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Abstract. Tweakable block cipher as a cryptographic primitive has
found wide applications in disk encryption, authenticated encryption
mode and message authentication code, etc. One popular approach of
designing tweakable block ciphers is to tweak the generic constructions of
classic block ciphers. This paper focuses on how to build a secure tweak-
able block cipher from the Key-Alternating Feistel (KAF) structure, a
dedicated Feistel structure with round functions of the form Fi(ki ⊕ xi),
where ki is the secret round key and Fi is a public random function in
the i-th round. We start from the simplest KAF structures that have
been published so far, and then incorporate the tweaks to the round
key XOR operations by (almost) universal hash functions. Moreover,
we limit the number of rounds with the tweak injections for the effi-
ciency concerns of changing the tweak value. Our results are two-fold,
depending on the provable security bound: For the birthday-bound secu-
rity, we present a 4-round minimal construction with two independent
round keys, a single round function and two universal hash functions; For
the beyond-birthday-bound security, we present a 10-round construction
secure up to O(min{22n/3,

4
√

22nǫ−1}) adversarial queries, where n is the
output size of the round function and ǫ is the upper bound of the collision
probability of the universal hash functions. Our security proofs exploit
the hybrid argument combined with the H-coefficient technique.

Keywords: Tweakable block cipher · Key-Alternating Feistel cipher ·
Provable security · H-coefficient technique

1 Introduction

Tweakable block ciphers are formalized by Liskov et al. [28], which generalize
the standard block cipher by introducing an auxiliary input called tweak. As a
more natural primitive for building modes of operation, tweakable block cipher
has found wide applications in encryption schemes [2,10,19,31,40,43], authen-
ticated encryption modes [1,28,37,38], message authentication codes [26,28],
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online ciphers [1,39] and disk encryption [20,21]. A tweakable block cipher can
be designed from scratch [8,14,41], or from conventional block ciphers by using it
as a black-box [3,24,26,27,29,30,34,37,42]. Another approach is incorporating
the additional parameter tweak directly into generic constructions of conven-
tional block ciphers [5–7,12,16,17,23,32], which is the case we considered in this
paper.

There are two popular block cipher constructions. One is the Even-Mansour
construction based on round permutations [11] and the other is the Feistel con-
struction based on round functions [13]. For tweaking Even-Mansour construc-
tions, a series of papers have been published [5–7,12,17,23]. However, there
has been little progress toward tweaking Feistel constructions, since the work
of Goldenberg et al. on ASIACRYPT 2007 tweaking Luby-Rackoff ciphers [16],
and the work of Mitsuda and Iwata on ProvSec 2008 tweaking generalized Feistel
ciphers [32]. We follow this research line but turn to a new direction, namely
tweaking the so-called Key-Alternating Feistel ciphers.

The Luby-Rackoff Scheme vs. Key-Alternating Feistel Ciphers. The
Feistel network [13] is an important structure for designing block ciphers. In a
Feistel cipher, the intermediate state x = xL||xR in the i-th round is updated
by the round function Gi according to xL||xR → xR||xL ⊕Gi(ki, xR). When the
round functions Gi are uniformly random and independent (or generated from a
pesudo-random generator), the model is called Luby-Rackoff (LR) construction.
The LR construction might be the most popular model for Feistel ciphers so
far, however, it falls short of showing how to concretely design the keyed round
functions. The model named Key-Alternating Feistel (KAF) [25] provides the
idea to instantiate the round function in the form of Gi(ki, xi) = Fi(xi ⊕ ki),
where Fi is keyless and public.

Security analysis of the KAF model is of great significance. From practi-
cal points of view, many Feistel block ciphers in reality, such as DES, GOST,
Camellia variant without FL/FL−1 functions, LBlock and TWINE (the last two
adopt generalized Feistel), employ keyless round functions and xor each round
key before applying the corresponding round function. On the theoretical side,
there is a non-negligible gap between the Luby-Rackoff and KAF models. More
specifically, KAF is based on public round functions, which enables the adver-
sary to query the round functions directly. Thus, a security proof for the Luby-
Rackoff model cannot be extended to the KAF model. For example, 6-round
Luby-Rackoff is proven optimal security against 2n adversarial queries [33]. On
the other hand, there exists a generic distinguishing attack against t-round KAF

with a complexity of 2
(t−2)n

t−1 queries [18]. In Table 1, we summarize some known
security results of KAF constructions.

Our Contributions. This paper takes several steps towards constructing secure
tweakable block ciphers from the Key-Alternating Feistel structure. We focus on
a general construction of tweaking KAF with the i-th round as below

tki ← Hi(ki, t), xL‖xR ← xR‖xL ⊕ Fi(xR ⊕ tki),
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Table 1. Existing provable results on KAF.

#Rounds Key size #Round functions Security bound Model References

3 n 1 n/2 CPA [44]

4 4n 2 n/2 CCA [15]

4 n 1 n/2 CCA [18]

6 2n 6 2n/3 CCA [18]

12 12n 12 2n/3 CCA [25]

6t 6tn 6tn tn/(t + 1) CCA [25]

where ki is the secret key, t is the tweak, Hi(·) is an universal hash function and
Fi(·) is a public random function. We refer the readers to Sect. 3 for detailed
discussions about the rationale of this generic construction. Moreover, instead of
the general KAF structure, we base our design on the simplified KAF structures
recently published by Guo and Wang [18], which enables to reduce the number
of independent round key ki’s and the number of random functions Fi’s. In the
end, we obtain the following results.

– For the birthday bound security, we present a 4-round minimized structure
depicted in Fig. 1, that uses two round keys (k1, k2) and a single random
function F (·).

