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Abstract—Sentiment classification has become a ubiqg-
uitous enabling technology in the Twittersphere,
since classifying tweets according to the sentiment
they convey towards a given entity (be it a product,
a person, a political party, or a policy) has many
applications in political science, social science, market
research, and many others. In this paper we contend
that most previous studies dealing with tweet senti-
ment classification (TSC) use a suboptimal approach.
The reason is that the final goal of most such studies is
not estimating the class label (e.g., Positive, Negative,
or Neutral) of individual tweets, but estimating the rel-
ative frequency (a.k.a. “prevalence”) of the different
classes in the dataset. The latter task is called quan-
tification, and recent research has convincingly shown
that it should be tackled as a task of its own, using
learning algorithms and evaluation measures different
from those used for classification. In this paper we
show, on a multiplicity of TSC datasets, that using
a quantification-specific algorithm produces substan-
tially better class frequency estimates than a state-
of-the-art classification-oriented algorithm routinely
used in TSC. We thus argue that researchers inter-
ested in tweet sentiment prevalence should switch
to quantification-specific (instead of classification-
specific) learning algorithms and evaluation measures.

1. Introduction

Sentiment classification is the task of detecting, given
an opinion-laden textual item (e.g., a product review,
a blog post, an editorial, etc.), whether it expresses
a positive or a negative opinion about a given entity
(e.g., a product, a person, a political party, or a pol-
icy). The above scenario is a simple instance of binary
classification, with Positive and Negative as the classes.
Slightly more complex scenarios result when the Neutral
class is added to the picture, which makes the task an
instance of single-label multi-class (SLMC) classification,
or when sentiment strength needs to be assessed on an
ordered scale consisting of VeryPositive, Positive, OK-
ish, Negative, VeryNegative, which makes the task one of
ordinal classification. In any of the above incarnations,
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sentiment classification has become a ubiquitous enabling
technology in the Twittersphere, since classifying tweets
according to the sentiment they convey towards a given
entity has many applications in political science, social
science, market research, and many others [25]. The tweet
sentiment classification (TSC) shared task which has
taken place in the context of the last three SemEval
evaluation campaigns (where it is called “Sentiment
Analysis in Twitter” — see [28], [32], [33]) has been, in
all three editions, the SemEval task with the highest
number of participants.

In this paper we contend that most previous studies
dealing with TSC use a suboptimal approach. The rest
of this section is devoted to arguing why this is so.

Usually, the final goal of most such studies is not
estimating the label of an individual tweet, but studying
the distribution of a set of tweets across the classes of
interest; in other words, the interest in such studies is
not at the individual level, but at the aggregate level. For
instance, when Borge-Holthoefer and colleagues [6] use
Twitter to study the polarization of sentiments during
the 2013 Egyptian coup, they are not interested in the
sentiments of the specific individual behind a specific
Twitter account, but are interested in the aggregate
data (possibly broken down according to various criteria)
that can be extracted from the entire dataset under
study. Similarly, when Dodds and colleagues [12] use
Twitter in order to study the spatio-temporal patterns
of happiness throughout the US population, they are
not interested in how and when a specific person is
happy, but are interested in the conclusions that the
aggregate data allow them to draw. These examples are
not isolated, and it is fair to say that most (if not all)
TSC studies conducted, e.g., within political science [6],
[21], [24], economics [5], [29], social science [12], and
market research [7], [31], use Twitter with an interest in
aggregate data and not in individual data.

