{: SCISPACE

formerly Typeset

@ Open access « Journal Article « DOI:10.1111/J.1365-2478.1986.TB00509.X
Tutorial; The progressive attenuation of high-frequency energy in seismic reflection
data — Source link [

Anton Ziolkowski, Jacob T. Fokkema

Institutions: Delft University of Technology

Published on: 01 Nov 1986 - Geophysical Prospecting (Blackwell Publishing Ltd)

Topics: Reflection (physics), Elastic energy, Absorption (acoustics), Attenuation and Wavelength

Related papers:

« Use of low frequencies for sub-basalt imaging

« The Principles of X-ray Diffraction

« A discussion on the nature and magnitude of elastic absorbtion in seismic prospecting

» The theory of the reflection of low frequency radio waves in the ionosphere near critical coupling conditions

« An Improved Method for the Calculation of the Field-strength of Waves Reflected by the lonosphere

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/tutorial-the-progressive-attenuation-of-high-frequency-
5107e8wzyb


https://typeset.io/
https://www.doi.org/10.1111/J.1365-2478.1986.TB00509.X
https://typeset.io/papers/tutorial-the-progressive-attenuation-of-high-frequency-51o7e8wzyb
https://typeset.io/authors/anton-ziolkowski-4ibtll558n
https://typeset.io/authors/jacob-t-fokkema-4dhligt4ow
https://typeset.io/institutions/delft-university-of-technology-2b85q0ia
https://typeset.io/journals/geophysical-prospecting-3mmlvnh9
https://typeset.io/topics/reflection-physics-3cs25wci
https://typeset.io/topics/elastic-energy-1r131whb
https://typeset.io/topics/absorption-acoustics-2h7pynvs
https://typeset.io/topics/attenuation-15ron13w
https://typeset.io/topics/wavelength-33axw8az
https://typeset.io/papers/use-of-low-frequencies-for-sub-basalt-imaging-1sptqza2ip
https://typeset.io/papers/the-principles-of-x-ray-diffraction-1yiirm1m7f
https://typeset.io/papers/a-discussion-on-the-nature-and-magnitude-of-elastic-3pmveu2ew3
https://typeset.io/papers/the-theory-of-the-reflection-of-low-frequency-radio-waves-in-23fyk7vhtz
https://typeset.io/papers/an-improved-method-for-the-calculation-of-the-field-strength-435sgnvw09
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/tutorial-the-progressive-attenuation-of-high-frequency-51o7e8wzyb
https://twitter.com/intent/tweet?text=Tutorial;%20The%20progressive%20attenuation%20of%20high-frequency%20energy%20in%20seismic%20reflection%20data&url=https://typeset.io/papers/tutorial-the-progressive-attenuation-of-high-frequency-51o7e8wzyb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/tutorial-the-progressive-attenuation-of-high-frequency-51o7e8wzyb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/tutorial-the-progressive-attenuation-of-high-frequency-51o7e8wzyb
https://typeset.io/papers/tutorial-the-progressive-attenuation-of-high-frequency-51o7e8wzyb

Geophysical Prospecting 34, 981-1001, 1986.

TUTORIAL

THE PROGRESSIVE ATTENUATION OF
HIGH-FREQUENCY ENERGY IN SEISMIC
REFLECTION DATA*

A. ZIOLKOWSKI and J.T. FOKKEMA**

ABSTRACT

ZoLkowskl, A. and Fokkema, J.T. 1986. The Progressive Attenuation of High-Frequency
Energy in Seismic Reflection Data, Geophysical Prospecting 34, 981-1001.

Seismic reflection data always exhibit a progressive loss of high-frequency energy with
time. This effect is partly attributable to irreversible pracesses such as the conversion of
elastic energy into heat (commonly known as absorption), and partly to reversible processes
associated with interference between reflected waves arriving at different times. This paper
looks only at reversible linear elastic effects at normal incidence and asks the following
question: if there were no such absorption, would there still be a progressive loss of high-
frequency energy?

Using normal incidence and a layered elastic earth model we prove the following results.

1. The normal incidence response of a sequence of plane parallel elastic layers is non-white.

2. The pressure wave reflected by a layer that is thin compared with a wavelength is differen-
tiated with respect to the incident wave.

3. The transmission response of a thin layer is consequently low-pass and the transmission
response of a sequence containing many thin layers is very low-pass.

4, The well-known effect of the transport of acoustic energy by peg-leg muitiples within thin
layers is identical with this low-pass transmission response.

5. Tt follows that the high frequency energy is reflected back early in the seismogram.

6. By comparison, very low-frequencies are transmitted through the layered sequence easily
and are reflected with difficulty. There is probably a lack of low-frequency energy in the
reflection seismogram, by comparison with the spectrum of the incident plane wave.

