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Abstract

Recent years have witnessed an increasing

interest in image-based question-answering

(QA) tasks. However, due to data limitations,

there has been much less work on video-based

QA. In this paper, we present TVQA, a large-

scale video QA dataset based on 6 popular

TV shows. TVQA consists of 152,545 QA

pairs from 21,793 clips, spanning over 460

hours of video. Questions are designed to be

compositional in nature, requiring systems to

jointly localize relevant moments within a clip,

comprehend subtitle-based dialogue, and rec-

ognize relevant visual concepts. We provide

analyses of this new dataset as well as sev-

eral baselines and a multi-stream end-to-end

trainable neural network framework for the

TVQA task. The dataset is publicly available

at http://tvqa.cs.unc.edu.

1 Introduction

Now that algorithms have started to produce rel-

evant and realistic natural language that can de-

scribe images and videos, we would like to under-

stand what these models truly comprehend. The

Visual Question Answering (VQA) task provides

a nice tool for fine-grained evaluation of such mul-

timodal algorithms. VQA systems take as input

an image (or video) along with relevant natural

language questions, and produce answers to those

questions. By asking algorithms to answer differ-

ent types of questions, ranging from object iden-

tification, counting, or appearance, to more com-

plex questions about interactions, social relation-

ships, or inferences about why or how something

is occurring, we can evaluate different aspects of a

model’s multimodal semantic understanding.

As a result, several popular image-based

VQA datasets have been introduced, includ-

ing DAQUAR (Malinowski and Fritz, 2014),

COCO-QA (Ren et al., 2015a), FM-IQA (Gao

et al., 2015), Visual Madlibs (Yu et al., 2015),

VQA (Antol et al., 2015), Visual7W (Zhu et al.,

2016), etc. In addition, multiple video-based QA

datasets have also been collected recently, e.g.,

MovieQA (Tapaswi et al., 2016), MovieFIB (Ma-

haraj et al., 2017a), PororoQA (Kim et al., 2017),

TGIF-QA (Jang et al., 2017), etc. However, there

exist various shortcomings for each such video

QA dataset. For example, MovieFIB’s video clips

are typically short (∼4 secs), and focused on

purely visual concepts (since they were collected

from audio descriptions for the visually impaired);

MovieQA collected QAs based on text summaries

only, making them very plot-focused and less rele-

vant for visual information; PororoQA’s video do-

main is cartoon-based; and TGIF-QA used pre-

defined templates for generation on short GIFs.

With video-QA in particular, as opposed to

image-QA, the video itself often comes with as-

sociated natural language in the form of (subtitle)

dialogue. We argue that this is an important area

to study because it reflects the real world, where

people interact through language, and where many

computational systems like robots or other intel-

ligent agents will ultimately have to operate. As

such, systems will need to combine information

from what they see with what they hear, to pose

and answer questions about what is happening.

We aim to provide a dataset that merges the best

qualities from all of the previous datasets as well

as focus on multimodal compositionality. In par-

ticular, we collect a new large-scale dataset that is

built on natural video content with rich dynamics

and realistic social interactions, where question-

answer pairs are written by people observing both

videos and their accompanying dialogues, encour-

aging the questions to require both vision and lan-

guage understanding to answer. To further en-

courage this multimodal-QA quality, we ask peo-

ple to write compositional questions consisting

http://tvqa.cs.unc.edu
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What is on the couch behind Joey when he is at the 
counter?

A A chick

B A soccer ball

C A duck
D A pillow

E Janice's coat

What is Janice holding on to after Chandler sends 
Joey to his room?

A Chandler's tie

B Chandler's hands

C Her Breakfast
D Her coat

E Chandler's coffee cup.

00:00

Why does Joey want Chandler to kiss Janice when they are 

in the kitchen?

A Because Joey is glad that Chandler is happy

B Because Joey likes to watch people kiss

C    Because then she will leave  
D Because Joey thinks Janice is hot

E   Because then Chandler will move away from the toast.

00:00.755 --> 00:02.655  
(Chandler:) Go to your room!

00:06.961 --> 00:08.622 

(Janice:) I gotta go, I gotta go.

00:08.829 --> 00:10.057 
(Janice:) Not without a kiss.

00:10.264 --> 00:12.391 

(Chandler:) Maybe I won't kiss you so you'll stay.

00:12.600 --> 00:14.761 
(Joey:) Kiss her. Kiss her!

00:16.771 --> 00:19.137 

(Janice:) I‘ll see you later, sweetie. Bye, Joey.

00:39.327 --> 00:40.760 
(Chandler:) She makes me happy. 

00:41.596 --> 00:44.087 

(Joey:) Okay. All right.

…

00:1000:06 00:17 00:39 00:45 01:04

…

Figure 1: Examples from the TVQA dataset. All questions and answers are attached to 60-90 seconds long clips.