Without loss of generality, we may say that TSC
studies that focus on the aggregate level are concerned
with estimating the prevalence (or “relative frequency”)
of each class of interest in the unlabelled dataset, i.e., with
estimating the distribution of the unlabelled data across
the classes of interest. This task is known as quantification
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[2], [4], [13], [15], [26] — a.k.a. prevalence estimation [3],
or class prior estimation [8]. The obvious method for
dealing with it is “classify and count”, i.e., classifying
each unlabelled document via a standard classifier and
estimating class prevalence by counting the documents
that have been labelled with the class. However, this
strategy is suboptimal, since a good classifier is not
necessarily a good “quantifier”. To see this consider that
a binary classifier hy for which FFP = 20 and FN = 20
(FP and FN standing for “false positives” and “false
negatives”, respectively) is worse than a classifier hy for
which, on the same test set, FP = 18 and FFN = 20.
However, h; is intuitively a better binary quantifier
than hs; indeed, hy is a perfect quantifier, since FP
and F'N are equal and thus, when it comes to class
frequency estimation, compensate each other, so that
the distribution of the test items across the class and
its complement is estimated perfectly. In other words, a
good quantifier needs not only have high (classification)
accuracy, it also needs to have small bias (i.e., needs
to distribute its errors as evenly as possible across the
FPs and the FNs). Recent research (e.g., [2], [4], [13],
[15]) has convincingly shown that, since classification
and quantification pursue different goals, quantification
should be tackled as a task of its own, using different
evaluation measures and, as a result, different learning
algorithms. In this paper we show, on a multiplicity
of TSC datasets, that quantification-specific algorithms
indeed outperform, at prevalence estimation, state-of-
the-art classification-oriented learning algorithms. We
thus argue that researchers interested in tweet sentiment
prevalence should switch to using quantification-specific
(instead of classification-specific) learning algorithms
(and evaluation measures).

The paper is organized as follows. In Section 2 we
discuss previous work in tweet sentiment classification
and previous work in quantification, arguing that these
two research streams have never crossed paths. In order
to introduce tweet sentiment quantification, in Section 3
we first look at the evaluation measures that are used in
the quantification literature. In Section 4 we describe the
two tweet sentiment quantification systems we compare
in this work, one based on “traditional” classification
technology and one based on a quantification-specific
learning algorithm. Section 5 describes the results of our
experiments, while Section 6 concludes.

2. Related work

Quantification methods. Different quantification
methods have been proposed over the years, the two main
classes being the aggregative and the non-aggregative
methods. While the former require the classification
of each individual item as an intermediate step, the
latter do not, and estimate class prevalences holistically.
Most methods (e.g., the ones described in [2], [4], [13],
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[15], [26]) fall in the former class, while the latter has
few representatives (e.g., [16], [22]). Within the class
of aggregative methods, a further distinction can be
made between methods that use general-purpose learning
algorithms (e.g., [4], [15]), sometimes tweaking them or
post-processing their prevalence estimates to account for
their estimated bias, and methods that instead make use
of learning algorithms explicitly devised for quantification
(e.g., [2], [13], [26]); the one we use in this paper belongs
to this latter category.

Applications of quantification. Quantification
has been applied to fields as diverse as epidemiology
[22], resource allocation [15], word sense disambiguation
[8], political science [18], and veterinary [16], [35]. King
and Lu [22] apply quantification to the estimation of
disease prevalences from “verbal autopsies”, i.e., verbal
descriptions of the symptoms suffered from deceased
persons before dying. Chan and Ng [8] use quantification
in order to estimate word sense priors from a text dataset
to disambiguate, so as to tune a word sense disambiguator
to the estimated sense priors. Hopkins and King [18]
estimate the prevalence of support for different political
candidates from blog posts. Forman [15] uses quantifica-
tion for estimating the prevalence of different issues from
logs of calls to customer support; these estimates allow a
company to allocate more human resources to the issues
which have elicited more calls. Finally, in [16] and [35]
quantification is used for establishing the prevalence of
damaged sperm cells in a given sample for veterinary
applications.

To date, we are not aware of any work that has applied
quantification-specific algorithms to Twitter data (or to
data from other social media, for that matter).

3. Evaluation measures for quantification

Let us look at the measures which are currently being
used in the literature for evaluating quantification error.

Our task requires estimating the distribution of a
set S of unlabelled tweets across a set C of available
classes; we will typically deal with the case in which
|C| = 3, where the classes are Positive, Negative, and
Neutral. Ours is thus a single-label multi-class (SLMC)
quantification task, and we will thus concentrate on the
measures that have been proposed for evaluating it. Note
that a measure for SLMC quantification is also a measure
for binary quantification, since the latter task is a special
case of the former; this would be relevant for datasets
in which the Neutral class is absent. Notation-wise, by
A(p,p, S,C) we will indicate a quantification loss, i.e., a
measure A of the error made in estimating a distribution
p defined on set S and classes C by another distribution
p; we will often simply write A(p,p) when S and C are
clear from the context®.