It follows that any meaningful evaluation of frequency-dependent absorption in seismic
data cannot take place unless the frequency-dependent linear elastic effects are taken into
account first.

* Received June 1985, final draft accepted January 1986.
** Delft University of Technology, Department of Mining Engineering, PO Box 5028, 2600
GA Delft, The Netherlands.
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INTRODUCTION

Seismic reflection data always exhibit a progressive attenuation of high-frequency
energy with time. This is illustrated in fig., 1, which shows a stacked seismic section
of total two-way traveltime. There is clearly more high-frequency energy present in
the upper part of the section than in the lower part.

This progressive attenuation of high frequency energy with two-way traveltime is
attributable to two causes: anelastic effects and elastic effects. The anelastic effects
are the processes responsible for the irreversible conversion of elastic energy into
heat and are usually known as ‘absorption’. They are often characterized by a
guality factor Q, which is usually regarded as being frequency-independent within
the seismic bandwidth and defines the attenuation per wavelength: the higher Q, the
less the attenuation per wavelength.

There are also reversible elastic effects, in which the energy is conserved, which
can cause the same phenomenon. This is particularly evident when the layering is
cyclic {O'Doherty and Anstey 1971; Schoenberger and Levin 1974). Interference
occurs between reflected waves which arrive at different times, and some frequencies
are reflected back at greater amplitude than others. The interference pattern
depends on the reflection coefficients, the layer velocities and the layer thicknesses,
and it is not immediately obvious that there will be a preferential transmission of
low frequencies. This paper is concerned with these reversible elastic effects, and
looks for some insight into these propagation phenomena.

Some aspects of the behaviour of elastic waves, such as the determination of the
reflection and transmission coefficients at an interface between two media, are better
studied using wave theory. Other aspects, such as the behaviour of multiples, can
better be understood using ray theory. Both approaches are used in this paper.
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Fig. 1. Stacked seismic section shot over coal measures in Staffordshire, England. The litho-
logical log at shot-point 74 has been converted from depth to two-way traveltime for com-
parison with the seismic data. (Reproduced from Ziolkowski 1979).
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We confine the discussion to normal incidence and begin with a proof that the
reflection response of a sequence of plane parallel layers is non-white. We believe
that this result is obvious from the work of Treitel and Robinson (1966) but is
evidently not well-known, since the assumption of whiteness is prevalent in much of
seismic data processing, particularly in the deconvolution and wavelet extraction
processes. We then begin the analysis of the wave propagation phenomena with a
derivation of the reflection and transmission coefficients at a plane interface. We
then derive the normal incidence reflection and transmission response of a single
layer. If the layer is thin compared with a wavelength, it is seen that the reflection
resporise is that of a linear high rass filter; the transmission response is correspond-
ingly low-pass. The problem is analyzed with both wave theory and ray theory to
show the relation between the filtering effect and the peg-leg multiples within the
layer.

A consideration of a sequence containing many thin layers shows that the high
frequencies must be filtered out in transmission, both on the way down and on the
way back up. The low frequencies are correspondingly transmitted easily but are
reflected with small amplitudes. The seismic reflection data must exhibit a pro-
gressive attenuation of high-frequency energy with time, whether irreversible
absorption effects are present or not.

THE NON-WHITENESS OF THE EARTH REFLECTION RESPONSE

The attenuation of high frequency energy with time is a phenomenon that is well-
known in reflection seismology. Very often this observed attenuation of high-
frequency energy is attributed entirely to absorption. We shall show that this effect
must occur whether there is absorption or not. There is no need to invoke irre-
versible effects such as absorption to explain this effect in the data; straightforward
reversible linear effects can account for much of the low pass filtering of seismic
data, as noted by O'Doherty and Anstey (1971), by Schoenberger and Levin (1974)
and by Riiter and Schepers (1978).

It is often assumed in seismic data processing that, in the absence of absorption,
the reflection response is white. This assumption is particularly important in decon-
volution and in various wavelet extraction methods. We do not understand the
rationale for this assumption and wish to show, at the outset, that it is certainly
wrong for plane waves normally incident to a sequence of plane layers.

Treitel and Robinson (1966) used ray theory and z-transforms to find the reflec-
tion and transmission response of a plane impulsive pressure wave normally inci-
dent on a sequence of linearly elastic plane layers. They showed that when the stack
of layers has a perfect reflector at its base, the reflection sequence has a dispersive
all-pass response; that is, all the energy which goes in, is eventually returned to the
surface but with phase delays which are frequency-dependent. Treitel and Robinson
(1966) called this the *all-pass theorem’. An all-pass response has a white spectrum.

