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Abstract

Video summarization is a challenging problem in part

because knowing which part of a video is important requires

prior knowledge about its main topic. We present TVSum,

an unsupervised video summarization framework that uses

title-based image search results to find visually important

shots. We observe that a video title is often carefully cho-

sen to be maximally descriptive of its main topic, and hence

images related to the title can serve as a proxy for impor-

tant visual concepts of the main topic. However, because

titles are free-formed, unconstrained, and often written am-

biguously, images searched using the title can contain noise

(images irrelevant to video content) and variance (images

of different topics). To deal with this challenge, we devel-

oped a novel co-archetypal analysis technique that learns

canonical visual concepts shared between video and im-

ages, but not in either alone, by finding a joint-factorial rep-

resentation of two data sets. We introduce a new benchmark

dataset, TVSum50, that contains 50 videos and their shot-

level importance scores annotated via crowdsourcing. Ex-

perimental results on two datasets, SumMe and TVSum50,

suggest our approach produces superior quality summaries

compared to several recently proposed approaches.

1. Introduction

The sheer amount of video available online has increased

the demand for efficient ways to search and retrieve de-

sired content [46]. Currently, users choose to watch a video

based on various metadata, e.g., thumbnail, title, descrip-

tion, video length, etc. This does not, however, provide a

concrete sense of the actual video content, making it dif-

ficult to find desired content quickly [48]. Video summa-

rization aims to provide this information by generating the

gist of a video, benefiting both the users (through a better

user experience) and companies that provide video stream-

ing and search (with increased user engagement).

Video summarization is a challenging problem in part

because knowing which part of a video is important, and

thus “summary worthy,” requires prior knowledge about

its main topic. Conventional approaches produce a sum-
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Figure 1. An illustration of title-based video summarization.

We use title-based image search results to generate a summary

by selecting shots that are the most relevant to, and representative

of, canonical visual concepts shared between the given video and

images. Our novel co-archetypal analysis learns canonical visual

concepts by focusing on the shared region (yellow dotted rectangle

area), singling out patterns that are exclusive to either set, allowing

us to discard images irrelevant to video frames (and vice versa).

mary by defining a generic scheme, e.g., based on con-

tent frequency [52] or non-redundancy [12, 50]; while sim-

ple and efficient, visual frequency is not directly related

to topicality. Recent work has addressed this issue by

using images and videos collected from the web, learn-

ing a predictive model tailored to a predefined set of cat-

egories [28, 38, 43] or constrained to a limited object do-

main [25]; while promising, it remains as a challenge to

deal with the variety of topics in online videos.

We present TVSum (Title-based Video Summarization),

an unsupervised video summarization framework that uses

the video title to find visually important shots. We ob-

serve that a title is often carefully chosen to describe its

main topic, and thus serves as a strong prior on the ex-

pected summary. This motivates us to collect title-based

image search results, and use them to select shots that are



the most relevant to, and representative of, “canonical vi-

sual concepts” shared between video and images (Figure 1).

Previous works have explored a similar direction with web

images [25, 26], but with an assumption that an input query

is in the form of topical keywords, making it easier to obtain

a compact set of images representing the main topic. How-

ever, this is far from the case with the titles of online videos:

They are free-formed, unconstrained, and often written am-

biguously. Consequently, images searched using the title

can contain noise (images irrelevant to the video) and vari-

ance (images of different topics). This makes it particularly

difficult to learn canonical visual concepts shared between

video and images [19, 29].

To deal with this challenge, we present co-archetypal

analysis that learns canonical visual concepts by focusing

on the patterns shared between video and images; we call

such patterns co-archetypes. Our method learns a joint-

factorial representation of two data sets that are condition-

ally independent of each other, given co-archetypes. Un-

like archetypal analysis [13, 11], we incorporate a regular-

ization term that penalizes the deviation between the fac-

torizations of video and images with respect to the co-

archetypes. We develop an efficient optimization algorithm

using block-coordinate descent, and demonstrate its advan-

tage over archetypal analysis on synthetic and real data.

We introduce a new dataset, TVSum50, that contains

50 videos representing various genres (e.g., news, how-

to’s, user generated content), and their shot-level impor-

tance scores annotated via crowdsourcing. Unlike existing

annotation methods [20, 38], we avoid chronological bias

(shots are scored higher if appearing early in a video) by

pre-clustering and randomization, resulting in a high degree

of inter-rater reliability, i.e., Cronbach’s alpha of 0.81.