1. Consistently with most mathematical literature we use the
caret symbol (") to indicate estimation.
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The simplest measure for SLMC quantification is
absolute error (AE), which corresponds to the average
(across the classes in C) absolute difference between the
predicted class prevalence and the true class prevalence;

ie.,
Z 1(c;)

c;€C

AE

()] (1)

(B,p)
\C\

It is easy to show that AE ranges between 0 (best) and
2(1 - ggclp(c]'))
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(worst); a normalized version of AE that always ranges
between 0 (best) and 1 (worst) can thus be obtained as
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The main advantage of AE and NAFE is that they are
intuitive, and easy to understand to non-initiates too.

However, AE and NAE do not address the fact that
the same absolute difference between predicted class
prevalence and true class prevalence should count as a
more serious mistake when the true class prevalence
is small. For instance, predicting p(c) = 0.10 when
p(c) = .01 and predicting p(c) = 0.50 when p(c) = 0.41
are equivalent errors according to AE, but the former
is intuitively a more serious error than the latter. Rel-
ative absolute error (RAE) addresses this problem by
relativizing the value [p(c;) — p(c;)| in Equation 1 to the
true class prevalence, i.e.,
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RAF may be undefined in some cases, due to the presence
of zero denominators. To solve this problem, in computing
RAEFE we can smooth both p(c;) and p(c;) via additive
smoothing, i.e.,
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where ps(c;) denotes the smoothed version of p(c¢;) and
the denominator is just a normalizing factor (same for
the ps(c;)’s); the quantity € = ﬁ is often used as a
smoothing factor. The smoothed versions of p(c;) and
p(c;) are then used in place of their original versions in
Equation 3; as a result, RAF is always defined and still
returns a value of 0 when p and p coincide. It is easy to
show that RAF ranges between 0 (best) and
1 — min p(c;)
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(worst); a normalized version of RAFE that always ranges
between 0 (best) and 1 (worst) can thus be obtained as
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A third measure, and the one that has become somehow
standard in the evaluation of SLMC quantification, is
normalized cross-entropy, better known as Kullback-
Leibler Divergence (KLD — see e.g., [10]). KLD was
proposed as a SLMC quantification measure in [14], and

is defined as
> plej)log
cj eC

p(c))
p(cy)

K LD was originally devised as a measure of the ineffi-
ciency incurred when estimating a true distribution p
over a set C of classes by means of a predicted distribution
p. KLD is thus suitable for evaluating quantification,
since quantifying exactly means predicting how the items
in set S are distributed across the classes in C.

K LD ranges between 0 (best) and 400 (worst). Note
that, unlike AE and RAE, the upper bound of K LD is
not finite since Equation 6 has predicted probabilities,
and not true probabilities, at the denominator: that is, by
making a predicted probability p(c;) infinitely small we
can make K LD be infinitely large. A normalized version
of KLD yielding values between 0 (best) and 1 (worst)
may be defined by applying a logistic function, e.g.,

eKLD(h.p) _
¢KLD(p.p)

KLD(p,p) = (6)

NKLD(p,p) = 7)
Also KLD (and, as a consequence, NKLD) may be
undefined in some cases. While the case in which p(c;) =
0 is not problematic (since continuity arguments indicate
that Olog% should be taken to be 0 for any a > 0),
the case in which p(c;) = 0 and p(c¢;) > 0 is indeed
problematic, since alog § is undefined for a > 0. To
solve this problem, also in computing K LD and NKLD
we use the smoothed probabilities of Equation 4; as a
result, KLD and NKLD are always defined and still
return a value of zero when p and p coincide.

While K LD is less easy to understand to non-initiates
than AE or RAFE, its advantage is that it is a very well-
known measure, having been the subject of intense study
within information theory [11] and, although from a
more applicative angle, within the language modelling
approach to information retrieval and to speech process-
ing. As a consequence, it has emerged as the de facto
standard in the SLMC quantification literature. We will
thus pick it as the measure to optimize; however, in the
experimental section we will report the results of all our
experiments in terms of all six measures discussed above.
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4. A tweet sentiment quantifier

In this section we will describe the quantification-specific
system we will use in our experiments. We start (Section
4.1) by describing how to generate sentiment-oriented
vectorial representations from tweets, while in Section
4.2 we describe the learning algorithm we adopt.

