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Abstract—Twitter has received much attention recently. An important characteristic of Twitter is its real-time nature. We investigate

the real-time interaction of events such as earthquakes in Twitter and propose an algorithm to monitor tweets and to detect a target

event. To detect a target event, we devise a classifier of tweets based on features such as the keywords in a tweet, the number of

words, and their context. Subsequently, we produce a probabilistic spatiotemporal model for the target event that can find the center of

the event location. We regard each Twitter user as a sensor and apply particle filtering, which are widely used for location estimation.

The particle filter works better than other comparable methods for estimating the locations of target events. As an application, we

develop an earthquake reporting system for use in Japan. Because of the numerous earthquakes and the large number of Twitter

users throughout the country, we can detect an earthquake with high probability (93 percent of earthquakes of Japan Meteorological

Agency (JMA) seismic intensity scale 3 or more are detected) merely by monitoring tweets. Our system detects earthquakes promptly

and notification is delivered much faster than JMA broadcast announcements.

Index Terms—Twitter, event detection, social sensor, location estimation, earthquake

Ç

1 INTRODUCTION

TWITTER, a popular microblogging service, has received
much attention recently. This online social network is

used by millions of people around the world to remain
socially connected to their friends, family members, and
coworkers through their computers and mobile phones [1].
Twitter asks one question, “What’s happening?” Answers
must be fewer than 140 characters. A status update
message, called a tweet, is often used as a message to
friends and colleagues. A user can follow other users; that
user’s followers can read her tweets on a regular basis. A
user who is being followed by another user need not
necessarily reciprocate by following them back, which
renders the links of the network as directed. Since its
launch on July 2006, Twitter users have increased rapidly.
The number of registered Twitter users exceeded 100million
in April 2010. The service is still adding about 300,000 users
per day.1 Currently, 190 million users use Twitter per
month, generating 65 million tweets per day.2

Many researchers have published their studies of Twitter
to date, especially during the past year. Most studies can be
classified into one of three groups: first, some researchers
have sought to analyze the network structure of Twitter [2],
[3], [4]. Second, some researchers have specifically examined

characteristics of Twitter as a social medium [5], [6] . Third,
some researchers and developers have tried to create new
applications using Twitter [7], [8].

Twitter is categorized as a microblogging service.
Microblogging is a form of blogging that enables users to
send brief text updates or micromedia such as photographs
or audio clips. Microblogging services other than Twitter
include Tumblr, Plurk, Jaiku, identi.ca, and others.3 Our
study, which is based on the real-time nature of one social
networking service, is applicable to other microblogging
services, but we specifically examine Twitter in this study
because of its popularity and data volume.

An important characteristic that is common among
microblogging services is their real-time nature. Although
blog users typically update their blogs once every several
days, Twitter users write tweets several times in a single
day. Users can know how other users are doing and often
what they are thinking about now, users repeatedly return to
the site and check to see what other people are doing.
Several important instances exemplify their real-time nat-
ure: in the case of an extremely strong earthquake in Haiti,
many pictures were transmitted through Twitter. People
were thereby able to know the circumstances of damage in
Haiti immediately. In another instance, when an airplane
crash-landed on the Hudson River in New York, the first
reports were published through Twitter and tumblr.

In such a manner, numerous update results in numerous
reports related to events. They include social events such as
parties, baseball games, and presidential campaigns. They
also include disastrous events such as storms, fires, traffic
jams, riots, heavy rainfall, and earthquakes. Actually,
Twitter is used for various real-time notification such as
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that necessary for help during a large-scale fire emergency
or live traffic updates.

Adam Ostrow, the Editor in Chief at Mashable, a social
media news blog, wrote in his blog about the interesting
phenomenon of real-time media4:

Japan Earthquake Shakes Twitter Users ... And Beyonce: Earth-

quakes are one thing you can bet on being covered on Twitter first,

because, quite frankly, if the ground is shaking, you’re going to

tweet about it before it even registers with the USGS and long

before it gets reported by the media. That seems to be the case again

today, as the third earthquake in a week has hit Japan and its

surrounding islands, about an hour ago. The first user we can find

that tweeted about it was Ricardo Duran of Scottsdale, AZ, who,

judging from his Twitter feed, has been traveling the world,

arriving in Japan yesterday.

This post well represents the motivation of our study.
The research question of our study is, “can we detect such
event occurrence in real-time by monitoring tweets?”

This paper presents an investigation of the real-time
nature of Twitter that is designed to ascertain whether we
can extract valid information from it. We propose an event
notification system that monitors tweets and delivers
notification promptly using knowledge from the investiga-
tion. In this research, we take three steps: first, we crawl
numerous tweets related to target events; second, we
propose probabilistic models to extract events from those
tweets and estimate locations of events; finally, we devel-
oped an earthquake reporting system that extracts earth-
quakes from Twitter and sends a message to registered
users. Here, we explain our methods using an earthquake
as a target event.

First, to obtain tweets on the target event precisely, we
apply semantic analysis of a tweet. For example, users
might make tweets such as “Earthquake!” or “Now it is
shaking,” for which earthquake or shaking could be key-
words, but users might also make tweets such as “I am
attending an Earthquake Conference,” or “Someone is
shaking hands with my boss.” We prepare the training
data and devise a classifier using a Support Vector Machine
(SVM) based on features such as keywords in a tweet, the
number of words, and the context of target-event words.

After doing so, we obtain a probabilistic spatiotemporal
model of an event. We then make a crucial assumption:
each Twitter user is regarded as a sensor and each tweet as
sensory information. These virtual sensors, which we desig-
nate as social sensors, are of a huge variety and have various
characteristics: some sensors are very active; others are not.
A sensor might be inoperable or malfunctioning sometimes,
as when a user is sleeping, or busy doing something else.
Consequently, social sensors are very noisy compared to
ordinary physical sensors. Regarding each Twitter user as a
sensor, the event-detection problem can be reduced to one
of object detection and location estimation in a ubiquitous/
pervasive computing environment in which we have
numerous location sensors: a user has a mobile device or
an active badge in an environment where sensors are
placed. Through infrared communication or a WiFi signal,
the user location is estimated as providing location-based
services such as navigation and museum guides [9], [10].

We apply particle filters, which are widely used for location
estimation in ubiquitous/pervasive computing [11].

As an application, we develop an earthquake reporting
system using Japanese tweets. Japan has numerous earth-
quakes. Twitter users are similarly numerous and geogra-
phically dispersed throughout the country. Therefore, it is

sometimes possible to detect an earthquake by monitoring
tweets. Our system detects an earthquake occurrence and
sends an e-mail, possibly before an earthquake actually
arrives at a certain location: An earthquake propagates at
about 3-7 km/s. For that reason, a person who is 100 km
distant from an earthquake is able to communicate and act
for about 20 s before the arrival of an earthquake wave.
Moreover, strong earthquakes often cause tsunami, which

engender more catastrophic disasters than the earthquakes
themselves in distant and near places in relation to the
earthquake epicenter, as did the Haiti earthquake in 2010
and the Great Eastern Japan earthquake in 2011. Therefore,
prompt notification of earthquake occurrences is extremely
important to decrease damage by tsunami. In many cases, it
could provide notification of tens of minutes or even hours

before a tsunami strikes a coastal area.
The contributions of this paper are summarized as

follows:

. The paper provides an example of integration of
semantic analysis and real-time nature of Twitter,
and presents potential uses for Twitter data.

