
MATHEMATICS OF COMPUTATION
VOLUME 49, NUMBER 179
JULY 1987, PAGES 123-134

TVB Boundary Treatment for Numerical Solutions

of Conservation Laws

By Chi-Wang Shu

Abstract. In the computation of hyperbolic conservation laws u, + f(u)x = 0, TVD (total-

variation-diminishing) and TVB (total-variation-bounded) schemes have been very successful

for initial value problems. But most of the existing boundary treatments are only proved to be

linearly stable, hence the combined initial-boundary scheme may not be TVB. In this paper

we describe a procedure of boundary treatment which uses the original high-order scheme up

to the boundary, plus extrapolation and upwind treatment at the boundary. The resulting

scheme is proved to be TVB for the scalar nonlinear case and for linear systems.

1. Introduction. In this paper we consider the numerical solutions to the hyper-

bolic conservation law

(1.1a) u,+f(u)x = Q,

(1.1b)    . w(x,0) = w0(x).

Here u = (w1?..., us)T, and the Jacobian matrix A(u) = df/du has s real eigen-

values

Ai(")<M«)< ••■ <M")

and a complete set of eigenvectors.

On a computational grid xJ = jAx, tn = nAt, we use u" to denote the computed

approximation to the exact solution u(Xj, tn) of (1.1).

For pure initial value problems, i.e., problems with u0(x) in (1.1b) to be either

periodic or to have a compact support, the recently introduced TVD (total-

variation-diminishing) and TVB (total-variation-bounded) schemes have been very

successful. See, e.g., [1], [2], [3], [4], [7], and the references listed there. The total

variation of a discrete scalar solution is defined by

(1.2) TV(«) = £|«,.+1-Uy|,
7

and if

(1.3) TV(M" + 1)<TV(w")

we say the scheme is TVD; while if

(1.4) TV(w")<ß
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124 CHI-WANG SHU

for some fixed B > 0 depending only on u° and TV(w°) and all possible n and At

such that «Ai < T, we say that the scheme is TVB in 0 < t < T. Clearly TVD

implies TVB.

One major advantage of TVB schemes is that there is a convergent (in L1^1)

subsequence as Ax -* 0 to a weak solution of (1.1). If an additional entropy

condition, which implies uniqueness of weak solution to (1.1), is satisfied, then the

scheme is convergent. See, e.g., [2].

For initial-boundary value problems we hope the boundary treatment can still

retain the TVB property of the scheme. The usual method is to use a lower-order

scheme near the boundary. This not only reduces the order of the scheme near the

boundary, but also makes any theoretical results about TVB of the initial-boundary

scheme very hard to prove. In this paper we present an approach to the treatment of

boundaries which uses the same high-order scheme up to the boundary, plus

extrapolation and an upwind treatment at the boundary. The resulting scheme is

proved to be TVB for the scalar nonlinear case (Section 2) and for linear systems

(Section 3).

Our boundary treatment is based on the globally high-order TVB schemes

discussed in [4], [6], [7], and [8]. These schemes have natural upwind-downwind

decompositions which help us to implement and prove the TVB boundary treat-

ments.

We include several numerical results in the appendix to demonstrate the useful-

ness of the TVB boundary treatment in Sections 2 and 3.

2. Scalar Case. In this paper we use the following three equivalent forms of an rth

order (in space and time) TVB scheme (see [4], [6], [7], and [8] for details):

m

(2.1al)    «;+1 = £ [akuj~k +\ßk\X(c}:^A+uJ~k - D}^k]A_uJ-k)] + cor/,
k = 0

where

(2.1a2) CJ + 1/2>0,    DJ+l/2>0,    1 - \(Cj+l/2 + DJ+1/2) > 0,

(2.1a3) |cor/|<ÄAx2.

Or,
m

(2.1bl)    u»+1 = £ [a,«?"* +\ßk\X(C}:^A + u'J-k - DfrßA.u»-")],
k = 0

where

(2.1b2) C>i#A+«;-* = Cj:^A+uJ-k + cor i;~*.

(2.1b3) -~D\n_\k2)AunJ-k = -D}H;/k2)A_u]-k + cor 2;-*,

with

(2.1b4)    |corljT*|< BAx2,    |cor2;-A'| < 5Ax2,   corlp* + cor2;-* = cor/"*.

