q ∪ P(Q)) ≤ m, Q ∈ S(V) – S* (2)

and where S* = {Q ∈ S(V): Q* ⊂ Q for some Q* ∈ S(V*)}. The system [V*:m], given by
∑ (xi: i ∈ Q* ∪ P(Q*)) ≤ m, Q* ∈ S(V*)

is in fact the same as inequality (1) of [V:m], i.e., P(Q*) = (Q – Q*) ∪ P(Q). No element
j ∈ Q – Q* in [V:m] qualifies to belong to R (since this element is in Q), whereas all elements of
Q – Q* belong to R*. Moreover, if P(Q) for Q ∈ S(V) contains any j ∈ R, the fact that (1)
ranges over a proper subset of the inequalities for [V:m] assures that j ∈ R*, and hence we
conclude V ∪ R ⊆ V* ∪ R*, which establishes that the inequality over V* ∪ R* is at least as
strong as the one over V ∪ R. �

 Corollary 9.2 is useful not only for the opportunity to obtain stronger inequalities, but for
the fact that it permits the search for a weak q-complete system to be carried out by restricting
attention to q = m + 1, which involves less work than the search for such a system with a larger
value of q.

32

12. 3 Expansions by Lower Order Progressions
Theorem 9 and the associated observation of Corollary 9.2 have a further important

implication, which involves the ability to expand the inequality ∑ (xi: i ∈ V ∪ R) ≤ m by a
progression that creates new inequalities over lower order systems. In particular, consider any
inequality ∑ (xi: i ∈ V1) ≤ m (where V1 may be given by V1 = V ∪ R from Theorem 9 or
V1 = V* ∪ R* from Corollary 9.2). We seek to enlarge V1 to include one or more additional
variables, i.e., to find some j ∉ V1 that can be added to V1 and still permit ∑ (xi: i ∈ V1) ≤ m to
hold. We show that repeated application of Theorem 9 makes this possible and also has the
added benefit of restricting attention to smaller values of q than given by the stipulated lower
bound of q ≥ m + 1. This not only saves effort in searching for such systems, but gives a
systematic design for strengthening the inequality ∑ (xi: i ∈ V1) ≤ m by enlarging V1 step by
step.
 The mechanism for achieving this may be described as follows. If we assume
|V1| ≥ m + 1, then our previous results show that ∑ (xi: i ∈ V1) ≤ m is equivalent to a collection
of associated inequalities ∑ (xi: i ∈ Q) ≤ m, where Q ranges over all q-element subsets of V1, for
some q ≥ m + 1. Thus, if j ∉ V1 and we are able to identify a set of inequalities
∑ (xi: i ∈ Q) + xj ≤ m, Q ∈ S(V1) = {Q ⊆ V1: |Q| = q}, but where q now is only required to
satisfy q ≥ m, then this identifies system that is equivalent to a set of inequalities over all subsets
of q ≥ m + 1 elements of V1 ∪ {j}.
 By means of this observation, the ability to expand an inequality system by looking at
lower order systems (for smaller values of q) can be expressed as follows, where we replace j
more generally by a set of elements R1 from N – V1 to take fuller advantage of Theorem 9.

 Corollary 9.3. (First Expansion by Lower Order) Assume V1 ⊂ N, |V1| ≥ m + 1,
R1 ⊆ N – V1 and |R1| ≥ 1. Then the two-part system

∑ (xi: i ∈ V1) ≤ m
 ∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R1) ≤ m, Q ∈ S1(V1)
where S1(V1) = {Q: Q ⊆ V1 and |Q| = q}, for some q ≥ m, implies the inequality
 ∑ (xi: i ∈ V1) + ∑ (xj: j ∈ R1) ≤ m.

 Proof: Follows by preceding arguments.�

The ability to take advantage of smaller order systems does not stop here, and we can
express the result at a deeper level as follows.

 Corollary 9.4. (Second Expansion by Lower Order) For V1 and R1 as given in Corollary
C, assume V2 ⊂ V1, |V2| ≥ m, R2 ⊆ V1 – V2 and |R2| ≥ 1. Then the three-part system

∑ (xi: i ∈ V1) ≤ m
 ∑ (xi: i ∈ V2) + ∑ (xj: j ∈ R1) ≤ m
 ∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R1 ∪ R2) ≤ m, Q ∈ S2(V2)
where S2(V2) = {Q: Q ⊆ V2 and |Q| = q}, for some q ≥ m – 1, implies the inequality
 ∑ (xi: i ∈ V2) + ∑ (xj: j ∈ R1 ∪ R2) ≤ m.

 Proof: Follows by preceding arguments.�

33

Comparison of Corollaries 9.3 and 9.4 discloses the pattern for going to deeper levels.
The result applicable to an arbitrary level h, for h ≥ 2, identifies a corresponding (h+1)-part
system based on stipulating Vh ⊂ Vh-1, |Vh| ≥ m + 2 – h, Rh ⊆ Vh-1 – Vh, |Rh| ≥ 1, and
Sh(Vh) = {Q: Q ⊆ Vh and |Q| ≥ m +1 – h}.

12. 4 Inequalities from Sub-Complete Systems.
 The basic surrogate constraint analysis that led to Theorem 9 and its corollaries can be
carried a step farther. We develop a more general inequality system by reference to building
blocks that exhibit features analogous to the building blocks of q-complete systems, which are
the simplest non-trivial forms of these systems where |V| = q + 1. These minimal q-complete
systems are a special case of a structure we call q-sub-complete systems. We identify the special
character of these more general systems and the inequalities they generate as follows.
 Consider the system

 (V:m,r)
∑ (xi: i ∈ V) ≤ m

 ∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R) ≤ m, Q ∈ S(V)
where R ≠ ∅, R ∩ V = ∅ and R ∩ Q = ∅ for Q ∈ S(V). (If the set Ro = ∩(Q – V: Q ∈ S(V)) is
nonempty, then we replace each Q by Q – Ro and add Ro to R.)