. For earthquake prediction and early warning, many
studies have been made in the seismology field. This
paper presents an innovative social approach that
has not been reported before in the literature.

This paper is organized as described below. In the next
section, we explain an investigation of Twitter users and
earthquakes in the real world. Section 3 presents our

explanation of semantic analysis and sensory information
with subsequent the spatiotemporal model in Section 4. In
Section 5, we describe the experiments and evaluation of
event detection. The earthquake reporting system is
introduced in Section 6. Section 7 is devoted to an
explanation of related works and discussion. Finally, we
conclude the paper.

This paper extends the conference version and includes
some elements from it [12].

2 INVESTIGATION

Wechoose earthquakes in Japan as target events, basedon the
preliminary investigations. We explain them in this section.

First, we choose earthquakes as target events for the
following reasons:

1. seismic observations are conducted worldwide,
which facilitates acquisition of earthquake informa-
tion, which also makes it easy to validate the
accuracy of our event detection methodology; and

2. it is quite meaningful and valuable to detect earth-
quakes in earthquake-prone regions.

Second, we choose Japan as the target area based on the
following investigation.
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Fig. 1 portrays a map of Twitter users worldwide
(obtained from UMBC eBiquity Research Group); Fig. 2
depicts a map of earthquake occurrences worldwide (using
data from Japan Meteorological Agency (JMA)). It is
apparent that the only intersection of the two maps, those
regions with many earthquakes and large Twitter users, is
Japan. Other regions such as Indonesia, Turkey, Iran, Italy,
and Pacific coastal US cities such as Los Angeles and San
Francisco also roughly intersect, but their respective
densities are much lower than that in Japan. Many earth-
quake events occur in Japan and many Twitter users
observe earthquakes in Japan, which means that social
sensors are distributed throughout the country.

We present a brief overview of Twitter in Japan: the
Japanese version of Twitter was launched on April 2008. In
February 2008, Japan was the No. 2 country with respect to
Twitter traffic.5 At the time of this writing, Japan has the
second largest number of tweets (18 percent of all tweets are
posted from Japan) in the world.

Therefore, we choose earthquakes in Japan as a target
event because of the high density of Twitter users and
earthquakes in Japan.

3 EVENT DETECTION

As described in this paper, we target event detection. An
event is an arbitrary classification of a space-time region. An
event might have actively participating agents, passive
factors, products, and a location in space/time [13]. We
target events such as earthquakes, typhoons, and traffic
jams, which are readily apparent upon examination of
tweets. These events have several properties.

1. They are of large scale (many users experience the
event).

2. They particularly influence the daily life of many
people (for that reason, people are induced to tweet
about it).

3. They have both spatial and temporal regions (so that
real-time location estimation is possible).

Such events include social events such as large parties,
sports events, exhibitions, accidents, and political cam-
paigns. They also include natural events such as storms,
heavy rains, tornadoes, typhoons/hurricanes/cyclones, and
earthquakes. We designate an event we would like to detect
using Twitter as a target event.

In this section, we explain how to detect a target event

using Twitter. First, we crawl tweets including keywords

related to a target event. From them, we extract tweets that

certainly refer to a target event using devices that have been

trained with machine learning. Second, we detect a target

event and estimate the location from those tweets by

treating Twitter users as “social sensors.”

3.1 Semantic Analysis of Tweets

To detect a target event from Twitter, we search from

Twitter and find useful tweets. Our method of acquiring

useful tweets for target event detection is portrayed in Fig. 3.
Tweets might include mention of the target event. For

example, users might make tweets such as “Earthquake!” or

“Now it is shaking.” Consequently, earthquake or shaking

might be keywords (which we call query words). However,

users might also make tweets such as “I am attending an

Earthquake Conference.” or “Someone is shaking hands

with my boss.” Moreover, even if a tweet is referring to the

target event, it might not be appropriate as an event report.

For instance, a user makes tweets such as “The earthquake

yesterday was scary.” or “Three earthquakes in four days.

Japan scares me.” These tweets are truly descriptions of the

target event, but they are not real-time reports of the events.

Therefore, it is necessary to clarify that a tweet is truly

referring to an actual contemporaneous earthquake occur-

rence, which is denoted as a positive class.
To classify a tweet as a positive class or a negative class,

we use a support vector machine [14], which is a widely

used machine-learning algorithm. By preparing positive

and negative examples as a training set, we can produce a

model to classify tweets automatically into positive and

negative categories.
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Fig. 1. Twitter user map. Fig. 2. Earthquake map.

Fig. 3. Method to acquire tweets referred to a target event precisely.
5. http://blog.twitter.com/2008/02/twitter-web-traffic-around-

world.html.



We prepare three groups of features for each tweet as
described below.

. Features A (statistical features): the number of words
in a tweet message, and the position of the query
word within a tweet.

. Features B (keyword features): the words in a tweet.6

. Features C (word context features): the words before
and after the query word.

We can give an illustrative example of these features
using the following sentence.

“I am in Japan, earthquake right now!”

(keyword: earthquake)

For this example, FeaturesA, B, C are presented in Table 1.
To process Japanese texts, morphological analysis is

conducted using Mecab,7 which separates sentences into a
set of words. For English, we apply standard stop-word
elimination and stemming. We compare the usefulness of
the features in the discussion in Section 5. Using the
obtained model, we can classify whether a new tweet
corresponds to a positive class or a negative class.

3.2 Tweet as a Sensory Value

We can search the tweet and classify it into a positive class if
a user makes a tweet about a target event. In other words,
the user functions as a sensor of the event. If she makes a
tweet about an earthquake occurrence, then it can be
considered that she, as an “earthquake sensor,” returns a
positive value. A tweet can therefore be regarded as a sensor
reading. This crucial assumption enables application of
various methods related to sensory information.

Assumption 3.1. Each Twitter user is regarded as a sensor. A
sensor detects a target event andmakes a report probabilistically.

Fig. 4 presents an illustration of the correspondence
between sensory data detection and tweet processing. The
motivations are the same for both cases: to detect a target
event. Observation by sensors corresponds to an observa-
tion by Twitter users. They are converted into values using
a classifier.

The virtual sensors (or social sensors) have various
characteristics: some sensors are activated (i.e., make
tweets) only by specific events, although others are
activated by a wider range of events. The sensors are vastly
numerous: there are more than 100 million ’Twitter sensors’
worldwide producing tweet information around the clock.
A sensor might be inoperable or operating incorrectly
sometimes (which means a user is not online, sleeping, or is
busy doing something else). For that reason, this social

sensor is noisier than ordinary physical sensors such as
location sensors, thermal sensors, and motion sensors.
Therefore, a probabilistic model is necessary to detect an
event, as described in the next section.