– For the beyond-birthday security, we present a 10-round structure depicted
in Fig. 2, which pre- and post-add two rounds to the minimized 6-round KAF
in [18]. The injection of tweaks is limited to the first and the last two rounds.

2 Preliminaries

2.1 Notation and General Definitions

Fix an integer n ≥ 1. Denote N = 2n and denote by (N)q the product
q−1∏
i=0

(N −i).

Further denote F(n) the set of all functions of domain {0, 1}n and range {0, 1}n.
For X, Y ∈ {0, 1}n, denote their concatenation by X||Y or simply XY .

Tweakable Block Ciphers. A conventional block cipher E is a permutation that
takes two inputs - a key and a message (or plaintext) - and outputs the cor-

responding ciphertext, while a tweakable block cipher Ẽ introduces the third
input called tweak. Formally, a tweakable block cipher is denoted as a mapping
Ẽ : K × T × M → M, where K is the key space, T is the tweak space and
M is the message space. In the following, we denote by TP(T , 2n) the set of all
tweakable permutations with tweak space T and message space {0, 1}2n.
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Key-Alternating Feistel Ciphers. Given a function F in F(n) and an n-bit key
k, the one-round Key-Alternating Feistel permutation is a permutation defined
on {0, 1}2n, which is defined as:

ΨF
k (L||R) = (R||L ⊕ F (R ⊕ k)),

where L and R are respectively the left and right n-bit halves of the input.
Let r ≥ 1 and let F1, F2, . . . , Fr be r public functions in F(n). An r-

round Key-Alternating Feistel (KAF for short) cipher associated with the
round functions F1, . . . , Fr, denoted ΨF1,...,Fr , is a function that maps a key
(k1, k2, . . . , kr) ∈ ({0, 1}n)r and a message x ∈ {0, 1}2n to the ciphertext defined
as:

ΨF1,...,Fr ((k1, k2, . . . , kr), x) = ΨFr

kr
◦ . . . ◦ ΨF2

k2
◦ ΨF1

k1
(x).

Uniform AXU Hash Functions. Let H = (Hk)k∈K be a set of hash functions
from some set T to {0, 1}n indexed by a set of keys K. H is said to be uniform
if for any t ∈ T and y ∈ {0, 1}n,

Pr
[
k

$
←− K : Hk(t) = y

]
= 2−n.

H is said ǫ-almost XOR-universal (ǫ-AXU) if for all distinct t1, t2 ∈ T and all
y ∈ {0, 1}n,

Pr
[
k

$
←− K : Hk(t1) ⊕ Hk(t2) = y

]
≤ ǫ.

Particularly, H is XOR-universal if ǫ = 2−n, simply denoted by XU.

2.2 Security Definitions

A distinguisher D is an algorithm which is given query access to one (or more)
oracle of being either O and Q, and outputs one bit. The advantage of a distin-
guisher D in distinguishing these two primitives O and Q is defined as

Adv(D) = |Pr
[
DO → 1

]
− Pr

[
DQ → 1

]
|.

In the Random Permutation model, the security of a tweakable block cipher is
defined by upper bounding the advantage of distinguisher D in the following sce-
nario. D interacts with the oracles (O, F ), which is either the so-called real world
or the so-called ideal word. In the real world, O is the tweakable block cipher
Ẽ(k, ·), F = (F1, F2 . . . , Fr) is a tuple of public random functions/permutations

used as the underlying components of Ẽ, and k is drawn uniformly at random
from the key space. In the ideal world, O is a uniformly random tweakable per-
mutation Π̃ and F is a tuple of public random functions/permutations indepen-

dent from Π̃. We will refer to O as the construction oracle and to F1, F2 . . . , Fr

the inner component oracles. The goal of D is to distinguish these two worlds:
(Ẽ(k, ·), F ) and (Π̃, F ). The advantage of D is defined as

Adv(D) = |Pr
[
DẼ(k,·),F → 1

]
− Pr

[
DΠ̃,F → 1

]
|,
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where the probability is taken over the random choice of k, F and Π̃. In the
following, we consider information-theoretic distinguishers that are computa-
tionally unbounded (thereby deterministic) but with limited information (the
number of queries to its oracles), assuming that they never make redundant
queries. Moreover, we consider distinguishers in the chosen-ciphertext attack
(CCA) model with an additional ability to choose tweaks, where they can make
adaptive bidirectional queries to all the oracles. (This will be made more clear
later.)

For non-negative integers qe, qf , we define the insecurity of the tweakable

block cipher Ẽ as
AdvẼ(qe, qf ) = maxD{Adv(D)},

where the maximum is taken over all distinguishers making exactly qe queries to
the construction oracle and exactly qf queries to each inner component oracle.

2.3 H-Coefficient Technique

In the following, we recall Patarin’s H-coefficient technique [4,35], which will be
used in our security proof to evaluate the upper bound of the advantage of an
adversary.

View. A view v = (QE , QF) is the query-response tuples that D receives when
interacting with its oracles. QE contains all triples (t, LR, ST ) ∈ T × {0, 1}2n ×
{0, 1}2n such that D either made the direct query (t, LR) to the construction
oracle and received answer ST , or made the inverse query (t, ST ) and received
answer LR. Suppose that |QE | = qe, there are m distinct tweaks appearing in
QE , and there exist qi distinct queries for the i-th tweak (1 ≤ i ≤ m), so that∑m

i=1 qi = qe. We denote the queries corresponding to the same tweak by

QEi
= {(ti, L

1
i R

1
i , S

1
i T 1

i ), (ti, L
2
i R

2
i , S

2
i T 2

i ), . . . , (ti, L
qi

i Rqi

i , Sqi

i T qi

i )},

then QE =
⋃

QEi
, 1 ≤ i ≤ m. QF contains query-response pairs when D

interacts with all the inner functions F = (F1, F2, . . . , Fr). We denote by QFj

all pairs (u, v) ∈ {0, 1}n × {0, 1}n such that D either made the direct query u
to random function Fj and received answer v, or made the inverse query v and
received answer u. That is,

QFj
= {(u1

j , v
1
j ), (u2

j , v
2
j ), . . . , (u

qf

j , v
qf

j )},

where |QFj
| = qf . Then QF =

⋃
QFj

, for 1 ≤ j ≤ r.
Note that queries are recorded in a directionless and unordered fashion, but

by our assumption that the distinguisher is deterministic, there is a one-to-one
mapping between this representation and the raw transcript of the interaction
of D with its oracles.