In summary, we present Title-based Video Summariza-

tion (TVSum) that generates a summary by selecting shots

that are the most relevant to, and representative of, canon-

ical visual concepts shared between video and title-related

images. Experimental results on two datasets, SumMe [20]

and our TVSum50, show that our title-based video summa-

rization framework significantly outperforms several base-

line approaches. Our main technical contribution is in

the development of a co-archetypal analysis technique that

learns a joint-factorial representation of a video and images,

focusing on the patterns shared only between the two sets.

2. Related Work

Some of early work in video summarization focused on

videos of certain genres, such as news [36], sports [9, 45],

surveillance [18, 40], and egocentric [27, 32], and generated

summaries by leveraging genre-specific information, e.g.,

salient objects in sports [17], and salient regions in egocen-

tric videos [27, 32]. However, they are difficult to apply

to online video summarization because such genre-specific

assumptions generally do not hold for web-scale videos.

Much work has been devoted to unsupervised video

summarization, assessing the importance of frames us-

ing visual attention [16, 5], interestingness [21, 20], user

engagement [33, 35], content frequency [52] and non-

redundancy [30, 50]. More recently, summarizing videos

using web images has attracted much attention [25, 26].

Based on an insight that images tend to capture objects

of interest from the optimal viewpoint, Khosla et al. [25]

learn canonical viewpoints using a multi-class SVM, while

Kim et al. [26] use a diversity ranking model. They

make an implicit assumption that descriptive topical key-

words are given already (e.g., cars and trucks [25]), but

user-provided keywords are often imprecise and uninforma-

tive [10, 31, 51], making them difficult to apply in the real-

world setting without human supervision. Our work con-

tributes to this line of work by showing how to use titles for

summarizing videos without any human supervision, with a

technique that learns canonical visual concepts shared only

between video and title-based image search results.

3. TVSum Framework

Our framework consists of four modules: shot segmen-

tation, canonical visual concept learning, shot importance

scoring, and summary generation. First, we group se-

quences of visually coherent frames into shots so that the

resulting summary contains shots rather than keyframes.

Next, we learn canonical visual concepts using our novel

co-archetypal analysis, which learns a joint-factorization of

a video and images.1 We then measure the importance of

each frame using the learned factorial representation of the

video, and combine the importance measures into shot-level

scores. Finally, a summary is generated by maximizing the

total importance score with a summary length budget.

Notation: X = [x1, · · · ,xn] ∈ R
d×n is a matrix of

n video frames, with each column xi ∈ R
d representing a

frame with a certain set of image feature descriptors. Y =
[y1, · · · ,ym] ∈ R

d×m is a matrix of m images defined in

a similar way. Our goal is, given X and Y, to generate a

summary S ∈ R
d×l for l ≪ n by concatenating a few non-

overlapping and important shots given a length budget l.

3.1. Shot Segmentation

Shot segmentation [41] is a crucial step in video sum-

marization for maintaining visual coherence within each

shot, which in turn affects the overall quality of a summary.

Many existing approaches use heuristics, e.g., uniform seg-

mentation [50, 43]. Similar to [38], we cast the problem as

change-point detection, a more principled statistical method

to find “changing moments” in a time-series sequence [1].

While [38] uses a kernel-based approach, we instead frame

the task as a group LASSO problem, based on [4].

1Section 4 describes how we collect web images from a video title.



Given a matrix X and the number of change-points k,

the problem reduces to finding a piecewise-constant approx-

imation H ∈ R
d×n such that H minimizes the reconstruc-

tion error: minH ‖X−H‖. Change points are then found by

taking the first-order discrete derivative of H over column

vectors and finding non-zero locations. It is well known that

dynamic programming (DP) provides a globally optimal so-

lution to this problem in O(dn2k) [1]. Unfortunately, this

assumes k is given, which is in general unavailable in the

real-world setting. Also, the quadratic complexity makes

DP impractical for videos with even a modest duration (a

5 minute video consists of about 9,000 frames); we need a

more computationally efficient solution.

