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Abstract

Background: COVID-19 is one of the greatest threats to human beings in terms of health care, economy, and society in recent
history. Up to this moment, there have been no signs of remission, and there is no proven effective cure. Vaccination is the primary
biomedical preventive measure against the novel coronavirus. However, public bias or sentiments, as reflected on social media,
may have a significant impact on the progression toward achieving herd immunity.

Objective: This study aimed to use machine learning methods to extract topics and sentiments relating to COVID-19 vaccination
on Twitter.

Methods: We collected 31,100 English tweets containing COVID-19 vaccine–related keywords between January and October
2020 from Australian Twitter users. Specifically, we analyzed tweets by visualizing high-frequency word clouds and correlations
between word tokens. We built a latent Dirichlet allocation (LDA) topic model to identify commonly discussed topics in a large
sample of tweets. We also performed sentiment analysis to understand the overall sentiments and emotions related to COVID-19
vaccination in Australia.

Results: Our analysis identified 3 LDA topics: (1) attitudes toward COVID-19 and its vaccination, (2) advocating infection
control measures against COVID-19, and (3) misconceptions and complaints about COVID-19 control. Nearly two-thirds of the
sentiments of all tweets expressed a positive public opinion about the COVID-19 vaccine; around one-third were negative. Among
the 8 basic emotions, trust and anticipation were the two prominent positive emotions observed in the tweets, while fear was the
top negative emotion.

Conclusions: Our findings indicate that some Twitter users in Australia supported infection control measures against COVID-19
and refuted misinformation. However, those who underestimated the risks and severity of COVID-19 may have rationalized their
position on COVID-19 vaccination with conspiracy theories. We also noticed that the level of positive sentiment among the
public may not be sufficient to increase vaccination coverage to a level high enough to achieve vaccination-induced herd immunity.
Governments should explore public opinion and sentiments toward COVID-19 and COVID-19 vaccination, and implement an
effective vaccination promotion scheme in addition to supporting the development and clinical administration of COVID-19
vaccines.
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Introduction

The COVID-19 Pandemic

COVID-19 is an infectious disease caused by the novel
coronavirus SARS-CoV-2, which was first identified in Wuhan,
China, in December 2019 [1]. As of early January 2021, the
cumulative number of confirmed cases was 83,862,300, while
the number of deaths was 1,837,253, affecting 222 countries or
regions globally [2]. In Australia, the total number of confirmed
cases was 28,483, and the number of deaths was 909 in early
January 2021 [3]. Both the incidence and prevalence have been
rising globally, although these rates differ across countries [4].
In 2020, the pandemic had significant negative impacts on
individuals, governments, and the global economy [5,6].

Patients with COVID-19 could experience either no symptoms,
common signs and symptoms of infection, or respiratory
distress, or die from the disease. The proportion of asymptomatic
patients was estimated at 16%, with the proportion in children
being nearly double that of adults [7,8]. However, over 80% of
those who were asymptomatic had either unilateral or bilateral
pulmonary involvement in computerized tomography scans [8].
Among those who were symptomatic, fever, cough, and fatigue
were the most common symptoms [9,10]. Five percent of
patients with COVID-19 developed acute respiratory distress
syndrome [11]. Among them, the death rate ranged between
13% and 69% across countries [12].

The virus could be transmitted through close contact, or even
droplets, between individuals, where the mucous membranes
of healthy individuals are exposed to secretions produced by
the carriers [13]. The reproductive number (R0) of COVID-19

was approximately 3 but varies from 2 to 7 across countries
[14,15]. This means one carrier could infect 3 individuals on
average. Under public infection control measures, social
distancing does not seem applicable to family households where
the risk of transmission is high. A meta-analysis of 24 studies
found that the intrafamily transmission rate of SARS-CoV-2
was higher than the transmission rate of severe acute respiratory
syndrome coronavirus (SARS-CoV) or Middle East respiratory
syndrome coronavirus (MERS-CoV) in households [16], which
may contain vulnerable groups such as the elderly, those who
are immunocompromised, or have chronic diseases.

Background on Vaccination

Briefly, the purpose of vaccination is to allow the immune
system to memorize the features of the targeted pathogen and
be able to initiate an immune response that is fast and strong
enough to defeat the live pathogen in the future. Over 115
vaccines for COVID-19 are undergoing investigation and trials,
and most of them target the spike protein of SARS-CoV-2 [17].
The development of a vaccine usually takes years. The relatively
fast development of the COVID-19 vaccine could be ascribed
to previous work on vaccines for SARS-CoV, which is 80%
similar to SARS-CoV-2, as well as the immense and urgent
need for vaccination [18].