The physical reason for the white response is that the layers are elastic and can
neither absorb nor create energy. Thus the downward energy flux equals the upward
energy flux in each layer. In the case of a rigid reflector at the bottom, the lowest
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layer must return all downgoing energy to the layer above; its reflection response is
therefore white. The upcoming energy transmitted into the layer above exactly
equals the downgoing energy transmitted down through to the bottom layer. There-
fore the reflection response of the bottom two layers is white. The argument follows
identically through every layer in the sequence. Therefore the reflection response of
the sequence is white.

This all-pass theorem requires a perfect reflector at the bottom of the sequence.
If there is no perfect reflector, the response is not all-pass. This is a corollary of the
all-pass theorem. It follows that in real geology where a reflection coefficient of 0.4 is
enormous, there is never a perfect reflector at the bottom of the sequence, and the
normal incidence response is therefore never all-pass, and therefore never white.

REFLECTION AND TRANSMISSION OF A PLANE WAVE AT
NORMAL INCIDENCE

A plane pressure wave in the time domain and the frequency domain

A small amplitude plane pressure wave p(z, t) traveling parallel to the z-axis in a
homogeneous isotropic elastic medium propagates according to the linear homoge-
neous one-dimensional wave equation (e.g. Berkhout 1982)

1
92plz, 1) = — 07 plz, 1) = O, ()
P

in which 02 denotes the second partial derivative with respect to distance z, 02
denotes the second partial derivative with respect to time ¢, and the velocity of
propagation v, is defined as

vp = (4 + 2W)/p, 2

where 4 and u are the Lamé coefficients and p is the density. Solutions of (1) are of
the form

pz, ) = p*(t — zfv,) + p~(t + z/v,), 3)

in which we denote the waves traveling in the positive z-direction by p* and the
waves traveling in the negative z-direction by p~.

It is convenient to look at the propagation phenomena in the frequency domain,
using the Fourier transform. Let p(z, t) and P(z, ) be a Fourier transform pair:

Pz, 1) P(z, w),

where o is the angular frequency and the Fourier transform relations are defined as

P(z, w) = J - plz, Heti® di, @)

hll- o}

o) =5 Jw P(z, w)e~ " do, )

-0
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in which we choose the sign convention to be consistent with the convention used
for our propagating waves. (We appreciate that this is not the sign convention
generally used in geophysics. We find it preferable because, in the frequency domain,
waves traveling in the positive z-direction are associated with positive sign in the
exponent, while waves traveling in the negative z-direction are associated with the
negative sign in the exponent.)

Differentiating (5) with respect to time twice, we have

0,p(z, t) = 2_1n j:o — jwP(z, w)e " dw, (6)

02 p(z, t) = 5_-1—7; f:o — w?P(z, w)e /' dw, (7)
from which we recognize the Fourier transform pairs

0, —jo )]
and

0} e — . 6]

Transforming the (1) into the frequency domain, and using (9), we have

2
» .
02 P(z, w) + —~ P(z, w) = 0, (10)
P
which is the frequency-domain expression for the linear one-dimensional homoge-
neous wave equation.

Relationship between pressure and particle displacement in a plane wave

The propagating wave has a pressure gradient in the z-direction 0, p(z, t), which is
related to the particle displacement u.(z, £) by Newton’s second law of motion:

azp(z> t) = —patz uz(z, t): (11)

where p is the density. Using (9) we may transform (11) into the frequency domain
as

d, P(z, @) = pw*U (z, w), (12)

in which U (z, w) is the Fourier transform of the particle displacement.

In seismology, we usually measure particle velocity, not displacement. The par-
ticle velocity can be obtained from the displacement by differentiation with respect
to time. In the frequency domain for a plane wave, this time differentiation corre-
sponds to a simple multiplication by —jcw as we have shown in (8).
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Reflection and transmission for the pressure and displacement

The ‘reflection coefficient’ and the ‘transmission coefficient’ at the boundary
between two media are not completely meaningful terms unless the disturbance is
specified. Pressure and displacement are clearly not the same thing, so it matters
what kind of disturbance we are talking about. In this section we derive the normal
incidence reflection and transmission coefficients for both the plane pressure wave
and the corresponding displacement.

Consider a plane sinusoidal pressure wave of unit amplitude in medium I
normally incident on a plane interface separating medium I from another medium
11, as shown in fig. 2, where the coordinates are chosen such that the interface is the
plane z = 0 and z is positive into medium II. Let the densities of the two media be
p, and p,, and their compressional wave velocities be v, and v, , respectively.

The incident pressure wave is, in the frequency domain, exp {jw(z/v, — t)} and
propagates in the positive z-direction. Note that the propagation in the positive
z-direction is associated with a positive sign in the exponent. This arises from our
sign convention for the Fourier transform, (4) and (5).