For visualization purposes, we only show a few of the most relevant frames here. As illustrated above, some

questions can be answered using subtitles or videos alone, while some require information from both modalities.

of two parts, a main question part, e.g. “What

are Leonard and Sheldon arguing about” and a

grounding part, e.g. “when they are sitting on the

couch”. This also leads to an interesting secondary

task of QA temporal localization.

Our contribution is the TVQA dataset, built on

6 popular TV shows spanning 3 genres: medical

dramas, sitcoms, and crime shows. On this data,

we collected 152.5K human-written QA pairs (ex-

amples shown in Fig.1). There are 4 salient ad-

vantages of our dataset. First, it is large-scale and

natural, containing 21,793 video clips from 925

episodes. On average, each show has 7.3 sea-

sons, providing long range character interactions

and evolving relationships. Each video clip is as-

sociated with 7 questions, with 5 answers (1 cor-

rect) for each question. Second, our video clips are

relatively long (60-90 seconds), thereby contain-

ing more social interactions and activities, mak-

ing video understanding more challenging. Third,

we provide the dialogue (character name + subti-

tle) for each QA video clip. Understanding the re-

lationship between the provided dialogue and the

question-answer pairs is crucial for correctly an-

swering many of the collected questions. Fourth,

our questions are compositional, requiring algo-

rithms to localize relevant moments (START and

END points are provided for each question).

With the above rich annotation, our dataset

supports three tasks: QA on the grounded clip,

question-driven moment localization, and QA on

the full video clip. We provide baseline experi-

ments on both QA tasks and introduce a state-of-

the-art language and vision-based model (leaving

moment localization for future work).

2 Related Work

Visual Question Answering: Several image-

based VQA datasets have recently been con-

structed, e.g., DAQUAR (Malinowski and Fritz,

2014), VQA (Antol et al., 2015), COCO-Q (Ren

et al., 2015a), FM-IQA (Gao et al., 2015), Vi-

sual Madlibs (Yu et al., 2015), Visual7W (Zhu

et al., 2016), CLEVR (Johnson et al., 2017),

etc. Additionally, several video-based QA datasets

have also been proposed, e.g. TGIF-QA (Jang

et al., 2017), MovieFIB (Maharaj et al., 2017b),

VideoQA (Zhu et al., 2017), LSMDC (Rohrbach

et al., 2015), TRECVID (Over et al., 2014),

MovieQA (Tapaswi et al., 2016), PororoQA (Kim

et al., 2017) and MarioQA (Mun et al., 2017).

However, none of these datasets provides a truly

realistic, multimodal QA scenario where both vi-

sual and language understanding are required to

answer a large portion of questions, either due to

unrealistic video sources (PororoQA, MarioQA)

or data collection strategy being more focused on

either visual (MovieFIB, VideoQA, TGIF-QA) or

language (MovieQA) sources. In comparison, our

TVQA collection strategy takes a directly multi-

modal approach to construct a large-scale, real-

video dataset by letting humans ask and answer

questions while watching TV-show videos with as-

sociated dialogues.

Text Question Answering: The related task of

text-based question answering has been exten-

sively explored (Richardson et al., 2013; Weston

et al., 2015; Rajpurkar et al., 2016; Hermann et al.,

2015; Hill et al., 2015). Richardson et al. (2013)

collected MCTest, a multiple choice QA dataset

intended for open-domain reading comprehension.
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With the same goal in mind, Rajpurkar et al.

(2016) introduced the SQuAD dataset, but their

answers are specific spans from long passages.

Weston et al. (2015) designed a set of tasks with

automatically generated QAs to evaluate the tex-

tual reasoning ability of artificial agents and Her-

mann et al. (2015); Hill et al. (2015) constructed

the cloze dataset on top of an existing corpus.

While questions in these text QA datasets are

specifically designed for language understanding,

TVQA questions require both vision understand-

ing and language understanding. Although meth-

ods developed for text QA are not directly appli-

cable to TVQA tasks, they can provide inspiration

for designing suitable models.

Natural Language Object Retrieval: Language

grounding addresses the task of object or mo-

ment localization in an image or video from a

natural language description. For image-based

object grounding, there has been much work on

phrase grounding (Plummer et al., 2015; Wang

et al., 2016b; Rohrbach et al., 2016) and referring

expression comprehension (Hu et al., 2016; Yu

et al., 2016; Nagaraja et al., 2016; Yu et al., 2017,

2018b). Recent work (Vasudevan et al., 2018)

extends the grounding task to the video domain.

Most recently, moment localization was proposed

in (Hendricks et al., 2017; Gao et al., 2017), where

the goal is to localize a short moment from a long

video sequence given a query description. Accu-

rate temporal grounding is a necessary step to an-

swering our compositional questions.

