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Tverberg’s Theorem, whose fiftieth anniversary
we celebrate this year, has played a central role
both in discrete geometry and in topological
combinatorics. The basic statement sounds easy:

Tverberg’s Theorem (1966). Any (𝑑+1)(𝑟−1)+1 points
in ℝ𝑑 may be grouped into 𝑟 disjoint subsets such that the
convex hulls of these subsets have a point in common.

See Figure 1 for an example. The importance and impact
of Tverberg’s result—which theNorwegianmathematician
Helge Tverberg proved in the early morning, freezing, in
a hotel room in Manchester—may be seen from its many
variations and extensions, among them its “colored” and
“topological” versions. Curiously enough, the “topological
Tverberg theorem,” conjecturedby thefirst author in1976,
has remained a conjecture for decades. The topological
tools that we have for such problems, like the 1933
Borsuk-Ulam theorem, usually yield results only when 𝑟
is a prime power [13].

Now there are two surprising recent developments.
First, with Florian Frick [2] we designed a “constraint
method” that yields colored versions from the original
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Figure 1. Tverberg’s Theorem says that for 𝑑 = 2 and
𝑟 = 4, you can group these ten points into four
disjoint subsets such that the convex hulls of these
subsets have a point in common. See Figure 4 for a
solution.

“topological Tverberg theorem” quite easily. Second, Isaac
Mabillard and Uli Wagner in Vienna developed an “𝑟-
fold Whitney trick,” and Florian Frick in Berlin noticed
that combined with the constraint method this yields
counterexamples for all 𝑟 ≥ 6 that are not prime powers.

This is big news, but major questions remain. For
example, the current counterexamples to the topological
Tverberg conjecture are in high dimensions. Does it
also fail in the plane? Can one quantify the failure of the
conjecture? In the prime power case, where the conjecture
holds, are there always many Tverberg partitions? How
can one find them? Somany challenging questions remain.
Tverberg’s theorem and its variants will stay interesting
and keep us busy into the future.

Prehistory
There are popular puzzles that lead one to discover that
the graph 𝐾5 of Figure 2 (the complete graph on five
nodes and all ten pairs of nodes connected by an edge)
is not planar; that is, the complete graph with five nodes
cannot be drawn in the plane without intersections. This is
a basic fact from graph theory and a starting point for the
Four-Color Theorem, and it is not restricted to straight
edges.

Indeed, in any drawing of the graph 𝐾5 there are two
nonadjacent edges that intersect. This also stays true
beyond the usual “nice” drawings typically considered in
graph theory, where edges might be drawn as straight
lines or as smooth curves and will have at most a finite
number of intersection points. It may be viewed as the
special case 𝑑 = 1 of a famous result in topology, the Van
Kampen-Flores theorem from 1932–33:
Any continuous map of the 𝑑-dimensional skeleton of a
(2𝑑+2)-dimensional simplex Δ2𝑑+2 toℝ2𝑑 sends two points
from disjoint faces of Δ2𝑑+2 to the same point in ℝ2𝑑.

Figure 2. In every drawing of the complete graph 𝐾5,
whether by straight lines or by curves, there are two
nonadjacent edges that intersect.

Wewill get back to this later, but our starting point here
is even simpler, namely, drawings of 𝐾4, the complete
graph on four nodes, as in Figure 3. Here is a basic
statement:
In every drawing of 𝐾4, two nonadjacent edges intersect
or one vertex is surrounded by the triangle spanned by
the other three.

This seems quite obvious, and once again it has a
high-dimensional version, Radon’s theorem from 1921:
Any set of 𝑑+ 2 points in ℝ𝑑 contains two disjoint subsets
whose convex hulls intersect.