To complete the characterization of the system, define Si(V) = {Q ∈ S(V): i ∈ Q} and let
r(i) = |Si(V)|, that is, r(i) is the number of inequalities from the subsystem

∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R) ≤ m, Q ∈ S(V)
in which xi appears with a unit coefficient. If i ∉ Q for all Q ∈ S(V), then Si(V) = ∅ and by
convention r(i) = 0.

The rank r of (V:m,r) is then defined by
 r = Min(r(i): i ∈ V).

We assume r ≥ 1, which is equivalent to the requirement that the sets Q ∈ S(V) cover V, i.e.,
V ⊆ ∪(Q ∈ S(V)).

Finally, we define q = |S(v)|, hence q is the number of inequalities of (V:m,r) excluding
∑ (xi: i ∈ V) ≤ m. Clearly q ≥ r, and we may suppose q > r, or else V ⊆ Q for all Q ∈ S(V) and
the inequality ∑ (xi: i ∈ V) ≤ m is redundant.
 We call (V:m,r) a q-sub-complete system when the foregoing assumptions hold; i.e., in
summary, when R ≠ ∅, R ∩ V = ∅, R ∩ Q = ∅ for Q ∈ S(V), and q = |S(v)| > r ≥ 1.

 Remark 3. A minimal q-complete system (V:m) (for |V| = q + 1) is a q-sub-complete
system (V:m,r) of rank r = q – 1.

 This observation, which follows directly from the preceding definitions and comments,
shows the increased generality afforded by q-sub-complete systems as building blocks for
generating inequalities. Our key result for exploiting the generality provided by these systems
may be expressed as follows.

 Theorem 10. The q-sub-complete system (V:m,r) implies the inequality

 ∑ (xi: i ∈ V) + ∑ (xj: j ∈ R) ≤ m
for any m that satisfies m < q/(q – r) (where q = |S(V)|).

 Proof: To establish the theorem, create a surrogate constraint that gives a weight of q – r
to ∑ (xi: i ∈ V) ≤ m, and a weight of 1 to each of the remaining inequalities of (V:m,r). This

34

yields a surrogate constraint ∑ (aixi: i ∈ Qo) + ∑ (ajxj: j ∈ R) ≤ ao, where Qo = ∪(Q ∈ S(V)),
and by construction ai = (q – r) + r(i) (≥ q) for each i ∈ V, aj = q for each j ∈ R, and
ao = (q – r)m + qm. We relax the surrogate constraint by setting ai = q for i ∈ V (if any
coefficients exist with ai > q) and by discarding variables xi for i ∈ Qo – V (whose coefficients
are smaller than q).12 Thus, we obtain
 q(∑ (xi: i ∈ V) + ∑ (xj: j ∈ R)) ≤ (q – r)m + qm
or equivalently

∑ (xi: i ∈ V) + ∑ (xj: j ∈ R) ≤ ((q – r)/q)m + m
In consequence, we then have

 ∑ (xi: i ∈ V) + ∑ (xj: j ∈ R) ≤ m
provided the right hand side ((q – r)/q)m + m of the surrogate constraint is less than m + 1, or in
short, provided m < q/(q – r) as stipulated.�

 For the special case of a minimal q-complete system, where r = q – 1, the condition
m < q/(q – r) of the theorem translates into the familiar condition q ≥ m + 1.
 Theorem 10 evidently remains valid if the inequality ∑ (xi: i ∈ V) ≤ m of (V:m,r)
is replaced by ∑ (xi: i ∈ V ∪ Vo) ≤ m, for any set Vo. For a statement of the theorem that
involves such a replacement, we may assume Vo ∩ R = ∅ to avoid triviality, and we may also
suppose r(i) < r for i ∈ Vo (since any i ∈ Vo such that r(i) ≥ r can be moved from Vo to V, to give
a stronger inequality by Theorem 10).

12. 5 Inequalities for Special Sub-Complete Systems.
 Two special sub-complete systems, those for m = 1 and those for zero-one variables,
provide additional results.
 We first observe that m = 1 is a privileged value for m, since the condition m < q/(q – r)
always hold for this case. Consequently, we have the following immediate outcome of
Theorem 10.

 Corollary 10.1. If S(V) is any collection of sets Q that cover V, then the inequalities
 ∑ (xi: i ∈ V) ≤ 1 and

∑ (xi: i ∈ Q) + ∑ (xj: j ∈ R) ≤ 1, Q ∈ S(V)
imply

∑ (xi: i ∈ V) + ∑ (xj: j ∈ R) ≤ 1.

The strongest form of the inequality produced by the preceding corollary of course results by
restricting attention to minimal covers. A more restricted special case arises in the situation
where the inequalities of Corollary 10.1 represent clique inequalities. Then Corollary 10.1 yields
the following outcome.

 Corollary 10.2. Let V and the sets Q ∈ S(V) be cliques on a graph G, and assume the
elements of S(V) provide a cover of V. Then the expanded set V ∪ R is also a clique, for
R = ∩(Q – V: Q ∈ S(V)).

12 These steps correspond to including inequalities xi ≥ 0, in the form – xi ≤ 0, within the surrogate constraint
construction.

35

 These rather apparent corollaries are accompanied by a less obvious result for 0-1
problems.

 Corollary 10.3. Let r′(i), i ∈ V, be a set of values such that r′(i) ≥ r(i), and let
r′ = Min(r′(i): i ∈ V). Assume r′ > r and define s = ∑ (r′(i) – r(i): i ∈ V). Then for a 0-1
problem, a q-sub-complete system (V:m,r) implies the inequality

∑ (xi: i ∈ V) + ∑ (xj: j ∈ R) ≤ m
provided m < (q – s)/(q – r′).