In all the following, we denote Xre(v) resp. Xid(v) the probability distribu-
tion of the view when D interacts with the real world, resp. the ideal world,
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producing view v. We use the same notation to denote a random variable dis-
tributed according to each distribution. We say that a view v is attainable (with
respect to some fixed distinguisher D) if the probability to obtain this view in
the ideal world is non-zero, i.e., Pr [Xid = v] > 0. We denote V the set of all the
attainable views, that is V = {v | Pr [Xid = v] > 0}.

Core Lemma. The main lemma of the H-coefficient technique is as follows. Please
refer to [4] for the proof.

Lemma 1. Fix a distinguisher D. Let V = Vgood ∪ Vbad be a partition of the set
of attainable views. Assume that there exists α ≥ 0 such that for any v ∈ Vgood,
one has

1 −
Pr [Xre = v]

Pr [Xid = v]
≤ α,

and there exists β ≥ 0 such that

Pr [Xid ∈ Vbad] ≤ β.

Then one concludes that the advantage of D is upper bounded as

Adv(D) ≤ α + β.

In [22], Hoang and Tessaro (HT) established the so-called “point-wise proxim-
ity”, which in a sense corresponds to applying the H-coefficient method without
bad views. When partitioning the key set K = Kgood ∪ Kbad with two disjoint
subsets Kgood and Kbad, HT provided a general lemma for establishing point-wise
proximity.

Lemma 2. Fix a distinguisher D with an attainable view v. Assume that: there
exists α ≥ 0 such that for any k ∈ Kgood, one has

1 −
Pr [Xre = v, k]

Pr [Xid = v, k]
≤ α,

and there exists β ≥ 0 such that

Pr [k ∈ Kbad] ≤ β.

Then we have 1 − Pr[Xre=v]
Pr[Xid=v] ≤ α + β, namely

Adv(D) ≤ α + β.

Here, Pr [Xre = v, k] is the probability D interacting with the real world with
k ∈ K sampled as the key. While in the ideal world, we simply draw dummy

keys k
$

←− K independently from the answers of the oracle. Then Pr [Xid = v, k]

is defined as Pr [Xid = v] · Pr
[
k

$
←− K

]
.
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Additional Notation. Given a tweakable permutation Π̃ and a view Q̃ of tweak-
able permutation queries, we say that Π̃ extends Q̃ if Π̃(t, x) = y for all

(t, x, y) ∈ Q̃, denoted by Π̃ ⊢ Q̃. Note that for a view Q̃ of a tweakable random
permutation, with m distinct tweaks and qi queries corresponding to the i-th
tweak, we have

Pr
[
Π̃

$
←− TP(T , 2n) : Π̃ ⊢ Q̃

]
=

m∏

i=1

1

(N2)qi

. (1)

Similarly, given a function F and a view QF of function queries, we say that
F extends QF if F (u) = v for all (u, v) ∈ QF , denoted by F ⊢ QF . For any
u ∈ {0, 1}n, if there exists a corresponding record (u, v) in QF , then we write
u ∈ DomF (and u /∈ DomF otherwise). For a function view QF of size qf , we
have that

Pr
[
F

$
←− F(n) : F ⊢ QF

]
=

1

Nqf
. (2)

3 Approach Overview

Firstly, we focus on a targeted construction of tweaking the Key-Alternating Feis-
tel, which replaces the round keys ki of KAF by tweak-dependent keys denoted
as tki and generated from the round key ki and the tweak t. In this paper, we
treat the tweak and the key comparably. From the efficiency concerns, Liskov et
al. [28] suggested that changing the tweak should be less costly than changing
the key. However, from the security concerns, it is indeed counter-intuitive as
pointed out by Jean et al. [23], because the adversary has full control over the
tweak. We follow the latter argument. Moreover, it makes the target construction
as neat, simple and clean as the KAF.

Secondly, it is always interesting and important to achieve the same security
level, but with less resources such as the number of secret keys and the num-
ber of public round functions. We find that recently Guo and Wang published
in [18] minimized 4-round and 6-round KAF structures that achieve birthday-
bound and beyond-birthday-bound security, respectively. Thus, we build tweaked
KAFs from their minimized KAF structures, which in turn enables to reduce the
number of secret keys and the number of round functions.

Finally, we limit the number of rounds where the tweak is injected to generate
tweak-dependent round keys. This improves the efficiency of changing the tweak,
because the tweak is updated much more frequently than the key.

4 Birthday-Bound Security for Four Rounds

In this section, we give a 4-round minimal tweakable Key-Alternating Feistel
construction (refer to Fig. 1), which is proved secure up to birthday-bound adver-
sarial queries. Additionally, we prove that this 4-round construction is round-
optimal, by showing a simple chosen-ciphertext attack on 3 rounds.
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F

L R

⊕

Hk1
(t)

⊕

F ⊕

Hk2
(t)

⊕

F ⊕

Hk3
(t)

⊕

F ⊕

Hk4
(t)

⊕

S T

(a)

F

L R

⊕

Hk1
(t)

⊕

F⊕

F⊕

F ⊕

Hk2
(t)

⊕

S T

(b)

Fig. 1. (a) A general 4-round TKAFSF. (b) The “minimized” TKAFSF.