This is easy to prove by linear algebra: If the points
are 𝑥1,… , 𝑥𝑑+2 in ℝ𝑑, then the vectors (𝑥1, 1),… , (𝑥𝑑+2, 1)
are linearly dependent in ℝ𝑑+1; any linear dependence is
given by reals 𝜆1,… ,𝜆𝑑+2 that are not all zero but sum
to zero. So we can scale the dependence such that the
positive 𝜆𝑖’s sum to 1 and the negative ones sum to −1.
This yields ∑𝑖∶𝜆𝑖>0 𝜆𝑖𝑥𝑖 = ∑𝑗∶𝜆𝑗<0(−𝜆𝑗)𝑥𝑗, which is what
we need.

The result again can be phrased in terms of a map
from a simplex to ℝ𝑑:

Radon’s Theorem. Any affine map 𝑓∶ Δ𝑑+1 → ℝ𝑑 sends
two points from disjoint faces of the (𝑑 + 1)-simplex Δ𝑑+1
to the same point in ℝ𝑑.

Figure 3. In every drawing of 𝐾4, either two
nonadjacent edges intersect or one vertex is inside
the triangle spanned by the other three.

For 𝑑 = 2 this yields the statement about straight-line
drawings of 𝐾4. The conclusion is, however, true for very
general drawings of 𝐾4 in the plane given by any four
points and six arbitrary continuous curves that connect
them:
In every drawing of 𝐾4, there are two nonadjacent edges
that meet in the drawing, or there is one vertex surrounded
by the cycle spanned by the remaining three vertices.
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Figure 4. In this Tverberg partition for 𝑟 = 4, the
marked intersection of two edges is contained inside
the two bold triangles. This solves the puzzle at the
beginning of the paper.

“Surrounded” would mean here that the three-edge
cycle winds around the vertex, with nonzero winding
number—interpret this in Figure 3!

How do we prove this? For 𝑑 = 2 this is easy to verify,
since the drawing of 𝐾4 in the plane without intersections
is essentially unique. Nevertheless, if you work out details,
you will need the Jordan curve theorem, which is less
trivial than one might think. But again, there is a higher-
dimensional version, published by Ervin G. Bajmóczy and
Imre Bárány in 1979:

The Topological Radon Theorem. Any continuous map
𝑓∶ Δ𝑑+1 → ℝ𝑑 sends two points from disjoint faces of the
(𝑑 + 1)-simplex Δ𝑑+1 to the same point in ℝ𝑑.

Tverberg’s
theorem has been

the most
significant
discovery in

combinatorial
convexity for the
last fifty years.

Bajmóczy and
Bárány derived their
result from the Borsuk-
Ulam theorem, which
in one of its many
beautiful incarnations
says that any contin-
uous map 𝑆𝑑 → ℝ𝑑

sends two opposite
points on the sphere
to the samepoint inℝ𝑑.
(Gromov [7, p. 445] of-
fers a particularly
clever way of getting
that: approximate the
(𝑑 + 1)-simplex by a
strictly convex body,
and map each point

in the 𝑑-sphere to the unique point in the correspond-
ing support hyperplane and then to ℝ𝑑; then apply
the Borsuk-Ulam theorem to the corresponding map
𝑆𝑑 → ℝ𝑑.)

The topological Radon theorem was one of the starting
points of what has since become the field of topological
combinatorics. Indeed, the Borsuk–Ulam Theorem has
an amazing range of applications in discrete geometry,
combinatorics, and topology, as explained and illustrated
in Matoušek’s classic text Using the Borsuk-Ulam theorem.

On the other hand, the topological Radon theorem
is the first step on the way to the topological Tverberg
problem, which asks for multiple intersections in the case
of continuous maps Δ𝑁 → ℝ𝑑 for sufficiently large 𝑁.
For affine maps this is the subject of Tverberg’s theorem,
whose fiftieth anniversary we are celebrating this year. For
continuous maps it has been a mystery for decades, “one
of the most challenging problems in this field” according
to Matoušek; “a holy grail of topological combinatorics”
according to Gil Kalai. Now it has been partially resolved,
in an unexpected way, as we shall see.