A tweet can be associated with a time and location: each
tweet has its post time, which is obtainable using a search
API. In fact, GPS data are attached to a tweet sometimes,
such as when a user is using an iPhone. Alternatively, each
Twitter user makes a registration on their location in the
user profile. The registered location might not be the
current location of a tweet. However, we infer it that a
person is probably near the registered location. Some tweets
include place names in those bodies. Some researchers
describe their efforts to extract place names from tweets as a
part of Named Entity Recognition [15], [16]. However, the
performance derived from those efforts remains insufficient
for practical use (precision ranges from 0.6 to 0.8). For the
present study, we use GPS data and the registered location
of a user. We do not use tweets for spatial analysis if a
location is not available; however, we use the tweet
information for temporal analyses.

Assumption 3.2. Each tweet is associated with a time and
location, which is a set of latitude and longitude coordinates.

By regarding a tweet as a sensory value associated with
location information, the event detection problem is re-
duced to detection of an object and its location based on
sensor readings. Estimating an object’s location is arguably
the most fundamental sensing task in many ubiquitous and
pervasive computing scenarios [11]. In this research field,
some probabilistic models are proposed to detect events
and estimate locations by dealing appropriately with sensor
readings. The next section explain how these probabilistic
models are suited to our tasks of event detection and
location estimation.

4 MODEL

For event detection and location estimation, we use
probabilistic models. In this section, we first describe event
detection from time-series data. Then we describe the
location estimation of a target event.
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TABLE 1
SVM Features of an Example Sentence

6. A tweet is usually short. Therefore, we use every word in a tweet by
converting it into a word ID.

7. http://mecab.sourceforge.net/.

Fig. 4. Correspondence between event detection from Twitter and object
detection in a ubiquitous environment.



4.1 Temporal Model

Each tweet has its own post time. When a target event
occurs, how do the sensors detect the event? We describe
the temporal model of event detection.

First, we examine the actual data. Fig. 5 presents the
respective quantities of tweets for a target event: an
earthquake. It is apparent that spikes occur in the number
of tweets. Each corresponds to an event occurrence.
Specifically regarding an earthquake, more than 10 earth-
quakes occurred during the period.

The distribution is apparently an exponential distribu-
tion. The probability density function of the exponential
distribution is fðt;�Þ ¼ �e��t where t > 0 and � > 0. The
exponential distribution occurs naturally when describing
the lengths of the interarrival times in a homogeneous
Poisson process.

In the Twitter case, we can infer that if a user detects an
event at time 0, then we can assume that the probability of
his posting a tweet from t to �t is fixed as �. Then, the time
to produce a tweet can be regarded as having an
exponential distribution. Therefore, even if a user detects
an event, she might not make a tweet immediately if she is
not online or if she is doing something else. She might
make a post only after such problems are resolved.
Therefore, it is reasonable that the distribution of the
number of tweets follows an exponential distribution.
Actually, the data fit an exponential distribution very well.
We get � ¼ 0:34 on average,

To assess an alarm, we must calculate the reliability of
multiple sensor values. For example, a user might produce
a false alarm by writing a tweet. It is also possible that the
classifier misclassifies a tweet into a positive class. We can
design the alarm probabilistically using the following
two facts.

. The false-positive ratio pf of a sensor is approxi-
mately 0.35, as we demonstrate in Section 5.1.

. Sensors are assumed to be independent and identi-
cally distributed (i.i.d.), as we explain in Section 4.3.

Assuming that we have n sensors, which produce
positive signals, the probability of all n sensors returning
a false alarm is pnf . Therefore, the probability of event
occurrence can be estimated as 1� pnf . Given n0 sensors at
time 0 and n0e

��t sensors at time t. Therefore, the number of
sensors we expect at time t is

X

t

tk¼0

n0e
��tk ¼ n0ð1� e��ðtþ1ÞÞ=ð1� e��Þ:

Consequently, the probability of an event occurrence at
time t is

poccurðtÞ ¼ 1� p
n0ð1�e��ðtþ1ÞÞ=ð1�e��Þ
f : ð1Þ

We can calculate the probability of event occurrence if
we set � ¼ 0:34 and pf ¼ 0:35.

4.2 Spatial Model

Each tweet is associated with a location. We describe a

method that can estimate the location of an event from

sensor readings. To define the problem of location estima-

tion, we consider the evolution of the state sequence fxt; t 2
Ng of a target, given that xt ¼ ftðxt�1; utÞ; ft : Rn

t �Rn
t !

Rn
t where ft is a possibly nonlinear function of the state

xt�1. Furthermore, ut is an i.i.d. process noise sequence.

The objective of tracking is to estimate xt recursively

from measurements, as zt ¼ htðxt; ntÞ; ht : Rn
t �Rn

t ! Rn
t

where ht is a possibly nonlinear function, and where nt is

an i.i.d. measurement noise sequence. From a Bayesian

perspective, the tracking problem is to calculate, recur-

sively, some degree of belief in the state xt at time t, given

data zt up to time t.
Presuming that pðxt�1jzt�1Þ is available, the prediction

stage uses the following equation.

pðxtjzt�1Þ ¼
Z

pðxtjxt�1Þpðxt�1jzt�1Þdxt�1

Here, we use a Markov process of order one. Therefore, we
can assume that pðxtjxt�1; zt�1Þ ¼ pðxtjxt�1Þ.

In the update stage, Bayes’ rule is applied as
pðxtjztÞ ¼ pðztjxtÞpðxtjzt�1Þ=pðztjzt�1Þ where the normal-

izing constant is pðztjzt�1Þ ¼
R

pðztjxtÞpðxtjzt�1Þdxt.
To solve the problem, several methods of Bayesian filters

are proposed such as Kalman filters, multihypothesis
tracking, grid-based and topological approaches, and
particle filters [11]. For this study, we use particle filters,
both of which are widely used in location estimation.

4.2.1 Particle Filters

A particle filter is a probabilistic approximation algorithm

implementing a Bayes filter, and a member of the family of

sequential Monte Carlo methods. For location estimation, it

maintains a probability distribution for the location estima-

tion at time t, designated as the belief BelðxtÞ ¼ fxi
t; w

i
tg; i ¼

1 . . .n. Each xi
t is a discrete hypothesis related to the object

location. The wi
t are nonnegative weights, called importance

factors, which sum to one.

The Sequential Importance Sampling (SIS) algorithm is a

Monte Carlo method that forms the basis for particle filters.

The SIS algorithm consists of recursive propagation of the

weights and support points as each measurement is

received sequentially.
The algorithm is presented below.

