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ABSTRACT Deep learning technology has rapidly evolved in recent years. Bone age assessment (BAA) is

a typical object detection and classification problem that would benefit from deep learning. Convolutional

neural networks (CNNs) and their variants are hence increasingly used for automating BAA, and they have

shown promising results. In this paper, we propose a complete end-to-end BAA system to automate the

entire process of the Tanner–Whitehouse 3 method, starting from localization of the epiphysis–metaphysis

growth regions within 13 different bones and ending with estimation of the corresponding BA. Specific

modifications to the CNNs and other stages are proposed to improve results. In addition, an annotated

database of 3300 X-ray images is built to train and evaluate the system. The experimental results show that

the average top-1 and top-2 prediction accuracies for skeletal bone maturity levels for 13 regions of interest

are 79.6% and 97.2%, respectively. The mean absolute error and root mean squared error in age prediction

are 0.46 years and 0.62 years, respectively, and accuracy within one year of the ground truth of 97.6%

is achieved. The proposed system is shown to outperform a commercially available Greulich–Pyle-based

system, demonstrating the potential for practical clinical use.

INDEX TERMS Bone age assessment, deep learning, GP, TW3.

I. INTRODUCTION

The growth of children is affected not only by genetic,

hormonal, and nutritional factors, but also by diseases

and psychosocial elements. Therefore, significant deviations

from normal growth may suggest signs of various diseases,

such as endocrine disorders, pediatric syndromes, and even

genetic disorders [1], [2]. Of the different growth assessment

methods, those based on skeletal maturity or bone age (BA)

are the most commonly used in a clinical setting owing to

their simplicity, minimal radiation exposure, and availability

of multiple ossification centers [3].
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processor formats for your particular conference. Although

there is no general standard method for bone age assess-

ment (BAA), the Greulich–Pyle (GP) method [4] and the

Tanner–Whitehouse (TW) method [5] are the most typically

employed in clinical practice. The GP method is based on

a hand atlas, which consists of a series of template X-ray

images covering the growth stages of children with vary-

ing bone maturity levels. A patient’s X-ray image is then

compared against samples in the template series, and the

closest matching template is chosen as the equivalent BA

of the patient. This approach is straightforward and can be

quickly performed. However, the GP method is marked by

inter- and intra-observer variability. Moreover, it is difficult

to accurately assess bones with large variations, and the

resulting BAs are coarse-grained because the template series

is arranged in intervals ranging from six months to one year.
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Instead of using all the bones of the left hand, as in the

GP method, the TW method evaluates the maturity levels

of specific bones of the hand and wrist, which comprise

the region of interest (ROI). Predefined skeletal maturity

scores are assigned to individual ROIs in accordance with

their maturity levels. These scores are then summed to com-

pute the total maturity score. This score is finally converted

into a BA using a correlation matrix for the maturity scores

and BAs. The TW method has been revised several times.

Currently, the TW3 analyzes the radius, ulna, and short

bones (RUS) as the ROIs (see Fig. 1). Compared to the GP

method, the TW3method is comparativelymore complex and

requires more time; however, it is more accurate and repro-

ducible [6] because the correlation matrix is organized using

units of 0.1 years. In addition, because the maturity of each

bone is evaluated and scored independently, the TW3method

is robust to mispredictions in some bones, leading to a more

objective evaluation.

FIGURE 1. ROIs used in the TW3 method.

Deep learning technologies that are based on artificial

neural networks have rapidly evolved in recent years, and

their application areas have also expanded. In particular,

deep learning techniques have permeated the entire field of

medical image analysis [7] and have achieved state-of-the-

art results in some medical imaging applications, such as the

segmentation of brain lesions [8], leak detection in airway

tree segmentation [9], diabetic retinopathy classification [10],

and breast cancer metastasis detection [11]. The BAA task

is a typical object detection and classification problem that

could benefit from deep learning. In this approach, for a given

input (e.g., a left hand and wrist X-ray image of a patient),

a corresponding class (e.g., a class corresponding to a BA) is

predicted. Convolutional neural networks (CNNs) and their

variants are thus increasingly used for automating BAA, and

they have shown promising results [3], [12], [13], [17].

It is recognized that the TW3 method outperforms the

GP method in terms of assessment accuracy and objectivity.

Nevertheless, to the best of our knowledge, none of the exist-

ing systems are truly TW3-based, fully automated end-to-

end BAA systems. This is largely attributed to the following

issues. First, it is not easy to accurately locate all of the

ROIs within an X-ray image of the left hand and wrist.