3 TVQA Dataset

3.1 Dataset Collection

We collected our dataset on 6 long-running TV

shows from 3 genres: 1) sitcoms: The Big

Bang Theory, How I Met Your Mother, Friends,

2) medical dramas: Grey’s Anatomy, House, 3)

crime drama: Castle. There are in total 925

episodes spanning 461 hours. Each episode was

then segmented into short clips. We first created

clips every 60/90 seconds, then shifted temporal

boudaries to avoid splitting subtitle sentences be-

tween clips. Shows that are mainly conversational

based, e.g., The Big Bang Theory, were segmented

into 60 seconds clips, while shows that are less

cerebral, e.g. Castle, were segmented into 90 sec-

onds clips. In the end, 21,793 clips were prepared

for QA collection, accompanied with subtitles and

aligned with transcripts to add character names. A

sample clip is shown in Fig. 1.

Amazon Mechanical Turk was used for VQA

collection on video clips, where workers were

presented with both videos and aligned named

subtitles, to encourage multimodal questions re-

quiring both vision and language understand-

ing to answer. Workers were asked to cre-

ate questions using a compositional-question

format: [What/How/Where/Why/...]

[when/before/after] . The second part of

each question serves to localize the relevant video

moment within a clip, while the first part poses a

question about that moment. This compositional

format also serves to encourage questions that re-

quire both visual and language understanding to

answer, since people often naturally use visual sig-

nals to ground questions in time, e.g. What was

House saying before he leaned over the bed? Dur-

ing data collection, we only used prompt words

(when/before/after) to encourage workers to pro-

pose the desired, complex compositional ques-

tions. There were no additional template con-

straints. Therefore, most of the language in the

questions is relatively free-form and complex.

Ultimately, workers pose 7 different questions

for each video clip. For each question, we asked

workers to annotate the exact video portion re-

quired to answer the question by marking the

START and END timestamps as in Krishna et al.

(2017). In addition, they provide 1 correct and

4 wrong answers for each question. Workers get

paid $1.3 for a single video clip annotation. The

whole collection process took around 3 months.

To ensure the quality of the questions and an-

swers, we set up an online checker in our collec-

tion interface to verify the question format, allow-

ing only questions that reflect our two-step for-

mat to be submitted. The collection was done in

batches of 500 videos. For each harvested batch,

we sampled 3 pairs of submitted QAs from each

worker and checked the semantic correctness of

the questions, answers, and timestamps.

3.2 Dataset Analysis

Multiple Choice QAs: Our QAs are multiple

choice questions with 5 candidate answers for

each question, for which only one is correct. Ta-

ble 1 provides statistics of the QAs based on the

first question word. On average, our questions

contain 13.5 words, which is fairly long compared

to other datasets. In general, correct answers tend
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QType #QA Q. Len. CA. Len. WA. Len.

what 84768 13.3 4.9 4.3

who 17654 13.4 3.1 3.0

where 17777 12.5 5.2 4.8

why 15798 14.5 9.0 7.7

how 13644 14.4 5.7 5.1

others 2904 15.2 4.9 4.7

total 152545 13.5 5.2 4.6

Table 1: Statistics for different question types based on

first question word. Q = question, CA = correct answer,

WA = wrong answer. Length is defined as the number

of words in the sentence.

Location (where)

Reasoning (why)

Person (who)

Action (what)

Object (what)

Abstract (what)

Others

Method (how)

10%

8.5%

6.5%

6%

21.5%

17.5%
15%

15%

Figure 2: Distribution of question types based on an-

swer types.

to be slightly longer than wrong answers. Fig. 2

shows the distribution of different questions types.

Note “what” (Abstract, Object, Action), “who”

(Person), “why” (Reasoning) and “where” (Loca-

tion) questions form a large part of our data.

The negative answers in TVQA are written by

human annotators. They are instructed to write

false but relevant answers to make the negatives

challenging. Alternative methods include sam-

pling negative answers from other questions’ cor-

rect answers, either based on semantic similar-

ity (Das et al., 2017; Jang et al., 2017) or ran-

domly (Antol et al., 2015; Das et al., 2017). The

former is prone to introducing paraphrases of the

ground-truth answer (Zhu et al., 2016). The latter

avoids the problem of paraphrasing, but generally

produces irrelevant negative choices. We show in

Table 8 that our human written negatives are more

challenging than randomly sampled negatives.

Moment Localization: The second part of our

question is used to localize the most relevant video

portion to answer the question. The prompt of

“when”, “after”, “before” account for 60.03%,

30.19% and 9.78% respectively of our dataset.