 Proof: We modify the surrogate constraint construction in the proof of Theorem 10 by
adding a subset of the inequalities xi ≤ 1, i ∈ V, to yield a new surrogate constraint. To do this,
we identify indexes i which include those such that r(i) = r, and add a quantity to each of these
r(i) values to give new values r′(i), as specified. For the value r′ that results, the associated
surrogate constraint created by the construction in the proof of Theorem 10 becomes
 q(∑ (xi: i ∈ V) + ∑ (xj: j ∈ R)) ≤ (q – r′)m + qm + s
or equivalently

∑ (xi: i ∈ V) + ∑ (xj: j ∈ R) ≤ ((q – r′)m + s)m + m.
The right hand side is less than m + 1 if and only if m < (q – s)/(q – r′), which yields the
conclusion of the Corollary.�

 The potential improvement provided by Corollary 10.3 is constrained by relationships
between r′, r, s and q, as disclosed by the following observation, whose proof is immediate.

 Remark 4. The limit on m given in Corollary 10.3 is less restrictive than the limit
m < q/(q – r) of Theorem 10 only if q(r′ – r) > s(q – r).

 The potential strengthening that arises by Corollary 10.3 can also be undertaken by an
alternative device, which often yields an inequality at least as strong and applies to a more
general system where the variables are not required to be 0-1.

To see how this occurs, define a q-sub-complete system to be tight if q cannot be reduced
except by reducing r; i.e., no inequality over Q ∈ S(V) can be discarded without reducing
Min(r(i): i ∈ V), or equivalently, for every Q ∈ S(V) there is at least one i ∈ Q such that r(i) = r.
The following result shows that tight systems yield the best opportunities for strengthening a set
of inequalities by Theorem 10 and also impose limitations on the relationship between q and r.

 Corollary 10.4. Let (V:m,r) satisfy the conditions of a q-sub-complete system, and let v
denote the number of variables xi, i ∈ V, such that r(i) = r. Then if (V:m,r) is tight, q ≤ r + v – 1.
Moreover, if (V:m,r) is not tight, then it is possible to identify a set Q′ ∈ S(V) and remove the
associated inequality

 ∑ (xi: i ∈ Q′) + ∑ (xj: j ∈ R) ≤ m,
by redefining S(V) := S(V) – Q′, so that the new resulting (V:m,r) system imposes less restrictive
conditions on m to yield a valid inequality by Theorem 10.

 Proof: The relationship q ≤ r + v – 1 for a tight (V:m,r) system can be established by
induction on v, first observing that v = 1 implies q = r. For the remaining part of the proof, it
suffices to choose Q′ to be any element of S(V) such that r(i) > r for all i ∈ Q′. The rest of the
argument is apparent.�

36

The key to applying the foregoing results is to focus on denser sub-matrices within the

coefficient matrix for a system of inequalities. The generation of new inequalities relative to
these sub-matrices then introduces new sub-matrices of increased density (relative to variables
with unit coefficients in the new inequalities), thus potentially allowing a repetition of the
process to generate additional new inequalities.

In general, the significance of Theorem 10 for q-sub-complete systems lies in providing a
structure to create inequalities that are more comprehensive than those produced by the simpler
forms of q-complete systems.

13. Embedded Approaches Using Vocabulary Building
The results of preceding sections can be incorporated within vocabulary building

strategies to provide additional approaches for independent set and graph coloring problems.
Vocabulary building operates by creating a pool of solution fragments, which are successively
assembled, disassembled and modified to produce new fragments that are ultimately transformed
into trial solutions. A useful analogy exists to the use of surrogate constraint processes to build a
pool of inequalities, following the types of designs previously discussed. As shown in Section
12, it is possible to derive inferences for obtaining stronger inequalities – better members of the
pool – by a process of joining smaller sub-systems before proceeding to larger ones. In the same
way, vocabulary building applied to pools of solutions gains advantages by decomposing
solutions into components, and then proceeding through stages of building larger components
from smaller ones. Prominent application of vocabulary building methods occurs, for example,
by creating structured combinations of solution fragments (Glover 1994), where the values
assigned to variables become votes that are translated into decision criteria and objective
functions for methods to generate new solutions.

Simple ways to create sub-problems associated with solution fragments in the present
setting consist of generating sub-graphs by extracting them as unions, intersections and
differences of independent sets derived from previously generated solutions (primarily elite
solutions and solutions chosen for their diversity). In the simplest case, the pool of sub-graphs
can be generated from independent sets obtained from a single current solution structure.
 Applied to maximum independent set problems, such an approach is entirely
straightforward, by assembling sub-graphs composed of selected independent sets from a
vocabulary building pool. The goal is simply to find larger independent sets within these sub-
graphs in order to identify new candidates for the maximum independent set.
 In the context of coloring problems, the process has additional features. The sub-graphs
in this case may be composed of a chosen number of independent sets determined by a selected
coloring, or determined by a partial coloring derived as an assembly from a vocabulary pool.
(The number of sets selected to compose such a sub-graph can be as small as 2, and generally
may be allowed to range over an interval of values.) Then, by generating larger independent sets
within such a sub-graph, the process gives a means for achieving the goal of reducing the total
number of independent sets, and thus reducing the number of colors required.

Within the body of such a procedure, an auxiliary objective may appropriately be
introduced that simultaneously seeks to assign nodes to other pre-existing independent sets
determined by current graph colorings. For example, if the sub-graph under consideration is
derived from independent sets from a single coloring, then nodes of this sub-graph that are
excluded from the new independent set should include as many as possible that can be assigned
to other independent sets for the coloring. Choices that set variables xr = 0 (or yr = 1 in the IP2
formulation) may accordingly be biased in favor of nodes r that can be added to such other

37

independent sets, or which connect to as few nodes as possible in one of these sets. If a current
re-coloring attempt does not succeed, some node assignments may violate the condition that all
sets are independent. In such cases, the sub-graph selected by the processes described here may
include component node sets that are not independent.