In particular, the maturity indicators of individual bones—

such as the epiphysis–metaphysis length ratio, existence

of the styloid process, and onset of epiphyseal–diaphyseal

fusion—can be found only in the epiphysis—metaphysis

growth regions of the bones. Consequently, failure to acquire

the precise location information of a growth region of any

single ROI can degrade assessment accuracy. Although seg-

mentation algorithms based on conventional image process-

ing techniques have been proposed to detect the contours

of bones, they are not adequately robust to handle bones of

varying sizes, shapes, morphologies, and densities [14], [15].

Second, the lack of large-scale labeled training datasets is

another critical obstacle to the development of TW3-based

fully automated BAA systems. Preparation of such datasets

requires significant time and expenses because, for a given

X-ray image of the left hand and wrist, the radiologist

readings of the corresponding BA and maturity levels of

individual ROIs are required for deep learning algorithms to

learn the TW3 method.

In this paper, we therefore propose a novel TW3-based

fully automated BAA system using deep neural networks.

The proposed system is believed to be the first complete

end-to-end system to automate the entire process of the

TW3 method, starting from localization of the epiphysis–

metaphysis growth regions of 13 ROIs and ending with

estimation of the corresponding BA. To that end, we also

built a large training dataset, which contains approximately

3,300 X-ray images and the corresponding radiologist read-

ings using the TW3 method. In addition, we developed tech-

niques based on CNNs and region-based CNNs (R-CNNs)

for the classification of the maturity level of an ROI and the

localization of the epiphysis–metaphysis growth regions of

ROIs, respectively. To assess the effectiveness of the proposed

BAA system, we performed an evaluation using randomly

selected test X-ray images and we compared it to a GP-based

commercial product. The remainder of this paper is organized

as follows. Section II summarizes related work. Section III

details the proposed system. Section IV presents the exper-

imental results, and Section V summarizes the research and

directions for future work.

II. RELATED WORK

The objective of this study is automatic TW3-based

BAA using deep neural networks. Thus, our review of

related research primarily focuses on deep-learning-based

approaches. Comprehensive surveys on computerized meth-

ods for BAA are provided in [14] and [15].

In [3], the unique characteristics of X-ray images of the

left hand and wrist are considered in a GP-based CNN called

BoNet, which consists of five convolutional layers, one defor-

mation layer, and one 2048-fully connected layer followed

by a single output neuron. To investigate the performance

of BoNet, extensive experiments varying the configuration

parameters were performed. In general, deeper networks per-

form better. Nevertheless, it was found that using as many

convolutional layers as possible does not necessarily mean a
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high prediction accuracy, and the best layer depth is strongly

domain-dependent.

In [12], a GP-based fully automated deep learning platform

was proposed for BAA. The system is composed of two

main components: a preprocessing engine and a classifier.

The preprocessing engine divides the entire 512× 512 X-ray

image into sample patches (e.g., 32× 32 image patches) and

the class of each patch is determined by a CNN. Using the

image patch classification results, a mask for the hand and

wrist is created and enhanced by image processing. For a

preprocessed X-ray image, the classifier estimates BA using

a CNN consisting of a fine-tuned pretrained GoogLeNet

model [19]. Although the proposed system is claimed to be

effective and robust in assessing the BAs of various X-ray

images, it provides integer-based coarse-grained estimations,

which is an intrinsic problem of the GP method.

The approach presented in [13] is similar to that of [12]

in that it employs existing models (e.g., GoogLeNet and

VGGNet [20]) for weight initialization and fine-tuning is

performed across all layers to develop a model for predicting

BAs. According to their empirical analysis, outliers in the BA

predictions can occur because the cross-entropy loss consid-

ers only the correctness of the predictions, regardless of the

degree of incorrectness. Hence, an L2-based loss function

was proposed tomeasure the difference between the predicted

BA and ground truth. Although the overall prediction accu-

racy of the proposed solution is not remarkable, this approach

can achieve competent results that are close to a radiologist’s

readings.

Introduced in 2009 and based on conventional image pro-

cessing techniques, BoneXpert [16] is commercially avail-

able software for automated BAA. BoneXpert consists of

three layers. Layer A reconstructs bone borders using an

active appearance model. Layer B derives an intrinsic BA

based on the chronological age and appearance of the bones.

Finally, layer C transforms the computed intrinsic BA into

either a GP BA or TW2 BA. Although BoneXpert was

clinically approved and validated for various ethnicities,

it has several critical limitations. To apply it, the relationship

between BAs and chronological ages must be studied for

target ethnicities and provided as input [21]. Moreover, it is

not robust to abnormal X-ray images. For instance, images

with a relatively large amount of noise or incorrectly posed

bones are rejected. It was reported that BoneXpert rejected

approximately 235 individual bones out of 5,161 (4.5%) [12].