Tverberg’s Theorem—Fifty Years Ago!
In 1957 the Cambridge undergraduate Bryan John Birch
proved, in his bachelor’s thesis, an 𝑟-part version of
Radon’s result about straight-line drawings of 𝐾4; it is
illustrated by Figure 4.
Birch’s Theorem. In every straight-line drawing of 𝐾3𝑟−2
there are two edges that cross such that the intersection
point is contained in 𝑟 − 2 triangles spanned by disjoint
triples of the other vertices, or there is one vertex of the
graph contained in 𝑟−1 triangles formed by disjoint triples
of the other vertices.

Again, this may be seen as a statement about affine

Helge Tverberg proved
his theorem fifty years
ago. This photo, by
Gerard Sierksma,
shows him in
September 1985 at a
conference in
Pokrawna, Poland.

maps, from the simplex Δ3𝑟−3
to the plane. Birch also stud-
ied a high-dimensional version
of his result, but he couldn’t
prove it, so he finally pub-
lished it as a conjecture and
moved on to what he now calls
“elliptic curvery” and became
famous for a different conjec-
ture, one of the million-dollar
Clay Millennium Problems.

Meanwhile, a young Nor-
wegian mathematician, Helge
Tverberg, stumbled across
the same problem, first
re-proving it for the plane,
then also for ℝ3, and then, fi-
nally, on a cold early morning
in a Manchester hotel room,
establishing the general case.
Tverberg phrased it as a state-
ment about (𝑑 + 1)(𝑟 − 1) + 1
points in ℝ𝑑, but again we pre-
fer to state it in terms of affine
maps.
Birch’s Conjecture/Tverberg’s Theorem. For integers
𝑟 ≥ 2, 𝑑 ≥ 1, and 𝑁 = (𝑑 + 1)(𝑟 − 1), any affine map
𝑓∶ Δ𝑁 → ℝ𝑑 sends 𝑟 points from disjoint faces of the
𝑁-dimensional simplex Δ𝑁 to the same point in ℝ𝑑.
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This is rather trivial for 𝑑 = 1; it is Birch’s theorem for
𝑑 = 2 and Radon’s theorem for 𝑟 = 2. Tverberg’s original
proof was complicated, showing that the statement re-
mains true when the points move. It has been re-proved
in new ways again and again, so it must be interesting.

Tverberg’s theorem has been the most significant
discovery in combinatorial convexity for the lastfifty years.
It hasagreatnumberof interestingapplications indiscrete
and computational geometry, in combinatorics, and in
theoretical computer science. Whenever you encounter a
question about convexity properties of a finite point set
in ℝ𝑑, check what Tverberg’s theorem has to say.

The theorem also served as a model and inspiration for
new results in combinatorial convexity, for instance the
following beautiful one by Roman Karasev [9]: Given 3𝑟
lines in general position in the plane, it is possible to split
them into 𝑟 disjoint sets each consisting of three lines such
that the 𝑟 triangles determined by the 𝑟 triples of lines have
a point in common. The result seems to extend to higher
dimensions, but this partially remains a conjecture.

Tverberg’s theorem prompted the start of several
new research directions. In particular its topological
and colored versions have created a large body of new
knowledge and have led to novel connections between
combinatorial convexity and algebraic topology, as we
will now describe.

The Topological Tverberg Conjecture—Forty
Years Ago
In 1976, forty years ago this year, the first author sent a
letter to Helge Tverberg asking for a “topological version”
of Tverberg’s theorem. In May 1978 Tverberg presented
the problem at the “Konvexe Körper” workshop in Ober-
wolfach, and it appears in the collection of problems
distributed to the workshop participants (Figure 5).

Figure 5. The topological Tverberg problem, in
mimeographed notes from the 1978 Oberwolfach
workshop, provided by Rolf Schneider.

The problem finally appeared in print in 1979. Since
then it has been referred to as the “topological Tverberg
conjecture” and often also, in acts of gross negligence, as
the “topological Tverberg theorem.”