1. Generation. Generate and weight a particle set,
which means N discrete hypothesis

S0 ¼
�

s00; s
1
0; s

2
0; . . . ; s

N�1
0

�

;
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Fig. 5. Number of tweets related to earthquakes.



and allocate them evenly on the map:

particle sk0 ¼
�

xk
0; y

k
0; w

k
0

�

x : longitude; y : latitude; w : weight.
2. Resampling. Resample N particles from a particle

set St using weights of respective particles and
allocate them on the map. (We allow resampling of
more than that of the same particles.).

3. Prediction. Predict the next state of a particle set St

from Newton’s motion equation

�

xk
t ; y

k
t

�

¼ xk
t�1 þ vxt�1

�tþ axt�1

2
�t2;

�

ykt�1 þ vyt�1
�tþ ayt�1

2
�t2

�

ðvxt ; vytÞ ¼ ðvxt�1
þ axt�1

; vyt�1
; ayt�1

Þ
axt ¼ Nð0; �2Þ; ayt ¼ Nð0;�2Þ:

4. Weighing. Recalculate the weight of St by measure-
ment mðmx;myÞ as follows:

dxkt ¼ mx � xk
t ; dykt ¼ my � ykt

wk
t ¼

1

ð
ffiffiffiffiffiffi

2�
p

�Þ

� exp �ðdxkt
2 þ dykt

2Þ
2�2

 !

:

5. Measurement. Calculate the current object location
oðxt; ytÞ by the average of sðxt; ytÞ 2 St.

6. Iteration. Iterate Steps 2, 3, 4, and 5 until convergence.

4.2.2 Consideration of Sensor Geographic Distribution

We must consider the sensor geographic distribution to
treat readings of social sensors more precisely.

In location estimation by physical sensors, those sensors
are located evenly in many cases. We can treat sensor
readings equally in such situations. Actually, social sensors
are not placed evenly in many cases because social media
users are concentrated in urban areas. In Japan, most users
live in Tokyo. Therefore, we should incorporate the geo-
graphic distribution of social sensors into spatial models.

It is thought that there are fewer social sensors in areas
where fewer Twitter users live. Consequently, those sensors
have lower probabilities to response value. In spite of such
low probabilities, if a sensor in a less-populated area
produce a positive value to one earthquake, then it can be
inferred that the center of the earthquake is close to that
sensor. Therefore, we assume that sensor values in less-
populated areas are more important than those in densely
populated areas. Based on this assumption, we calculate
weights of respective particles based on the geographic
distribution of social sensors.

We use a more advanced algorithm with resampling
[17]. We use the weight distribution Dwðx; yÞ, as obtained
from the Twitter user distribution, to examine the biases of
user locations.8 We customize the algorithm related to
particle filters as follows:

1. We collect Twitter users randomly along with their
location information.
sjðxsj ; ysjÞðsj 2 SÞ : longitude and latitude of userj.

Ns: Number of users we collect.
2. In the Generation step, we weight each particle

based on weight distribution Dwðxk; ykÞ after they
are allocated

dxk;sj ; dyk;sj
� �

¼ xk � xsj ; yk � ysj
� �

Dwðxk; ykÞ ¼
X

Ns

j¼1

1

ð
ffiffiffiffiffiffi

2�
p

�Þ

� exp �ðdxk;sj2 þ dyk;sj
2Þ

2�2

 !

:

3. In the Weighing step, we calculate the weights of
each particle using the following equation:

wk
t ¼ Dwðxk

t ; y
k
t Þ �

1

ð
ffiffiffiffiffiffi

2�
p

�Þ

� exp �
�

dxkt
2 þ dykt

2�

2�2

 !

:

As described in this paper, we designate this customized

method as a weighted particle filter.

4.2.3 Techniques to Speed up the Process

As described in this paper, we want to estimate location of
events quickly as soon as possible because one objective of
this research is to develop a real-time earthquake detection
system. Therefore, we must decrease the time complexity of
methods used for location estimation.

The time complexity of a normal particle filter is
expressed as OðNpNmÞ(Np, number of particles; Nm,
number of observations). The time complexity of the
weighted particle filter is expressed as OðNpNmNsÞ (Ns,
number of sensors to calculate the geographic distribu-
tion). In the pre-examination, we set Np ¼ 2;000, Nm ¼ 20,
Ns ¼ 6,421. It takes less than 1 s to estimate the location of
an earthquake center using a normal particle filter. It takes
less from 1 minute to 3 minute to estimate the location of
an earthquake center by weighted particle filter. Therefore,
we want to decrease Ns to calculate the location of
earthquake centers more quickly.

As described in this paper, we sample some users from

all users to calculate the sensor geographic distribution and

produce a new set of S� users. We apply the following

three approaches.

. Sampling: sample Ns� users from S randomly and
designate them as S�.

. Sampling and average:

- Sample msample users from S randomly and
calculate an average position for it (Palðxl; ylÞ)

Palðxl; ylÞ ¼
1

msample

X

msample

i¼1

xl;i;
1

msample

X

msample

i¼1

yl;i

 !

:
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- Repeat step1Ns� times anddesignate thosepoints
of average positions as S� ¼ Plðl ¼ 0 . . .Ns� ).

. Sampling and mean:

- Sample msample users from S randomly and
calculate a mean position of it(Pml

ðxl; ylÞ)

Pml
ðxl; ylÞ ¼

1

2
ðMaxðxl;iÞ þMinðxl;iÞ

�

Þ

1

2
ðMaxðyl;iÞ þMinðyl;iÞÞ

�

:

- Repeat step 1 Ns� times and designate those
points of mean positions as S�.

4.3 Information Diffusion Related to a Real-Time
Event

Some information related to an event diffuses through
Twitter. For example, if a user detects an earthquake and
makes a tweet about the earthquake, then a follower of that
user might make tweets about that. This characteristic is
important because, in our model, sensors might not be
mutually independent, which would have an undesired
effect in terms of event detection.

Figs. 6, 7, and 8, respectively, portray the information
flow networks for an earthquake, a typhoon, and a new
Nintendo DS game.9

We infer an information flow between two users: assume
that user A follows user B. If user B makes a tweet about an

event, and soon thereafter user A makes a tweet about an
event, then we consider that the information flows from B
to A.10 This definition is similar to those used in other
studies of information diffusion (e.g., [18], [19]).

We define networks of two types.

1. Follower networks: networks express the following
relations among users.

a. node: users posted tweets about target events.
b. edge: user A follows user B.

2. Information flow networks: networks express infor-
mation flows among users.

a. node: users posted tweets about target events.
b. edge: user A follows user B and user A makes a

tweet about an event after user B makes a tweet.