TVQA provides the annotated START and END

timestamps for each QA. We show the annotated

0 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 > 30
Segment Length (s)

0%

10%

20%

30%

40%

Pe
rc

en
ta

ge
 o

f Q
ue

st
io

ns

Distribution of localized segment lengths

Figure 3: Distribution of localized segment lengths.

The majority of our questions have timestamp localized

segment with length less than 15 seconds.

Show Genre #Sea. #Epi. #Clip #QA
BBT sitcom 10 220 4,198 29,384
Friends sitcom 10 226 5,337 37.357
HIMYM sitcom 5 72 1,512 10,584
Grey medical 3 58 1,427 9,989
House medical 8 176 4,621 32,345
Castle crime 8 173 4,698 32,886
Total — 44 925 21,793 152,545

Table 2: Data Statistics for each TV show. BBT = The

Big Bang Theory, HIMYM = How I Met You Mother,

Grey = Grey’s Anatomy, House = House M.D., Epi =

Episode, Sea. = Season

Show Top unique nouns

BBT
game, mom, laptop, water, store, dinner, book,

stair, computer, food, wine, glass, couch, date

Friends
shop, kiss, hair, sofa, jacket, counter, coffee,

everyone, coat, chair, kitchen, baby, apartment

HIMYM
bar, beer, drink, job, dad, sex, restaurant, wedding,

party, booth, dog, story, bottle, club, painting

Grey
nurse, side, father, hallway, scrub, chart, wife,

window, life, family, chief, locker, head, surgery

House
cane, team, blood, test, brain, pill, office, pain,

symptom, diagnosis, hospital, coffee, cancer, drug

Castle
gun, victim, picture, case, photo, body, murder,

suspect, scene, crime, money, interrogation

Table 3: Top unique nouns in questions and correct an-

swers.

segment lengths in Fig. 3. We found most of the

questions rely on relatively short moments (less

than 15 secs) within a longer clip (60-90 secs).

Differences among our 6 TV Shows: The videos

used in our dataset are from 6 different TV shows.

Table 2 provides statistics for each show. A good

way to demonstrate the difference among ques-

tions from TV shows is to show their top unique

nouns. In Table 3, we present such an anal-

ysis. The top unique nouns in sitcoms (BBT,

Friends, HIMYM) are mostly daily objects, scenes

and actions, while medical dramas (Grey, House)

questions contain more medical terms, and crime

shows (Castle) feature detective terms. Although

similar, there are also notable differences among

shows in the same genre. For example, BBT con-
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Dataset V. Src. QType #Clips / #QAs
Avg. Total Q. Src. Timestamp
Len.(s) Len.(h) text video annotation

MovieFIB (Maharaj et al., 2017a) Movie OE 118.5k / 349k 4.1 135 X - -
Movie-QA (Tapaswi et al., 2016) Movie MC 6.8k / 6.5k 202.7 381 X - X

TGIF-QA (Jang et al., 2017) Tumblr OE&MC 71.7k / 165.2k 3.1 61.8 X X -
Pororo-QA (Kim et al., 2017) Cartoon MC 16.1k / 8.9k 1.4 6.3 X X -
TVQA (our) TV show MC 21.8k / 152.5k 76.2 461.2 X X X

Table 5: Comparison of TVQA to various existing video QA datasets. OE = open-ended, MC = multiple-choices.

Q. Src. = Question Sources, it indicates where the questions are raised from. TVQA dataset is unique since its

questions are based on both text and video, with additional timestamp annotation for each of them. It is also

significantly larger than previous datasets in terms of total length of videos.

Character Top unique nouns

Sheldon
Arthur, train, Kripke, flag, flash, Wil,

logo, Barry, superhero, Spock, trek, sword

Leonard
Leslie, helium, robe, Dr, team, Kurt

university, key, chess, Stephen

Howard
NASA, trick, van, language, summer,

letter, Mike, station, peanut, Missy

Raj
Lucy, Claire, parent, music, nothing,

Isabella, bowl, sign, back, India, number

Penny
basket, order, mail, mouth, cheesecake, factory

shower, pizza, cream, Alicia, waitress, ice

Amy
Dave, meemaw, tablet, birthday, monkey, coat,

brain, ticket, laboratory, theory, lip, candle

Bernadette
song, sweater, wedding, child, husband,

everyone, necklace, stripper, weekend, airport

Table 4: Top unique nouns for characters in BBT.

VQA source Human accuracy on test.
Question 31.84
Video and Question 61.73
Subtitle and Question 72.88
Video, Subtitle, and Question 89.41

Table 5: Human accuracy on test set based on different

sources. As expected, humans get the best performance

when given both videos and subtitles.

tains “game” and “laptop” while HIMYM contains

“bar” and “beer”, indicating the different major

activities and topics in each show. Additionally,

questions about different characters also mention

different words, as shown in Table 4.