Vaccination that is evidence-based and officially approved by
health authorities is generally safe. The adverse effects, as well
as their incidence rates, vary across types of vaccines. Previous

studies have reported the incidence rates of severe adverse
reactions in general populations after receiving vaccines. For
example, the incident rate of febrile seizures after receiving the
measles, mumps, and rubella (MMR) and varicella vaccine was
8.5 per 10,000 doses [19]. The rates attributable to influenza
vaccines or 13-valent pneumococcal conjugate vaccines
(PCV13) were 13 to 45 per 100,000 doses [20]. On the other
hand, the incident rate of thrombocytopenic purpura after MMR
injection was 1 per 20,000 doses [19]. Moreover, the incidence
rates of some rare diseases such as intussusception after rotavirus
vaccine injection ranged from 1 to 5 per 100,000 doses [20].
There was insufficient evidence to conclude that vaccination
was the direct cause of the severe adverse effects compared
with the vast majority of those who benefited from vaccinations.

Vaccination is a collective strategy that needs a high proportion
of the population to be vaccinated in order to generate a
protective effect. The proportion is calculated as (R0–1)/R0 [21].

If one patient could infect 3 individuals, then the proportion of
the population that needs to be vaccinated would be two-thirds.
This two-thirds should comprise individuals who have normally
functioning immune systems. Those who are
immunocompromised are contraindicated to certain types of
vaccines such as live vaccines because of poor responses or
severe adverse reactions [22,23]. Severe allergic reaction to a
vaccine is a contraindication, although the risk is as small as 1
per 1,000,000 doses [19]. Hence, the higher the proportion of
those who have normal immune systems receiving vaccinations,
the better for achieving herd immunity to protect oneself and
others.

Exploring Public Opinion on the COVID-19 Vaccine

In the last two decades, a prominent antivaccination movement
has risen, resulting in a decline in MMR vaccination coverage
and a rise in measles outbreaks in the United States, the United
Kingdom, and certain major European countries [24]. A case
study, which proposed an association between the MMR vaccine
and autism [25], although disproven by several studies in
subsequent years [26-31], fueled the antivaccine movement,
and then was retracted [32]. Nevertheless, the adverse factors
promoting antivaccination might be ignoring high-level evidence
such as the results of randomized controlled trials of vaccines
[33-35] as well as a selective adoption of unverified information
by the public.

Social media has become a frequently used platform to
disseminate both authorized information and misinformation.
Authorized sources such as the World Health Organization [36],
the US Centers for Disease Control and Prevention [37], the
US Food and Drug Administration [38], and the UK Department
of Health and Social Care [39] are available online. However,
previous studies showed that around 30% to 60% of the
information related to vaccination on social media were
antivaccine content [24]. In websites that provided
vaccine-related information, over 50% contained inaccurate
information [40]. Although antivaxxers proposed different
rationales to oppose vaccination [41], the fact is that only
vaccination has a history of successfully eradicating viral
diseases such as smallpox [42].
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As several COVID-19 vaccine trials are progressing to or have
nearly completed phase 3 in the second half of 2020, it is
expected that vaccines will be made available to the public by
2021 [43,44]. In Australia, Dodd et al [45] conducted an online
survey of 4362 adults in mid-April 2020 about 1 month after
lockdown measures had been imposed. They found that 86%
of the sample claimed that they would get the COVID-19
vaccine when available. At that time, 65% to 75% of the
respondents were confident in the federal and state governments’
responses. On August 19, the Australian prime minister [46]
announced that the government had made an agreement with
AstraZeneca: if its COVID-19 vaccine is proven to be safe and
effective, Australia could manufacture it and make it free for
the public. Later, the University of Oxford and AstraZeneca
[47] and Johnson & Johnson [48] paused their vaccine trials in
mid-September and mid-October 2020, respectively, to
investigate adverse reactions among participants during the
trials, which were resumed after investigations.

Significant health care–related events, such as news about
vaccine efficacy [49], disease outbreak [50], or legislative decree
of mandatory vaccinations [51], were found to trigger public
discussions on social media. However, negative news about the
vaccine, as well as antivaccine sentiment, could be hurdles to
achieving vaccination-induced herd immunity. For example,
information associated with the adverse effects of vaccinations
were commonly manipulated by antivaxxers to fuel their
movements [52]. They had even started using conspiracy
theories against developing COVID-19 vaccines even before
development had begun [53-55]. Therefore, online public
opinion and sentiments around COVID-19 vaccination need to
be explored and reviewed to promote public vaccination
schemes based on factors affecting vaccination acceptance.

This study aimed to explore major topics and sentiments of
tweets about COVID-19 vaccination among Twitter users in
Australia. Findings from this study could help governments and
health agencies plan, modify, and implement a timely promotion
of vaccination to achieve vaccination-induced herd immunity.