Or
m

(2.1c!) uj + 1 = E [aku]-k +\ßk\{(Df-)"ik -{Dt)"-")]
k-0
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TVB BOUNDARY TREATMENT FOR SOLUTIONS OF CONSERVATION LAWS 125

with

(2.1c2) Dfy ^ XCj+l/2A + Uj,       Dfj = X£),_1/2A_u,.

In (2.1), ak and ßk are such that

(2.2) ak > 0,        k = 0,l,...,m,

m

(2.3) £ ak = 1,
k = 0

m

(2-4) j80- ¿Z(kak-ßk) = l,
k = l

(2.5) (-1)' £ k'-\kak - lfik) = 1,       / = 2,3,...,r.
fc-i

The CFL condition is

«A
(2.6) X < An ■ min ,

where X0 satisfies (2.1a2).

We now consider the equation (1.1) defined on

(2.7) 0 < x < +00,       t >0,

and still assume that u0(x) in (1.1b) is zero in x > L.

Notice that (2.1) has a more than three-point stencil in x only because of the C's

and the Z)'s. Near the boundary x = 0 we may not have the necessary u_v u_2,...

etc., to define C and D. In this paper we always use extrapolation with order r to get

the necessary u_j. For example, if r = 2, we may use «_j = 3u0 - 3ux + u2, etc. It

is well known that extrapolation may cause instability, but due to the upwind-biased

property of our scheme (2.1), we shall prove that the resulting initial-boundary

scheme is still TVB. With the help of extrapolation, the boundary problem

simplifies to that of determining «0 only. From the well-known properties of the

hyperbolic equation (1.1), we know that we should prescribe u(0, t) = g(t) on the

boundary x = 0 if f'(u(0, t))> 0 (corresponding to case (a) of Theorem 2.1 below),

and should prescribe nothing at x = 0 if f'(u(0, t)) < 0 (corresponding to case (b)

of the theorem).

Theorem 2.1. In the region defined by (2.7):

(a) The scheme (2.1) for u", j > 1, with the above-mentioned extrapolations for

computing the C 's and D 's, and initial condition u° = u(Xj, 0) and boundary condition

(2.8) < = g(t"),

where g(t) is a function of bounded variation /« 0 < í < T, is TVB in 0 < t < T.

(b) Define

(2.9) Df¿ = mm( | Z>/0+ |, | Df0 \ + KAt ) ■ sign( Z)/0+ )

in (2.1c), where K > 0 is a constant. Then the scheme (2.1), as in part (a) where u% + 1

is computed by (2.1c) with D/0+ replaced by Dfâ, is TVB in 0 < / < T.
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126 CHI-WANG SHU

Proof, (a) We use form (2.1a):

+ li8jAC^>(A+u;+-*) + \ßk\XD}^(A+uJzA + oor;+1 - cor;

forj = 1,2,...

and

A+U"0+i = uri-g{tn+i)

m

=  £ [ot«r-* +|j8jX(C3%-*)A + «i1-* - Dfck*_urk)\ + corf - g(/"+1)
* = 0

m

k-0

+ cor1"-  £aA(g(r- + 1)-g(/"-*)).

¿=0

Hence, by (2.1a2) and the CFL condition (2.6), we have

00

tv(m"+1)= £ |a+m;+1|

i _ Ip*Ix(c(n~k) + n(n_*>)

7 = 0

oo      m

<L Ei«*
y=i /t = 0

A + uJ~k\

+ £
A=()

+ l)8*|Ac;;^|A+ii;+-1*| + |/8t|X2)J<-r^|A+«;ri*|

+ |cor/+i| + |corj*

aJl--^XJDÍXT*)||A+«r*| + li8*l^-*)|A+ar'

+ L «k\g(t"+1) - g(t"-k)\
k-0

oo      m m

< £   £a,|A + M;-'i|+2JßMx2+  £at|g(rrl)-g(/"-*)|

; = 0A=0 * = 0

m ni

< £atTV(«"-*) + 5Ar+(ifi + l) £ |g(í""*+1) - g(/"_*)|,
*=o A = 0

where N = L/Ax, 5 = 25L/X.