There is a reflected pressure wave in medium [,

R, exp {jo(—z/v, — 1)},
traveling in the negative z-direction with amplitude R, and there is a transmitted
pressure wave in medium II,

T, exp {jolz/v; — 0}

which has amplitude T, - R, and T, are the reflection and transmission coefficients
of the pressure wave at the interface.
In medium I the pressure field is

PY(z, ) = exp {jow(z/v, — 1)} + R, exp {jo(—z/v; — 1)} (13)
and in medium I, it is
Pz, @) = T, exp {jo(z/v, — t)}. (14)

Incident
wave

Reflected
wave

Transmitted
wave

:
I

Fig. 2. Reflection and transmission of a plane pressure wave at normal incidence to a plane
interface.
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Using (12) we can find the displacements in the two media:

J

Ulz, ) = [exp {jw(z/v, — )} — R, exp {jw(—z/v, — 1)}, (15)
pywuy
Uk, ) = = T, exp ooy = ). (16)

The pressure and displacement are both continuous at the boundary z =0,
therefore,

PY0, w) = PY0, w) (17
and

UY0, w) = UXO, w). (18)

Imposing (17) on (13) and (14), and (18) on (15) and (16) yields

1+R,=T, (19

1-R, _ T, 20)

Py P2V

These conditions hold for all values of ¢ and w, and therefore the common factor
exp (—jwt) has been cancelled. From (19) and (20) we find the reflection and trans-
mission coefficients of the pressure wave:

R =P202*‘/’1U1, 21)
P2y + Pyl

R 1 S (22)
P2Uy + Pyt

Equation (15) shows that the amplitude of the incident displacement is
J
prov,’

while the amplitude of the reflected displacement is

—R,,j'
p1vy
It follows that the reflection coefficient for the displacement is
—R. i i -
R, = <___£l>/<__+l_> = —R,= M’ (23)
Pl /[ \ P30y PV + P2y

From (15) and (16) we find the transmission coefficient for the displacement,

2
7-;‘ — plul r]—;) — plvl . (24)
P2¥y P20y t P10y
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Using the extreme case of coal-rock interface, where typical velocities are (van Riel
1965)
v, coal = 2500 m/s, v, rock = 3500 m/s,
p coal = 1.5 Mg/m?3, p rock = 2.5 Mg/m?3,
we find the reflection coefficient of the pressure wave for a rock—coal interface
R, = —04,
and the transmission coefficient
T, = 0.6.

NORMAL INCIDENCE REFLECTION AND TRANSMISSION
RESPONSE OF A PLANE LAYER

Wave Theory

We now consider the normal incidence reflection and transmission responses of a
layer of thickness d, density p,, and compressional wave velocity v,, sandwiched
between two identical half-spaces with density p, and compressional wave velocity
vy, as shown in fig. 3. The top of the layer is taken to be the plane z = 0, and the
z-axis is positive downwards into the layer as shown.

Proceeding as above, we have a pressure field in medium I,

Pz, w) = exp {jo(z/v; — )} + R exp {jw(—z/v, — 1)}, (25

and a displacement field,

Ulz, w) =

o [exp Liole/oy — 0} — Rexp {o(—zfo, = 0] (26)

Incident plane pressure wave

Reflected plane pressure wave

Pt 1

Paiva A W I L

z=d
P 1\\ m

Transmitted plane pressure wave

Fig. 3. Reflection and transmission of a plane pressure wave at normal incidence to a layer of
thickness d.
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in which R is the normal incidence reflection response of the system for a unit
amplitude sinusoidal pressure wave incident from medium I. Equation (12) has been
used to relate the particle displacement to the pressure.

In medium II, the layer, we have both downgoing and upgoing waves; that is,
waves traveling in the positive and negative z-directions. The pressure field in
medium II is

Pz, w) = A%exp {jo(z/v, — 0} + A exp {jo(—z/v, — 1)}, 27)

where A" and A~ are complex and |A*| and |4~ | are the amplitudes of the
downgoing and upgoing pressure waves, respectively. Similarly the displacement
field in medium II is
J
P2l @

UYz, w) =

[+A4% exp {jow(z/v, — )} — A~ exp {jo(—z/vs —1)}].  (28)

In medium III there are only transmitted waves,

Pz, w) = T exp {jo(z/v; — 1)}, 29)
1 _ fT . _
Uz(z, w) = o P {jolzfo, — 1)}, (30)

where T is the transmission response of the system.

In (25)~(30) there are four unknowns R, T, A* and A~. These are related by the
conditions of continuity of pressure and displacement at the two interfaces z =0
and z = d.