4.1. Features for detecting tweet sentiment

For building vectorial representation of tweets we have
followed the approach discussed in [23, Section 5.2.1],
since the representations presented therein are those used
in the systems that performed best at both the SemEval
2013 [27] and SemEval 2014 [38] STC shared tasks.

The text is preprocessed by normalizing URLs and
mentions of users to the constants http://someurl and
@someuser, resp., after which tokenization and POS tag-
ging is performed. Binary features (i.e., features denoting
presence or absence) used include word n-grams, for
n € {1,2,3,4}, and character n-grams, for n € {3,4,5},
whether the last token contains an exclamation and/or
a question mark, whether the last token is a positive or
negative emoticon and, for each of the 1000 word clusters
produced with the CMU Twitter NLP tool?, where any
token from the cluster is present. Integer-valued features
include the number of all-caps tokens, the number of
tokens for each POS tag, the number of hashtags, the
number of negated contexts, the number of sequences of
exclamation and/or question marks, and the number of
elongated words (e.g., cooooool).

A key addition to the above is represented by features
derived from both automatically generated and manually
generated sentiment lexicons; for these features, we use
the same sentiment lexicons as used in [23], which are
all publicly available. We omit further details concerning
our vectorial representations (and, in particular, how the
sentiment lexicons contribute to them), both for brevity
reasons and because these vectorial representations are
not the central focus of this paper; the interested reader
is invited to consult [23, Section 5.2.1] for details.

Finally, we should mention the fact that we did not
perform any feature selection, since our learners could
handle the resulting (huge) number of features fairly
well from the standpoint of efficiency, and since learning
algorithms in the SVM family are known to be fairly
robust to overfitting.

4.2. Learning to quantify

As a state-of-the-art quantification algorithm we use
SVM(KLD), introduced in [13]. SVM(KLD) is an instan-

2. http://www.ark.cs.cmu.edu/TweetNLP/
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tiation of Thorsten Joachims’ SVM-perf [19] that uses
KLD as the loss to optimize?.

SVM-perf is a “structured output prediction” algo-
rithm in the support vector machines family. Unlike
traditional SVMs, SVM-perf is capable of optimizing
any nonlinear, multivariate loss function that can be
computed from a contingency table (as all the measures
presented in Section 3 are). Instead of handling hypothe-
ses h : X — Y that map an individual item (in our case: a
tweet) x; into an individual label y;, SVM-perf considers
hypotheses h : X — ) that map entire tuples of items
(in our case: entire sets of tweets) x = (x1,...,X,) into
tuples of labels y = (y1, ..., Yn). Instead of learning the
traditional hypotheses of type

h(x) = sign(w - x + b) (8)

SVM-perf thus learns hypotheses of type

h(x) = arg max(w - U(%, )) 9)

ye
where w is the vector of parameters to be learnt during
training and

U(x,y) = sz‘yi (10)

(the joint feature map) is a function that scores the
pair of tuples (x,y) according to how “compatible” x
and ¢ are. In other words, while classifiers trained via
traditional SVMs classify individual instances x one
at a time, models trained via SVM-perf classify entire
sets x of instances in one shot, and can thus make the
labels assigned to the individual items mutually depend
on each other. This is of fundamental importance in
quantification, where, say, an additional false positive
may even be beneficial when the rest of the data is
expected to contain more false negatives than false
positives.

While the optimization problem of classic soft-margin
SVMs consists in finding

|Tr|

1
arg min —w-w+C i
Bwdizo 2 ;f (11)
such that  yi[w-x}+b] > (1 —¢&)

for all ¢ € {1,...,|Tr|}

(where the (x},y}) denote the training examples and T'r
indicates the training set) the corresponding problem of
SVM-perf consists instead of finding

1
arg min -w-w+C¢
w,E50 2 (12)
such that w- [U(xX',y') — U (X', y) + b

> Ay, y) — & forall y € Y/if/

3. In [19] SVM-perf is actually called SVM-multi, but the author
has released its implementation under the name SVM-perf; we will
thus use this latter name.
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where (X’,3’) indicates a sequence of training examples
and the corresponding sequence of their true labels.