Comparison with Other Datasets: Table 5

presents a comparison of our dataset to some

recently proposed video question answering

datasets. In terms of total length of videos, TVQA

is the largest, with a total of 461.2 hours of videos.

MovieQA (Tapaswi et al., 2016) is most similar

to our dataset, with both multiple choice questions

and timestamp annotation. However, their ques-

tions and answers are constructed by people pos-

ing questions from a provided plot summary, then

later aligned to the video clips, which makes most

of their questions text oriented.

Human Evaluation on Usefulness of Video and

Subtitle in Dataset: To gain a better understand-

ing of the roles of videos and subtitles in the our

dataset, we perform a human study, asking differ-

ent groups of workers to complete the QA task

in settings while observing different sources (sub-

sets) of information:

• Question only.

• Video and Question.

• Subtitle and Question.

• Video, Subtitle, and Question.

We made sure the workers that have written the

questions did not participate in this study and that

workers see only one of the above settings for

answering each question. Human accuracy on

our test set under these 4 settings are reported in

Table 5. As expected, compared to human ac-

curacy based only on question-answer pairs (Q),

adding videos (V+Q), or subtitles (S+Q) signifi-

cantly improves human performance. Adding both

videos and subtitles (V+S+Q) brings the accuracy

to 89.41%. This indicates that in order to answer

the questions correctly, both visual and textual un-

derstanding are essential. We also observe that

workers obtain 31.84% accuracy given question-

answer pairs only, which is higher than random

guessing (20%). We ascribe this to people’s prior

knowledge about the shows. Note, timestamp an-

notations are not provided in these experiments.

4 Methods

We introduce a multi-stream end-to-end trainable

neural network for Multi-Modal Video Question

Answering. Fig. 4 gives an overview of our model.

Formally, we define the inputs to the model as: a

60-90 second video clip V , a subtitle S, a question

q, and five candidate answers {ai}
4

i=0
.

4.1 Video Features

Frames are extracted at 3 fps. We run Faster R-

CNN (Ren et al., 2015b) trained on the Visual
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a0 He tore up the folder 

…

a4 He pulled out a cell phone
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Leonard said the name Maggie 

McGarry ?
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Embedding
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00:50.590 --> 00:53.090

(Leonard:) "Sincerely, Maggie 

McGarry."?

…

00:54:380 --> 00:59.300

(Sheldon:) actually call that number, they 
will hear this.
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a0 He tore up the folder 

…
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Figure 4: Illustration of our multi-stream model for Multi-Modal Video QA. Our full model takes different con-

textual sources (regional visual features, visual concept features, and subtitles) along with question-answer pair as

inputs to each stream. For brevity, we only show regional visual features (upper) and subtitle (bottom) streams.

brown door, gold sign, red sign, woman, white shorts, 

green sweater, man, blue shirt, white basket, woman, 

gray pants, gray door, standing man, gray shirt, black pants

Figure 5: Faster R-CNN detection example. The de-

tected object labels and attributes can be viewed as a

description to the frame, which is potentially helpful to

answer a visual question.

Genome (Krishna et al., 2017) to detect object and

attribute regions in each frame. Both regional fea-

tures and predicted detection labels can be used as

model inputs. We also use ResNet101 (He et al.,

2016) trained on ImageNet (Deng et al., 2009) to

extract whole image features.

Regional Visual Features: On average, our

videos contain 229 frames, with 16 detections

per frame. It is not trivial to model such long

sequences. For simplicity, we follow (Anderson

et al., 2018; Karpathy and Fei-Fei, 2015) select-

ing the top-K regions1 from each detected label

across all frames. Their regional features are L2-

normalized and stacked together to form our vi-

sual representation V reg ∈ R
nreg×2048. Here nreg

is the number of selected regions.

Visual Concept Features: Recent work (Yin and

Ordonez, 2017) found that using detected object

1Based on cross-validation, we find K=6 to perform best.

labels as input to an image captioning system gave

comparable performance to using CNN features

directly. Inspired by this work, we also experiment

with using detected labels as visual inputs. As

shown in Fig. 5, we are able to detect rich visual

concepts, including both objects and attributes,

e.g. ”white basket”, which could be used to an-

swer “What is Sheldon holding in his hand when

everyone is at the door”. We first gather detected

concepts over all the frames to represent concept

presence. After removing duplicate concepts, we

use GloVe (Pennington et al., 2014) to embed the

words. The resulting video representation is de-

noted as V cpt ∈ R
ncpt×300, where ncpt is the num-

ber of unique concepts.

ImageNet Features: We extract the pooled

2048D feature of the last block of ResNet101.

Features from the same video clip are L2 normal-

ized and stacked, denoted as V img ∈ R
nimg×2048,

where nimg is the number of frames extracted

from the video clip.