At z = 0, continuity of pressure yields

1+R=A" 44", (31)
while continuity of displacement yields
1 1

(1—R)= (AT — A7) (32)
PV, Pavs

At the boundary z = 4, the two corresponding continuity conditions yield

A" exp (jod/v,) + A” exp (—jwd/v,) = T exp (jod/v,), (33)
L 14" exp (jodfvy) — A™ oxp (—jeodjos)] = —— exp (ad/vs). (34)
P2y P11V

This system of four linear simultaneous equations can be solved to find R and T,
the reflection and transmission responses. After a little algebra, we find
_ (1 — exp (2jwd/v))R,

1 — RZ exp (2jwdfv,)’
_ (1~-R}
"1 — R2 exp (2jwd/v,)

R

(33)

T exp {jwd(1/v, — 1/v,)}. (36)
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It is possible also to find A and A~, the (complex) amplitudes of the downgoing
and upgoing pressure waves in the layer. As far as we are concerned, however, the
principal interest is in the reflection and transmission responses R and 7. Before
making any further analysis of these responses it is worthwhile solving the same
problem with ray theory.

If we had wanted simply to derive (35) and (36) one derivation would have been
sufficient, It could even have been made mathematically more elegant by the use of
matrices. Our motivation in giving two derivations, using simple steps, is to arrive
at a better understanding of the problem, and to show clearly the relationship
between the wave-theory solution and the ray-theory solution.

In the wave-theory approach, we write down equations for the pressure and
displacement in each layer, including both up- and downgoing waves; we then
connect the layers by the continuity of pressure and displacement at the boundaries.
If this is done correctly the reflection response contains all primaries and all mul-
tiples. But to see the relationship between the primaries and the multiples, and to
evaluate the importance of the different contributions, it is better lo use ray theory.

Ray theory

The situation is illustrated in fig. 4. We consider an impulsive plane pressure wave of
unit amplitude normally incident from medium I on the interface with medium I at
time t = 0. This impulse is partially reflected at the interface with an amplitude from

(21,
R..=P2 by — PiUy
12 = .
Paby + pyvy
This reflected impulse travels back into medium I, leaving the interface with
medium IT at time ¢ = 0. The transmitted impulsive pressure wave proceeds into
medium IT with amplitude from (22),
- 2p, 0,
P2Uz + P10y

Ta) 72, T
Ry
d
Ty Y
rz|\ 7_2|\

Tiz

RIZ
\M/\
72
P

Fig. 4. Reflection and transmission ray paths of an impulsive plane wave at normal incidence
to alayer of thickness d.

T
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At the lower boundary this impulse is partially transmitted into medium I1I with a
transmission coefficient,

T, =2 T, (37)
P2y

and partially reflected back into the layer with a reflection coeflicient,
Ry = —Ry,. (38)

This internally reflected impulse gives rise to two infinite series of impulses which
are transmitted through the top and bottom of the layer, as shown. The reflection
impulse response of the layer is the infinite time series

R, at t=0,
Ty Ry - Ty, at ¢ =2Af,
Ty Ry - Ry Ry - Ty at t=4Aq
etc., etc.,
where
At = dfv, (39)

is the one-way traveltime through the layer. The trarismission impulse response of
the layer is the infinite time series

T, Ty at = AL,
Tia' Ry Ry, - Ty, at t=3Al
Tz Ry "Ry Ry "Ry - Toy at t=35A41
etc., etc.

Using Z-transform notation (one always runs into trouble using z as the depth
coordinate as well as the unit delay operator, We aim to avoid any possible confu-
sion between the two different z’s) where Z represents a time delay of At, Z2
represents a time delay of 2A¢, and so on (e.g., Robinson 1967), we may write the
reflection impulse response as

RZ)=R{1 =Ty Ty Z1 +R1, Z* + R, Z*+ - )} (40)
and the transmission impulse response as
T(Z)=Ty, T Z(1 + R}, Z*+ R}, Z* + - - ) (41)

To relate R(Z) and T(Z) in these equations to our corresponding frequency
domain responses R and T derived in (35) and (36) using wave theory, we note that
a time delay At corresponds to a phase shift of exp (joAr) for a wave of angular
frequency w, and a time delay of 2At corresponds toa phase shift of

exp (2joAt) = [exp (jwAr)]>. (42)
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That is, if we take Z to be on the unit circle
Z = exp (jwAt), (43)

the Z-transforms R(z) and T'(z) can be related to the frequency domain. In (40) and
(41), the infinite series

S(Z)=1+R%,Z* + R, Z* + - (44)

converges because | Z| =1, on the unit circle, and R}, is less than 1. Therefore,
summing the geometric progression, we find

1
S(Z)=————3 (45)
( ] - R%z ZZ
and
T, T Z?
R(Z)= Rlz[l - I—}jR—ZZZ—ZJ (46)
T, 15,2
T(z) = ——F—. 47)
1 —R2%,Z7?
Noting that R%, + T,, - T;, = 1, we see that (46) and (47) can be written as
(1-2Z3R
R(z) = +———">7, (48)
1-R,Z?
and
(1-R%HZ
T(z) = —2.