The Topological Tverberg Conjecture [8]. For integers
𝑟 ≥ 2, 𝑑 ≥ 1, and 𝑁 = (𝑑 + 1)(𝑟 − 1), any continuous
map 𝑓∶ Δ𝑁 → ℝ𝑑 sends 𝑟 points from disjoint faces of the
𝑁-dimensional simplex Δ𝑁 to the same point in ℝ𝑑.

We know that this conjecture holds for affine maps.
For continuous maps, it was first proved by Imre Bárány,
Senya B. Shlosman, and András Szűcs in 1981 [1]—only,

however, under the unnatural-looking restriction that 𝑟
is a prime. How did this come in?

Sketch of the Proof for 𝑟 a Prime. Let us assume that
there is a counterexample, that is, a continuous map
𝑓∶ Δ𝑁 → ℝ𝑑 that does not send any collection of 𝑟 points
from 𝑟 disjoint faces of the simplex Δ𝑁 to the same point
in ℝ𝑑. From the counterexample map 𝑓 one would be able
to construct an “𝑟-fold deleted product” map

𝐹 = 𝑓×𝑟∶ (Δ𝑁)×𝑟
Δ(2) → (ℝ𝑑)×𝑟

Δ → 𝑆(𝑊⊕𝑑
𝑟 ) ≅ 𝑆𝑁−𝑟

Here 𝑊𝑟 ∶= {(𝑥1,… , 𝑥𝑟) ∈ ℝ𝑟 ∶ ∑𝑥𝑖 = 0}. The point
is that the symmetric group 𝔖𝑟 permutes the fac-
tors/coordinates for these spaces, and the map 𝐹 is
“equivariant”; it respects the symmetry. Moreover, if 𝑟
is a prime, then a cyclic subgroup ℤ𝑟 ⊂ 𝔖𝑟 acts freely
on the sphere, and thus one can apply an extension of
the Borsuk-Ulam theorem for arbitrary free actions that
is known as “Dold’s theorem”: It says that there is no
equivariant map from an (𝑁 − 𝑟)-connected space to
an (𝑁 − 𝑟)-dimensional one endowed with a free action.
So we conclude that the counterexample map cannot
exist. □

So it’s proved only if 𝑟 is a prime? To quote Matoušek:
It seems likely that this theorem remains true
for all 𝑝, not only primes, but so far nobody has
managed to prove this. It has been verified for all
prime powers, though.

Indeed, the next step was taken by Murad Özaydin
in 1987. In an important and influential paper [12] that
was never published, he proved the topological Tverberg
conjecture for the case when 𝑟 = 𝑝𝑘 is a prime power.
How? He noted that in that case the hypothetical map

𝐹 = 𝑓×𝑟∶ (Δ𝑁)×𝑟
Δ(2) → (ℝ𝑑)×𝑟

Δ → 𝑆(𝑊⊕𝑑
𝑟 ) ≅ 𝑆𝑁−𝑟

is equivariant with respect to an elementary abelian sub-
group (ℤ𝑝)𝑘 ⊂ 𝔖𝑝𝑘 that acts on the sphere 𝑆(𝑊⊕𝑑

𝑟 ) not
freely but without fixed points. In this situation some alge-
braic topology machinery (cohomology of the homotopy

…it came as quite
a surprise that
there is a really

simple “constraint
method” to get
virtually all of

these extensions…

orbit space and a
related localization the-
orem in combination
with comparison of
Serre spectral se-
quences) still implies
that the map cannot ex-
ist. A detailed proof can
be found in [3].

So it’s proved only if
𝑟 is a prime power? Ac-
tually, Özaydin proved
more: He showed that if
𝑟 is not a prime power,
then the hypothetical
map

𝐹∶ (Δ𝑁)×𝑟
Δ(2) → 𝑆𝑁−𝑟

does exist. This still doesn’t mean that the topological
Tverberg conjecture fails, but itmeans that the equivariant
topology approach, known as the “Configuration Space
Test Map Scheme (CS/TM),” fails here miserably. This was
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1987, nearly thirty years ago, and we were left without
any promising approach or any hope of handling the
topological Tverberg conjecture in the cases when the
number of overlapping simplices is not a prime power.