Hence clearly

TV(u")<   max T\(uk) + BT + (m + 1) TV(g)
0^k*(m

for all «Ai < T.
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TVB BOUNDARY TREATMENT FOR SOLUTIONS OF CONSERVATION LAWS 127

(b) Similarly to part (a), we have

oo      m m

TV(M"+1) < £   £ ajA + M;-*|+  £ ak(Dfo - Dfc) + 2BNAx2
7 = 0 k = 0 ¿=0

tn

< £ akTV(u"-k) +(B +K)At
k = 0

(see (2.9)).

Hence clearly

TV(h")<   max TV(«*) +(B+K)T
0<£<m

for all «Ai < T.   D

Remark 2.1. From Definition (2.9) we see that

(2.10) Dfo  = £>/0+

if and only if

(2.11) |£>/o+ \<\Df0\+KAt.

Since scheme (2.1) is upwind-biased, we should expect the "downwind" part |D/0+|

to be less than the "upwind" part \Df0'\ if /'("(0, 0) < 0. With the help of KAt, we

may be very safe to expect (2.11), hence (2.10), to be almost always valid. Hence,

since we used extrapolation of sufficient accuracy to approximate w_y, the accuracy

remains r th order up to the boundary. This is superior to the usual way of using a

lower-order scheme with narrower stencil near the boundary.

3. Linear Systems. The techniques discussed in Section 2 can be generalized, via

Godunov's, Osher's or Roe's field-by-field decompositions, to nonlinear systems

(1.1). See, e.g., [4], [5]. Even for pure initial value problems, at present there is no

theory about total variation boundedness for general nonlinear systems. For a linear

system

(3.1) u, + Aux = 0,

where, for simplicity, A is assumed a constant matrix (we may generalize the theory

to the case A = A(xy), we have a similar theory as in Theorem 2.1.

Assume A has 5 nonzero real eigenvalues

(3.2) XX<X2< .-• <Xäi <0<XJi+1<  ••• <Xä

with a complete set of right eigenvectors r,, r2,..., rs. Then we can write

s

(3.3a) u(x,t)= ES'"U')V
p-\

(3.3b) Au(x,t)= £X/"(x,0v
p=\

where the scalar functions 8(p) satisfy the scalar conservation laws

(3.4) ÓV> + Xp8{xp) = 0.
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128 CHI-WANG SHU

Hence a generalization of the scalar TVB scheme (2.1) is just using (2.1) on (3.4)

for each p:

(3.5)

«;+1 = E   £ [ak(*»)r
p=\ U=o

+ \ßk\(((D8^y)rk-((D8^yyrk) rp-

For pure initial value problems, the scheme (3.5) decouples to s scalar schemes,

hence TVB of (3.5), with TV defined by

(3.6) TV(M) = EI|«/+>i-«<'>|,
j p"

is an immediate consequence of TVB of each of the decoupled scalar schemes.

Now we consider the initial-boundary value problem defined on (2.7).

By (3.2), on the differential equation level, it is well known that a boundary

condition

(3.7)

0(í> + 1)(0,í)

8^(0, t)

= S(t)

I 8w(Q,t)

8^(0, t)

+ g(t)

is well posed.

We obtain the discrete form of (3.7) via the following procedure:

(i) Use extrapolation of order r to find the necessary 8W in order to compute

C 's and D 's near j = 0;

(ii) Let

(3.8)     D8<")+ =min(|Z)8¿')+|,(l - e)|D8¿'>-|+Ä^r) ■ sign(Z)fi¿')+),

where Kx > 0, 0 < e « 1 are constants and p = l,2,...,sv

Notice that (i) and (ii) are similar to the scalar case treatment. By Remark 2.1 we

should expect that most of the time D8^p)+ = D8^p)+.

(iii) Define

(fi(*i + u

(3.9)
5(i)

I X<1) \

= S(t")

Io

+ *('"),

«(il)/o

where S(t) = (S¡j(t)) is a (s - s,) X s1 matrix function with each of its elements

being Lipschitz continuous in 0 ^ / «£ T:

(3.10) \Su(h) - S,j(t2)\ < Lit, - t2\   forO < tx, t2^T

and g(r) is a(s — sx) X 1 vector function of bounded variation in 0 < / < T.

(3.9) is just the discretization of (3.7).

Notice that the scheme (3.5) is coupled by the boundary condition (3.9).