Comparing (48) and (35) we see that R is identical with R(z) when z is defined by (43)
to be on the unit circle. Note that there is a small difference between (36) and (49). In
(49), there is a factor Z, whereas in (36) there is a corresponding factor exp {jwd(1/v,
— 1/v,)}. The difference is the factor exp (—jd/v), which is simply a phase delay
caused by a difference in the reference plane.

Thin-layer approximation

We have seen that wave theory and ray theory give exactly the same reflection

response for a plane wave normally incident on an elastic layer embedded in some

other elastic material. For the purpose of investigating the frequency dependence it

is interesting to study the response for a thin layer. The term ‘ thin’ is defined below.
The complex exponential can be written as

exp (2jwd/v,) = cos 2wd/v,) + Jjsin (2ewd/v,). (50)
For 2wd/v, < n, we may approximate (50) as

exp (Ywd/v,) = 1 + j2wd/v,. (1)
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Substituting this approximation into (35) we see that the layer reflection
response is
—JjwR,2d/v,

R=x T .
1 — R, — jR; 2wd/v,

(52)

The imaginary part of the denominator of the right-hand side for R, < 0.4 is negli-
gible, thus (52) may be approximated as

R{w) = ZJoR, - 2d fd,
v,(1 — R})

which is the thin layer reflection response to a normally incident plane pressure

wave. The amplitude of the full reflection response (35) is shown in fig. 5. The thin

layer approximation corresponds to the straight lines sloping downwards to the left.
We see that the layer can be regarded as thin when

(33)

2wd/v, <€ T,
or  4fd <v,, (54)
L
d<=
or <

where f= w/2n is the frequency and L is the wavelength. Coal seams up to 1 m
thick for example, with velocity 2500 m/s can be regarded as ‘thin’ for seismic
frequencies up to 100 Hz.

Response

0.1
|
10% limit
———————— Detectability limit
ar/x
B ————
0.0l | [ 1
0.00I 0.0l .1 0.4

Fig. 5. Reflection response for a sinusoidal wave of an interbedded layer as a function of
layer thickness and reflection coefficient. (Reproduced from Koefoed and de Voogd 1980).
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In (53) the factor

2R,
v,(1 — RZ)
depends only on the acoustic properties of the two media. It increases with increas-
ing acoustic impedance contrast between the media. As long as inequality (54) is
satisfied, the amplitude of the response R(w) increases linearly with the thickness of
the layer d and with the frequency w. The frequency in this thin layer response
enters only as the factor —jw, which is the frequency domain correspondent of
differentiation in the time domain. Thus the incident seismic pressure wave appears
to be differentiated on reflection from the thin layer. This was noticed by Widess

(1973).
To summarize the results of the thin layer analysis, we note:

1. the amplitude of the thin layer reflection response increases with the acoustic

contrast;

2. the amplitude of the thin layer reflection response increases linearly with the
layer thickness, therefore any layer of finite thickness gives a response;

3. the amplitude of the thin layer reflection response increases linearly with fre-
quency; the reflected wave is differentiated with respect to the incident wave, and
the thin layer reflection response is thus a high-pass filter.

A plot of the amplitude of the response R as a function of the ratio d/L,, where
L, = v,/f is the wavelength in the layer has been calculated by Koefoed and de
Voogd (1980), and is shown in fig. 5 for various values of the reflection coefficient
k=|R,]. The linear behaviour for small d/L, is obvious.

NORMAL INCIDENCE REFLECTION AND TRANSMISSION RESPONSE
OF A SEQUENCE OF THIN LAYERS

The low-pass transmission effect

The reflection response of a thin layer is identical with that of a linear high-pass
filter that acts so as to differentiate the incident pressure wave p(z, t). Since the
thin-layer reflection response is high-pass, it follows that the transmission response
is low-pass. The response is given by (36). The factor

exp {jwd(1/v, — 1/v))}
has modulus I at all frequencies and therefore contains only phase information. The
amplitude spectrum is
|1~ R2|
I'1 — R? exp (2jwd/v,)|’
which can also be found from (49) using ray theory. The response | T(w)| is plotted

in fig. 6. It has a minimum at an angular frequency w = nv,/2d; that is, when d is
equal to a quarter wavelength. This is what we should expect: the reflection

[ T(w)| = (55)
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Fig. 6. The layer transmission response. For layers less than a quarter wavelength thick, the
response is low-pass.

response is a maximum at the same frequency (Widess 1973). This frequency is
sometimes known as the ‘tuning’ frequency. Below this frequency the transmission
response is low-pass. The low-pass filtering effect of a single thin coal seam was
noted by Riiter and Schepers (1978).