Using Constraints
Over the years, there have been a great number of inter-
esting extensions and variations of Tverberg’s theorem.
In every single case it seemed that one had to work hard,
with major topological tools, to get the prime or even the
prime-power case—and one could not get beyond that.

So it came as quite a surprise that there is a really
simple “constraint method” to get virtually all of these
extensions directly from the original topological Tverberg
theorem. This observation arose in our collaboration [2]
with Florian Frick at a blackboard at Arnimallee 2, a villa
that is part of the Mathematical Institute of FU Berlin. We
couldn’t believe that it was so easy!

Let us illustrate the idea of the constraint method in
two examples.

Murad Özaydin proved
the topological Tverberg
conjecture for the case
when 𝑟 is a prime power.

First, we demonstrate
how the generalized Van
Kampen-Flores theorem be-
comes a consequence of
the topological Tverberg
theorem:1

Theorem. If the topological
Tverberg theorem holds for
parameters 𝑟 and 𝑑 + 1,
then the Generalized Van
Kampen-Flores theorem
holds for the parameters 𝑟
and 𝑑, for𝑁 = (𝑑+2)(𝑟−1).

The constraint method
takes the extra condition
that the Van Kampen-Flores
theorem asks for and en-
codes it into a constraint

function, which becomes an additional component of the
Tverberg function, “one dimension higher.” Any solution
then will consist of 𝑟 faces of the simplex or, more pre-
cisely, points 𝑥1,… , 𝑥𝑟 on these faces, of equal distance
from the skeleton. The pigeonhole principle forces one,
and thus all, of the points to lie in the lower-dimensional
skeleton:

Proof. Let 𝑟 ≥ 2, 𝑑 ≥ 1, 𝑘 ≥ ⌈ 𝑟−1
𝑟 𝑑⌉ be integers, and let

𝑁 = (𝑑+ 2)(𝑟 − 1). Consider a continuous map 𝑔∶ Δ𝑁 →
ℝ𝑑+1 defined by

𝑔(𝑥) = (𝑓(𝑥),dist(𝑥, sk𝑘(Δ𝑁))).
Here sk𝑘(Δ𝑁) denotes the 𝑘-skeleton of the simplex Δ𝑁.
Since𝑁 = ((𝑑+1)+1)(𝑟−1) and the topological Tverberg
theorem holds for 𝑟, it can be applied to the map 𝑔. Thus
we get 𝑟 pairwise disjoint faces 𝜎𝑖 of the simplex Δ𝑁 with
points 𝑥𝑖 in the relative interior of 𝜎𝑖 such that 𝑔(𝑥1) =

1Later it was noted that Gromov had sketched this already in
2010, [7, pp. 445–446].

Isaac Mabillard and Uli Wagner developed the “𝑟-fold
Whitney trick” in the hope of constructing counter-
examples.

⋯ = 𝑔(𝑥𝑟); that is, 𝑓 sends all points 𝑥1,… , 𝑥𝑟 to one point
and in addition

dist(𝑥1, sk𝑘(Δ𝑁)) = ⋯ = dist(𝑥𝑟, sk𝑘(Δ𝑁)).
Observe that if at least one of the faces𝜎𝑖 would belong to
the 𝑘-skeleton, then dist(𝑥𝑖, sk𝑘(Δ𝑁)) = 0 for all 1 ≤ 𝑖 ≤ 𝑟.
Hence, it would follow that 𝜎𝑖 ∈ sk𝑘(Δ𝑁) for all 1 ≤ 𝑖 ≤ 𝑟,
and the proof of the theorem would be complete.

To conclude the proof we use the pigeonhole principle.
Assume that all the faces𝜎𝑖 are not in the 𝑘-skeleton, that
is, dim𝜎𝑖 ≥ 𝑘 + 1 for every 𝑖. Since the faces 𝜎1,… ,𝜎𝑟
are disjoint they together have at least 𝑟(𝑘 + 2) ≥
𝑟(⌈ 𝑟−1

𝑟 𝑑⌉+2) ≥ 𝑁+2 vertices, more than the number of
vertices of the simplex Δ𝑁, a contradiction. □

Thus, if the generalized Van Kampen-Flores theorem
does not hold for some parameter 𝑟, then the topolog-
ical Tverberg theorem also does not hold for the same
parameter.