4.2 LSTM Encoders for Video and Text

We use a bi-directional LSTM (BiLSTM) to en-

code both textual and visual sequences. A subtitle

S, which contains a set of sentences, is flattened

into a long sequence of words and GloVe (Pen-

nington et al., 2014) is used to embed the words.

We stack the hidden states of the BiLSTM from

both directions at each timestep to obtain the sub-

title representation HS ∈ R
nS×2d, where nS is

the number of subtitle words, d is the hidden size

of the BiLSTM (set to 150 in our experiments).

Similarly, we encode question Hq ∈ R
nq×2d, can-

didate answers Hai ∈ R
nai

×2d, and visual con-
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cepts Hcpt ∈ R
ncpt×2d. nq and nai are the num-

ber of words in question and answer ai, respec-

tively. Regional features V reg and ImageNet fea-

tures V img are first projected into word vector

space using a non-linear layer with tanh activation,

then encoded using the same BiLSTM to obtain

the regional representations Hreg ∈ R
nreg×2d and

H img ∈ R
nimg×2d, respectively.

4.3 Joint Modeling of Context and Query

We use a context matching module and BiLSTM

to jointly model the contextual inputs (subtitle,

video) and query (question-answer pair). The con-

text matching module is adopted from the context-

query attention layer from previous works (Seo

et al., 2017; Yu et al., 2018a). It takes context vec-

tors and query vectors as inputs and produces a set

of context-aware query vectors based on the simi-

larity between each context-query pair.

Taking the regional visual feature stream as

an example (Fig. 4 upper stream), where Hreg

is used as context input2. The question em-

bedding, Hq, and answer embedding, Hai , are

used as queries. After feeding context-query

pairs into the context matching module, we obtain

a video-aware-question representation, Greg,q ∈
R
nreg×2d, and video-aware-answer representation,

Greg,ai ∈ R
nreg×2d, which are then fused with

video context:

M reg,ai = [Hreg;Greg,q;Greg,ai ;

Hreg ⊙Greg,q;Hreg ⊙Greg,ai ],

where ⊙ is element-wise product. The fused fea-

ture, M reg,ai ∈ R
nreg×10d, is fed into another

BiLSTM. Its hidden states, U reg,ai ∈ R
nreg×10d,

are max-pooled temporally to get the final vec-

tor, ureg,ai ∈ R
10d, for answer ai. We use a lin-

ear layer with softmax to convert {ureg,ai}4i=0
into

answer probabilities. Similarly, we can compute

the answer probabilities given subtitle as context

(Fig. 4 bottom stream). When multiple streams

are used, we simply sum up the scores from each

stream as the final score (Wang et al., 2016a).

5 Experiments

For evaluation, we introduce several baselines and

compare them to our proposed model.

2For visual concept features and ImageNet features, we
simply replace H

reg with H
cpt or Himg as the context.

In all experiments, setup is as follows. We split

the TVQA dataset into 80% training, 10% valida-

tion, and 10% testing splits such that videos and

their corresponding QA pairs appear in only one

split. This results in 122,039 QA pairs for train-

ing, 15,253 QA pairs for validation, and 15,253

QA pairs for testing. We evaluate each model us-

ing multiple-choice question answering accuracy.

5.1 Baselines

Longest Answer: Table 1 indicates that the aver-

age length of the correct answers is longer than the

wrong ones; thus, our first baseline simply selects

the longest answer for each question.

Nearest Neighbor Search: In this baseline, we

use Nearest Neighbor Search (NNS) to compute

the closest answer to our question or subtitle.

We embed sentences into vectors using TFIDF,

SkipThought (Kiros et al., 2015), or averaged

GloVe (Pennington et al., 2014) word vectors, then

compute the cosine similarity for each question-

answer pair or subtitle-answer pair. For TFIDF,

we use bag-of-words to represent the sentences,

assigning a TFIDF value for each word.

Retrieval: Due to the size of TVQA, there may

exist similar questions and answers in the dataset.

Thus, we also implement a baseline two-step re-

trieval approach: given a question and a set of can-

didate answers, we first retrieve the most relevant

question in the training set, then pick the candi-

date answer that is closest to the retrieved ques-

tion’s correct answer. Similar approaches have

also been used in dialogue systems (Jafarpour and

Burges, 2010; Leuski and Traum, 2011), picking

the appropriate responses to an utterance from a

predefined human conversational corpus. Similar

to NNS, we use TFIDF, SkipThought, and GloVe

vectors with cosine similarity.

5.2 Results

Table 6 shows results from baseline methods and

our proposed neural model. Our main results

are obtained by using full-length video clips and

subtitles, without using timestamps (w/o ts). We

also run the same experiments using the localized

video and subtitle segment specified by the ground

truth timestamps (w/ ts). If not indicated explicitly,

the numbers described below are from the experi-

ments on full-length video clips and subtitles.