Fix integers n, r ≥ 1. Let T and K be two sets, and H = (Hk)k∈K be an AXU
family of hash functions from T to {0, 1}n indexed by K. We consider tweakable
KAF with all the round functions identical and denote it by TKAFSF. Actually,
we started from a general TKAFSF construction (refer to Fig. 1(a)) that maps
a key k = (k1, k2, k3, k4), a tweak t ∈ T and a message x ∈ {0, 1}2n to the
ciphertext:

TKAFSF(x) = ΨF
k4,t ◦ ΨF

k3,t ◦ ΨF
k2,t ◦ ΨF

k1,t(x),

where ΨF
ki,t

is a permutation on {0, 1}2n defined as ΨF
ki,t

(x) = ΨF
Hki

(t)(x). We

found that both k2 and k3 are “redundant” for the birthday-bound security,
thereby deducing a “minimal” 4-round construction with only two keys (refer to
Fig. 1(b)):

TKAFSF(x) = ΨF
k2,t ◦ ΨF ◦ ΨF ◦ ΨF

k1,t(x).

Security Analysis for 4-Round TKAFSF. In the following, we go directly to
the security proof of the 4-round minimal TKAFSF. The main result is shown in
Theorem 1.

Theorem 1. For the 4-round idealized TKAFSF construction as depicted in
Fig. 1(b) with two independent random round keys k1, k2, it holds

AdvTKAFSF(qe, qf ) ≤
9q2

e + 4qeqf

N
+ 2q2

eǫ.

Definition and Probability of Bad Keys. We first define bad keys and upper
bound their probability in the ideal world.

Definition 1 (Bad Key Vector for 4 Rounds). With respect to a view
(QE , QF ), we say a key vector k = (k1, k2) is bad if one of the following condi-
tions is fulfilled:

– (B-1) there exists (t, LR, ST ) ∈ QE such that either Hk1
(t) ⊕ R ∈ DomF or

Hk2
(t) ⊕ S ∈ DomF ;



Tweaking Key-Alternating Feistel Block Ciphers 77

– (B-2) there exists two (not necessarily distinct) (t, LR, ST ), (t′, L′R′, S′T ′) ∈
QE such that Hk1

(t) ⊕ R = Hk2
(t′) ⊕ S′.

Otherwise we say that the key vector k is good. We denote Kgood, resp. Kbad the
set of good, resp. bad key vectors.

Lemma 3.

Pr
[
k

$
←− K : k ∈ Kbad

]
≤

2qeqf + q2
e

N
.

Proof. The probability that a key vector fulfills (B-1) is at most
2qeqf

N . More
specifically, for each of the qe query-response records (t, LR, ST ) ∈ QE , recall
that the key k = (k1, k2) is drawn at random from the key space independently

from the queries, and |DomF| = qf , it fulfills (B-1) with probability at most
2qf

N
by the uniformity of H.

Moreover, the probability that it fulfills (B-2) is at most
q2

e

N : For each of the
q2
e pairs of records (t, LR, ST ) (t′, L′R′, S′T ′), it fulfills (B-2) with probability

at most 1
N . ⊓⊔

Analysis of Good Keys. We then show that, for any good key, the probability to
obtain a view in the real world and the ideal world are sufficiently close.

Lemma 4. For any key vector k ∈ Kgood, one has

1 −
Pr [Xre = v, k]

Pr [Xid = v, k]
≤

8q2
e

N
+

2qeqf

N
+ 2q2

eǫ.

Proof. In the ideal world, the probability to get any attainable transcript v is

Pr [Xid = v] = Pr
[
k

$
←− K, Π̃

$
←− TP(T , 2n), F

$
←− F(n) : Π̃ ⊢ QE ∧ F ⊢ QF

]
,

combined with Eq. (1) and (2), we have

Pr [Xid = v, k] =
1

|K|2
·

1

Nqf
·

m∏

i=1

1

(N2)qi

.

Similarly, in the real world, we have

Pr [Xre = v, k] =
1

|K|2
·

1

Nqf
· Pr

[
k

$
←− K, F

$
←− F(n) : TKAFSF ⊢ QE | F ⊢ QF

]
.

Then, in order to give the lower bound of the ratio

Pr [Xre = v, k]

Pr [Xid = v, k]
= Pr

[
k

$
←− K, F

$
←− F(n) : TKAFSF ⊢ QE | F ⊢ QF

]
·

m∏

i=1

(N2)qi
,

we only need to focus on the lower bound of the probability

Pr
[
k

$
←− K, F

$
←− F(n) : TKAFSF ⊢ QE | F ⊢ QF

]
. (3)
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For this, we follow a clean “predicate” approach from [9]. In the following, we will
define a “bad” predicate E(F ) corresponding to the round function F such that
if E does not hold (with probability that can be lower bounded, will be shown
in Eq. 4), then the event TKAFSF ⊢ QE conditioned on F ⊢ QF is equivalent to
2qe new and distinct equations on the random round function F (will be shown
in Eq. 5).