Theorem 3.1.   The scheme  (3.5)  with boundary treatment  (i)-(iii)  is  TVB in

0 < t < T.
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TVB BOUNDARY TREATMENT FOR SOLUTIONS OF CONSERVATION LAWS 129

Proof. Let

2 \ßki
Q = max 1, —   max   —— ||S||i   = max

E  O^kam    Uk
1,-   max   ^   max    £ \SID(t)\

£ O^k^m    ak    o^t^T   "Tí  '     p
l</><i,

\

and define

(3.11)

Clearly,

(3.12)

Since

/     *i

tv(«)=£ ôE +    £
J \    p-l       p-h + ll

8}ti-8W\.

TV(k) < TV(w)< ß-TV(w).

(a*+')S- Es;(a<'>)S + g,(/-),
i=i

we have

A+(8(î'+^)ô+1

= (a<*>+'>)1"+1 -(a(t+'>);+1

"'    r

£ [a,(ô<^">)r"+|/3jX((C^^')37/A + (5'"+''>)r':

-(D(i'+^)r/"2"A_(ô<i'+"))r'r)]

*=o

£s;+1(«(0)o"+1 + gP(^+1)
i-l

+ corf

= E
* = 0

^X(D^+P))"/-2\A + (8(S'+P));-'

+ \ßk\x(c^+p))n3AkA+(8^+p)y;

£, £ «*(^+1(*(0)o"+1 - s;-*(s(/))o_*)

+ £ «*(g,(<"+1) - *,(*-*))

+ corf

si       m

= 1 A=0

A = 0

,n-A

Notice that

s;+1(«(,))o"+1 - s;r*(*(,))r

= s;.+1((5<'>)0"+1 -(««jr*) +(«<'>);-*(^+1 - 5;-*),

and, since u0(x) is zero for large x and the numerical solution has a finite speed of

propagation, we have (â(,))" = 0 for large enough J, so

£l(o<'>)o!= £|(5«>);-(«w);i < £ E|(«w);+i-(«<'>);|
i = l i = I f—1>>0

<TV(M")<TV(M").

(This is the maximum principle for TVB schemes. See Remark 3.1 below.)
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So, following the lines of the proof of Theorem 2.1, we have

tvV'+1)= £  e£ +    £    |a+(s<");+1|
,/>0\     p = \ p = i, + l/

p=\

S — S y

I    m

j>0\A=0
£    £ ak\A + (8^)rk\ + K,At - Xe(C^yAk\A + (8^)ö .«-ai

+1 e e«a|a+(5(í'+^);
p=\  \j>0\A = 0

n-k\

+ E
;=i A=o

í;í+1|II^K(c(,>)"^*Ia+(*(,))o""*I

+(ö('))_T/2|A_(a<'>)on-Ä:|)

m

+ L<*k\(V'To-k\\s;,+1-sPrk\
A=0

+    E otk\gp(tn + 1) - gp(r~k) I     + 2NBAx2
A=0

<   E aATV(i/"-*)
A=0

E E «a
1/8*

Ôe-2^ £ |s/;+1| A(C^»)f/?|A + (5^>)0
*    /=1 /

n - k I

/> = 1 A = 0

+ (m + l)LAi £ aJV(«"-')
A = 0

5 — -^l     m

+ (m + 1) £   £ |*,(/-*+1) -g,(/-*)| + HAt
p=\ k=0

m

<   E «a(1 + ¿A/)TV(u"-*)
A = 0

s — si     WÏ

+ (« + 1) I   E |g,(/"-*+1) - g,(/"-*) ¡ + HAt.
p=\ A=0

Hence, clearly,

TV(w") « (1 + LAr)" max TV(uk)

n-l

+ £ (1 + LAr)
i=A

OssA-s;

n-l-i
5   *i    «i

(™ + i)E E|«,(i'-*+1)-«,(/'-*)|+ äa/
/> = 1A=0

< elT max  TV(k*) + eir[(m + l)2TV(g) + Ht\ .
0<A<m

This, together with (3.12), proves that

TV(w") <£•    max  TV(«*) + B
0ssA<m

for some B, B > 0.   D
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Remark 3.1. With the help of the conservation form, we do not need to require

that u0(x) have compact support to prove the maximum principle for a TVB scheme

in the half-plane (2.7). Taking a scalar conservation TVB scheme

«;+1-»;-(*;+i/2-*;-i/2)

as an example (the same idea certainly works for the general TVB scheme (3.5)), we

have

(3.13)