Consider now a sequence of n such thin seams of thickness d, separated by much
thicker layers of varying thicknesses, as shown in fig, 7, and consider the transmitted
pressure wave at the bottom of the stack of layers. We could solve the problem

Normally incident plane pressure wave

\\/\/VT “
YTX
AVAAYAN #
WA

@
\ :

VAN
\\\\

Transmitted plane pressure wave

Fig. 7. Plane pressure wave normally incident on a sequence containing n identical thin
layers.
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using ray theory or wave theory, including all the up and downgoing waves numeri-
cally. The ray theoretical approach was used by Riiter and Schepers (1978) and the
wave theoretical approach by Hughes and Kennett (1983). Without a computer
some insight into the problem can be achieved using a simplifying assumption.

If we assume that the plane wave p(z, t) at the top of our layered sequence is a
short pulse in the time domain, we may neglect multiples which occur between
seams because these arrive too late to be of interest; but we cannot neglect the very
short period internal multiples within the seams. We may therefore say that the
transmission response of the stack of layers to an impulsive plane wave p(z, t) at the
top of the stack, is the cascaded response of all n thin layers, plus a time delay to
account for the traveltime in the thick layers. In the frequency domain this approxi-
mate response is computed by multiplying the identical responses:

| 1 — RIZ’ In
|1 — R} exp (2jwd/v))|"

| T} = | T(@)|" = (56)
that is, each thin layer acts like a low-pass filter and the high frequencies in the
transmitted wave become progressively attenuated by the sequence of layers: in
effect the transmitted wave is passed through the same low-pass filter n times. The
response (56) is plotted in fig. 8.

|72 (w)]

[ l-rz }”
i++r2 ! w

Y VoI Vo
2d 74

Fig. 8. The n-layer transmission response. When the layers are thin the response is very
low pass.

The seismic waves which travel to the bottom of the stack of layers must be
low-pass filtered by every thin layer in the sequence. The reflected wave returning
from the deepest layer must be filtered again by the same sequence of layers. The
low-pass filtering effect for waves reflected back to the surface is therefore squared.

From this simple argument we can see that the reflection response from any
sequence containing thin layers is bound to appear as progressively lower frequency
with traveltime. Figure 1 is a seismic section over coal measures. It demonstrates
this progressive lack of high frequencies. This seismic line was shot over a borehole
which had been cored and logged; the lithological log has been displayed at shot
point 74 on the same time scale as the seismic section (using the velocity log to
convert the depths into two-way traveltime) and shows clearly that there are numer-
ous thin layers, many of them coal seams, which are thin compared with the seismic
wavelengths.
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The effect of peg-leg multiples on amplitudes

In the ray-theory approach another interesting phenomenon becomes apparent: the
way in which the transmitted energy is built up with time by peg-leg multiples.
Consider fig. 4 and the argument above. We showed there that the transmission
impulse response can be considered as a sequence T(Z) given by (41),

T(Z) = le T21Z(1 + R%ZZZ + RTZ Z4 4 .)’

in which the first term is the direct transmitted impulse and the subsequent terms
are peg-leg multiple reflections generated within the layer. The contribution of these
peg-legs was summed to give the total response of (47),

TIZTZIZ
T(Z) = —2-212
@ =1"%r, 2%

in which the numerator is the response without peg-legs and the denominator
represents the effect of the peg-legs. As we have already seen, the denominator is
also responsible for the low-pass filter effect on transmission.

For n such responses, the z-transform is

(le TZI)HZ"

1) = 1) = 238 G7)
We denote this peg-leg response contained in the denominator by
PL,(2) =~ (58)
(1 —R{,Z%
it may be written to first order as
PL,=(1—-R:,ZH™"
~ 1+ nR?,Z% (59

Thus, the effect of the peg-legs is to add energy to the transmitted pulse, delayed by
the two-way traveltime in the layer. If there are enough such layers the continued
effect can be significant, and the amplitude of the peg-leg contributions can be larger
than that of the direct pulse. We note that these peg-leg contributions cannot be
separated from the low pass transmission response. The importance of such peg-leg
multiples was first analyzed in detail by O’Doherty and Anstey (1971) who
remarked (p. 444), “ the multiply-reflected signal in a series of thin plates bounded by
interfaces of opposite polarity is always of the same sign as the direct transmitted
signal, and tends to overtake it in amplitude ”.