Given (QE , QF ), given F
$

←− F(n) with F ⊢ QF , we say that a predicate E(F )
holds, if one of the following conditions is fulfilled:

– (C-1) there exists (t, LR, ST ) ∈ QE , such that F (R⊕Hk1
(t))⊕L ∈ U1 ∪U4 ∪

DomF or F (S ⊕ Hk2
(t)) ⊕ T ∈ U1 ∪ U4 ∪ DomF ,

– (C-2) there exists (t, LR, ST ) �= (t′, L′R′, S′T ) ∈ QE , such that F (R ⊕
Hk1

(t))⊕L = F (R′⊕Hk1
(t′))⊕L′ or F (S⊕Hk2

(t))⊕T = F (S′⊕Hk2
(t′))⊕T ′,

– (C-3) there exists (t, LR, ST ), (t′, L′R′, S′T ) ∈ QE , such that F (R⊕Hk1
(t))⊕

L = F (S′ ⊕ Hk2
(t′)) ⊕ T ′,

where

U1 := {u1 ∈ {0, 1}n | (t, LR, ST ) ∈ QE for R = u1 ⊕ Hk1
(t) and some t, L, S, T},

U4 := {u4 ∈ {0, 1}n | (t, LR, ST ) ∈ QE for S = u4 ⊕ Hk2
(t) and some t, L, R, T}.

Clearly, |U1|, |U4| ≤ qe. We consider the above three conditions respectively. For
(C-1), since k = (k1, k2) is good, the value F (R ⊕ Hk1

(t)) and F (S ⊕ Hk2
(t))

remain uniformly distributed, then

Pr [(C-1) | F ⊢ QF ] ≤ 2 · qe · (2qe + qf ) ·
1

N
=

4q2
e + 2qeqf

N
.

For (C-3), there exists two (not necessarily distinct) records (t, LR, ST ) and
(t′, L′R′, S′T ′) in QE such that F (R ⊕ Hk1

(t)) ⊕ L = F (S′ ⊕ Hk2
(t′)) ⊕ T ′.

The two function values F (R ⊕ Hk1
(t)) and F (S′ ⊕ Hk2

(t′)) are independent by
¬(B-2). Therefore,

Pr [(C-3) | F ⊢ QF ] ≤
q2
e

N

by virtue of the uniformity of F . For (C-2), The analysis is a little bit compli-
cated. Given two distinct records (t, LR, ST ) and (t′, L′R′, S′T ′), we first con-
sider the “collision” F (R ⊕ Hk1

(t)) ⊕ L = F (R′ ⊕ Hk1
(t′)) ⊕ L′ in three cases.

– If t �= t′, the probability that R ⊕ Hk1
(t) = R′ ⊕ Hk1

(t′) is the probability
that Hk1

(t) ⊕ Hk1
(t′) = R ⊕ R′ which is at most ǫ by the ǫ-AXU property

of H. Conditioned on R ⊕ Hk1
(t) �= R′ ⊕ Hk1

(t′), the two function values
F (R ⊕ Hk1

(t)) and F (R′ ⊕ Hk1
(t′)) are independent and remains uniformly

random, the probability to hit a collision is thereby at most 1
N . To sum

up, the probability that we hit a collision in F (R ⊕ Hk1
(t)) ⊕ L is at most

ǫ · 1 + (1 − ǫ) · 1
N ≤ ǫ + 1

N .
– If t = t′ but R �= R′, then the probability to hit a collision is the probability

that F1(R ⊕ HK1
(t)) = F1(R

′ ⊕ HK1
(t)) ⊕ L ⊕ L′ which is at most 1

N .
– If t = t′, R = R′ but L �= L′, then the collision can never happen.
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In either case, the probability that F (R ⊕ Hk1
(t)) ⊕ L = F (R′ ⊕ Hk1

(t′)) ⊕ L′ is
bounded by ǫ+ 1

N . The analysis is similar for the “collision” F (S⊕Hk2
(t))⊕T =

F (S′ ⊕ Hk2
(t′)) ⊕ T ′. By summing over all possible pairs, we have

Pr [(C-2) | F ⊢ QF ] ≤ 2q2
eǫ +

2q2
e

N
.

Finally, we have that

Pr [E(F ) | F ⊢ QF ] ≤
7q2

e

N
+

2qeqf

N
+ 2q2

eǫ. (4)

When the predicate E(F ) does not hold, the probability that TKAFSF extends
QE conditioned on F ⊢ QF is relatively easy to analyze. For a given F , for each
record (t, LR, ST ) ∈ QE , denote

u2 = F (R ⊕ Hk1
(t)) ⊕ L and u3 = F (S ⊕ Hk2

(t)) ⊕ T.

For qe records (t(i), L(i)R(i), S(i)T (i)) (by using an arbitrary order) in QE , we
can get a sequence of u2 resp. u3,

{u
(1)
2 , u

(2)
2 , . . . , u

(qe)
2 }, resp. {u

(1)
3 , u

(2)
3 , . . . , u

(qe)
3 }.

We “peel off” the outer two rounds. Then the event TKAFSF(k, t(i), L(i)R(i)) =
(S(i)T (i)) is equivalent to the event that

F (u
(i)
2 ) = R ⊕ u

(i)
3 and F (u

(i)
3 ) = S ⊕ u

(i)
2 .

Note that the 2qe values in {u
(1)
2 , u

(qe)
2 , . . . , u

(qe)
2 } and {u

(1)
3 , u

(2)
3 , . . . , u

(2)
3 } are

new and distinct conditioned on ¬E. (Distinct: if ∃u
(i)
2 = u

(j)
2 or u

(i)
3 = u

(j)
3

then condition (C-2) is fulfilled; if ∃u
(i)
2 = u

(j)
3 then condition (C-3) is fulfilled.