VUNOMed-Bone Age [17] is another commercialized

BAA software that uses a CNN-based deep learning engine

to determine a patient’s BA based on GP. Unlike most other

BAA systems, which estimate BAs, the software displays

the three most likely age-labeled reference images given

the patient’s radiograph. According to [17], the software

increases diagnostic accuracy by 8% and reduces diagnosis

time by 40%.

Because of their modular structure, TW methods have

been used in many previous studies on BAA automation.

The accurate extraction of ROIs is a fundamental process in

TW methods for which various segmentation-based tech-

niques have been proposed. However, the majority of these

methods are limited because manual ROI localization is

required or X-ray images that deviate from the normal form

cannot be processed [22]–[26].

In short, previous deep learning-based BAA systems all

employ the GP method. Thus, they suffer from the lack

of measurement repeatability and the systematic errors that

are inherent to the GP method [27]. In contrast, this study

presents a TW3-based, complete end-to-end BAA system

using deep neural networks.

III. METHODLOGY

As shown in Fig. 2, the proposed BAA system consists of

three steps. The first step is to extract sufficiently large areas

of the wrist, thumb, middle finger, and little finger, including

the actual ROIs that are used in the TW3 method. We call

these areas the bounding ROIs (bROIs). Figure 3 illustrates

examples of the four bROIs. The actual ROIs contained in

the individual bROIs are the following:

• bROI of the wrist: the radius and ulna;

• bROI of the thumb: the first distal phalanx, first proximal

phalanx, and first metacarpal;

• bROI of the middle finger: the third distal phalanx,

third middle phalanx, third proximal phalanx, and third

metacarpal;

• bROI of the little finger: the fifth middle phalanx, fifth

proximal phalanx, and fifth metacarpal.

FIGURE 2. Proposed automated bone age assessment process.
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FIGURE 3. Examples of bounding ROIs.

The second step extracts the 13 actual ROIs from the

bROIs. The proposed ROI extraction technique is a hybrid

in that the bROI extraction is conventional image processing,

whereas the extraction of the actual ROIs uses deep learning

techniques. The third step classifies the levels of the skeletal

maturity of the individual ROIs and converts them into scores.

Finally, the bone age is predicted using these scores and the

correlation matrix. We next present the detailed process of

each step.

A. STEP1: EXTRACTION OF bROIs

The first process to extract bROIs is to rotate the original

image to make the wrist vertical. Then, different algo-

rithms are applied depending on the location of the bROIs,

i.e., the wrist and fingers. Figure 4 shows the intermediate

outputs of the bROI extraction processes. The blue points are

used to set boundaries, and the red box represents the bROI.

For the wrist rotation process, a given input X-ray image

is first converted into a grayscale image and binarized. The

binarized image, in turn, is modified so that all pixels apart

from the border pixels are set to black to extract the outline

of the hand. Then, the coordinates of the white pixels of each

row are stored. This is performed for an arbitrary number of

rows from the bottom to the top of the image. Using these

pixel points, the midpoints of the wrist are computed and

then the straight line proximate to these points is computed.

This line can be obtained using various methods, such as

regression analysis or random sample consensus. Finally, the

tilt of the straight line is computed and used to rotate the

image to make the wrist vertical.

Once the wrist has been rotated, the original and rotated

coordinates of the endpoints of the wrist are compared. The

higher y-coordinate forms the lower boundary line of the

bROI of the wrist. The center point of the hand is computed

using the hand outline image. Various methods, including

moments, can be applied to calculate the center point. The

calculated center point of the hand forms the upper boundary

of the bROI of the wrist. To obtain the left and right bound-

aries of the bROI, the procedure used to compute the straight

line proximate to the midpoints of the wrist is applied. For

the left boundary, for example, pixel coordinates compris-

ing the left outline of the wrist are first collected and the

straight line perpendicular to the x-axis is approximated using

FIGURE 4. Intermediate outputs of the bROI extraction processes.
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regression analysis. The final bROI of the wrist is extracted

from the rotated image using the upper, lower, left, and right

boundaries.

To extract bROIs from the fingers, a convex hull is calcu-

lated for the rotated X-ray image to determine finger points.