These auxiliary choice criteria can be handled by focusing on assignments of the form
xr = 0 during the first steps of the procedure for extracting an independent set from G, for the
purpose of initially removing some number of nodes from G that can be re-assigned to other
independent sets. Such criteria can alternatively be brought into play as tie breaking rules which
are invoked only when the current choices do not offer any strong winner for a node to be added
or excluded from the independent set under construction.

Similarly, if a current sub-graph is drawn from node sets that belong to more than one
coloring, then the auxiliary criteria can undertake to assign excluded nodes (determined by
choices xr = 0) to independent sets from each of the colorings considered, eventually focusing
on the coloring to which this assignment proves most successful.

A key premise underlying these types of strategies, both for coloring and independent set
problems, is that a method which focuses on creating desired structures from sub-graphs rather
than from the entire graph will have a greater likelihood of success, provided the selected sub-
graphs are appropriately chosen. (This is one of the motivating premises of vocabulary building
processes generally.)

The indicated strategies are highly compatible with a variety of metaheuristic procedures.
For example, adaptive memory approaches can be used to control the choices of sub-graphs
treated, and evolutionary procedures can be used to provide combined solutions as sources of the
fragments within the vocabulary building pool. By considering different numbers and choices of
fragments simultaneously, the strategy is susceptible to incorporation in a multilivel cooperative
search process, employing designs such as proposed in Toulouse, Thulasiram and Glover (1999)
and Ouyang et al. (2000a, 2000b).

14. Additional Surrogate Constraint Refinements and Uses.
Surrogate constraints can be generated in additional ways apart from the use of

normalizations. For example, the solution to the dual of the linear programming relaxation of an
IP problem gives a valid surrogate constraint. A stronger surrogate constraint can be generated
by applying a method described in Glover (1965), which solves the knapsack problem created by
the surrogate constraint, and then increases the weights on violated constraints by a specified
formula, repeating until either all original constraints are satisfied or conditions disclose that the
strongest surrogate constraint has been obtained. (A description of this method appears in
Appendix 2.)

In the setting of independent set problems, a similar approach can be used to modify the
choices made by the constructions described in the preceding sections. At the conclusion of
generating a trial solution that yields an independent set (which will be maximal, but not
necessarily maximum), a composite surrogate constraint can be generated from the collection of
surrogate constraints used to make the choices that produced this solution. One possibility is to
sum each of these prior surrogate constraints to create the composite constraint. (This would
normally require the weights that produce these surrogate constraints to be applied to the original
problem constraints. In this case, however, the surrogate constraints at each stage are generated
relative to some subset of the original constraints, rather than to a reduced form of these
constraints. Hence no “recovery step” is needed.)

 Such an approach will give greater emphasis to those original inequalities that have
endured through a larger number of iterations before being eliminated as redundant.

38

Consequently, the resulting surrogate constraint will amplify the size of the ai coefficients for
variables that are among the last to be given values, either by choice or by a forced assignment.
As a result, these variables that most recently received their current values will appear least
attractive to receive these assignments (by comparison to assignments selected for other
variables) and hence will appear to be the best candidates for changing their assignments.

Such a bias can have undesirable consequences. A better surrogate constraint for
analyzing current choices is likely to be obtained by recovering and using an earlier surrogate
constraint in which a number of tied evaluations appeared. Rather than bothering to recover the
constraint, however, the choice process can be simplified by keeping track of prior evaluations,
as they have evolved over successive iterations.

This type of memory (also used in tabu search) can be useful for more advanced
strategies. For example, choices that received high evaluations throughout a series of iterations
may be implemented at an earlier stage of a subsequent constructive pass. This early stage
implementation of such choices can cause other ensuing evaluations to change, leading to
different choices at later stages and thus producing different final solutions. Choices that
received enduring high evaluations, but which eventually were discarded (and hence never
implemented) as a result of making other choices, particularly invite examination. (Systematic
ways to apply these types of strategies are described in Glover, 2000.) Alternatively, evaluations
for current choices can be generated relative to surrogate constraints produced by subgradient
updates, as also elaborated in Appendix 2.

15. Conclusions.
Surrogate constraint approaches can be applied in a variety of ways for optimization

problems in graphs, by mechanisms that also afford an understanding of how these methods can
be used in a number of other settings. The basic ideas underlying these approaches are especially
convenient to illustrate in application to independent set problems, by strategies that seek
maximum independent sets over strategically selected sub-graphs.

A useful relationship for exploiting surrogate constraint strategies in graphs derives from
the fact that each value assignment in a standard mathematical programming formulation
corresponds to a natural modification of the graph structure, so that the outcome is again a graph
and all evaluation criteria and updating operations can be carried out by reference to this same
structure. The ability to take advantage of the representational properties of graphs provides a
particularly efficient basis for implementation.

Surrogate constraint approaches can be applied in quickly executed strategies that
generate trial solutions very rapidly, or can be the basis for more advanced strategies that exploit
bounding information at multiple levels. As our development has shown, the power of surrogate
constraint approaches can be amplified by making use of principles that involve conditionally
shared limitations. Theorems for exploiting these principles offer new constructions to generate
bounds and associated choice rules, while still affording advantages of efficient implementation.
These procedures generalize to the setting of GUB-constrained surrogate constraint relaxations,
where the GUB systems come from clique inequalities. Additional advantage can be taken of
these GUB-constrained relaxations by dynamic solution approaches that generate the relevant
inequalities and also solve the surrogate constraint problems based on them at the same time.
We have further observed how these approaches can be applied with more general quasi-clique
inequalities, and can take advantage of useful structures called q-complete (and sub-complete)
systems. The underlying results carry over to additional settings, including zero-one and general
integer programming.

39

Finally, we have noted how surrogate constraint heuristics such as those illustrated in the
preceding sections acquire additional scope by implementing them within the framework of
vocabulary building methods. This affords a mechanism to identify sub-problems that give rise
to new trial solutions by strategically isolating relevant sub-graphs of the problem graph. Such
an integration of surrogate constraint approaches with vocabulary building methods can also
conveniently be exploited by metaheuristics such as tabu search, evolutionary methods and
multilevel cooperative search.