Formulation: In this work, we find change-points by

solving a convex problem with total variation [22, 4]:

min
H

1

2
‖X−H‖2F + λ

n−1
∑

t=1

‖H·,t+1 −H·,t‖2 (1)

where ‖.‖F is the Frobenius norm. The first term measures

the reconstruction error, the second measures the total vari-

ation, and λ > 0 controls the relative importance between

the two. Note that the total variation is penalized with a

sparsity-inducing ℓ2,1 norm. This allows us to find a solu-

tion H that is column-wise sparse; without this group spar-

sity constraint, change-points may appear at different loca-

tions across d dimensions, making it difficult to interpret.

Optimization: We solve Equation 1 using the group

LARS [49] algorithm. Given the maximum number of

change points k (set to half the video duration in seconds),

we compute an approximate (piecewise-linear) regulariza-

tion path by iterating over k steps and adding a change-point

to an active set A at each step, with a choice of λ that pro-

duces over-segmentation. We then perform model selection

to find the optimal k′ ≤ k by finding a subset A′ ⊂ A such

that it no longer improves the sum-squared errors (SSE) be-

tween X and H, up to a threshold θ (set to 0.1). Our method

does not require knowing the optimal k a priori thanks to the

model selection. Also, the group LARS is highly efficient,

i.e., O(dnk); although the model selection takes O(k3) for

computing SSE for all k, in practice k ≪ n. This makes

our method faster and more practical than the DP solution.

3.2. Canonical Visual Concept Learning

We define canonical visual concepts as the patterns

shared between video X and its title-based image search

results Y, and represent them as a set of p latent variables

Z = [z1, · · · , zp] ∈ R
d×p, where p ≪ d (in our experi-

ments, p=200 and d=1,640).

Motivated by archetypal analysis [13], we find Z by

learning the factorizations of X and Y with respect to Z un-

der two geometrical constraints: (i) each video frame xi and

image yi should be well approximated by a convex com-

bination of latent variables Z; (ii) each latent variable zj

should be well approximated jointly by a convex combina-

tion of video frames X and by a convex combination of im-

ages Y. Therefore, given Z, each video frame xi and image

yi is approximated by ZαX
i and ZαY

i , respectively, where

αX
i and αY

i are coefficient vectors in the unit simplex ∆p:

∆p =







α ∈ R
p |

p
∑

j=1

α[j] = 1 and α[j] ≥ 0 for all j







While xi and yi are approximated in terms of Z indepen-

dently of each other, each zj is jointly approximated by

XβX
j and YβY

j , i.e., zj ≈ XβX
j ≈ YβY

j , where βX
j and

βY
j are coefficient vectors in ∆n and ∆m, respectively. This

joint approximation encourages Z to capture canonical vi-

sual concepts that appear both in a video and an image set,

but not in either alone. Inspired by [13], we refer to the

latent variables Z as co-archetypes of X and Y, and the

process of finding Z as co-archetypal analysis.

Formulation: Co-archetypal analysis is formulated as

an optimization problem that finds a solution set Ω =
{AX,BX,AY,BY} by solving the following objective:

min
Ω

‖X−ZAX‖2F+‖Y−ZAY‖2F+γ‖XBX−YBY‖2F (2)

where AX =
[

αX
1 , · · · ,α

X
n

]

∈ R
p×n, BX =

[

βX
1 , · · · ,β

X
p

]

∈ R
n×p, and similarly AY ∈ R

p×m, BY ∈
R

m×p. Given Z, X and Y are factorized using Z indepen-

dently of each other; this is expressed in the first and the

second terms. On the other hand, Z is jointly factorized

using X and Y; this is expressed in the third term, where

we penalize the deviation between two factorizations XBX

and YBY. The free parameter γ controls to what extend we

enforce this constraint. In this work, we set γ = 1.0.

Optimization: The optimization problem in Equation 2

is non-convex, but is convex when all but one of the vari-

ables among Ω are fixed. Block-coordinate descent (BCD)

is a popular approach to solving such problems [11, 50], for

its simplicity and efficiency, and for the fact that it is asymp-

totically guaranteed to converge to a stationary point [47].

Algorithm 1 shows our optimization procedure.

We cycle through block variables in a deterministic or-

der (AX, AY, BX, then BY). For AX, we solve a quadratic

program (QP) on each column vector αX
i using the Fast It-

erative Shrinkage-Thresholding Algorithm (FISTA) [2]:

min
α∈∆p

‖xi − Zα‖22 (3)

We use the same QP solver to obtain the solution AY; these

updates are expressed in Lines 6 and 9 of Algorithm 1.