Then, for each bROI, a straight line connecting the tip of

the corresponding finger and either the left or right groove

is identified. Then, the image is rotated to make the straight

line vertical. Finally, the upper and lower boundaries of the

bROI are set using the y-coordinate of the fingertip and the

y-coordinate of the center of the hand. The left and right

boundaries are set using the x-coordinates of the grooves on

both sides.

B. STEP2: EXTRACTION OF ACTUAL ROIs

To extract the actual ROIs from a bROI, we apply the faster

region-based CNN (Faster R-CNN) [28]. Figure 5 illustrates

the Faster R-CNN architecture used for this task. The first

convolutional layer extracts the feature map of the input

image that the region proposal network (RPN) uses to iden-

tify ROI candidates using a sliding window. As the sliding

window sequentially shifts in the feature map, nine anchor

boxes that differ in scale (128, 256, and 512) and aspect ratio

(1:1, 1:2, and 2:1) based on its center are determined. Then,

fixed-size feature vectors are extracted from the candidates

using ROI pooling and are input to the fully connected layer.

Finally, the sizes and locations of the final regions, as well as

the prediction scores, are determined through two fully con-

nected layers. We fine-tuned the Faster R-CNNwhile varying

several hyperparameters. For instance, the overlap thresholds

as well as the non-maximum suppression thresholds for the

individual ROIs used in the RPN were selected by a grid

search on the validation dataset.

FIGURE 5. Workflow of faster R-CNN (Conv layer: convolutional layers,
FC layer: fully connected layers).

Note that each individual bROIs has its own character-

istics, such as the number and relative locations of actual

ROIs within the bROIs. Therefore, we deployed four different

models using Faster R-CNN, each of which is responsible for

extracting the actual ROIs from the corresponding bROIs.

C. STEP3: BAA

The operations in the final step of the proposed BAA sys-

tem are to evaluate the skeletal maturity levels of individual

ROIs, determine their maturity scores, find the total RUS

score from the RUS score table, and predict the BA using a

correlation matrix. In particular, the automated classification

of the skeletal maturity levels is a critical and challenging

task. To tackle this problem and verify the feasibility of

our approach, we developed the VGGNet-BA CNN. As the

names of the proposed CNN suggests, we used VGGNet

as the baseline network architecture and modified it to be

able to learn local discriminative features from a relatively

small number of small grayscale ROI images while reducing

overfitting. Although it is not state-of-the-art, the reason that

we decided to customize and enhance VGGNet for the task

of classification of skeletal maturity levels is that VGGNet

is conceptually simple and relatively easy to implement and

train. In fact, it has been used as a baseline architecture in

many research projects for the same reason. Note, however,

that we do not claim that the proposed deep neural network

architecture is an optimal solution for the classification task.

Therefore, one of our future work is to create a deeper net-

work by enabling additional convolutional layers equipped

with state-of-the-art building blocks, such as residual blocks

in ResNet [18] and dense blocks in DenseNet [37], to improve

the feature representation ability of the network.

Table 1 shows the proposed VGGNet-BA configuration.

The general architecture of VGGNet-BA is similar to those

of VGGNet configurations in [20] in that a stack of convolu-

tional layers is followed by two fully connected layers. How-

ever, key differences exist in the numbers of weighted layer,

the number of channels for individual convolutional layers as

well as the number and structure of the fully connected layers.

As a result, the number of trainable parameters is significantly

reduced and is approximately 750 times smaller than existing

VGGNet configurations.

Another important difference is the input image size, which

is changed from 224 × 224 to 112 × 112. In general, ROI

images are smaller than the natural images used in image

classification tasks (e.g., the ImageNet competition), and

their sizes vary according to ROI locations and bone maturity

levels. For instance, the size of a first distal phalanx image

corresponding to level A is approximately 50 × 50, whereas

the size of an ROI image containing the radius of level I is

220×220. However, a significant number of ROI image sam-

ples are approximately 110 × 110 pixels in size. Therefore,

the proposedCNNaccepts fixed-sized 112×112 input images

to reduce image transformation due to image resizing.

In addition, we employ a simple average voting ensemble

model in our system. That is, for a given input ROI image,

33350 VOLUME 7, 2019



S. J. Son et al.: TW3-Based Fully Automated BAS System Using Deep Neural Networks

TABLE 1. The configuration of VGGNet-BA (FC: fully connected layer, s: Stride).

FIGURE 6. System architecture of the proposed deep-learning based BAA system.

an ensemble of independent CNNmodels predict the skeletal

maturity levels and probabilities. The final prediction is gen-

erated by averaging the predictions of the individual models.