40

References:
Abello, J., P.M. Pardalos and M.G.C. Resende (1999). On maximum clique problems in very

large graphs. External memory algorithms and visualization, J. Abello and J. Vitter, eds.
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, American
Mathematical Society, Vol. 50, 199-230.

Chvatal, Vasek (1979). A greedy heuristic for the set-covering problem. Mathematics of

Operations Research 4 , 233-235.

Dyer, M.F. (1980), Calculating surrogate constraints. Mathematical Programming, Vol.19, 255-

278.

Dorne, R. and J.K. Hao (1998). A new genetic local search algorithm for graph coloring.

Lecture Notes in Computer Science 1498, Springer-Verlag, 745-754.

Feo, Thomas A., Resende, Mauricio G.C., and Smith, Stuart H. (1994). A greedy randomized

adaptive search procedure for maximum independent set. Operations Research, Vol. 42:
5, 860-878.

Fréville, A. and S. Hanafi (2000). Des Bornes Duales Robustes pour le Sac à Dos
Bidimensionnel en Variables 0-1. ROADF'2000, Nantes, France.

Fréville, A. and Plateau, G. (1992). An implicit enumeration code for the solution of the 0-1

bidimensional knapsack problem based on surrogate duality. Graphs and Optimization
Colloquium, Grimentz, Switzerland.

Fréville, A. and Plateau, G. (1993). An exact search for the solution of the surrogate dual of the

0-1 bidimensional knapsack problem. European Journal of Operational Research, Vol.
68, 413-421.

Friden, C., Hertz, A. and Werra, D. de (1989). Stabulus: a technique for finding stable sets in

large graphs with tabu search. Computing, Vol. 42, 35-44.

Friden, C., Hertz, A. and Werra, D. de (1990). Tabaris: An exact algorithm based on Tabu

Search for finding a maximum independent set in a graph. Computers & Operations
Research, Vol. 155, 437-445.

Galinier, P. and J.K. Hao (1999). Hybrid evolutionary algorithms for graph coloring. Journal of

Combinatorial Optimization. Vol. 3, No. 4, 379-397.

Gavish, B. and H. Pirkul (1985). Efficient algorithms for solving multiconstraint zero-one

knapsack problems to optimality. Mathematical Programming, Vol. 31, 78-105.

Gavish, B., F, Glover and H. Pirkul (1991). Surrogate constraints in integer programming.

Journal of Information and Optimization Sciences, Vol. 12, No. 2, 219-228.

41

Glover, F. (1965). A Multiphase-Dual Algorithm for the Zero-One Integer Programming
Problems. Operations Research, Vol. 13, No. 6, 879-893.

Glover, F. (1968). Surrogate Constraints. Operations Research, Vol. 16, No. 4, 741-749.

Glover, F. (1971). Flows in Arborescences. Management Science, Vol.17, No. 9, 568-586.

Glover, F. (1975). Surrogate Constraint Duality in Mathematical Programming. Operations

Research, Vol. 23, No. 3., 434-451.

Glover, F. (1977). Heuristics for Integer Programming Using Surrogate Constraints. Decision

Sciences, Vol. 8, No. 1. 156-166.

Glover, F. (1994). Tabu Search for Nonlinear and Parametric Optimization (with Links to

Genetic Algorithms). Discrete Applied Mathematics Vol. 49, 231-255.

Glover, F. and D. Klingman (1988). Layering Strategies for Creating Exploitable Structure in

Linear and Integer Programs. Mathematical Programming, Vol. 40, No. 2, 165-182.

Glover, F. and M. Laguna (1993). Tabu Search. Modern Heuristic Techniques for

Combinatorial Problems, C. Reeves, ed., Blackwell Scientific Publishing, 71-140.

Glover, F. and M. Laguna (1997). Tabu Search, Kluwer Academic Publishers.

Glover, F. and G. Kochenberger (1996). Critical event tabu search for multidimensional

knapsack problems. Meta-Heuristics: Theory & Applications, J.H. Osman and J.P. Kelly,
eds., Kluwer Academic Publishers, 407-427.

Glover, F., H. D. Sherali and Y. Lee (1997). Generating Cuts from Surrogate Constraint Analysis

for Zero-One and Multiple Choice Programming. Computational Optimization and
Applications, Volume 8, Number 2, 151-172.

Glover, F. (2000). Multi-Start and Strategic Oscillation Methods – Principles to Exploit Adaptive

Memory. Computing Tools for Modeling, Optimization and Simulation: Interfaces in
Computer Science and Operations Research, M. Laguna and J.L. Gonzales Velarde, eds.,
Kluwer Academic Publishers, 1-24.

Greenberg, H.J. and W.P. Pierskalla (1970). Surrogate Mathematical Programs. Operations

Research, Vol. 18, 924-939.

Greenberg, H.J. and W.P. Pierskalla (1973). Quasi-conjugate functions and surrogate duality.

Cahiers due Centre d’Etudes de Recherche Operationelle, Vol.15, 437-448.

Hanafi S., (1993). Contribution à la résolution de problèmes duaux de grande taille en
optimisation combinatoire. PhD thesis, Université de Valenciennes et du Hainaut-
Cambrésis, France.

42

Hanafi, S. and A. Fréville (2001). Résolution du Dual Composite du Sac à Dos Bidimensionnel
en variables 0-1 par une méthode de Branch-and-Bound. Francoro III Conference,
Quebec, Canada.

Homer, S. and M. Peinado (1996). Experiments with Polynomial-time CLIQUE Approximation

Algorithms on Very Large Graphs, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Vol. 26, 147-155.

Johnson, D.S. (1974). Approximation algorithms for combinatorial problems, Journal of

Computer and System Sciences, Vol 9, 256-278.