Solving for BX and BY is a bit more involved because of

the third term in Equation 2. When all but one column vec-

tor βX
j is fixed, the update rule for BX can be expressed as:

min
β∈∆n

‖X−XBX
oldA+X(βX

old−β)AX
j ‖

2
F+λ‖YβY

j −Xβ‖22



Algorithm 1 Solving an optimization of Equation 2

1: Input: X ∈ R
d×n, Y ∈ R

d×m, p, T

2: Initialize Z ∈ R
d×p with random columns of X and Y

3: Initialize BX s.t. Z = XBX, BY s.t. Z = YBY

4: for t = 1 · · ·T do

5: for i = 1 · · ·n do

6: αX
i ← argminα ‖xi − Zα‖22

7: end for

8: for i = 1 · · ·m do

9: αY
i ← argminα ‖yi − Zα‖22

10: end for

11: RX ← X− ZAX, RY ← X− ZAY

12: for j = 1 · · · p do

13: βX

j ← argminβ ‖R
X+(zj−Xβ)AX

j‖
2

F +λ‖zj−Xβ‖22
14: βY

j ← argminβ ‖R
Y+(zj−Yβ)AY

j‖
2

F +λ‖zj−Yβ‖22
15: RX ← RX + (zj −XβX

j)A
X
j

16: RY ← RY + (zj −YβY

j)A
Y
j

17: zj ←
1

2

(

XβX

j +YβY

j

)

18: end for

19: end for

20: Return AX,BX,AY,BY

where AX
j is the j-th row vector. Letting RX = X− ZAX,

we can rewrite the above formular as

min
β∈∆n

‖RX + (zj −Xβ)AX
j ‖

2
F + λ‖zj −Xβ‖22 (4)

We use a generic QP solver to solve Equation 4 and simi-

larly for BY; these updates are expressed in Lines 13 and

14 of Algorithm 1. We acknowledge that we can solve this

more efficiently by implementing a customized QP solver

using an SMO-style algorithm [37], expressing the unit sim-

plex condition as constraints and solving the problem block-

wise (two variables at a time); we leave this as future work.

3.3. Shot Importance Scoring

We first measure frame-level importance using the

learned factorization of X into XBA. Specifically, we

measure the importance of the i-th video frame xi by com-

puting the total contribution of the corresponding elements

of BA in reconstructing the original signal X, that is,

score(xi) =
n
∑

j=1

Biαj (5)

where Bi is the i-th row of the matrix B. Recall that each x

is a convex combination of co-archetypes Z, and each z is a

convex combination of data X (and of Y). Intuitively, this

“chain reaction”-like formulation makes our scoring func-

tion measure how representative a particular video frame

xi is in the reconstruction of the original video X using Z.

Also, the joint-formulation of Z using X and Y allows us

to measure the relevance of xi to the canonical visual con-

cepts Z shared between the given video and images. We

then compute shot-level importance scores by taking an av-

erage of the frame importance scores within each shot.

Consequently, our definition of importance captures the

relevance and the representativeness of each shot to the

canonical visual concepts. Note that, by incorporating the

notion of representativeness, it assigns low scores to similar

looking, yet less representative frames; hence, it implicitly

removes redundant information in the summary.

3.4. Summary Generation

To generate a summary of length l, we solve the follow-

ing optimization problem:

max

s
∑

i=1

uivi subject to

s
∑

i=1

uiwi ≤ l, ui ∈ {0, 1} (6)

where s is the number of shots, vi is the importance score

of the i-th shot, and wi is the length of the i-th shot. Note

that this is exactly the 0/1 knapsack problem; we solve it

using dynamic programming. The summary is then created

by concatenating shots with ui 6= 0 in chronological order.

Following [20], we set l to be 15% of the video length.

4. TVSum50 Benchmark Dataset

Title-based video summarization is a relatively unex-

plored domain; there is no publicly available dataset suit-

able for our purpose. We therefore collected a new dataset,

TVSum50, that contains 50 videos and their shot-level im-

portance scores obtained via crowdsourcing.

4.1. Video Data Collection

We selected 10 categories from the TRECVid Multi-

media Event Detection (MED) task [42] and collected 50

videos (5 per category) from YouTube using the category

name as a search query term. From the search results, we

chose videos using the following criteria: (i) under the Cre-

ative Commons license; (ii) duration is 2 to 10 minutes; (iii)

contains more than a single shot; (iv) its title is descrip-

tive of the visual topic in the video. We collected videos

representing various genres, including news, how-to’s, doc-

umentaries, and user-generated content (vlog, egocentric).