Is this all? Can the pigeonhole principle create more
results? Surprisingly enough, the answer is yes; it can give
us much more. Maybe some colored Tverberg theorem?

Another Colored Tverberg Theorem. For integers 𝑟 ≥ 1,
𝑑 ≥ 1, and 𝑁 = (2𝑑 + 2)(𝑟 − 1) where 𝑟 is a prime
power, any continuous map 𝑓∶ Δ𝑁 → ℝ𝑑, with any col-
oring of the vertex set of the simplex Δ𝑁 by 𝑑 + 1 colors
where each of the color classes is of size at most 2𝑟 − 1,
sends 𝑟 points from disjoint rainbow faces of the simplex
Δ𝑁—all of whose vertices must have different colors—to
the same point.

Proof. Let (𝐶1,… ,𝐶𝑑+1) be a coloring of the set of ver-
tices of the simplex Δ𝑁 where |𝐶𝑖| ≤ 2𝑟 − 1 for all 𝑖. For
each color class 𝐶𝑖 we introduce the subcomplex Σ𝑖 ∶=
{𝜎 ∈ Δ𝑁 ∶ |𝜎 ∩ 𝐶𝑖| ≤ 1}. Then the intersection Σ1 ∩
⋯∩ Σ𝑑+1 is a subcomplex of all rainbow faces of Δ𝑁. Let
𝑔∶ Δ𝑁 → ℝ2𝑑+1 be a continuous map defined by

𝑔(𝑥) = (𝑓(𝑥),dist(𝑥, Σ1),… ,dist(𝑥, Σ𝑑+1)).
With 𝑟 as a prime power and 𝑁 = ((2𝑑 + 1) + 1)(𝑟 − 1),
the topological Tverberg theorem can be applied to 𝑔.
So, there are 𝑟 pairwise disjoint faces 𝜎𝑖 with points
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𝑥𝑖 ∈ relint𝜎𝑖 such that 𝑔(𝑥1) = ⋯ = 𝑔(𝑥𝑟); that is, 𝑓
sends all points 𝑥1,… , 𝑥𝑟 to the same point and

dist(𝑥1, Σ1) = ⋯ = dist(𝑥𝑟, Σ1),
⋯

dist(𝑥1, Σ𝑑+1) = ⋯ = dist(𝑥𝑟, Σ𝑑+1).
For every subcomplex Σ𝑖 one of the faces 𝜎1,… ,𝜎𝑟 is con-
tained in it. Indeed, if this were not true, then each of
the faces 𝜎1,… ,𝜎𝑟 would have at least two vertices in
the color class 𝐶𝑖. Since the faces are disjoint, the color
classes 𝐶𝑖 have to be of size at least 2𝑟, a contradiction.
Thus, the distances that were previously equal have to
vanish, implying that 𝑥𝑖 ∈ 𝜎𝑖 ⊆ Σ1 ∩⋯∩Σ𝑑+1 for every 𝑖;
that is, all the faces 𝜎1,… ,𝜎𝑟 are rainbow faces. □

Counterexamples
Here comes the second surprise. From 2013 to 2015, Isaac
MabillardandUliWagner at ISTAustria (inKlosterneuburg,
near Vienna) developed an “𝑟-fold Whitney trick” [10],
which extends the classical Whitney trick designed for
the embeddability problem (i.e., for 𝑟 = 2). Motivated by
Özaydin’s work, they had hoped to use this to construct
counterexamples to the topological Tverberg conjecture.
They proved the following essential theorem.