Each individual ROI has unique features indicating the bone

maturity level. Therefore, the proposed BAA system consists

of 13 average voting ensembles, each of which is responsible

for classifying the bone maturity level of the corresponding

ROI. Figure 6 depicts the overall system architecture of the

proposed BAA system.

IV. EXPERIMENTAL RESULTS

In this section, we describe the dataset and experimental

results obtained from the proposed BAA system.

A. DATASET

Because no publicly available sample data exist for

TW3-based machine learning, we created our own dataset

consisting of 3,344 left hand and wrist X-ray images of

Korean children under the age of 18. Each image has a

different size and resolution. Each individual X-ray image

is associated with five auxiliary files: four bROI images and

an annotation file. The annotation file contains the coordi-

nates of the 13 actual ROIs within the corresponding bROIs,

the skeletal maturity levels of individual ROIs, and the esti-

mated BA. The skeletal maturity levels of individual ROIs

TABLE 2. Distribution of dataset images by skeletal maturity levels.

were agreed upon by two professional radiology doctors to

ensure the BAA accuracy. The distribution of X-ray images

in the dataset according to the skeletal maturity level of

individual ROIs is shown in Table 2. For training the deep

neural networks, we used all the samples in the dataset except

those in the test datasets presented in Table 4. In particular,
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to train the Faster R-CNN for the actual ROI extraction, we

randomly selected 20% of the sample X-ray images for use

as a validation dataset, whereas the remaining 80% of the

sample images were used as the training dataset. Similarly,

to train the proposed CNN for the classification of the skeletal

maturity levels, we divided the sample ROI images of individ-

ual skeletal maturity levels in such a way that 80% were used

for model training and the remaining 20% for the validation.

B. ROI EXTRACTION DETAILS

We implemented the bROI extraction module using an open-

source computer vision library (OpenCV 2.4.13.3) [29]. For

the actual ROI extraction from the bROIs, we used the official

Faster R-CNN code [30] and trained it from the beginning on

our own X-ray image dataset. All four Faster R-CNN models

used VGGNet-16 to train the RPN as well as the object

detection network. The training was carried out using the

stochastic gradient descent algorithm with momentum. The

mini-batch size was set to 256 and the momentum was set to

0.9. The training was regularized by weight decay, which was

set to 0.0005. The learning rate was initially set to 10−3, and

was decreased in steps by a factor of 10 every 100 iterations.

The epoch size was set to 30. All models shared the above-

mentioned hyperparameters.

C. TRAINING FOR CLASSIFICATION DETAILS

During training of the proposed CNN for classification of

skeletal maturity levels, we artificially increased the size

of the training dataset through simple data augmentation to

reduce overfitting and to achieve high classification accuracy.

The process for training data preparationwas as follows. For a

given X-ray image, its 13 source ROI images were generated

by extracting rectangular areas specified by the ROI coordi-

nate information in the corresponding annotation file. Each

source ROI image was then resized to 134× 134 and rotated

by +3◦ and −3◦, respectively. These three intermediate ROI

images (e.g., the resized source ROI image and two rotated

images from the resized source ROI image) were cropped at

the center by 119 × 119, followed by four 112 × 112 crops

from the four corners of the images. As a result, 12 synthetic

images were generated from a single source ROI image. The

data augmentation improved the overall prediction accuracy

by 1%–2%.

Examples of source ROI images resized to be fed into

the CNN are presented in Fig. 7. The figure clearly shows

that, as growth progresses, the shape, size, and texture of

individual ROIs change accordingly. In addition, the ROIs of

immediate neighboring levels, particularly those belonging to

levels E to H, are quite similar. It thus requires sophisticated

training to determine exactly to which level an ROI belongs.

The current implementation of the average voting ensem-

ble consists of a set of independent VGGNet-BA models,

each of which was initialized with different random weights

drawn from the HE uniform initializer [31]. To prepare train-

ing data for individual component models, we divided the

entire training dataset for a given ROI into N disjoint subsets,

where N represents the number of component models for the

ROI. In addition, to avoid bias of the component models to

certain levels, each subset was carefully prepared to ensure

an even distribution of individual levels.

The hyperparameters used to train the component models

of VGGNet-BAwere the following. The Adam optimizer was

used with a mini-batch size of 256 and a momentum of 0.9.

The base learning rate was set to 10−3 and then decreased by a

factor of 10 when the validation set accuracy ceased improv-

ing. The dropout rate was set to 0.5 for hidden units. The

epoch size was set to 30. However, we applied early stopping

to avoid overfitting. According to a recent study [32], using

the same number of independent component classifiers as

class labels gives the highest accuracy. Therefore, individual

average voting ensembles of the proposed BAA system had

nine components models except for the one for the ulna,

which had eight components models.