New: the 2qe images of F remain fully undetermined and thus uniformly ran-
dom, otherwise condition (C-1) if fulfilled.) Therefore, for each of the qe records
(t, LR, ST ), we have that

Pr [F (u2) = R ⊕ u3 ∧ F (u3) = S ⊕ u2] =
1

N2
,

thereby having

Pr
[
k

$
←− K, F

$
←− F(n) : TKAFSF ⊢ QE | F ⊢ QF ∧ ¬E(F )

]
=

1

N2qe
. (5)

Now that we can lower bound the probability in 3 by the law of total prob-

ability, which is 1
N2qe

· (1 −
7q2

e

N −
2qeqf

N − 2q2
eǫ). Finally, we can get the result in
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Lemma 4:

Pr [Xre = v, k]

Pr [Xid = v, k]
≥

1

N2qe
· (1 −

7q2
e

N
−

2qeqf

N
− 2q2

eǫ) ·

m∏

i=1

(N2)qi

≥ (1 −
7q2

e

N
−

2qeqf

N
− 2q2

eǫ) ·
(N2)qe

N2qe

≥ (1 −
7q2

e

N
−

2qeqf

N
− 2q2

eǫ) · (1 −
q2
e

N2
)

≥ 1 −
7q2

e

N
−

2qeqf

N
− 2q2

eǫ −
q2
e

N2

≥ 1 −
8q2

e

N
−

2qeqf

N
− 2q2

eǫ.

⊓⊔

Gathering Lemma 3, Lemma 4 and Lemma 2, we finally draw the conclusion
in Theorem 1.

CCA for Three Rounds with qe = 3. For completeness, we show a simple
chosen-ciphertext attack on 3-round tweakable KAF construction with round
permutations ΨFi

ki,t
(i = 1, 2, 3), which indicates that the above 4-round construc-

tion is round-optimal. The attack is almost the same with that on classical Feistel
ciphers [36]. Consider the following CCA-distinguisher D:

1. D chooses t ∈ T , L, L′, R ∈ {0, 1}n with L �= L′, and queries [S, T ] �

O([t, L, R]) and [S′, T ′] � O([t, L′, R]).
2. D asks for the value [L′′, R′′] � O−1(t, [S′, T ′ ⊕ L ⊕ L′]).
3. D checks if R′′ = S′ ⊕ S ⊕ R: if it holds, D outputs 1; otherwise outputs 0.

If O is a tweakable permutation randomly chosen, the probability that D
outputs 1 is 1/N , while it always holds for Construction I that D outputs 1, as
R′′ = S′ ⊕ F2(F3(S

′ ⊕ Hk3
(t)) ⊕ T ′ ⊕ L ⊕ L′

︸ ︷︷ ︸
F(R⊕Hk1

(t))⊕L

⊕Hk2
(t))

︸ ︷︷ ︸
S⊕R

.

5 Beyond-Birthday-Bound Security for Ten Rounds

In this section, we consider constructing tweakable Key-Alternating Feistel
cipher with beyond-birthday-bound (BBB) security. We build a tweaked KAF
from Guo-Wang’s minimized KAF structure [18], leading to a 10-round BBB-
secure construction.

Recall that Guo and Wang [18] published at ASIACRYPT 2018 a minimized
6-round KAF structure which achieves BBB security.

Definition 2 (Suitable Round Key Vectors for 6-Round KAF [18]). A
round key vector k = (k1, k2, . . . , k6) for 6-round Key-Alternating Feistel is suit-
able if it satisfies the following conditions:
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F1

L R

⊕

Hk1
(t)

⊕

F2 ⊕

Hk2
(t)

⊕

6-round KAF

F9 ⊕

Hk9
(t)

⊕

F10 ⊕

Hk10
(t)

⊕

S T

(a)

F1

L R

⊕

Hk1
(t)

⊕

F2 ⊕

Hk2
(t)

⊕

RP

F9 ⊕

Hk9
(t)

⊕

F10 ⊕

Hk10
(t)

⊕

S T

(b)

F3 ⊕

k3

⊕

F4 ⊕

k4

⊕

F5 ⊕

k5

⊕

F6 ⊕

k6

⊕

F7 ⊕

k7

⊕

F8 ⊕

k8

⊕

(c)

Fig. 2. (a) 10-Round TKAF. (b) 10-round Hybrid. (c) 6-round KAF.

(i) k1, k2, . . . , k6 are uniformly distributed in {0, 1}n,
(ii) for (i, j) ∈ {(1, 2), (2, 3), (4, 5), (5, 6), (1, 6)}, ki and kj are independent.

Lemma 5 (Guo-Wang [18]). For the 6-round idealized Key-Alternating Feistel
cipher KAF with a suitable round key vector as specified in Definition 2, it holds

AdvKAF(qe, qf ) ≤
7q3

e + 21qeq
2
f + 4q2

eqf

N2
.

Thus, by using their 6-round KAF as a “core”, with tweaks incorporated
in the first and the last two rounds, we give a 10-round construction, denoted
by TKAF, (refer to Fig. 2). Formally speaking, TKAF corresponding to random
functions F = (F1, F2, . . . , F10) maps a key k = (k1, k2, . . . , k10), a tweak t ∈ T
and a message x ∈ {0, 1}2n to the ciphertext defined as:

TKAF
F
k (t, x) = ΨF10

k10,t ◦ ΨF9

k9,t ◦ ΨF8

k8
◦ ΨF7

k7
◦ . . . ◦ ΨF4

k4
◦ ΨF3

k3
◦ ΨF2

k2,t ◦ ΨF1

k1,t(x).

Theorem 2. For the 10-round idealized TKAF construction as depicted in
Fig. 2(a) with suitable key vectors, it holds

AdvTKAF(qe, qf ) ≤
23qeq

2
f + q2

e(7qe + 4qf + 2)

N2
+

4q2
eq2

f

N3
+

4q2
eq2

f ǫ

N2
.

To prove the BBB security for 10-round TKAF, we use the hybrid technique
combine with the H-coefficient technique. Denote by G1 the 10-round TKAF

construction (Fig. 2(a)), by G2 the refinement of TKAF with the intermediate 6
rounds replaced by a random permutation (RP) (Fig. 2(b)), by G3 a tweakable



82 H. Yan et al.

random permutation. We consider the advantage AdvG1,G3
(D) of a distinguisher

D to distinguish G1 and G3 by the following triangle inequality:

AdvG1,G3
(D) ≤ AdvG1,G2

(D) + AdvG2,G3
(D).