Hughes and Kennett (1983) compared synthetic seismograms over coal measures
with and without peg-leg multiples, using a full wave-theoretical approach. Their
results, shown in figs 9 and 10 clearly show that it is the short-period multiples
within the coal seams themselves which are the main mechanism for the transport of
energy to the deeper layers.
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Fig. 9. Comparison of the synthetic seismogram for the acoustic approximation calculated
with specific levels of multiples: (a) only primary ray paths for all the layers have been
included in this calculation; (b) the primary ray paths in the coal seams have been included
along with all possible ray paths (both primary and multiple) lor the country rock; (c) in
addition to the ray paths considered in (b), the coal seams were also allowed to have first
order muitiples; (d) the complete synthetic seismogram, which contained all possible ray
paths in the coal and the country rock layers; (€) two-way traveltimes and normal incidence
reflection coefficients for each interface are illustrated. The scale for the reflection coefficients
is =0.5 with the positive axis upwards. (Reproduced from Hughes and Kennett 1983.)
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Fig. 10. The effect of changing the origin of the peg-leg multiples: (a) all possible paths
through the coal seams and only primary paths through the country rock layers were
included in this seismogram; (b) only primary paths in the coal seams and all possible paths
in the country rock were considered in this calculation. (Reproduced from Hughes and
Kennett 1983.)
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Both O’Doherty and Anstey (1971) and Schoenberger and Levin (1974) have
remarked on the low-pass filtering effect of cyclically layered sequences on the trans-
mitted seismic wave. What we have shown here is that it is not so much cyclic
layering that is responsible for this effect, but simply the presence of thin layers. The
distribution of these thin layers through the layered sequence is not important,
although they are much more likely to occur in zones where the deposition has been
cyclic.

Any single thin layer embedded in a much thicker layer of contrasting acoustic
impedance has a low-pass transmission response. If the acoustic impedance contrast
is large, the low-pass response is more pronounced than if the contrast is small. A
sequence of thin layers, whether in a zone of cyclic deposition or not, has a corre-
spondingly increased low-pass transmission response.

It should be noted that at low enough frequency any layer can be regarded as thin.
Since the thin-layer reflection response is high pass while the transmission response
is low pass, the very low frequencies propagate easily through the layered earth, and
therefore the normal incidence reflection response does not contain very low fre-
quencies. It is probable, therefore, that the power spectrum of the normal incidence
plane wave response lacks very low frequencies (rather than high frequencies) in
comparison to the power spectrum of the incident plane wave. To our knowledge,
this has never been checked. It is clearly something that needs to be examined.

DiscussioN AND CONCLUSIONS

We are aware that our analysis is very simple and is confined to the case of normal
incidence which has been studied many times before and often using a more elegant
approach than we use here. Indeed, there is nothing new in our theory. In the
application of this well-known theory we have discovered things that ought to be
obvious (and which, no doubt, are obvious to some people), but which do not
seem to be widely understood by practising exploration geophysicists. We have felt
it worthwhile, therefore, to put our analysis and conclusions in writing.

We have shown by a simiple corollary of Treitel and Robinson’s (1966) all-pass
theorem that the normal incidence reflection response of a sequence of plane paral-
lel elastic layers is not white. It follows that any data processing step, such as
spiking deconvolution, that relies on the assumption that the earth reflection
response is white, will fail to recover the earth response correctly.

We have also analyzed the normal incidence response of a layer bounded by two
identical half-spaces, using both wave theory and ray theory. When the layer is thin
compared with a wavelength the reflection response is high pass and the layer acts
as a differentiator; the transmission response is correspondingly low pass; these
effects increase with the acoustic contrast. Thus, the wave reflected from a thin layer
contains a higher proportion of high-frequency energy than the incident wave, while
the transmitted wave contains a higher proportion of low-frequency energy.

In a geological sequence containing many thin layers, whether cyclic or not, the
low-pass transmission responses of the thin layers are cascaded. Each thin layer
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preferentially reflects the higher frequencies and the spectrum of the transmitted
wave is shifted progressively towards the lower frequencics as it passes through
successive thin layers. This progressive shift to low frequencies is caused entirely by
the peg-leg multiples that are generated within the thin layers and appear as a tail
on the transmitted pulse. Waves reflected from the base of the sequence have to pass
through the sequence twice and therefore contain relatively less high-frequency
energy than waves reflected from the top of the sequence. Since deeper reflections
occur later, it follows that we must see reflection seismograms with high frequency
energy concentrated towards the beginning.

At least part of the observed progressive attenuation of high-frequency energy
with time in seismic reflection data is caused by this process, in which only
reversible elastic effects are at work. That is, this effect occurs whether there are
irreversible processes or not. No doubt there are also irreversible processes at
work in which energy is absorbed by the rock layers. We have not considered such
irreversible processes. The relative importance of thin layers and absorption in the
progressive attenuation of high-frequency energy in seismic data cannot be assessed
without taking the elastic effects of thin layers into account first—for instance, by
some sort of forward modeling procedure.

Finally, since any layer becomes a thin layer if the wavelength is long c¢nough,
we conclude that the very lowest frequencies will be reflected with very low ampli-
tudes, due to the high-pass reflection response of thin layers, It follows that reflee-
tion seismograms will be deficient in the very lowest frequencies. We do not know
whether this is a problem in practice. There is a problem in constructing the low-
frequency part of the inverted acoustic impedance log from seismic data, but
whether this is caused by a deficiency in low-frequency energy in the source signal
or by the earth-filtering effect we have been discussing, is not known. This is some-
thing which should be studied.
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