Owing to a lack of training samples, some maturity levels

in the ROIs, particularly levels A to C, were not included

in the deep learning for classification, except for the ulna.

As shown in Fig. 7, the early stages of bone growth (e.g.,

levels A to D) are relatively evident for evaluation. Therefore,

we believe that acquisition of sufficient sample data for these

levels could resolve the problem. In contrast, for levels E to

G of the ulna and levels E to H of the other ROIs, the neigh-

boring levels have a similar appearance. It is hence a more

difficult and time-consuming task to distinguish those levels

accurately [33]. Therefore, we believe that it is reasonable to

evaluate performance by measuring how accurately a BAA

system can classify these levels automatically. Table 3 shows

the skeletal maturity levels of ROIs used in the classification.

TABLE 3. Skeletal maturity levels used for classification.

Another issue with the current dataset is class imbalance.

For instance, levels E and F contain more samples than

levels H and I. To address the class imbalance, we modified

the loss function of VGGNet-BA to apply class-weights dur-

ing the training, as shown in (1). The class-weights scale the

calculated loss for each observation by the appropriate class

weight such that more significance is placed on the losses

associated with the minority classes [34].

Loss = −

n
∑

k=1

wk tk log
(

ŷk
)

Eq.(1)

where ŷk , tk , and wk are one-hot encoded vectors that repre-

sent the predicted skeletal maturity level distribution, corre-

sponding ground truth, and class weights, respectively. For

the experiments, we used the scikit –learn package [35] to

compute the class-weights.
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FIGURE 7. Example images of skeletal maturity levels of individual ROIs.

D. EVALUATION

We randomly generated two test datasets, as shown in Table 4.

Test dataset 1 was used to evaluate the ROI extraction accu-

racy and BA prediction accuracy of the proposed deep-

learning based BAA system. Test dataset 2 is a subset of

dataset 1 and was used to compare the proposed method

with a commercialized BAA system that is based on the

GP method (hereafter, referred to as X-BAA Service). The

number of test samples in dataset 2 was limited by the number

of credits that we purchased for X-BAA Service. Along with

the total number of test samples, another difference between

the two datasets was the exclusion of samples belonging to

subjects aged 15 to 18 years. In the TW3 method, if the total

maturity score exceeds 1,000, all of patients are considered

to be of the same BA. However, GP enables distinction up

to 18 years of age. Therefore, for an accurate and fair eval-

uation, we decided not to include samples for subjects aged

15 to 18 years in dataset 2.

To improve the validity of the proposed BAA system,

we applied a 10-fold cross validation on the test datasets: for
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TABLE 4. Distribution of test datasets images by chronical ages.

each fold we measured the corresponding performance met-

rics, and the final result was the average of the 10 evaluations.

1) ROI EXTRACTION ACCURACY

To assess the effectiveness of our approach based on bROI,

we used the official Faster R-CNN code and trained it with

X-ray images annotated with 13 ROI coordinates within the

images. We compared the success rate of ROI extraction of

the two methods. For a given X-ray image, when the follow-

ing two conditions were met, the extraction was deemed a

success.

① All 13 ROIs were automatically extracted.

② The skeletal maturity levels of all ROIs could be pre-

dicted in the subsequent BAA step.

Table 5 shows the success rate of ROI extraction of the

two methods. The rejection rate of our approach is approxi-

mately 1.6% and is notably lower than that of the comparative

method.

TABLE 5. Success rate of ROI extraction.

As Fig. 8 shows, partial extraction of the ROIs

(Figs. 9(a)–(d)) and selection of epiphysis–metaphysis

growth regions from the second or fourth fingers

(Figs. 9(c)–(f)) are the two main reasons for failure when

the bROIs are not employed. In our approach, because we

first identify the enclosing areas in which the actual ROIs

reside, the second case never occurs. In addition, instead of

investigating the entire X-ray image by the Faster R-CNN,

our approach allows only bROIs to be considered, thus more

effectively capturing discriminative local features.

In our approach, the main cause of ROI extraction failure

is due to the bROI extraction step. In particular, because the

bROI extraction algorithm is based on conventional image

processing techniques, its performance can be affected by

image quality. For instance, it is highly likely that binariza-

tion cannot separate the hand area from the background of

images with low contrast or intensities. To address the issue,

we plan to develop a deep learning-based detection method

for arbitrarily rotated bROIs.