For the cases presented in Figs. 6 and 7, earthquakes and
typhoons, very little information diffusion takes place on
Twitter. In contrast, Fig. 8, which shows aspects of the
release of a new game, reflects the scale and rapidity of
information diffusion. We crawl tweets including the name
of the game during one week in September 2009.
Information about the game propagates among many
users. Users are not i.i.d. when they post tweets about
topics of such kinds. To verify these facts numerically, we
define one index RPageRank as follows:

RPageRank ¼
PageRankfollower
PageRankflow

: ð2Þ

PageRank is a measure of network centrality. It is said
that information diffusion tends to occur in networks that
have nodes with high PageRank[20]. PageRankfollower
signifies the max PageRank value of follower networks.
PageRankflow stands for the max PageRank value of
information flow networks. RPageRank represents the differ-
ence of PageRank between information flow networks of an
event and follower networks of the same event. If RPageRank

is high, then an information flow network has no node with
a high degree of connectivity, which means that informa-
tion diffusion does not occur so much in relation to the
event in the Twitter world. Fig. 9 shows RPageRank of
20 events, including 15 news events, 3 earthquakes, and
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Fig. 6. Earthquake information diffusion network. Fig. 8. New Nintendo game information diffusion network.

Fig. 7. Typhoon information diffusion network.

9. Love Plus, a game that offers a virtual girlfriend experience, was
released on September 3, 2009.

10. Because of this definition, the diffusion includes retweet, which is a
type of message that repeats some information that was tweeted previously
by another user.



2 typhoons. In Fig. 9, typhoons and earthquakes have high

RPageRank. This demonstrates that information diffusion

does not occur on earthquakes and typhoons.
Therefore, we can assume that the sensors are i.i.d.

when considering real-time event detection such as

typhoons and earthquakes. Additionally, we must verify

sensors are i.i.d or not when we apply our proposed

method to some events.

5 EXPERIMENTS AND EVALUATION

In this section, we describe the experimentally obtained

results and evaluation of tweet classification and location

estimation.
The whole algorithm is the following:

1. Given a set of queries Q for a target event.
2. Put a query Q using search API every s seconds and

obtain tweets T .
3. For each tweet t 2 T , obtain features A, B, and C.

Apply the classification to obtain value vt ¼ f0; 1g.
4. If the enough number of tweets comes(poccur in

(1) exceeds 0.99 under the condition: 10 tweets in
10 minutes; � ¼ 0:34; pf ¼ 0:35;) then proceed to
step 5.

5. For each tweet t 2 T , we obtain the latitude and the
longitude lt by 1) using the associated GPS location,
2) making a query to Google Map for the registered
location for user ut. Set lt ¼ null if neither functions.

6. Calculate the estimated location of the event from
lt; t 2 T using normal particle filtering, particle
filtering with assigned weights, and particle filtering
with weights and sampling.

7. Send alert e-mails to registered users.

We prepare a set of queries Q for a target event. We first

search for tweets T including the query set Q from Twitter

every s seconds.Weuse a searchAPI11 to search tweets. In the

earthquake case, we set Q ¼ f00earthquake00 and 00shaking00g;
in the typhoon case, we set Q ¼ f00typhoon00g. We set s as 3 s.

After determining a classification and obtaining a positive

example, the system makes a calculation of a temporal and

spatial probabilistic model. The location information of each

tweet is obtained and used for location estimation of the

event. The earthquake reporting system explained in the next

section quickly sends an e-mail (usually mobile e-mail) to

registered users.

5.1 Evaluation by Semantic Analysis

For classification of tweets, we prepared 597 positive
examples that report earthquake occurrence as a training
set (the size of the training set is not large but we think it
is enough because our event detection system performs
well with satisfactory accuracy as we will describe later).
The classification performance is presented in Table 2.
We use two query words: earthquake and shaking. Perfor-
mance results obtained using respective queries are
shown. We used a linear kernel for SVM. We obtain the
highest F -value when we use feature A and all features.
Surprisingly, features B and C do not contribute much to
the classification performance. When an earthquake
occurs, a user becomes surprised and might produce a
very short tweet. It is apparent that the recall is not as
high as the precision. That result is attributable to the
usage of query words in a different context than we had
intended. Sometimes it is difficult even for humans to
judge whether a tweet is reporting an actual earthquake or
not. Some examples are that a user might write “Is this an
earthquake or a truck passing?” Overall, the classification
performance is good considering that we can use multiple
sensor readings as evidence for event detection.

5.2 Evaluation of Spatial Estimation

Fig. 10 presents the location estimation of an earthquake
that occurred on August 11. Many tweets originated from
over a wide region in Japan. The estimated location of the
earthquake (shown as estimation by weighed particle filter)
is close to the actual epicenter of the earthquake, which
shows the efficiency of the location estimation algorithm.
Table 3 presents results of location estimation based on a
total of 621 tweets for 25 earthquakes that occurred during
August-October 2009. We compare results obtained using
three particle filtering methods with the weighted average
and the median as a baseline. The weighted average simply
takes the average of latitudes and longitude on all the
positive tweets; median simply takes their median. Particle
filters of three kinds perform well compared to other
baseline methods. Particle filter with weighting works
better than the normal particle filter. The performance of
particle filter with weighting and sampling is similar to that
of the particle filter with weighting when Ns ¼ 100(Ns,
number of samples) and sampling by mean value method.
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Fig. 9. RPageRank of networks of earthquakes, typhoons, and news
events.

11. search.twitter.com.

TABLE 2
Classification Performance



In Figs. 12 and 13, data are shown for comparison of the
weighted particle filter and the sampled particle filter with
each sampling method in performance and time complex-
ity. Mean values work better than other sampling methods
do. The performance of the sampled particle filter with
mean value has a positive correlation with Ns; it converges
Ns ¼ 300, which means that 5 percent of all sensors are
sufficient for sampling. It takes 6:4 s for calculation by
sampled particle filter with Ns ¼ 300; it takes 120 s for
calculation using the weighted particle filter. We can
perform computations 20 times faster than before with only
a slight drop in performance.

Results show that if the center of the earthquake is in an
oceanic area, it is more difficult to locate it precisely from
tweets. Similarly, it becomes more difficult to produce good
estimations in less-populated areas. That result is reason-
able: all other things being equal, the greater the number of
sensors, the more precise the estimation will be.

Fig. 11 depicts a trajectory estimation of typhoon Melor
based on a total of 2,037 tweets. For an earthquake, the
center is one location. However, for a typhoon, the center
moves, producing a trajectory. The relative performance of

several methods is presented in Table 3. The particle filter
works well and outputs a trajectory path resembling the
actual path of the typhoon. (Tables in the Supplemental
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.
1109/TKDE. 2012.29, present detailed figures of results.)

6 EVENT DETECTION SYSTEM

We developed earthquake detection systems using our
methodology of event detection, “Toretter.” In this section,
we present this system and explain its features.

6.1 Earthquake Reporting System

We developed an earthquake-reporting system using the
event detection algorithm. Earthquake information is much
more valuable if it is received in real time. Given some
amount of advanced warning, any person would be able
to turn off a stove or heater at home and then seek
protection under a desk or table if such a person were to
have several seconds’ notice before an earthquake actually
strikes an area. It goes without saying that, for such a
warning, earlier is better.