Here, the relevant thing to observe is that the mul-
tivariate loss A explicitly appears in the optimization
problem.

We refer the interested reader to [19], [20], [37] for
more details on SVM-perf (and on SVMs for structured
output prediction in general). From the point of view
of the user interested in applying it to a certain task,
the implementation of SVM-perf made available by its
author is essentially an off-the-shelf package, since for
customizing it to a specific loss A one only needs to write
a small module that describes how to compute A from a
contingency table?.

5. Experiments

We have carried out our experiments on a variety of
TSC datasets previously used in the literature; the
main characteristics of these datasets are listed in Table
1. The SemEval2013, SemEval2014, and SemEval2015
datasets are described more in detail in [28], [33], and
[32], respectively, while all of the other datasets (Sanders,
SST, OMD, HCR, GASP) are described in detail in [34].
Our choice of datasets has followed two main guidelines,
i.e., (i) selecting publicly available datasets, so as to
guarantee a high level of replicability, and (ii) selecting
datasets whose sentiment labels are the result of manual
annotation, so as to guarantee high label quality®.

It is well known that, when Twitter data are con-
cerned, the replicability of experimental results is limited
since, due to terms of use imposed by Twitter, the
datasets made available by researchers cannot contain
the tweets themselves but only consists of their id’s; the
tweets corresponding to some of the id’s may become
unavailable over time, which means that the datasets we
use here are typically subsets of the original datasets.
Luckily enough, this problem affects us only marginally
since (i) of the three SemEval datasets we owned an
original copy before starting this research, and (ii) we
were able to recover all of the original tweets in all of
the other datasets (except for Sanders).

Most of the above datasets classify tweets across
the three classes Positive, Negative, Neutral; some others
(Sanders, OMD, HCR, GASP) also use additional classes
(e.g., Mixed, Irrelevant, Other), and SST uses 10 different
levels of sentiment strength (from VeryPositive to VeryNeg-
ative). For reasons of uniformity, we have removed the
tweets belonging to the additional classes (OMD, HCR,
GASP), and converted sentiment strengths into Positive,
Negative, Neutral using the same heuristics as described

4. SVM-perf is available from http://svmlight.joachims.org/
svm _struct.html, while the module that customizes it to K LD is
available from http://hlt.isti.cnr.it/quantification/

5. This means that we avoid STC datasets in which the labels
are automatically derived from, say, the emoticons present in the
tweets.
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in [34] (SST); in all of the datasets we use, the task is
thus to quantify the Positive, Negative, Neutral classes,
which represent a partition of the dataset.

Because of the reasons above, the numbers reported
in Table 1 refer not to the original datasets but to the
versions we have used®.

5.1. Experimental protocol

In our experiments, on each dataset we compare the
quantification-specific learning algorithm of Section 4.2
against a baseline consisting of a representative, state-
of-the-art, classification-specific learning algorithm. As
this baseline algorithm we use a standard support vector
machine with a linear kernel, in the implementation
made available in the LIBSVM system? [9]; it is a strong
baseline, and is (among others) the learning algorithm
used in the systems that performed best at both the
SemEval 2013 [27] and SemEval 2014 [38] STC shared
tasks. While SVM(KLD) explicitly minimizes K LD, the
above baseline minimizes the well-known Hinge Loss;
from now on we will thus refer to it as SVM(HL).

Both learning algorithms are fed the same vectorial
representations, as described in Section 4.1. For both
learning algorithms we have optimized the C' parameter
(which sets the tradeoff between the training error and
the margin — see Equations 11 and 12) via validation
on a separate held-out set, performing a grid search
on all values of type 10* with « € {—6, ..., 7}; we have
optimized C individually for each learner—dataset pair.
We have instead left the other parameters at their default
value; in particular, with both learning algorithms we
have used a linear kernel. Some of the datasets we use
(SemEval2013, SemEval2014, SemEval2015, and HCR)
already come with a predefined split between training
set and held-out set, with (for the SemEval datasets)
roughly six times as many training items as held-out
items; for the datasets where such split is not predefined,
we have randomly selected the held-out examples from
the training examples, using the same ratio as in the
SemEval datasets. For all datasets, after the optimal
parameter values have been selected we have retrained
the classifier on the union of the training and the held-out
sets.