Baseline Comparison: Row 1 shows results of

the longest answer baseline, achieving 30.41%
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Video Test Accuracy

Method Feature w/o ts w/ ts

0 Random - 20.00 20.00

1 Longest Answer - 30.41 30.41

2 Retrieval-Glove - 22.48 22.48

3 Retrieval-SkipThought - 24.24 24.24

4 Retrieval-TFIDF - 20.88 20.88

5 NNS-Glove Q - 22.40 22.40

6 NNS-SkipThought Q - 23.79 23.79

7 NNS-TFIDF Q - 20.33 20.33

8 NNS-Glove S - 23.73 29.66

9 NNS-SkipThought S - 26.81 37.87

10 NNS-TFIDF S - 49.94 51.23

11 Our Q - 43.34 43.34

12 Our V+Q img 42.67 43.69

13 Our V+Q reg 42.75 44.85

14 Our V+Q cpt 43.38 45.41

15 Our S+Q - 63.14 66.23

16 Our S+V+Q img 63.57 66.97

17 Our S+V+Q reg 63.19 67.82

18 Our S+V+Q cpt 65.46 68.60

Table 6: Accuracy for different methods on TVQA test

set. Q = Question, S = Subtitle, V = Video, img =

ImageNet features, reg = regional visual features, cpt

= visual concept features, ts = timestamp annotation.

Human performance without timestamp annotation is

reported in Table 5.

(compared to random chance at 20%). As ex-

pected, the retrieval-based methods (row 2-4)

and the answer-question similarity based methods

(row 5-7) perform rather poorly, since no con-

texts (video or subtitle) are considered. When

using subtitle-answer similarity to choose correct

answers, Glove, SkipThought, and TFIDF based

approaches (row 8-10) all achieve significant im-

provement over question-answer similarity. No-

tably, TFIDF (row 10) answers 49.94% of the

questions correctly. Since our questions are raised

by people watching the videos, it is natural for

them to ask questions about specific and unique

objects/locations/etc., mentioned in the subtitle.

Thus, it is not surprising that TFIDF based similar-

ity between answer and subtitle performs so well.

Variants of Our Model: Rows 11-18 show re-

sults of our model with different contextual inputs

and features. The model that only uses question-

answer pairs (row 11) achieves 43.34% accuracy.

Compared to the subtitle model (row 15), adding

video as additional sources (row 16-18) improves

performance. Interestingly, adding video to the

question only model (row 11) do not work as well

(row 12-14). Our hypothesis is that the video fea-

ture streams may be struggling to learn models

for answering textual questions, which degrades

Q S+Q
V+Q S+V+Q

img reg cpt img reg cpt

what (55.62%) 44.11 62.29 44.96 45.93 47.44 63.88 65.28 66.05

who (11.55%) 36.55 68.33 35.75 34.85 34.68 67.76 67.20 67.99

where (11.67%) 42.58 56.97 47.13 48.43 48.20 61.97 63.71 61.46

how (8.98%) 41.17 71.97 41.17 42.41 40.95 71.17 70.80 71.53

why (10.38%) 45.23 78.65 46.05 45.36 45.48 78.33 77.13 78.77

other (1.80%) 36.50 74.45 37.23 36.50 33.58 73.72 72.63 74.09

all (100%) 42.77 65.15 43.78 44.40 45.03 66.44 67.17 67.70

Table 7: Accuracy of each question type using differ-

ent models (w/ ts) on TVQA Validation set. Q = Ques-

tion, S = Subtitle, V = Video, img = ImageNet features,

reg = regional visual features, cpt = visual concept fea-

tures. The percentage of each question type is shown

in brackets.

their ability to answer visual questions. Overall,

the best performance is achieved by using all the

contextual sources, including subtitles and videos

(using concept features, row 18).

Comparison with Human Performance: Hu-

man performance without timestamp annotation

is shown in Table 5. When using only questions

(Table 6 row 11), our model outperforms humans

(43.34% vs 31.84%) as it has access to all statistics

of the questions and answers. When using videos

or subtitles or both, humans perform significantly

better than the models.

Models with Timestamp Annotation: Columns

under w/o ts and w/ ts show a comparison between

the same model using full-length videos/subtitles

and using timestamp localized videos/subtitles.

With timestamp annotation, the models perform

consistently better than their counterpart without

this information, indicating that localization is

helpful for question answering.

Accuracy for Different Question Types: To gain

further insight, we examined the accuracy of our

models on different question types on the vali-

dation set (results in Table 7), all models using

timestamp annotation. Compared to S+Q model,

S+V+Q models get the most improvements on

“what” and “where” questions, indicating these

questions require additional visual information.

On the other hand, adding video features did not

improve S+Q performance on questions relying

more on textual reasoning, e.g., “how” questions.