Let

then

max(u") - min(w") < TV(u") < B ■ TV(«°).
j>o    '        /»o    J

1 N~x

7 = 0

N-l

>*-j¡ il*rl-(hJ*w2-hJ=^)\N

]_
N

y=o

N-l

E («rO + ̂ -rA-n-1!
7=0

P-

1_

N e\° + zVi/2 - 4-1/2)
7=0 A=0

Since h is Lipschitz continuous in its arguments and we may assume (inductively)

that uk is bounded for k < n, the sum

"Í(hÍi/2-hkN-i/i)
A = 0

is bounded independent of N. Hence

lim \sN\ =   lim
ZV-»« N->oo

,    N-l

- Y u°
N  ^   J

7 = 0

<    «l

Clearly,

min(w") < sN < max(K").

So

max(M;) < B • TV(u°) + min(«;) < B • TV(m°) + sN < B • TV(u°) +1|«°|

Similarly,

Hence

min(«;) > max(«;) - B • TV(w°) >sN- B- TV(u°)
j j

>-[B-TV(u°)+\\u0U}.

max|«;|<5-TV(w0)+||w°|U.
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Appendix: Numerical Results. The numbers in this appendix are often written in

exponential forms, e.g., 4.2 (-3) means 4.2 X 10 3.

All the tables are collected at the end.

Example 1. We use the boundary treatment (2.8)-(2.9) and 3-3 (third order in

space and time) TVD and TVB schemes discussed in [4], [6], [7], and [8] to solve the

following scalar initial-boundary value problem:

",+ "x = 0,      -l<x<l,
(A.l)

u(-l,t) = sinirt,       w(x,0) = sin7rx.

The boundary condition given is well posed.

The 3-3 TVD and TVB schemes we use are (2.1c) with

16 11 16 44
(A.2) m = 3;    a^—,0,0,—,    ßt=f,0,0,^;

(A.3a)     D/y = -x\df;_l/2 + |a_(j/;+1/2)(-)+ |a_(j/;_1/2)<+)

(A.3b)        Df; = -X[dfr+1/2 - -A + (dfr_1/2)^ + ?A+(rf/,-_1/2)

where

(A.4) dfj++l/2 = f(uj+l) - hJ+1/2;       dfy+1/2 = hJ+l/2 - f(uj)

with

(A.5)
a = max |/'(") |>

being the first-order monotone Lax-Friedrichs flux (we may also use any other

smooth monotone flux here), and the limited quantities defined by

(A.6)       yj+fa = m(yJ+l/2, byj+3/2);        yj~\/2 = m(yj+l/2, byj_l/2).

Here b = 4, and the function "w" is defined by

(A.7a)     m(a,ß) = minmod(a,/3) = (signa) max(o,min(|a|, ß signa))

in the TVD case, and

(A.7b) m(a,ß) = minmod(a,/3 + MAx2 signa)

in the TVB case. (We choose M = 50.)

We use (2.8) at the left boundary x = -1 and (2.9) at the right boundary x = 1.

The necessary extrapolations are done to third order. We use K = 1.0 in (2.9).

The numerical results are listed in Table 1.
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By comparing Table 1 with the results in [7] (same scheme for pure initial value

problem), we see that the boundary treatments (2.8) and (2.9) work quite well: We

get almost the same accuracy as in the pure initial value calculations.

Example 2. The same 3-3-TVB scheme as in Example 1 with the TVB boundary

treatment (3.8)-(3.9) is applied to the problem

CHI XI •<*«'■
^   ' ' m(x,0) = u(x,0) = sin2wx,

u(0,t) = -u(0,t),       d(1,/)--u(1,/).

We apply (3.8)—(3.9) to both boundaries, e and Kx in (3.8) are taken to be l.(-2)

and 1, respectively. The exact solutions of (A.8) are

w(x,í) = sin27r(x-í);        <;(x,/) = sin27r(x + ¡).

We list the numerical errors at t = 2 in Table 2.

Table 2 shows that the boundary treatment (3.8)—(3.9) works very well for smooth

problems.

Example 3. The same scheme and the same boundary treatment are applied to the

same equation as in Example 2 with a discontinuous initial-boundary condition:

(A.9) w(x,0) = (1'    lf3<*<i        D(x,0)==0   forx>0;
10,    otherwise,

«(0,i) = v(0,t).