FIGURE 8. Failure cases of ROI extraction when the faster R-CNN without
bROI is used. (a) 6 ROIs. (b) 2 ROIs. (c) 6 ROIs. (d) 9 ROIs. (e) 15 ROIs.
(f) 16 ROIs.

FIGURE 9. Loss and accuracy curves of the training process for example
ROIs.

2) BA PREDCTION ACCURACY

Figure 9 shows the training loss and validation accuracy

during the training of the VGGNet-BA models for two ROIs

(i.e., the ulna and fifth metacarpal) as an example. In both

cases, the curves converged properly with the hyperparameter

settings, and it can therefore be concluded that the proposed

models had learned as much as possible about the data. The

training processes of CNNmodels for other ROIs also showed

similar learning curve patterns.

To measure prediction accuracy, we used root mean

squared error (RMSE) and the mean absolute error (MAE)

as performance metrics. Their formulas are given below.

MAE =
1

n

n
∑

j=1

∣

∣yj − ŷj
∣

∣ Eq.(2)

RMSE =

√

√

√

√

1

n

n
∑

j=1

(

yj − ŷj
)2

Eq.(3)

where n represents the number of test data items, and ŷj and

yj denote the predicted BA and corresponding ground truth,
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respectively. The MAE is a linear score which weights all

individual differences equally in the average, whereas the

RMSE gives a higher weight to large errors [36]. RMSE is

most useful when large errors are particularly undesirable.

Table 6 shows the MAE and RMSE of the proposed deep-

learning based BAA system according to age groups, and

Table 7 shows the top-1 and top-2 prediction accuracies of

the skeletal maturity levels of individual ROIs. In short, both

the MAE and RMSE of the proposed system are relatively

small and stable across all age groups and ROIs. For the ulna,

all levels were included in training; its prediction accuracy is

similar to those ROIs that only subsets of skeletal maturity

levels are included for training. This result strongly suggests

that, if a sufficient amount of training sample data is avail-

able, the inclusion of early stages of bone growth that were

excluded in the experiments does not degrade the overall

performance of the proposed BAA system.

TABLE 6. BA prediction accuracy per age group for the deep-learning
based BAA system.

TABLE 7. Top-1 and Top-2 accuracy of the deep-learning based BAA
system.

Figure 10 shows the average Top-1 and Top-2 predic-

tion accuracy for the skeletal maturity levels obtained using

different loss functions. The VGGNet-BA with the class-

weights-enabled loss function outperforms the one using the

conventional cross entropy loss function by 5.6% and 2.1%

in Top-1 and Top-2 prediction accuracy, respectively. This

result demonstrates that the application of the class-weights

helps to reduce the negative effects of the data imbalance

FIGURE 10. The comparative performances of the different loss functions.

to some extent. We also analyzed the confusion matrix of

the VGGNet-BA to investigate its behaviors in more detail.

As shown in Fig. 11, although all the confusion matri-

ces of the components classifiers of the VGGNet-BA show

strong diagonal patterns, implying that the labels predicted

by VGGNet-BA are most often the correct skeletal maturity

levels for all the ROIs, we find that there is still a performance

difference between the levels owing to the imbalanced train-

ing samples. For instance, there were relatively few training

samples at levels B, D, andH for the ulna, as shown in Table 2.

The top-1 accuracies for levels B and D of the ulna were

32% and 17%, respectively and these values are considerably

lower than the other levels that were trained with sufficient

samples (see Fig. 11 (a)). However, VGGNet-BA achieved

high prediction accuracies for level H. This is because there

is a definite difference between level H and other levels in

terms of the completion of the epiphyseal–diaphyseal fusion

of the bone and, therefore, VGGNet-BA was able to learn the

corresponding features, even with a small number of training

samples for level H.

Although the dataset imbalance caused biased predictions,

as shown in the experimental results, the reasons that the pro-

posed BAA system using VGGNet-BA was able to perform

acceptably are as follows. First, even in the case of predictions

with very low levels of accuracy such as levels B and D,

instead of using completely irrelevant levels, the proposed

BAA system tries to evaluate the skeletal maturity as close to

the ground truth as possible (see Table 6 and Fig. 10). Thus,

errors in the RUS scores can beminimized. The second reason

is attributed to the intrinsic strength of the TW3 method.

That is, because the maturity level of each ROI is evaluated

individually and independently, the TW3 method is robust to

prediction errors among some bones.