Vast amounts of work have been done on intermediate-
term earthquake prediction in the seismology field (e.g.,
[21]). Various attempts have also been undertaken to
produce short-term forecasts to realize an earthquake
warning system by observing electromagnetic emissions
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Fig. 10. Earthquake location estimation based on tweets. Balloons show
the tweets related to an earthquake. The cross shows the earthquake
epicenter. Red represents early tweets; blue shows later tweets.

TABLE 3
Location Estimation Accuracy of Earthquakes and a Typhoon Trajectory from Tweets

For each method, we present the difference of the estimated latitude and the longitude to the actual ones, and their euclidean distance. Smaller
distance reflects better performance. With the sampled particle filter, we use mean values for sampling method, and sampled 300 users.

Fig. 11. Typhoon trajectory estimation based on tweets.

Fig. 13. Time complexity of weighted particle filter and sampled particle
filters with each sampling method: x-axis, number of samples; y-axis,
mean squared error.

Fig. 12. Performances of the weighted particle filter and the sampled
particle filters with respective sampling methods; x-axis: number of
samples; y-axis: euclidean distance error.



from ground-based sensors and satellites [22]. In Japan, the
government has allocated a considerable amount of its
budget to mitigating earthquake damage. In fact, an
earthquake early warning service has been operated by
JMA since 2007. It provides advance announcements of the
estimated seismic intensities and expected arrival times.

6.2 Proposed System

The proposed system, called Toretter,12 has been operated
since August 8, 2010. A system screenshot is depicted in
Fig. 14. Users can see the detection of past earthquakes.
They can register their e-mails to receive notices of future
earthquake detection reports.

It alerts users and urges them to prepare for the
imminent earthquake. It is hoped that a user receives the
e-mail before the earthquake actually affects that area.

Weevaluatevarious conditionsunderwhichalarmsmight

be sent to choose better parameters for our proposed system.

We set alarm conditions as Ntweet positive tweets comes in

10minute.Weevaluate thosemethodsbyPrecision ¼ Nearthquake

Nalarms

and Recall ¼ Nearthquake

Allearthquake
(Nearthquake: Number of earthquakes

detected correctly, Nalarms: number of alarms, Allearthquake:

number of all earthquakes that occurred).

Fig. 15 shows the performance of our system in each

alarm condition using 1,136 earthquakes during 19 months

from Aug 2009 to Feb 2011. We evaluate our system when

we set Ntweet ¼ 5; 10; 20; 30; 40; 50; 60; 70; 80; 90; 110. Judging

from results in Fig. 15 , the precision and the recall of our

system is trade off. We detected 93 percent of earthquakes

that were stronger than JMA seismic intensity scale13 3 or

higher when we set Ntweet ¼ 10 (In the middle graph of

Fig. 15. However, the precision is very low, which means

the system produces many false-positive alarms in such

cases. While, if we set Ntweet ¼ 100, we can detect only

80 percent of earthquakes stronger than scale 3, but

75 percent of alarms are correct.
We investigated the reasons underlying errors of our

system. These errors are divided into errors of two types.

The first type is the case of detecting one earthquake several

times. We designate such errors as “multiple detection.” The

second type includes cases other than “multiple detection.”

We designate this type as “incorrect detection.” Table 4

shows rates of multiple detection for each JMA seismic

intensity scale rating. From Table 4, large earthquakes

engender multiple detection. It is thought that people post

more tweets for a longer period after strong earthquakes.
We ignore errors by multiple detection and recalculate

the precision of our system. (If people receive several

alarms in short time span, they can understand that those

alarm come from the same earthquake). These results are

presented as “Presented(Multi)” in Fig. 15. The precision

increase by about 20 percent after we remove an affection of

multiple detection errors.
Judging from the objective of this research, our system

must detect all strong earthquakes (stronger than scale 4)

and produce fewer false-positive alarms. Therefore, we

should set Ntweet ¼ 40 to warn people to escape from a

series of events caused by the earthquake.
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Fig. 15. Earthquake detection performance for 19 months from Aug
2009 to Feb 2011. Top : performance for earthquakes more than scale
2. Middle : performance for earthquakes more than scale 3. Bottom :
performance for earthquakes more than scale 4. x-axis: the number of
tweets need to make an alarm in 10 minutes.

Fig. 14. Screenshot of Toretter, an earthquake reporting system.

12. It means “we have taken it” in Japanese.
13. The JMA seismic intensity scale is a measure used in Japan and

Taiwan to indicate earthquake strength at a certain location. Unlike the
Richter magnitude scale, the JMA scale reflects the degree of shaking at a
point on the earth’s surface.

TABLE 4
Earthquake Detection Performance for

Two Months from August 2009

“Multiple detection errors.”



Fig. 16 presents the frequency distribution of the time to
send notification of earthquakes by e-mail during one year,
all of which our system detected. The first tweet of an
earthquake is usually made within a minute or so. The
delay can result from the time for posting a tweet by a user,
the time to index the post in Twitter servers, and the time to
make queries using our system. Our system sent e-mails
within a minute and half on average, and sent 13 percent of
them within a minute. That delivery is far faster than the
rapid broadcasts of announcements of JMA, which are
widely broadcast on TV; on average, a JMA announcement
is broadcast 6 minutes after an earthquake occurs.

Based on these results, we infer that our system probably
has a high recall rate and medium precision. Sometimes
the system produces a false alarm when a strong earth-
quake occurs or when several earthquakes occur during a
single day. The current system uses only a static condition
for giving an alarm: “Ntweet tweets within 10 minutes.” We
must change the use of this condition dynamically to
increase the precision of the system, particularly in terms of
the repetition and intensity of earthquakes.

7 RELATED WORK

Twitter is an interesting example of the most recent type of
social media. Numerous researchers have examined Twitter.

Regarding similar research to that presented in this
paper, some researchers have attempted topic detection
using Twitter. Cataldi et al. proposed a novel method to
detect emerging topics using a keyword-based topic graph
[23]. They succeeded in detecting news keywords that are
popular in Twitter. For instance, Eyjafjallajokull (a volcano
in Iceland) and Samaranch (the previous President of IOC,
who died in April 2010). Marc et al. divided increasingly
popular keywords on Twitter into patterns of various kinds
using SOM, thereby demonstrating that Twitter users
contribute to the discussion of these trends.

Aside from the studies introduced in Section 1 and these
studies, several others have been done. We classify studies
dealing with Twitter or data on Twitter into three groups.

First, some researchers specifically examine the network
structure of Twitter and investigate Twitter network
features of various kinds. Java et al. analyzed Twitter as
early as 2007. They described the social network of Twitter
users and investigated the motivations of Twitter users [2].
Haewoon et al. crawled a vast amount of Twitter data,

analyzed the Twitter follower-following topology and
ranked users by Pagerank [4]. Huberman et al. analyzed
more than 300 thousand users. They discovered that the
relation between friends (defined as a person to whom a
user has directed posts using an “@” symbol) is the key to
understanding interaction in Twitter [3].