Johnson, D.S., Trick M.A eds (1996). Clique, Coloring and Satisfiability, Second

Implementation Challenge, DIMACS, AMS.

Joseph, A., S. Gass, and N. Bryson (1998). An objective hyperplane procedure for solving the

general all-integer linear programming (ILP) problem. European Journal of Operational
Research, Vol. 104, 601-614.

Klingman, D. and D. Karney (1979). A study of alternative relaxation approaches for a

manpower planning problem. Quantitative Planning and Control, Ijiri and Whinston,
eds., Academic Press, Inc., NY, 141-164.

Kochenberger, G.A., B.A. McCarl, and F.P. Wyman (1974). A Heuristic for General Integer

Programming. Decision Sciences, Vol. 5, No. 1, 36-44.

L∅kketangen, A. and F. Glover (1997). Surrogate Constraint Analysis – New Heuristics and

Learning Schemes for Satisfiability Problems. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 35, 537-572.

Osorio, M.A., F. Glover and P. Hammer (2002). Surrogate constraint analysis for improved

multidimensional knapsack solutions. To appear in Discrete Applied Mathematics.

Ouyang, M., M. Toulouse, K. Thulasiraman, F. Glover, J.S. Deogun (2000a). Multilevel

Cooperative Search for the Circuit/Hypergraph Partitioning Problem. To appear in IEEE
Transactions on Computer-Aided Design.

Ouyang, M., M. Toulouse, K. Thulasiraman, F. Glover, J.S. Deogun (2000b). Multi-Level

Cooperative Search: Application to the Netlist/Hypergraph Partitioning Problem.
International Symposium on Physical Design, ACM Press, 192-198.

Padberg, M.W. (1973). On the facial structure of set packing polyhedra. Mathematical

Programming, Vol. 5, 199-215.

Pardalos, P., J. Xue (1994). The maximum clique problem. J. of Global Optimization, Vol. 4,

No. 3, 286-301.

43

Resende,M.G.C., T.A. Feo and S.H. Smith (1998). Algorithm 787: Fortran subroutines for
approximate solution of maximum independent set problems using GRASP. ACM
Transactions on Mathematical Software, Vol. 24, 386-394.

Toulouse, M., K. Thulasiram and F. Glover (1999). Multi-Level Cooperative Search. Lecture

Notes in Computer Science, Vol. 1685, Springer-Verlag, 533-542.

Yu, G. (1998). Min-max Optimization of Several Classical Discrete Optimization Poblems.

OJournal of Optimization Theory and Applications, Vol. 98, No. 1, 221-242.

44

APPENDIX 1: Fast Look-Ahead Methods

 We sketch the foundations for creating quickly implemented procedures of the type that
are natural accompaniments of more advanced surrogate constraint approaches.

Look-Ahead Criteria for Setting xr = 1.
A natural goal in making a choice of the form xr = 1 is to create as many small NodeStar sets as
possible, since the existence of nodes i with small values of SizeStar(i) produces stronger choices
on subsequent steps (by the criterion of minimizing ai values). This goal may be pursued by
seeking an assignment xr = 1 that will cause a maximum number of edges to be removed from G.
Consequently, a useful auxiliary rule for choosing r is as follows. Let I be a subset of N that
includes the nodes that qualify to be selected as node r, i.e., that yield a minimum value for
SizeStar(i). Then we choose r so that

SizeStar(NodeStar(r)) = Max(SizeStar(NodeStar(i)): i ∈ I).
This rule requires additional effort to apply, beyond the simple rule of the preceding section,
although the effort can be reduced by restricting I to be somewhat smaller than N, as in the
extreme case by limiting consideration to nodes that yield Min(SizeStar(i)). Specifically, for
each such i, the rule requires examining each j in NodeStar(i) and accumulating the sum of the
values SizeStar(j). (Alternately, for the same amount of work, the operation can identify
Max(SizeStar(j): j∈NodeStar(i)), and use this value to choose a node i that yields a maximum of
these values.) Other choice rules can be similarly based on the idea of reducing SizeStar(i) for
the choices that will be made in future steps.

Look-Ahead Criteria for Setting xr = 0.
Similarly, in selecting xr = 0, we may seek to leave the largest NodeStar(i) undiminished in size,
or to leave as many of the large NodeStar(i) sets undiminished as possible, as a basis for enabling
future choices of the form xr = 0 to be as strong as possible. Thus, requiring I in this case to
include the set of nodes i that yield the maximum value of NodeStar(i), we look for a node r in I
that yields

Min(SizeStar(i): i∈I)
or

Min(Max(SizeStar(j): j∈NodeStar(i)): i∈I).

The identification of such an r requires the same order of work as in the choice of r for setting
xr = 1. For a strategy that alternates decisions of the form xr = 1 with those of the form xr = 0,
the rule for choosing r can be amended by reference to criteria similar to those identified.

Thresholding Approach.

Further refinement results by establishing an upper bound threshold value a* for the
coefficients ai, and defining the node set N* = {i ∈ N: ai ≤ a*}. For example, we may define a*
= Max (ai : ai + ... + ah-1 + ai ≤ ao), where the ai coefficients are arranged in ascending order and
the index h identifies an optimal xo value for SC1, i.e.,

xo = Max(h: a1 + ... + ah ≤ ao)
as noted in Section 5.1.

45

 Clearly, in order for a variable xi to be able to receive an assignment xi = 1 in an optimal
solution to SC1, it is necessary for i to be in N*. Consequently, we are motivated to modify the
look-ahead choice criterion by treating N* as a candidate list to identify possible "next choices"
for xr, for at least some number of steps after the current choice. Hence, instead of examining
the effect of the forced assignments xj = 0 on all nodes k ∈ NodeStar(j) (for those assignments
forced by currently setting xr = 1), it is relevant to examine the effect only on nodes k that
belong to SubStar(j) = NodeStar(j) ∩ N*.