Theorem. For integers 𝑟 ≥ 2, ℓ ≥ 3, and an ((𝑟 − 1)ℓ)-
dimensional simplicial complex 𝐾, the following state-
ments are equivalent:
(i) There exists an 𝔖𝑟-equivariant map 𝐾×𝑟

Δ(2) → 𝑆(𝑊⊕𝑟ℓ
𝑟 ).

(ii) There exists a continuous map 𝑓∶ 𝐾 → ℝ𝑟ℓ such that
the 𝑓-images of any 𝑟 disjoint faces of 𝐾 do not inter-
sect.

Florian Frick realized that
the constraint method now
yielded counterexamples to
the topological Tverberg
conjecture.

The “codimension
three” condition that
is classically inherent in
the Whitney trick and is
reflected in the statement
of the theorem at the time
prevented Mabillard and
Wagner from obtaining
counterexamples to the
topological Tverberg theo-
rem for nonprime powers.
This was the state of af-
fairs in January–February
2015, which Isaac Mabil-
lard spent at the villa at
FU Berlin, where he pre-
sented the progress from
his PhD work in several

seminar lectures.
It turned out that only one more crucial observation

was missing: Florian Frick, then a PhD student at TU
Berlin and also a frequent visitor to the villa at FU Berlin,
realized that the theorem of Mabillard and Wagner, in
combination with the work of Özaydin and the con-
straint method, yields all that is needed for obtaining
counterexamples. More precisely, counterexamples to the
generalized Van Kampen-Flores conjecture for nonprime

powers, which one could get from the Mabillard-Wagner
theorem, would imply counterexamples to the topological
Tverberg conjecture for nonprime powers [6], [3].

Theorem. Let ℓ ≥ 3, 𝑟 ≥ 6 be integers where 𝑟 is not a
prime power. For any integer 𝑁 > 0 there exists a contin-
uous map 𝑓∶ Δ𝑁 → ℝ𝑟ℓ such that the 𝑓-images of any 𝑟
disjoint faces from the ((𝑟 − 1)ℓ)-skeleton of the simplex
Δ𝑁 do not intersect.

Sketch of the Proof. The deleted product cell complex
(sk(𝑟−1)ℓ Δ𝑁)×𝑟

Δ(2) is a free 𝔖𝑟-space of dimension at most
𝑑 ∶= (𝑟 − 1)𝑟ℓ. Since 𝑟 is not a power of a prime, ac-
cording to a result of Özaydin obtained via equivariant
obstruction theory, there exists an 𝔖𝑟-equivariant map

𝑔∶ (sk(𝑟−1)ℓ Δ𝑁)×𝑟
Δ(2) → 𝑆(𝑊⊕𝑑

𝑟 ).

The theorem of Mabillard and Wagner applied to the 𝔖𝑟-
equivariantmap 𝑔 yields a continuousmap 𝑓∶sk(𝑟−1)ℓ Δ𝑁 →
ℝ𝑟ℓ with the property that the images of any 𝑟 disjoint
faces from the ((𝑟 − 1)ℓ)-skeleton of the simplex Δ𝑁 do
not intersect. □

Thus we know that the generalized Van Kampen-Flores
theorem fails for all 𝑟 that are not prime powers, and
consequently the topological Tverberg conjecture fails
for all such 𝑟. We also get explicit parameters for the
counterexamples:

Corollary. Let ℓ ≥ 3, 𝑟 ≥ 6 be integers, and let 𝑁 ∶=
(𝑟−1)(𝑟ℓ+2), where 𝑟 is not a prime power. There exists
a continuous map 𝑔∶ Δ𝑁 → ℝ𝑟ℓ+1 such that 𝑔 images of
any 𝑟 disjoint faces of the simplex Δ𝑁 do not intersect.

In the cases where
we know that a

solution to
Tverberg’s

theorem exists, is
there any efficient

way to find it?

The “smallest”
counterexample to
the topological Tver-
berg conjecture that
can be obtained from
this is (for 𝑟 = 6)
a continuous map
𝑓∶ Δ100 → ℝ19 such
that the images of any
six pairwise disjoint
faces in Δ100 do not
intersect.