Figure 2 shows thumbnails of the 50 videos and their cor-

responding categories; Table 1 shows descriptive statistics;

we provide a full list of the 50 videos with their titles and

genres in supplementary material.

4.2. Web Image Data Collection

In order to learn canonical visual concepts from a video

title, we need a sufficiently diverse set of images [15]. Un-

fortunately, the title itself can sometimes be too specific as

a query term [29]. Here, we perform query expansion of

the title using a simple method. We initialize a query set Q
with the video title. We then tokenize the title using com-

mon delimiters (i.e., ‘.’, ‘-’, ‘=’, ‘—’, ‘;’, ‘:’) and remove
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Figure 2. TVSum50 dataset contains 50 videos collected from

YouTube using 10 categories from the TRECVid MED task [42]

as search queries: changing Vehicle Tire (VT), getting Vehicle Un-

stuck (VU), Grooming an Animal (GA), Making Sandwich (MS),

ParKour (PK), PaRade (PR), Flash Mob gathering (FM), Bee-

Keeping (BK), attempting Bike Tricks (BT), and Dog Show (DS).

Cat.
Descriptive Statatistics Label Consistency

#vid #frm length Pair. F1 Cron. α

VT 5 39,841 25m25s .38 (.06) .88 (.04)

VU 5 35,014 19m28s .36 (.07) .78 (.13)

GA 5 30,920 18m7s .36 (.04) .87 (.03)

MS 5 37,095 24m58s .37 (.05) .83 (.06)

PK 5 41,634 24m50s .34 (.06) .74 (.09)

PR 5 44,042 25m3s .34 (.03) .82 (.06)

FM 5 30,747 18m37s .34 (.04) .79 (.07)

BK 5 30,489 17m30s .34 (.07) .80 (.10)

BT 5 25,747 14m39s .41 (.06) .87 (.03)

DS 5 36,827 20m59s .33 (.04) .76 (.08)

Total 50 352,356 3h29m42s .36 (.05) .81 (.08)

Table 1. Descriptive statistics and human labeling consistency

of our TVSum50 dataset. For human label consistency, we report

means and standard deviations of a pairwise F1 score and Cron-

bach’s alpha. Our labeling results show a higher degree of con-

sistency than the SumMe dataset [20], which reports an average

pairwise F1 score of 0.31 and Cronbach’s alpha of 0.74.

stop words and special characters; the resulting tokens are

added to Q. Lastly, we create additional queries by taking

n-grams around each token [8]; we set n = 3. Once the

query set Q is built, we collect up to 200 images per query

using Yahoo! image search engine.
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Figure 3. Chronological bias in shot importance labeling.

Shown here is the video “Statue of Liberty” from the SumMe

dataset [20]. Segments #1-3 (dotted boxes) contain the highlights,

i.e., the statue. Color bars in each row represent normalized shot

importance scores: (a) from the SumMe dataset, (b) collected by

us using our annotation interface. Scores in (a) show the effect of

chronological bias, where segments #2 and #3 get lower scores

than #1, because they appear later in the video and users evalu-

ated shots chronologically. Our annotation interface avoids this

problem, resulting in consistent scores for visually similar shots.

4.3. Crowd­sourced Annotation

Due to the subjectivity inherent in the task, it is infeasi-

ble to obtain clear-cut ground truth labels in video summa-

rization; thus, evaluation is often carried out using human

judgments. One popular approach involves asking humans

to watch several versions of summaries and to assess the

quality of each in comparison to the others, e.g., by voting

for the best summary [27, 32]. While simple and fast, this

approach does not scale well because the study has to be

re-run every time a change is made. Another approach in-

volves asking humans to watch the whole video (instead of

just summaries) and to assess the importance of every part

of the video; the responses are then treated as gold standard

labels [25, 20, 38]. This approach has the advantage that,

once the labels are obtained, experiments can be carried out

indefinitely, which is desirable especially for computer vi-

sion systems that involve multiple iterations and testing. We

take the latter approach in this work.