To be precise, for each node i ∈ I, for the set I as identified in Section 4.1, identify each
j ∈ NodeStar(i) (which corresponds to an xj to be forced to 0 if i is chosen as r). Then, sum the
values |SubStar(j)| to find the total reduction in ak values produced by setting xi = 1. The
coefficient ai itself will be reduced to 0 by this, and so to adjust for the effect on ai (in the case
where I is allowed to contain coefficients other than those with a minimum ai value), the choice
criterion becomes to choose r ∈ I to

Maximize(∑(|SubStar(j)|: j ∈ NodeStar(i)) - SizeStar(i)): i ∈ I)
(This uses the fact that ai = NodeStar(i).) The amount of work to apply this refined look-ahead
rule is approximately the same as to apply the simpler rule in Section 4.1.

We may also choose a* to be smaller than specified above, motivated by the observation
that the set N* will contain more elements than contained in an optimal surrogate constraint
solution, except in the special case where |N*| = xo(SC1). (Even then, N* will contain more
elements than found in an optimal solution to the original problem, unless there is no surrogate
duality gap, and xo(SC1) is the actual optimum objective function value for this problem.) The
value of a* may therefore be reduced to yield a set N* that one hopes to contain fewer elements
which are not part of an optimal solution.

A counter to this rationale derives from considering that if a* is not reduced (or even
increased) and N* is "too large," there may be elements in this larger set that are missing from
the smaller one and that will be in an optimal solution. To account for the effect of these
elements, it is reasonable to occasionally select a larger a*. However, attending this, N* will
contain a larger number of nodes that are certain not to be in an optimal solution. Empirical
testing may be useful to determine a good balance between these competing concerns.

46

APPENDIX 2: Iterative Surrogate Constraint Generation

Surrogate constraints derived from normalizations are typically better than those based

on simple-summing, but they are still subject to a number of weaknesses. For example, if some
inequalities are copies or “near-copies” of others, after scaling, then these closely related
inequalities can receive a distorted emphasis – e.g., by an over-representation analogous to
including a particular inequality multiple times within the overall collection. More generally, it
is characteristically preferable to give emphasis to constraints that are binding at optimality. A
lack of knowledge about the identity of such constraints also limits the value of normalizations,
which are myopic in their handling of such considerations. To give a more sophisticated basis for
creating surrogate constraints, it is therefore useful to consider iterative constructions, where trial
solutions generated relative to the surrogate constraints provide feedback to guide the creation of
modified forms of these constraints.

To describe fundamental ideas for iterative surrogate constraint generation, we introduce
some notation and also review parts of the general perspective underlying the use of surrogate
constraints. Consider the integer programming problem in the form

(IP) Maximize cx
s.t. Ax ≤ b

 x ∈ X
where c is a lxn vector, A is an mxn matrix, b is an mxl vector, and x is an nxl vector of variables.
The stipulation x ∈ X is understood to restrict the components xj of x to be non-negative integers,
and in addition may impose other restrictions such as bounds and supplementary constraints that
are convenient to keep separate.

At the most basic level, a surrogate constraint for the problem (IP) consists of a non-
negative linear combinations of its component constraints

Aix ≤ bi, i ∈ M = {1, ..., m},
where Ai represents the ith row of A. Surrogate constraints may also include cutting planes
iteratively derived from the original constraints and their linear combinations, which we may
imagine as appended to enlarge the system Ax ≤ b and hence the index set M (Glover, 1965). At
any given point in the process, we may therefore represent a surrogate constraint relative to the
current A matrix as

wAx ≤ wb
where w is a non-negative lxm vector. The goal of generating such a constraint is to capture
useful information not present in the individual constraints Aix ≤ bi, taken in isolation.
 The associated surrogate constraint relaxation of (IP) given by

(SR) Maximize cx
s.t. wAx ≤ wb
 x ∈ X

A strongest surrogate constraint (or a strongest (SR)), is one that is most restrictive relative to the
shared objective of (IP) and (SR) and hence that yields the minimum value of the objective
Maximize cx.

Basic Results for Generating Surrogate Constraints.

The iterative generation of surrogate constraints by subgradient approaches enjoys a

47

special advantage that is not shared by Lagrangian versions of such approaches: the ability to
identify precisely a step size, given any relevant direction vector, that will assure an
improvement in the strength of the relaxation (if improvement in the specified direction is
possible).

Let w = w* denote a currently selected vector for generating a surrogate constraint, and
denote the associated surrogate constraint relaxation by (SR:w*). If x* is optimal for (SR:w*)
and is also feasible for (IP), then evidently x* is optimal for (IP) and (SR:w*) automatically
qualifies as a strongest relaxation. Also, if x* is “approximately optimal” for (SR:w*) by a
heuristic procedure, and is feasible for (IP), we may consider (SR:w*) to be a heuristically
strongest relaxation (relative to the procedure employed). In general, it is useful to include the
goal of generating heuristically strong surrogate constraints, and associated relaxations (SR),
which give restrictive bounds on cx within the margin of error determined by the efficacy of the
heuristic involved.

When a solution x* for (SR:w*) is not feasible for (IP), the possibility of obtaining a
form of (SR) stronger than (SR:w*) depends on identifying the constraints of (IP) that are
violated by x*. For this purpose, define the index sets of violated, exactly satisfied and strictly
satisfied constraints as:

V = {i ∈ M: Aix* > bi}
E = {i ∈ M: Aix* = bi}
S = {i ∈ M: Aix* < bi}.

A step toward strengthening (SR) is to modify w* by increasing the weights associated with
violated constraints. The nature and definition of a subgradient, however, is different from that
for the Lagrangian case, as shown in Glover (1975). Let d denote a direction vector designed to
produce such a change in w*, and let v denote a scalar step-size for moving in the direction d, so
that the new vector w that replaces w* may be represented as

w = w* + vd.