Human-Written Negatives vs. Randomly-

Sampled Negatives For comparison, we create a

new answer set by replacing the original human

written negative answers with randomly sampled

negative answers. To produce relevant negative

answers, for each question, negatives are sampled

(from the other QA pairs) within the same show.
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00:00.688 --> 00:03.989 
(Raj:)seemed like a chance to show off. 

00:06.360 --> 00:08.243 

There he is! 

00:08.245 --> 00:10.412 

(Raj:)There's my happy Hebraic homeboy.

What Raj and Howard are drinking when sat at the table ?

a0 Milk 

a1 Beer √

a2 Juice

a3 Vodka
a4 Carrot juice .

Where is House when Cuddy comes to talk to him about the irradiated 
badge ?

a0 Wilson 's room

a1 The cafeteria 

a2 His office 

a3 The radiology department √
a4 Cuddy 's office

00:36.402 --> 00:38.370
(Cuddy:)Problems in radiology. 

00:39.372 --> 00:42.739

(Cuddy:)A radiation dosimeter badge turned positive. 

00:42.842 --> 00:48.075

(Cuddy:)I could have a CT scanner …

00:11.019 --> 00:13.510 
(Rachel:)I'm not surprised. Have you seen them together?

00:13.722 --> 00:17.158 

(Rachel:)- They're really cute. 

00:18.293 --> 00:19.658 

(Joey:) Cute ? This is Janice ! You remember Janice?

How was Phoebe 's hair done when Joey walked in ?

a0 Phoebe 's hair was in a bun 

a1 Phoebe 's hair was down

a2 Phoebe ‘s hair was a half up do style √

a3 Phoebe 's hair was in a braid 
a4 Phoebe 's hair was up in a hat

01:04.288 --> 01:07.382 
(Professor Jason Byford:)People often call with research questions, so I 

try to be helpful. 

01:07.458 --> 01:09.178 

(Professor Jason Byford:)She wanted to know what these symbols 

meant.

Why does the professor say he met with Susannah when Castle and Beckett
are in his office ?

a0 She wanted to work on some research 

a1 She wanted to take his class

a2 She discovered a new symbol 

a3 She wanted to know the meaning of symbols √
a4 She needed him to translate some languages

(a) (b)

(c) (d)

Figure 6: Example predictions from our best model. Top row shows correct predictions, bottom row shows failure

cases. Ground truth answers are in green, and the model predictions are indicated by X. Best viewed in color.

Video Val Accuracy

Method N.A. Src. Feature w/o ts w/ ts

V+Q Rand cpt 84.64 85.01

S+Q Rand - 90.94 90.72

S+V+Q Rand cpt 91.55 92.00

V+Q Human cpt 43.03 45.03

S+Q Human - 62.99 65.15

S+V+Q Human cpt 64.70 67.70

Table 8: Accuracy on TVQA validation set with nega-

tive answers collected using different strategies. Nega-

tive Answer Source (N.A. Src.) indicates the collection

method of the negative answers. Q = Question, S =

Subtitle, V = Video, cpt = visual concept features, ts

= timestamp annotation. All the experiments are con-

ducted using the proposed multi-stream neural model.

Results are shown in Table 8. Performance on ran-

domly sampled negatives is much higher than that

of human written negatives, indicating that human

written negatives are more challenging.

Qualitative Analysis: Fig. 6 shows example pre-

dictions from our S+V+Q model (row 18) using

full-length video and subtitle. Fig. 6a and Fig. 6b

demonstrate its ability to solve both grounded

visual questions and textual reasoning question.

Bottom row shows two incorrect predictions. We

found that wrong inferences are mainly due to

incorrect language inferences and the model’s

lack of common sense knowledge. For example,

Fig. 6c, the characters are talking about radiology,

the model is distracted to believe they are in the

radiology department, while Fig. 6d shows a case

of questions that need common sense to answer,

rather than simply textual or visual cues.

6 Conclusion

We presented the TVQA dataset, a large-scale,

localized, compositional video question answer-

ing dataset. We also proposed two QA tasks

(with/without timestamps) and provided baseline

experiments as a benchmark for future compari-

son. Our experiments show both visual and textual

understanding are necessary for TVQA.

There is still a significant gap between the pro-

posed baselines and human performance on the

QA accuracy. We hope this novel multimodal

dataset and the baselines will encourage the com-

munity to develop stronger models in future work.

To narrow the gap, one possible direction is to en-

hance the interactions between videos and subti-

tles to improve multimodal reasoning ability. An-

other direction is to exploit human-object relations

in the video and subtitle, as we observe that a large

number of questions involve such relations. Addi-

tionally, temporal reasoning is crucial for answer-

ing the TVQA questions. Thus, future work also

includes integrating better temporal cues.
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