Second, some researchers have examined characteristics
of Twitter as social media. Recently, Boyd et al. have
continued their investigation of retweet activity, which is the
Twitter-equivalent of e-mail forwarding, by which users
post messages that were originally posted by others [5].
Tumasjan et al. crawled many tweets referring to the
election in Germany and attempted to predict the results of
the election: which political parties would win the election
[6]. �Oconnor extracts public opinion from Twitter using
sentiment analysis and reports the possibility of using a
proposed method instead of polls [24].

Third, some studies elucidate the benefits of novel
applications of Twitter: Ebner and Schiefner establish a
microblogging community and studies how to use Twitter
as a tool for mobile e-learning [25]. The integration of the
Semantic Web and microblogging was described in a
previous report [26] in which a distributed architecture is
proposed and the contents are aggregated.

In contrast to the small number of academic studies of
Twitter, numerous Twitter applications exist. Some are
used for analyses of Twitter data. For example, Tweet-
tronics14 provides an analysis of tweets related to brands
and products for marketing purposes. It can classify
positive and negative tweets, and it can identify influential
users. The classification of tweets might be done similarly
to our algorithm. Web2express Digest15 is a website that
autodiscovers information from Twitter streaming data to
find real-time interesting conversations. It also uses natural
language processing and sentiment analysis to discover
interesting topics, as we do in our study.

Various studies have analyzed web data (aside from that
of Twitter), particularly addressing its spatial aspects. The
most relevant study to ours is one by Backstrom et al. [27].
That study used queries with location (obtained by IP
addresses), and presented a probabilistic framework for
quantifying spatial variation. The model is based on a
decomposition of the surface of the earth into small grid
cells. The framework finds a query’s geographic center and
spatial dispersion. Although the motivation is very similar
to that which spurs our study, the events to be detected
differ. Some examples are that people might not make a
search query earthquake when they experience an earth-
quake. Therefore, our approach complements their work.
Similarly to our work, Mei et al. targeted blogs and
analyzed their spatiotemporal patterns [28]. They presented
examples for Hurricane Katrina, Hurricane Rita, and the
iPod Nano (Apple Computer Inc.). The motivation of that
study is similar to ours, but Twitter data are more time
sensitive; our study examines even more time-critical events
such as earthquakes.

Some studies have specifically investigated collaborative
bookmarking data, as Flickr provides, from a spatiotempor-
al perspective: Serdyukov et al. describes investigations of
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Fig. 16. Frequent distribution of the time to send alarm e-mail. (x-axis:
time to send e-mail[sec] y-axis: frequency of earthquakes, alarm trigger:
40 tweets in 10 minutes).

14. http://www.tweettronics.com.
15. http://web2express.org.



generic methods for placing photographs from Flickr on the

world map [29]. Rattenbury et al. [30] specifically examines

the problem of extracting place and event semantics for tags

that are assigned to photographs on Flickr. They propose

scale-structure identification, which is a burst-detection

method based on scaled spatial and temporal segments.
Location estimation studies are often done in the field of

ubiquitous computing. Estimating an object’s location is

arguably the most fundamental sensing task in many

ubiquitous and pervasive computing scenarios. Represent-

ing locations probabilistically provides a unified interface

for location information, which enables us to produce

applications that are independent of the sensors used, even

when using starkly different sensor types such as GPS and

infrared badges [11], or even Twitter. Kalman filters,

multihypothesis tracking, grid-based, and topological ap-

proaches, and particle filters are well-known algorithms

used for location estimation. Hightower and Borriello

described the application of particle filters to location

sensors deployed throughout a lab building [31]. More than

30 lab residents were tracked. Then their locations were

estimated accurately using the particle filter approach.

8 DISCUSSION

Many studies have been undertaken to monitor the social

situation by treating participants in social media, such as

those using Twitter, as social sensors. However, most such

studies are aimed at observation of long-term changes of

social situations. Our research is an early approach to use

Twitter as a social sensor for detection of real-time events.
Additionally, it is meaningful that we apply methods

for event detection using ordinal physical sensors for event

detection by social sensors. The field of event detection

using physical sensors has already been developed.

Methods of many kinds exist in the field. Therefore, it is

possible that events of many kinds can be observed from

Twitter through application of those methods. Our

research has produced one of the first approaches to use

such methods.
We intend to expand our system to detect events of

various kinds using Twitter.
Our model includes the assumption that a single instance

of the target event exists. For example, we assume that

plural earthquakes or typhoons do not occur simulta-

neously. Although that assumption is reasonable for these

cases, it might not hold for other events such as traffic jams,

accidents, and rainbows. To realize multiple event detec-

tion, we must produce advanced probabilistic models that

can accommodate multiple event occurrences.
A search query is important for seeking tweets that might

be relevant. For example, we set query terms as earthquake

and shaking because most tweets mentioning an earthquake

occurrence use either word. However, to improve the recall,

it is necessary to obtain a good set of queries. In fact,

advanced algorithms can be useful for query expansion,

which remains as a subject of our future work.

9 CONCLUSION

As described in this paper, we investigated the real-time

nature of Twitter, devoting particular attention to event

detection. Semantic analyses were applied to tweets to

classify them into a positive and a negative class. We

regard each Twitter user as a sensor, and set the problem

as detection of an event based on sensory observations.

Location estimation methods such as particle filtering are

used to estimate the locations of events. As an application,

we developed an earthquake reporting system, which is a

novel approach to notify people promptly of an earth-

quake event.
Microblogging has real-time characteristics that distin-

guish it from other social media such as blogs and

collaborative bookmarks. As described in this paper, we

presented an example that leverages the real-time nature of

Twitter to make it useful in solving an important social

problem: natural disasters. It is hoped that this paper will

provide some insight into the future integration of semantic

analysis with microblogging data.

REFERENCES

[1] M. Sarah, C. Abdur, H. Gregor, L. Ben, and M. Roger, “Twitter
and the Micro-Messaging Revolution,” technical report, O’Reilly
Radar, 2008.

[2] A. Java, X. Song, T. Finin, and B. Tseng, “Why We Twitter:
Understanding Microblogging Usage and Communities,” Proc.
Ninth WebKDD and First SNA-KDD Workshop Web Mining and
Social Network Analysis (WebKDD/SNA-KDD ’07), pp. 56-65, 2007.

[3] B. Huberman, D. Romero, and F. Wu, “Social Networks that
Matter: Twitter Under the Microscope,” ArXiv E-Prints, http://
arxiv.org/abs/0812.1045, Dec. 2008.

[4] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, A Social
Network or A News Media?” Proc. 19th Int’l Conf. World Wide Web
(WWW ’10), pp. 591-600, 2010.

[5] G.L. Danah Boyd and S. Golder, “Tweet, Tweet, Retweet:
Conversational Aspects of Retweeting on Twitter,” Proc. 43rd
Hawaii Int’l Conf. System Sciences (HICSS-43), 2010.