As noted in Section 3, ours is a single-label multi-class
task. This does not pose any problem to our baseline
system, since LIBSVM is equipped with a built-in SLMC
option; this ensures that the baseline is a strong one. It
instead poses a problem to SVM(KLD), which is a binary
learning algorithm. We circumvent this problem by (i)

6. In order to enhance the reproducibility of our experimental
results, we make available (at http://alt.qcri.org/~wgao/data/
tweet _sentiment _quantification.zip) the vectorial representations
we have generated for all the datasets (split into training / validation
/ test sets) used in this paper.

7. LIBSVM is available from http://www.csie.ntu.edu.tw/~cjlin/
libsvm/
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TABLE 1. DATASETS USED IN THIS WORK AND THEIR MAIN CHARACTERISTICS. THE LAST COLUMN INDICATES DISTRIBUTION DRIFT MEASURED
IN TERMS OF KLD(pTe,pTT), I.E., INDICATES HOW MUCH THE DISTRIBUTION IN THE TEST SET DIVERGES FROM THAT IN THE TRAINING SET;
HIGHER VALUES INDICATE HIGHER DIVERGENCE.

z ¥
= - + s 9] ,}5
3 % E < = o
= B o = [ ]
2 4 e b o £
| E| 2| ¢ * 2
e N N T E
Dataset F* 3* $* $* = A
SemEval2013 || 1,215,742 | 9,684 | 1,654 | 3,813 | 15,151 | 0.001662
SemEval2014 1,215,742 9,684 1,654 1,853 13,191 0.022222
SemEval2015 1,215,742 | 9,684 1,654 | 2,390 13,728 | 0.003723
Sanders 229,399 1,847 308 923 3,078 0.000010
SST 376,132 | 2,546 425 1,271 4,242 | 0.003603
OMD 199,151 1,576 263 787 2,626 | 0.000580
HCR 222,046 797 797 798 2,392 | 0.008174
GASP 694,582 | 7,532 1,256 | 3,765 12,553 | 0.000187

using SVM(KLD) to train |C| “one-against-all” binary
predictors, (ii) having each binary predictor output a
prevalence estimate for the corresponding class, and (iii)
normalizing these prevalence estimates so that they sum
up to 1.

5.2. Results

The results of our experiments are reported in Table
2. SVM(KLD) is explicitly designed to perform well
when K LD is the evaluation measure, so let’s first look
at the column reporting K LD results. This column
shows that SVM(KLD) outperforms SVM(HL) on 6 out
of 8 datasets, only being outperformed on HCR and
marginally outperformed on SemEval2015. SVM(KLD)
also outperforms SVM(HL) on average (across the 8
tested datasets), bringing about a 29.4% reduction in
prevalence estimation error (.022 vs. 0.31) as measured
by KLD.

We can also see that the results measured according
to the other five metrics substantially confirm the K LD
results: RAE, NRAFE, and NKLD always agree with
K LD on who the best performer is, while AE and NAFE
almost always agree, the exceptions being SemEval2015
(where SVM(HL) is no more the winner, and the two
learners are judged as being equally good) and GASP
(where AFE and NAE decree SVM(HL) to be the best
performer)8.

One of the reasons why SVM(KLD) did not always
outperform SVM(HL) might reside in the fact that,
as shown by the experiments in [13] (see Table II of
that paper), SVM(KLD) especially excels at prevalence
estimation for classes with low (< .10) class prevalence
in the training set, while other quantification-specific

8. That KLD and NKLD always agree is true by definition,
since they are monotonically increasing functions of each other;
same for AE and NAE, and for RAE and NRAE.
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learning algorithms seem to perform better for more
frequent classes. In the future we plan to repeat the
experiments reported in Table 2 also by using these
latter algorithms.

6. Conclusion

In this paper we have argued that the real goal of most
research efforts dealing with in the sentiment conveyed by
tweets is not classification, but quantification (i.e., preva-
lence estimation). As a result, those who pursue this goal
by using the learning algorithms and evaluation measures
that are standard in the classification arena may obtain
inaccurate prevalence estimates. We have experimentally
shown, on a multiplicity of tweet sentiment classification
(TSC) datasets, that more accurate prevalence estimates
may be obtained by considering quantification as a task
in its own right, i.e., by using (i) learning algorithms
specifically optimised for quantification accuracy and (ii)
evaluation metrics that directly measure the accuracy of
prevalence estimates. Adopting a quantification-specific
approach in gauging tweet sentiment may benefit many
applications, especially in fields (such as political science,
social science, and market research) that are usually less
interested in finding the needle in the haystack than in
characterising the haystack itself.