Task setup: We used Amazon Mechanical Turk to col-

lect 1,000 responses (20 per video). During the task, a par-

ticipant was asked to (1) read the title first (to simulate a typ-

ical online video browsing scenario); (ii) watch the whole

video in a single take; (iii) provide an importance score of

1 (not important) to 5 (very important) to each of uniform-

length shots for the whole video. We empirically found that

a shot length of two seconds is appropriate for capturing lo-

cal context with good visual coherence. We muted audio to

ensure that scores are based solely on visual stimuli.

Avoiding chronological bias: We observed that humans

have a tendency to assign higher scores to the shots that

appear earlier in video, simply by virtue of their temporal

precedence, regardless of their actual visual quality or rep-
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Figure 4. Empirical analysis of co-archetypal analysis on synthetic data. We show scatter plots of samples from each data set: (a,c,e)

X, (b,d,f) Y. Samples from clusters shared between X and Y are shown in color (red, green, blue); samples from clusters exclusive to

each dataset are shown in black. Yellow dots represent learned co-archetypes Z. We show results of three different approaches: (a-b)

our co-archetypal analysis; (c-d) archetypal analysis [11] using a combined dataset [X;Y]; (e-f) archetypal analysis using each dataset

independently. As seen in (a-b), our approach learns Z that is more aligned with the locations of shared cluster centroids. We also show

mean squared errors 1

n

∑

i
‖xi − Zαi‖

2

2 of samples from shared clusters (MSEs) and from exclusive clusters (MSEe); ideally, we want

low MSEs and high MSEe. Our approach (a-b) achieves the minimum MSEs with maximum MSEe.

resentativeness (see Figure 3); we call this phenomenon a

chronological bias [3]. This is problematic because such la-

bels are biased toward summarization methods that directly

minimize content redundancy over time (e.g., [50]), which,

obviously, is not the optimal solution for videos whose vi-

sual content is mostly similar but differs in quality and rep-

resentativeness, e.g., landmark videos. To address this is-

sue, we pre-clustered shots using k-means (k set to the video

length, in seconds, divided by 10) and presented the shots

within each cluster in random order. We found empirically

that our approach provides more consistent and meaningful

scores than the chronological evaluation scheme (compare

Figure 3 (a) and (b)). Note that preserving the correct tem-

poral ordering can be important in certain cases [32, 39, 44];

we provided an option to re-watch the original video, if

needed, at any time during the task so that the participant

can figure out where each shot appears in a video.

Regularizing score distributions: We need to ensure

that the score distribution is appropriate for generating sum-

maries. Ideally, the distribution is skewed toward low scores

so that only a few shots get high scores. To this end, we

defined target ranges for each score assignment that partic-

ipants must follow: the relative frequency of shots assigned

to score 5 should be between 1% and 5%; score 4 should be

between 5% to 10%; score 3 should be between 10% and

20%; score 4 should be between 20% and 40%; and score 5

gets the rest. This allows us to regularize score distributions

across participants and videos.

4.4. Evaluation Metric

Motived by [23] and similar to [20], we assess the qual-

ity of an automatically generated summary by measuring

agreement between the summary and gold standard labels

provided by the crowd. Specifically, we compute an aver-

age pairwise Fβ-measure. Given a proposed summary S
and a set of n gold-standard summaries G, we compute the

precision pi and the recall ri for each pair of S and Gi. The

average pairwise Fβ-measure is then computed as

F̃β =
1

N

n
∑

i=1

(1 + β2)× pi × ri

(β2 × pi) + ri
(7)

where β balances the relative importance between precision

and recall; we set β = 1. Table 1 includes the average pair-

wise F1-measure computed among the gold standard labels.

5. Experiments

5.1. Co­archetypal Analysis on Synthetic Data

Co-archetypal analysis aims to learn Z that captures

canonical patterns shared between two datasets (here, video

and images). To demonstrate the effectiveness of our

method in an objective manner, we performed an experi-

ment on synthetic data, comparing our approach to archety-

pal analysis [11].

Dataset: For each dataset X and Y, we defined six clus-

ter centroids in 2-dimensional space at random, where three

of the six are shared between two sets. Then, for each clus-

ter, we drew 200 random vectors from a bivariate Normal

distribution N (µi,Σi), where µi ∈ R
2 is set to the i-th

cluster centroid and Σi ∈ R
2×2 is set to be a symmetric

positive semi-definite random matrix. Because there are

three shared clusters, we set the number of co-archetypes

p = 3 in all three test conditions.