The indistinguishability between G1 and G2 can be trivially reduced to the indis-
tinguishability between KAF and a random permutation. For any distinguisher
D which distinguish between G1 and G2, we can easily construct a distinguisher
D′ which distinguish between the 6-round KAF and a random permutation Π,
thus upper bounding AdvG1,G2

(D) by AdvKAF(D
′). In the following, we will

upper bound the advantage of a distinguisher D to distinguish G2 and G3, by
using the H-coefficient technique.

Lemma 6. For any distinguisher D making exactly qe queries to the construc-
tion oracle and exactly qf queries to each inner component oracle,

AdvG2,G3
(D) ≤

2qeq
2
f

N2
+

4q2
eq2

f

N3
+

4q2
eq2

f ǫ

N2
+

2q2
e

N2
.

Definition and Probability of Bad Views. We first define bad views and upper
bound their probability in the ideal world. For convenience, we denote

A = L ⊕ F1(R ⊕ Hk1
(t)),

B = R ⊕ F2(A ⊕ Hk2
(t)) = R ⊕ F2(L ⊕ F1(R ⊕ Hk1

(t)) ⊕ Hk2
(t)),

D = T ⊕ F10(S ⊕ Hk10
(t)),

C = S ⊕ F9(D ⊕ Hk9
(t)) = S ⊕ F9(T ⊕ F10(S ⊕ Hk10

(t)) ⊕ Hk9
(t)).

Definition 3. For the two worlds G2 and G3, we say that an attainable view
v = (QE , QF ) is bad if one of the following conditions is fulfilled:

– (D-1) there exists two distinct records (t, LR, ST ), (t′, L′R′, S′T ′) ∈ QE, such
that AB = A′B′.

– (D-2) there exists two distinct records (t, LR, ST ), (t′, L′R′, S′T ′) ∈ QE, such
that CD = C ′D′.

Lemma 7.

Pr [Xid ∈ Vbad] ≤
2qeq

2
f

N2
+

4q2
eq2

f

N3
+

4q2
eq2

f ǫ

N2
+

2q2
e

N2
.

Proof. To upper bound the probability of bad views in the ideal world, we first
define an event E′:

– (E-1) there exists (t, LR, ST ) ∈ QE , (x1, y1) ∈ QF1
, (x2, y2) ∈ QF2

such that
Hk1

(t) ⊕ R = x1 and Hk2
(t) ⊕ L ⊕ y1 = x2;

– (E-2) there exists (t, LR, ST ) ∈ QE , (x9, y9) ∈ QF9
, (x10, y10) ∈ QF10

such
that Hk10

(t) ⊕ S = x10 and Hk9
(t) ⊕ T ⊕ y10 = x9.
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By the uniformity of H, Pr [(E-1)] = Pr [(E-2)] ≤
qeq2

f

N2 , thus we have that

Pr [E′] ≤
2qeq

2
f

N2
. (6)

We then consider the probability to get a bad view under the condition that
the event E′ does not happen. Note that we only need to consider the case where
t �= t′, since the transformation is a permutation when t = t′ and it is impossible
to hit a collision in AB or CD for distinct inputs. We analyze condition (D-1)
and condition (D-2) respectively. Conditioned on ¬E′, the probability to fulfil
condition (D-1) is

Pr [(D-1) | ¬E
′] = Pr [A = A′ ∧ B = B′ | ¬E

′]

= Pr [A = A′ | ¬E
′] · Pr [B = B′ | A = A′,¬E

′] ,

where the event A = A′ is equivalent to

F1(Hk1
(t) ⊕ R) ⊕ L = F1(Hk1

(t′) ⊕ R′) ⊕ L′, (7)

and the event B = B′ conditioned on A = A′ is equivalent to

F2(Hk2
(t) ⊕ A) ⊕ R = F2(Hk2

(t′) ⊕ A) ⊕ R′. (8)

Given a pair (t, LR, ST ) �= (t′, L′R′, S′T ′) ∈ QE , we consider them in three
cases.

Case (i) Hk1
(t) ⊕ R /∈ DomF1and Hk2

(t) ⊕ A /∈ DomF2. The probability
that Hk1

(t) ⊕ R = Hk1
(t′) ⊕ R is the probability that Hk1

(t) ⊕ Hk1
(t′) = 0,

which is at most ǫ by the ǫ-AXU property of H. Conditioned on Hk1
(t) ⊕

R �= Hk1
(t′) ⊕ R, the probability that Eq. (7) holds is 1

N by the unifor-
mity of F1. To sum up, Pr [A = A′ | case(i),¬E′] is at most ǫ + 1

N . Similarly,
Pr [B = B′ | A = A′, case(i),¬E′] ≤ ǫ + 1

N . Then we have

Pr [A = A′ ∧ B = B′ | case(i),¬E
′] ≤ ǫ2 +

1

N2
+

2ǫ

N
.

Case (ii) Hk1
(t) ⊕ R /∈ DomF1, Hk2

(t) ⊕ A, Hk2
(t′) ⊕ A ∈ DomF2. The prob-

ability that case (ii) happens is bound by
qf

N ·
qf

N =
q2

f

N2 . In this case, we upper
bound Pr [A = A′ ∧ B = B′ | case(ii),¬E′] by Pr [A = A′ | case(ii),¬E′], which
is at most ǫ + 1

N (the analysis is similar with that in case (i)). Then we have

Pr [A = A′ ∧ B = B′, case(ii) | ¬E
′] ≤

q2
f

N2
· (ǫ +

1

N
).