Finally, we want to note that, while this paper has
addressed sentiment classification, the same arguments
we have made apply to many studies where tweets are
classified along dimensions other than sentiment. For
instance, aggregate (rather than individual) results from
tweet classification are the real goal in [1], which analyses
Twitter data in order to predict box office revenues
for movies; in [30], whose authors try to determine
the percentage of tweets that are about infrastructure
damage vs. those which are about donations, in order to
do rapid damage assessment during humanitarian crises;
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TABLE 2. QUANTIFICATION ACCURACY (LAST SIX COLUMNS) OBTAINED WITH A CLASSIFICATION-ORIENTED LEARNING ALGORITHM
(SVM(HL)) AND A QUANTIFICATION-ORIENTED LEARNING ALGORITHM (SVM(KLD)) ON SEVERAL STC DATASETS; THE TWO BOTTOM ROWS
INDICATE THE AVERAGE PERFORMANCE OF EACH LEARNER ACROSS ALL THE DATASETS. THE P0s, NEG, NEU COLUMNS INDICATE (TRUE OR

PREDICTED) PREVALENCES. Boldface INDICATES THE BEST SYSTEM.

Dataset System Pos | Neg | Neu AFE NAE RAFE NRAE | KLD | NKLD

[Gold Standard] 412 | 158 | .430 — — — — — —

SemEval2013 SVM(HL) 318 | 107 | .575 .096 172 .295 121 .043 .042
SVM(KLD) .304 | .158 | .538 .072 .129 172 .070 .029 .029

[Gold Standard] .530 | .109 | .361 — — — — — —

SemEval2014 SVM(HL) 404 | .084 | .513 .101 .170 .297 .088 .046 .045
SVM(KLD) 403 | 124 | .473 .084 .142 227 .067 .033 .033

[Gold Standard] 434 | 153 | .413 — — — — — —
SemEval2015 SVM(HL) .270 | .139 | .591 119 .210 .301 .120 .073 .070
SVM(KLD) 256 | .225 | .519 119 .210 .379 151 .076 .073

[Gold Standard] 149 | 164 | .687 — — — — — —

Sanders SVM(HL) .080 | .137 | .784 .064 113 257 .100 .033 .032
SVM(KLD) 142 | 1184 | .674 .013 .024 .063 .024 .001 .001

[Gold Standard] 312 | 207 | .481 — — — — — —

SST SVM(HL) .223 | .217 | .560 .060 113 .167 .086 .022 .022
SVM(KLD) .304 | .269 | .427 .041 .078 .146 .075 .011 .011

[Gold Standard] .280 | .437 | .283 — — — — — —

OMD SVM(HL) 238 | 537 | .225 .067 139 195 128 .020 .020
SVM(KLD) 306 | 456 | .238 .030 .063 .100 .066 .006 .006

[Gold Standard] 193 | 167 | .640 — — — — — —

HCR SVM(HL) 139 | 173 | .687 .036 .065 .130 .056 .011 .011
SVM(KLD) 131 | 221 | .648 .041 .075 .219 .094 .020 .020

[Gold Standard] .086 | .407 | .506 — — — — — —

GASP SVM(HL) .066 | .415 | .519 .014 .023 .095 .023 .003 .003
SVM(KLD) .091 | 428 | .481 .017 .028 .053 .013 .001 .001

Average SVM(HL) — — — .070 126 217 .090 .031 .031
SVM(KLD) — — — .052 .094 170 .070 .022 .022

in [36]7 where hay fever maps are generated from geo- [2] Jose Barranquero, Jorge Diez, and Juan José del Coz.

located tweets of fever-stricken people; in [17], where the
authors generate a heat map of a natural disaster from
geo-located tweets that report on it; and in many others.

The present paper thus urges researchers involved in
tweet mining to take the distinction between classification
and prevalence estimation at heart, and optimize their
systems accordingly.
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