We also measured prediction accuracies as well as infer-

ence times while changing the number of component clas-

sifiers in an ensemble (see Fig. 12). For this experiment,

we used the same number of classifiers for all ROIs. The

experimental results clearly show that the use of more

component classifiers improved BA prediction accuracies,

regardless of the classification network. However, above

a certain number of classifiers, this improvement became

marginal on both cases. The inference time is divided into

three main components: the bROI extraction time (Tbroi),

actual ROI extraction time (Troi), and classification time with
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FIGURE 11. Normalized confusion matrix of VGGNet-BA. (a) ROI#1. (b) ROI#2. (c) ROI#3. (d) ROI#4. (e) ROI#5. (f) ROI#6. (g) ROI#7. (h) ROI#8. (i) ROI#9.
(j) ROI#10. (k) ROI#11. (l) ROI#12. (m) ROI#13.

FIGURE 12. Sensitivity to the number of component classifiers in an
ensemble. (a) Prediction accuracy for VGGNet_BA. (b) Inference time.

N classifiers (Tclassification(N )). Times Tbroi and Troi were

0.24 s and 8.63 s on average, respectively, and these times

are not affected by the type of CNN network. However,

Tclassification(1) was 1.54 s for VGGNet-BA. According to

the figure, as the number of component classifiers increases,

Tclassification increases linearly because the current prototype

implementation does not allow GPU sharing among different

CNN models so CNN models are run sequentially. This

FIGURE 13. Cumulative prediction accuracy of the proposed BAA system
and X-BAA service.

result suggests that the number of component classifiers in an

ensemble must be carefully selected in consideration of the

trade-off between prediction accuracy and inference time.

Finally, we compared the performance of the proposed

BAA system usingVGGNet-BAwith that of X-BAAService.

Table 8 shows the MAE and RMSE of these BAA systems.

The experimental results show that the proposed BAA sys-

tem using VGGNet-BA outperformed the X-BAA Service.

TABLE 8. Comparison of the proposed method with a commercial
product.
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In particular, the magnitudes and variances of MAE and

RMSE of the proposed BAA system are small and consistent,

regardless of the dataset and age groups. This result suggests

that the BA predicted by the proposed method is equal to the

ground truth or the difference is marginal, as shown in Fig. 13.

According to the figure, the accuracy (within one year of

the ground truth) is 97.6% for the proposed system, whereas

X-BAA Service achieved a comparable accuracy of 53.29%.

V. CONCLUSION

In this paper, we presented a TW3-based fully automated

BAA system using deep neural networks. The core functions

of the proposed system are the extraction of 13 ROIs and

classification of the skeletal maturity levels of the ROIs.

Additionally, we proposed techniques to address challeng-

ing problems in this research area. First, we introduced the

concept of bROIs to reduce the area that Faster R-CNN must

explore to extract an actual ROI. Second, we developed our

own deep neural network that is customized for learning local

discriminative features within small grayscale ROI images.

For the performance evaluation, we measured the MAE

and RMSE of the proposed deep-learning based BAA system

on a dataset of approximately 3,300 X-ray images. According

to the results, the average top-1 and top-2 prediction accura-

cies for skeletal bone maturity levels for 13 ROIs were 79.6%

and 97.2%, respectively. In addition, the MAE and RMSE for

age prediction were 0.46 years and 0.62 years, respectively,

and an accuracy within one year of the ground truth of 97.6%

was achieved.

Future work lies in several areas. The proposed ROI extrac-

tion technique is hybrid in that bROI extraction is conven-

tional image processing, whereas the extraction of actual

ROIs uses deep learning techniques. Therefore, one direction

of our future research is to develop deep learning-based algo-

rithms and techniques for bROI extraction to accommodate

diverse X-ray images with variations in intensity and contrast.

Owing to a lack of training samples, the current implemen-

tation did not use the early stages of bone growth in ROIs

for deep learning, except for those of the ulna. Therefore,

we intend to extend the current implementation by acquir-

ing sufficient training samples for levels excluded in this

study and training the system using all the levels of ROIs.

In addition, we plan to improve the BA prediction accuracy

to the level of professional radiology doctors. To this end,

we will redesign component classifiers using state-of-the-

art techniques, such as the inception module in GoogLeNet,

residual learning in ResNet, and the dense block in DenseNet.

These techniques provide innovations in the design of deep

neural networks by enabling deeper networks with a smaller

number of weights, thus leading to higher classification accu-

racies while avoiding the overfitting problem. Moreover,

the configuration of the ensembles could be optimized. For

instance, the ensembles could consist of completely different

classifiers with different network topologies. Therefore, our

future work may involve the exploration of various methods,

algorithms, and techniques to improve the overall perfor-

mance of our approach.
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