Case (iii) Hk1
(t) ⊕ R, Hk1

(t′) ⊕ R′ ∈ DomF1. Then Hk2
(t) ⊕ A /∈ DomF2

otherwise it fulfils condition (E-1). Similarly with case (ii), we have

Pr [A = A′ ∧ B = B′, case(iii) | ¬E
′] ≤

q2
f

N2
· (ǫ +

1

N
).
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Summing over all qe(qe−1)
2 possible pairs and all the three cases, we get

Pr [A = A′ ∧ B = B′ | ¬E
′] ≤

2q2
eq2

f

N3
+

2q2
eq2

f ǫ

N2
+

q2
e

N2
.

The analysis of condition (D-2) is totally parallel to condition (D-1), where

Pr [C = C ′ ∧ D = D′ | ¬E
′] ≤

2q2
eq2

f

N3
+

2q2
eq2

f ǫ

N2
+

q2
e

N2
.

Then, we have

Pr [Xid ∈ Vbad | ¬E
′] ≤

4q2
eq2

f

N3
+

4q2
eq2

f ǫ

N2
+

2q2
e

N2
. (9)

Finally, combined with Eq. 6 and Eq. 9, we upper bound the probability of
had views in the ideal world by

Pr [Xid ∈ Vbad] ≤ Pr [E′]+Pr [Xid ∈ Vbad | ¬E
′] ≤

2qeq
2
f

N2
+

4q2
eq2

f

N3
+

4q2
eq2

f ǫ

N2
+

2q2
e

N2
.

⊓⊔

Analysis of Good Views. The condition of good views is easy to analyze.

Lemma 8. For any good view v,

Pr [Xre = v]

Pr [Xid = v]
≥ 1.

Proof. Let v be a good view. For qe records (t, LR, ST ) in the view QE , the
corresponding qe values of AB as well as CD are distinct. Then, the event
G2 ⊢ QE is equivalent to the event that the random permutation Π extends the
view {(AiBi, CiDi), i = 1, . . . , qe}. That is

Pr [G2 ⊢ QE | F ⊢ QF ] =
1

(N2)qe

.

Then we have,

Pr [Xre = v]

Pr [Xid = v]
=

Pr
[
k

$
←− K, Π̃

$
←− TP(T , 2n),F

$
←− (F(n))10 : Π̃ ⊢ QE ∧ F ⊢ QF

]

Pr
[
k

$
←− K,F

$
←− (F(n))10 : TKAF ⊢ QE ∧ F ⊢ QF

]

=
Pr [G2 ⊢ QE | F ⊢ QF ]

m∏
i=1

1
(N2)qi

≥
1

(N2)qe

/

m∏

i=1

1

(N2)qi

≥ 1.

⊓⊔

Gathering this with Lemma7 and Lemma 1 yiels Lemma 6. Combined with
the upper bound of AdvG1,G2

(D), we finally prove Theorem2.
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F1

Li Ri

× ×
×

Ri+0.5

⊕

(a)

⊕Hk1
(t) ⊕ Hk2

(t)

6-round KAF

⊕Hk1
(t) ⊕ Hk2

(t)

(b)

Fig. 3. (a) Possible Locations to Include Tweaks. (b) 6-Round TKAF.

6 Conclusion and Open Discussions

In this paper, we make some attempts to tweak Key-Alternating Feistel struc-
tures with provable security. We provide a 4-round scheme TKAFSF with
birthday-bound security and a 10-round scheme TKAF with beyond-birthday-
bound security. For the birthday-bound security, our proof is based on estab-
lishing the so-called point-wise proximity. We get positive results of theoreti-
cally minimal and round-optimal construction, with round functions of the form
F (Hk(t) ⊕ x). For the beyond-birthday-bound security, our proof exploits the
hybrid argument. The 6-round KAF given by Guo and Wang is used as a core in
our construction, which can be replaced by a truly random permutation up to
22n/3 queries. Finally we obtain an LRW-like construction and prove its secu-
rity by using the H-coefficient technique. Intuitively, the TKAF scheme can be
improved (in terms of number of rounds) if given a dedicated analysis, rather
than an modular approach. We leave the round-optimal TKAF construction with
beyond-birthday-bound security as future work.

Open Discussions. Differently from our target construction, Goldenberg
et al. [16] utilize three types of locations (refer to Fig. 3(a)) in the dataflow to
incorporate tweaks, the left and right halves of the input dataflow in each round
and the dataflow before applying the corresponding round function, which are
respectively denoted by Li, Ri and Ri+0.5.

In our 4-round TKAFSF and 10-round TKAF constructions, we only consider
incorporating tweaks at Ri+0.5 locations to keep them in the general KAF struc-
ture. However, when considering all these three types of locations, there must be
more possibilities for tweakable KAF ciphers with beyond-birthday-bound secu-
rity. A straightforward way to build a BBB-secure TKAF with only 6 rounds is
XORing tweak-dependent keys to the input and output of Guo-Wang’s 6-round
KAF, which is depicted in Fig. 3(b). Formally, such 6-round TKAF correspond-
ing to random functions F = (F1, F2, . . . , F6) maps a key k = (k1, k2, . . . , k8), a
tweak t ∈ T and a message L||R ∈ {0, 1}2n to the ciphertext defined as:

TKAF
F
k (t, LR) = ΨF6

k8,t◦. . .◦ΨF2

k4
◦ΨF1

k3
(L⊕Hk2

(t)||R⊕Hk1
(t))⊕(Hk1

(t)||Hk2
(t)).

Via a hybrid argument, the security of LRW2 [28] and the security of KAF [18]
yields that this construction ensures security up to 22n/3 adversarial queries.
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