It is possible to allow d to be any vector such that dAx > db. However, it is usually preferable to
have

di >0 , i ∈ V
di ≥ 0, i ∈ E
di = 0, i ∈ S

A reason for choosing d ≥ 0 (and specifically di = 0 for i ∈ S) is to avoid the need for stepwise
changes in d as v increases, which otherwise might be required to prevent one or more
components of w* from becoming negative. However, there is a further advantage to choosing
values for the di coefficients that yield d ≥ 0.

Remark 1. A simple choice that assures dAx* > db and d ≥ 0 is as follows. First, create
an initial surrogate constraint with all weights positive. Then, each time a new surrogate
constraint is to be generated (from a weight vector w = w* + vd), select

di = wi* for i ∈ V
di = 0 or wi* for i ∈ E
d1= 0 for i ∈ S

Implications of Remark 1 will be noted subsequently.

The strongest surrogate constraint that can be generated in the direction d (i.e., the
strongest constraint that can be generated from w = w* + vd, for some nonnegative step-size v)

48

can be determined as follows. Let ε refer to an arbitrarily small positive value. The main result
consists of two parts.

Theorem (Strongest Surrogate Relaxation).
(I) Assume w* ≥ 0, x* is feasible for (SR:w*) and d is a direction vector such that dAx* >

db. Then x* is also feasible for (SR:w* + vd), for all nonnegative step-sizes v satisfying v ≤ v*,
where

v* = w*(b - Ax*)/d(Ax* - b).
(II) Let v′ = v* + ε and define w′ = w* + v′d, for w*, x* and v* as given in (I). Further

assume x* is optimal for (SR:w*), x′ is optimal for (SR:w′) and d ≥ 0.
(a) If cx* < cx′, then dAx′ ≤ db, and the relaxation (SR:w*) is the strongest

surrogate relaxation in the direction d.
(b) If dAx′ ≤ db and cx* > cx′ then (SR:w′) is a strongest surrogate relaxation in the

direction d.

Proof: For part (I) of the theorem, the solution x* will remain feasible for (SR) in the
direction d if and only if wAx* ≤ wb for w = w* + vd, hence if and only if
w*Ax* + vdAx* ≤ w*b + vdb. Rearranging gives v(dAx* - db) ≤ w*(b - Ax*), and the fact that
dAx* > db leads to the conclusion v ≤ v*.

For part (II), d ≥ 0 implies that dAx ≤ db is a surrogate constraint, and the problem
(SR:w* + vd) results by assigning a unit weight to the surrogate constraint w*Ax ≤ w*d and
adding v times the surrogate constraint dAx < db that is, (SR:w* + vd) is a surrogate constraint
relaxation of the two-inequality problem whose constraints are w*Ax ≤ w*d and dAx ≤ db. For
(a), dAx′ ≤ db implies x′ is feasible for the second surrogate constraint, and x′ must also be
feasible for all relaxations (SR:w* + vd) such that v ≥ v′. Hence cx′ ≤ cx for optimal solutions x to
all such relaxations, and (SR:w′) must be the strongest of these relaxations. Consequently, for
(b), the condition dAx′ ≤ db assures that (SR:w*) or (SR:w′) or both give a strongest relaxation in
the direction d, according to the relative size of cx′ and cx*. But if dAx′ > db, then x′ must be
feasible for (SR:w*), and hence cx′ ≤ cx*. �

Corollary 1. Repeated application of Theorem 1, maintaining d unchanged and

repetitively choosing v′ = v* + ε to generate new surrogate constraints, will produce a succession
of relaxations (SR:w′) and associated solutions x′ with the following properties:

(a) Each solution x′ is different from all previous solutions generated (including the
original x*).

(b) The value cx′ is monotonically nonincreasing and each relaxation (SR:w′) is as strong
or stronger than the previous one, until a first (critical) w′ is reached such that the solution x′
satisfies dAx′ ≤ db.

(c) Denote the predecessor to the critical w′ of (b) by w″, and denote the solution
corresponding to w″ by x″. Then (SR:w′) or (SR:w″) is a strongest relaxation in the direction d,
according to whether cx′ ≤ cx″ or cx′ ≥ cx″.

Corollary 2. Assume the surrogate constraint w*Ax ≤ w*b, where w* has at least two

positive components, is divided into two component surrogate constraints
 w1*Ax ≤ w1*b and w2*Ax ≤ w2*b
where w1* + w2* = w*, and w1* and w2* are both nonnegative and nonzero. Then a strongest
surrogate constraint that can be created from these two surrogate constraints occurs either for

49

w = v1w1* + w2* or for w = w1* + v2w2*, where vk is the smallest nonnegative value such that an
optimal solution to (SR:w) satisfies wk*Ax ≤ wk*b, for k = 1, 2.

Remark 2. Assume that d is chosen as indicated in Remark 1, and let w* be given as in
Corollary 2 so that w* = w1* + w2*, based on selecting w2* = d. Then, the vector w′ of
Theorem 1 results by
 w1′ = w1* and w2′ = (u + ε)w2*,
where u = w2*(b - Ax*)/w1*(Ax* - b).

Corollary 1 and Corollary 2 follow directly from Theorem 1, and Remark 2 follows from
the definition of v′ in Theorem 1, upon substituting and simplifying terms. Remark 1 and
Remark 2 are the basis for the special case of Theorem 1 proved in Glover (1965), which also
implies a special instance of Corollary 1.

These results raise the question of how many iterated applications of Theorem 1 are
likely to be required to generate a strongest relaxation in the direction d. Empirical outcomes for
special cases of Theorem 1 indicate that by using the value v* to guide a modified binary search,
the total number of iterations is often only 3 to 8 (Gavish, Glover and Pirkul, 1991; Fréville and
Plateau, 1993). However, Theorem 1 can clearly be applied by generating a new direction d
before obtaining the greatest possible improvement in a given direction, and in general the
theorem provides a variety of unexplored options that invite empirical examination.