[6] A. Tumasjan, T.O. Sprenger, P.G. Sandner, and I.M. Welpe,
“Predicting Elections with Twitter: What 140 Characters Reveal
About Political Sentiment,” Proc. Fourth Int’l AAAI Conf. Weblogs
and Social Media (ICWSM), 2010.

[7] P. Galagan, “Twitter as a Learning Tool. Really,” ASTD Learning
Circuits, p. 13, 2009.

[8] K. Borau, C. Ullrich, J. Feng, and R. Shen, “Microblogging for
Language Learning: Using Twitter to Train Communicative and
Cultural Competence,” Proc. Eighth Int’l Conf. Advances in Web
Based Learning (ICWL ’09), pp. 78-87, 2009.

[9] J. Hightower and G. Borriello, “Location Systems for Ubiquitous
Computing,” Computer, vol. 34, no. 8, pp. 57-66, 2001.

[10] M. Weiser, “The Computer for the Twenty-First Century,”
Scientific Am., vol. 265, no. 3, pp. 94-104, 1991.

[11] V. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello,
“Bayesian Filtering for Location Estimation,” IEEE Pervasive
Computing, vol. 2, no. 3, pp. 24-33, July-Sept. 2003.

[12] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake Shakes
Twitter Users: Real-Time Event Detection by Social Sensors,”
Proc. 19th Int’l Conf. World Wide Web (WWW ’10), pp. 851-860,
2010.

[13] Y. Raimond and S. Abdallah, “The Event Ontology,” http://
motools.sf.net/event/event.html, 2007.

[14] T. Joachims, “Text Categorization with Suport Vector Machines:
Learning with Many Relevant Features,” Proc. 10th European Conf.
Machine Learning (ECML ’98), pp. 137-142, 1998.

[15] X. Liu, S. Zhang, F. Wei, and M. Zhou, “Recognizing Named
Entities in Tweets,” Proc. 49th Ann. Meeting of the Assoc. for
Computational Linguistics: Human Language Technologies (HLT ’11),
pp. 359-367, June 2011.

930 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 4, APRIL 2013



[16] A. Ritter, S. Clark Mausam, and O. Etzioni, “Named Entity
Recognition in Tweets: An Experimental Study,” Proc. Conf.
Empirical Methods in Natural Language Processing, 2011.

[17] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian
Bayesian Tracking,” IEEE Trans. Signal Processing, vol. 50, no. 2,
pp. 174-188, Feb. 2002.

[18] J. Leskovec, L.A. Adamic, and B.A. Huberman, “The Dynamics of
Viral Marketing,” Proc. Seventh ACM Conf. Electronic Commerce (EC
’06), pp. 228-237, 2006.

[19] Y. Matsuo and H. Yamamoto, “Community Gravity: Measuring
Bidirectional Effects by Trust and Rating on Online Social
Networks,” Proc. 18th Int’l Conf. World Wide Web (WWW ’09),
pp. 751-760, 2009.

[20] W. Zhu, C. Chen, and R.B. Allen, “Analyzing the Propagation of
Influence and Concept Evolution in Enterprise Social Networks
Through Centrality and Latent Semantic Analysis,” Proc. 12th
Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining
(PAKDD ’08), pp. 1090-1098, 2008.

[21] E. Scordilis, C. Papazachos, G. Karakaisis, and V. Karakostas,
“Accelerating Seismic Crustal Deformation before Strong Main-
shocks in Adriatic and Its Importance for Earthquake Prediction,”
J. Seismology, vol. 8, pp. 57-70, http://dx.doi.org/10.1023/
B:JOSE.0000009504.69449.48, 2004.

[22] T. Bleier and F. Freund, “Earthquake [earthquake warning
systems],” IEEE Spectrum, vol. 42, no. 12, pp. 22-27, Dec. 2005.

[23] M. Cataldi, L. Di Caro, and C. Schifanella, “Emerging Topic
Detection on Twitter Based on Temporal and Social Terms
Evaluation,” Proc. 10th Int’l Workshop Multimedia Data Mining
(MDMKDD ’10), pp. 1-10, 2010.

[24] B. O’Connor, R. Balasubramanyan, B.R. Routledge, and N.A.
Smith, “From Tweets to Polls: Linking Text Sentiment to Public
Opinion Time Series,” Proc. Int’l AAAI Conf. Weblogs and Social
Media, 2010.

[25] M. Ebner and M. Schiefner, “Microblogging - More than Fun?”
Proc. IADIS Mobile Learning Conf., pp. 155-159, 2008.

[26] A. Passant, T. Hastrup, U. Bojars, and J. Breslin, “Microblogging:
A Semantic Web and Distributed Approach,” Proc. Fourth Work-
shop Scripting for the Semantic Web (SFSW ’08), http://data.
semanticweb.org/workshop/scripting/2008/paper/11, 2008.

[27] L. Backstrom, J. Kleinberg, R. Kumar, and J. Novak, “Spatial
Variation in Search Engine Queries,” Proc. 17th Int’l Conf. World
Wide Web (WWW ’08), pp. 357-366, 2008.

[28] Q. Mei, C. Liu, H. Su, and C. Zhai, “A Probabilistic Approach to
Spatiotemporal Theme Pattern Mining on Weblogs,” Proc. 15th
Int’l Conf. World Wide Web (WWW ’06), pp. 533-542, 2006.

[29] P. Serdyukov, V. Murdock, and R. van Zwol, “Placing Flickr
Photos on a Map,” Proc. 32nd Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR ’09), pp. 484-491, 2009.

[30] T. Rattenbury, N. Good, and M. Naaman, “Towards Automatic
Extraction of Event and Place Semantics from Flickr Tags,” Proc.
30th Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’07), pp. 103-110, 2007.

[31] J. Hightower and G. Borriello, “Particle Filters for Location
Estimation in Ubiquitous Computing: A Case Study,” Proc. Int’l
Conf. Ubiquitous Computing (UbiComp ’04), pp. 88-106, 2004.

Takeshi Sakaki received the BS and MS
degrees from the University of Tokyo, Japan,
in 2004 and 2006, respectively. Currently, he is
working toward the PhD degree from the
University of Tokyo, Japan. His research inter-
ests include natural language processing, Web
mining, and artificial intelligence.

Makoto Okazaki received the BS degree from
the University of Tokyo, Japan, in 2010. His
research interests include Web mining, data
mining, and artificial intelligence.

Yutaka Matsuo received the BS, MS, and PhD
degrees from the University of Tokyo, in 1997,
1999, and 2002, respectively. He is an associate
professor at the Institute of Engineering Innova-
tion, The University of Tokyo, Japan. He joined
National Institute of Advanced Industrial Science
and Technology (AIST) from 2002 to 2007. He is
interested in social network mining, text proces-
sing, and semantic web in the context of artificial
intelligence research.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SAKAKI ET AL.: TWEET ANALYSIS FOR REAL-TIME EVENT DETECTION AND EARTHQUAKE REPORTING SYSTEM DEVELOPMENT 931