We use the 3-3-TVD scheme (in order to see how the boundary treatment itself

affects the total variation) and the 3-3-TVB scheme with M = 200 in (A.7b). For

Ax = 1/20 the solutions at t = 0.5 and / = 1 are printed (the exact solutions have

values 0 and 1 at two sides of the star*):

(i) 3-3-TVD:
t = 0.5, u: .98, .97, .87, .57*, .25, 4.3(-2), 0. 0,...

t = 0.5, v: .98, .98, .85, .59*, .29, 7.1(-2), 8.3(-3), 8.8(-4), 0. 0,...

t = 1.0, u: -6.4(-4), l.l(-3), 1.6(-3), 3.4(-3), 1.4(-2), 9.6(-2), .32, *.60, .84, .95,

.96, .94, .81, .57*, .30, 9.7(-2), 7.2(-3), 0. 0,...

(ii) 3-3-TVB with M = 200:

t = 0.5, u: 1.06, 1.08, 0.85, 0.53*, 0.23, 5.2(-2), -1.8(-2), -2.3(-2), -1.0(-2),

-l.l(-3),1.4(-3),9.0(-4),...

t = 0.5, v. 1.09, 1.01, 0.84, 0.60*, 0.33, 8.3(-2), -4.9(-2), -5.8(-2), -1.4(-2),

1.2(-2),7.8(-3),...

t = 1.0, u: 4.2(-3), -7.9(-3), -5.1(-2), -7.1(-2), -2.1(-2), .12, .33, *.59, .84, 1.03,

1.11,1.02, .81, .54*, .28, 9.7(-2), -9.0(-4), -3.1(-2), -2.6(-2), -1.2(-2)

We can see that 3-3-TVD has essentially no overshoots or undershoots. This

implies that the boundary treatment itself does not increase the total variation in this

case. For an M as big as 200 and a Ax which is not too small, we still get reasonable

results for the 3-3-TVB scheme.
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Table 1    ( Example 1)

r: numerical order

L, -error

A A TVD TVB TVD TVB

1/10

1/20
1/40

6.5(-2)
2.2(-2)       1.59

7.1(-3)       1.61

9.4(-3)

1.3(-3)

2.0(-4)

2.80

2.75

1.7(-2) 3.5(-3)
3.5(-3)       2.30       5.1(-4)       2.77

6.9(-4)       2.34       8.2(-5)       2.65

Table 2    ( Example 2)

Lx: L^-error; L1: Lrerror; r: numerical order

L,

1/10

1/20

1/40
1/80

6.5(-
1.1(-
1.7(-
2.4(-

2.53

2.72

2.83

3.6(-2)
7.1(-3)

l.l(-3)

1.5(-4)

2.35
2.70

2.84

6.5(-2)
l.l(-2)
1.7(-3)
2.4(-4)

2.53

2.72
2.83

3.8(-2)
7.0(-3)

l.l(-3)

1.5(-4)

2.42

2.69

2.84

Institute for Mathematics and Its Applications

University of Minnesota

Minneapolis, Minnesota 55455

1. A. Harten, "High resolution schemes for hyperbolic conservation laws," J. Comput. Phys., v. 49,

1983, pp. 357-393.
2. A. Harten, " On a class of high resolution total-variation-stable finite difference schemes," SI A M J.

Numer. Anal., v. 21, 1984, pp. 1-23.

3. S. Osher & S. Chakravarthy, "High resolution schemes and the entropy condition," SIAM J.

Numer. Anal., v. 21,1984, pp. 955-984.

4. S. Osher & S. Chakravarthy, Very High Order Accurate TVD Schemes. ICASE Report #84-44,

1984; IMA Volumes in Mathematics and its Applications, vol. 2, Springer-Verlag, 1986, pp. 229-274.

5. P. Roe, "Approximate Riemann solvers, parameter vectors, and difference schemes," J. Comput.

Phys., v. 43, 1981, pp. 357-372.
6. C. Shu, "TVD time discretization II—time dependent problems." (Preprint.)

7. C. Shu, "TVB uniformly high-order schemes for conservation laws," Math. Comp., v. 49, 1987, pp.

105-121.
8. C. Shu, Numerical Solutions of Conservation Laws, Ph. D. dissertation, Department of Mathematics,

University of California, Los Angeles, 1986.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