Result: As seen in Figure 4, our approach (a-b) learns Z

that is more aligned with the true locations of shared cluster

centroids. Ideally, we want the reconstruction error to be

lower for samples from shared clusters, and higher for sam-

ples from exclusive clusters. This represents our scenario

where video frames and images share canonical visual con-

cepts, and where we want to summarize videos using frames

that are shared between the two sets. Our results indicate

that only co-archetypal analysis has this desirable property,

achieving the minimum MSEs and the maximum MSEe.



5.2. Video Summarization on Real­world Data

Datasets: We evaluated our approach on two real-world

datasets: SumMe [20] and our TVSum50. Some video ti-

tles in the SumMe dataset are abbreviated to generic terms,

making them less descriptive, e.g., “Jumps”; we substituted

those titles with either their original or more descriptive ti-

tles.2 We collected web images for both datasets using the

procedure described in Section 4.2.

Features: We extract a set of standard image descriptors:

RGB/HSV color histograms to capture global color activity,

a pyramid of HoG (pHoG) [7] to capture local and global

shape information, GIST [34] to capture global scene in-

formation, and dense SIFT (dSIFT) [6] to capture local ap-

pearance information. The color histograms are computed

on both RGB and HSV images using 32 bins, producing a

192D vector; all other descriptors are computed on a gray

scale image. The pHoG descriptor is computed over a 4-

level pyramid using 8 bins, producing a 680D vector. The

GIST descriptor is computed using 4 x 4 blocks and 8 ori-

entations per scale, producing a 512D vector. The dSIFT

descriptor is computed using a bin size of 9 and step size of

8, and represented as bag-of-words by learning a codebook

of size 256 using k-means on a 5% subset of the descriptors

uniformly sampled from the video frames. We concatenate

the four descriptors to obtain a 1640D feature vector.

5.2.1 Baseline Models

We compared our summarization approach to 8 baselines

covering a variety of different methods, including ones that

leverage information from images (WP and AA2). We used

the same shot boundary information across all approaches.

Sampling (SU and SR): A summary is generated by se-

lecting shots either uniformly (SU) or randomly (SR) such

that the summary length is within the length budget l.

Clustering (CK and CS): We perform clustering on video

frames and compute the distance of each frame to the clos-

est centroid. We then compute the shot-level distances by

taking an average distance of only those frames that belong

to the most frequently occurring cluster within each shot. A

summary is generated by selecting the most representative

shots from each cluster, each of which is the closest to the

centroid of the top k′ largest clusters, with length budget

l. We tested two clustering approaches: k-means (CK) and

spectral clustering (CS), with k set to 100, following [25].

LiveLight [50] (LL): A summary is generated by remov-

ing redundant shots over time, measuring redundancy using

a dictionary of shots updated online, and including a shot

in the summary if the reconstruction error is larger than a

threshold ǫ0 (ǫ0 = 1.0). This approach is not able to con-

trol the summary length a priori; we selected shots with the

highest reconstruction errors that fit in the length budget l.

2We provide a list of substituted titles in supplementary material.

Cat SU SR CK CS LL WP AA1 AA2 CA

VT 0.39 0.29 0.33 0.39 0.47 0.36 0.33 0.38 0.52

VU 0.43 0.31 0.40 0.37 0.52 0.48 0.36 0.36 0.55

GA 0.32 0.36 0.37 0.39 0.46 0.35 0.28 0.33 0.41

MS 0.37 0.32 0.34 0.39 0.45 0.40 0.36 0.32 0.58

PK 0.36 0.32 0.34 0.39 0.49 0.27 0.35 0.39 0.44

PR 0.38 0.30 0.34 0.38 0.42 0.36 0.37 0.42 0.53

FM 0.32 0.30 0.33 0.37 0.42 0.39 0.41 0.38 0.51

BK 0.34 0.32 0.34 0.38 0.44 0.41 0.28 0.28 0.47

BT 0.36 0.29 0.35 0.46 0.45 0.32 0.24 0.27 0.49

DS 0.33 0.34 0.34 0.38 0.52 0.31 0.32 0.35 0.48

Avg 0.36 0.32 0.35 0.39 0.46 0.36 0.33 0.35 0.50

Table 2. Experimental results on our TVSum50 dataset. Num-

bers show mean pairwise F1 scores. In each row, the best perform-

ing score is bold-faced; the second best is underlined. Overall, our

approach (CA) statistically significantly outperforms all baselines

(p < .01), except for LL [50] (p = .05).