In subsequent work,
Mabillard and Wagner
have improved this to
get counterexamples
in dimensions 3𝑟 whenever 𝑟 is not a prime power, using
a more elaborate tool (“prismatic maps”) to overcome the
codimension 3 restriction. More recently, together with
Avvakumov and Skopenkov, they proved a codimension-2
analogue of the 𝑟-fold Whitney trick (for 𝑟 ≥ 3), leading
to counterexamples in dimension 2𝑟. Thus, the currently
smallest counterexample (again for 𝑟 = 6) is a map
Δ65 → ℝ12.
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The Next Fifty Years in the Life of Tverberg’s
Theorem?
What’s next? There are enough things to do! Let us point
out four.

(1) The topological Tverberg conjecture for 𝑑 = 2 may
be seen as a graph drawing problem for the complete
graph 𝐾3𝑟−2. Let’s take 𝑟 = 6: Is it true that in every
drawing of 𝐾16, there are two nonadjacent edges that
meet in the drawing, with an intersection surrounded by
four cycles spanned by disjoint triples of the remaining
twelve vertices, or there is one vertex surrounded by five
cycles spanned by the remaining fifteen vertices?

“Surrounded” here again means that the three-edge
cycle winds around the point with nonzero winding
number. One may get philosophical here: Is there an
essential difference in the Tverberg-type properties be-
tween straight-line drawings and general drawings of
graphs? For arrangements of lines vs. pseudolines in the
plane, substantial combinatorial differences exist; Branko
Grünbaum in 1970 had called this “the importance of
being straight.”

(2) Is it true in the affine case or if 𝑟 is a prime
power that there are always many Tverberg partitions
and not only one? Gerard Sierksma had conjectured in
1979 that there are always at least (𝑟 − 1)!𝑑 solutions.
Is this true? The best lower bound we have seems to
be 1

(𝑟−1)!(𝑟/2)
(𝑑+1)(𝑟−1)/2 for the prime case, by Vučić and

Živaljević from 1993.
(3) In the cases where we know that Tverberg’s theorem

is true and a solution exists, is there any efficient way to
find it? Is this (theoretically or practically) hard or easy?
See Mulzer and Werner [11] for a discussion and recent
references.

(4) The topological Tverberg theorem has an “optimal”
colored extension [4] that has the color-free original
version as a special case:

Optimal Colored Tverberg Theorem. For integers 𝑟 ≥ 1,
𝑑 ≥ 1, and 𝑁 = (𝑑 + 1)(𝑟 − 1) where 𝑟 is a prime, any
continuous map 𝑓∶ Δ𝑁 → ℝ𝑑 with any coloring of the ver-
tex set of the simplex Δ𝑁 where each color class is of size
at most 𝑟−1 sends 𝑟 points from disjoint rainbow faces of
the simplex Δ𝑁 to the same point.

Note for this the concepts of “coloring” and “rainbow
faces” have been redefined a bit: we use more than 𝑑+ 1
colors, and the rainbow faces do not pick up all colors.
Among all the variations of the topological Tverberg
theorem, this theorem is the only one that extends
it, except that we proved it (together with Benjamin
Matschke) only for the case where 𝑟 is prime, even in the
case where the map is affine. Does it fail otherwise, say
for 𝑟 = 4 and “ten colored points in the plane, no four of
the same color,” as in Figure 6?
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Figure 6. Does the optimal colored Tverberg theorem
fail for nonprime 𝑟, say for 𝑁+1 = 10 colored points
in the plane, no 𝑟 = 4 of the same color? This figure is
not a counterexample, because the three rainbow
triangles surround the point in the center.
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About the Opening Graphic
The “Optimal Colored Tverberg Theorem” says—for 𝑑 = 2
and 𝑟 = 3—that any drawing of the complete graph 𝐾7
on seven nodes, no three of the same color, either has
two rainbow triangles covering the seventh node, or two
rainbow edges that cross in a rainbow triangle spanned
by the other three nodes, or both. Our drawing shows an
example for the first case. How about the second one?
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