Web Image Prior [25] (WP): As in [25], we defined 100

positive and 1 negative classes, using images from other

videos in the same dataset as negative examples. This ap-

proach produces keyframes as a summary; we used a similar

approach to the clustering-based method (above) to gener-

ate our summary with shots, computing the shot-level dis-

tances and selecting those shots that are most representative

of the top k′ largest clusters, and with length budget l.

Archetypal Analysis [11] (AA1 and AA2): We in-

clude two versions of archetypal analysis: one that learns

archetypes from video data only (AA1), and another that

uses a combination of video and image data (AA2). In both

cases, and also for our co-archetypal analysis (CA), we set

the number of archetypes p = 200, following [50].

5.2.2 Results and Discussion

Table 2 shows that our approach (CA) statistically signifi-

cantly outperformed all other baselines (p < .01) on the

TVSum50 dataset, except for LiveLight (p = .05). Figure 5

also shows our approach achieved the highest overall score

of 0.2655 on the SumMe dataset (the previous state-of-the-

art was of 0.234 in [20]). The performance differences were

statistically significant with Sampling, Clustering, and At-

tention [16] (p < .01). We believe the closer performance

gap between ours and LiveLight on the SumMe dataset is

attributed to chronological bias. Indeed, Livelight achieved

the highest score of 0.258 on Statue of Liberty by including

shots with temporal precedence (see Figure 3).

Our approach performed particularly well on videos that

have their visual concepts described well by images, e.g.,

St. Maarten Landing contains a famous low-altitude flyover

landing approach at Mano Beach, and the images depict this

concept well. Figure 6 shows that the importance scores es-

timated by our approach matches closely with those of hu-

mans, and that the learned co-archetypes have successfully

found patterns that are shared between video and images.

Importance of joint factorization: Both AA2 and our
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Figure 6. Detailed results of co-archetypal analysis. Color bars show heatmap representations of the normalized importance scores (one

from human labels, another from our approach); small images show the decomposition of co-archetypes in terms of video and images

(numbers indicate the coefficients βX (video) and βY (image)). The result (a) with a high F1 score tend to show co-archetypes that match

closely with video segments scored higher by humans (an airplane). While the result (b) had a relatively low F1 score, most of the learned

co-archetypes still captured important visual concepts induced by the title (dogs).

CA were given the same input features (video and image);

the only difference was that our approach has explicitly en-

couraged the co-archetypes to be shared between two data

sources. As can be seen in Table 2 and Figure 5, our ap-

proach significantly outperformed AA2, suggesting the im-

portance of performing joint factorization to learn canonical

visual concepts shared between video and images.

Effectiveness of our importance scoring: We com-

pared our importance scoring function with an approach

similar to LiveLight, i.e., the reconstruction error ‖xi −
ZαX

i‖
2
2, and found that the latter produces inferior results,

with an overall score of 0.255 on the SumMe dataset and of

0.418 on our TVSum50 dataset. This demonstrates the ben-

efit of measuring importance by the total contribution of the

coefficients in the factorized representation (Equation 5).

What is learned in co-archetypes: Figure 6 visu-

alizes co-archetypes learned from the video and image

data. Although there exists some variance, the learned co-

archetypes tend to show important visual concepts between

video and images (here, we show examples for airplanes

and dog grooming), even with the existence of images and

video frames irrelevant to the main topic.

6. Conclusion

We presented TVSum, an unsupervised video summa-

rization framework that uses the video title to find visually

important shots. Motivated by the observation that a title is

often carefully chosen to describe its main topic, we devel-

oped a framework that uses title-based image search results

to select shots that are the most relevant to, and representa-

tive of, canonical visual concepts shared between the video

and images. While titles are descriptive, images searched

using them can contain noise (images irrelevant to video

content) and variance (images of different topics). To deal

with this, we developed a novel co-archetypal analysis that

learns the canonical patterns shared only between two sets

of data. We demonstrated the effectiveness of our frame-

work on two datasets, SumMe and our TVSum50, signif-

icantly outperforming several baselines. Moving forward,

we plan to improve our image collection procedure (e.g.,

[29]) and utilize other types of metadata (e.g., description,

comments) for summarizing online videos. Also, we are

interested in applying our co-archetypal analysis in other

tasks, e.g., visual concept learning [14, 24].
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