Methods

Data Collection

Twitter, one of the world’s major social media platforms, with
187 million daily active users as of the third quarter of 2020
[56], was chosen as the data source. Twitter is a common source
of text for sentiment analysis [57,58] and analysis of sentiments
toward vaccinations [59,60]. We used the R library package
rtweet [61] to access the Twitter premium API (application
programming interface) service and collect COVID-19
vaccine–related tweets posted between January 22 and October
20, 2020. Retweets, non-English tweets, and tweets with a
geolocation outside Australia were excluded. The search terms
“vacc OR vax OR vaccine OR vaccination” AND “corona OR
covid” were used to search target tweets. Boolean operators
“AND” and “OR” guaranteed that tweets that contained words
belonging to the root of “vaccine” as well as the root of either
“coronavirus” or “COVID” could be searched. As a result,
31,100 tweets were collected and used in this study. The number

of tweets collected from January 22 to October 20, 2020, are
shown in Multimedia Appendix 1.

Data Preprocessing

The R library packages of qdapRegex [62] and tm [63,64] were
used for the preprocessing of text. The procedures included (1)
removal of non-English words or common words that do not
provide insights into a specific topic (eg, stop words); (2) case
folding, which changes words into lower case for stemming;
and (3) stemming of inflected words into roots, followed by
stem completion to return complete words (tokens) for the
results visualizations. The custom stop words removed were
“amp” (ampersands) and the inflected words derived from
“vaccine,” “coronavirus,” and “COVID.” In addition to that,
all stop words with reference to those in the package tm, Python
libraries spaCy [65] and gensim [66], as well as stop words
suggested by Sedgewick and Wayne [67] and the SAO/NASA
(Smithsonian Astrophysical Observatory/National Aeronautics
and Space Administration) Astrophysics Data System [68],
were also removed in the corpus. Stop words in Python libraries
and in other aforementioned sources were extracted and assigned
to an R object for the ease of process in R. In addition, the
dictionary used for stem completion was a corpus saved before
the stemming procedure.

Associations Between Word Tokens

The word tokens were sorted by their counts in the corpus and
plotted against their counts as shown in Multimedia Appendix
2. It was observed that the inflection point of the concave-up,
decreasing curve was located at approximately 250 counts.
Thus, word tokens having counts greater than 250 were included
in pairwise correlation tests. The R library package widyr [69]
was used to compute the correlations between word tokens.
Then, the word pairs with Pearson correlation coefficients larger
than 0.1 were plotted in a network graph. Coefficients smaller
than 0.1 were considered negligible [70,71]. On the other hand,
word pairs were also sorted by their counts and plotted against
the counts as shown in Multimedia Appendix 3. Word pairs
having counts larger than 150 were plotted in another network
graph. The cutoff of 150 was adopted so that major clusters of
word pairs with higher counts could be identified in the network
without overly suppressing other pairs with significantly lower
counts.

Latent Dirichlet Allocation Tuning and Model Building

Latent Dirichlet allocation (LDA) [72] is an unsupervised
machine learning method that allows observations such as words
or documents in a corpus to be explained by latent groups such
as topics. LDA has been used in topic modeling of public
opinions on certain vaccinations for human
papillomavirus (HPV) [73] and influenza virus [74]. However,
LDA topic modeling on COVID-19 vaccination was yet to be
done. The corpus preprocessed was converted into a
document-term matrix, and then terms that were sparse by less
than 99.9% were retained for LDA modeling. The R library
package ldatuning [75] was used to estimate the optimal number
of topics in the LDA model. Four different metrics were
computed in a range of topics (2-50) to identify the optimal
number (Multimedia Appendix 4). The lower the metrics of
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“Arun2010” [76] and “CaoJuan2009” [77], and the higher the
metrics of “Griffiths2004” [78] and “Deveaud2014” [79],
indicated a better number of topics to fit the LDA model. In
this study, the metric of “Deveaud2014” reached its highest
level and the metric of “CaoJuan2009” reached one of the lowest
levels at 3 topics that were adopted as the number of topics for
LDA modeling. Another R library package topicmodels [80]
was used to estimate the two posterior Dirichlet
distributions—theta distribution over the 3 topics within each
tweet and beta distribution over all words within each topic.
Only the top 100 words with the highest beta values were
visualized using a word cloud for each topic. A larger font size
and a higher level of opacity were used to indicate words with
higher beta values. In each topic, the top 20 tweets, except those
from news sources, with the highest theta values, which were
also larger than those of the other two topics for each tweet,
were reported.

Sentiment Analysis

The R library package syuzhet [81], which applies Stanford’s
CoreNLP [82] on text against an emotion dictionary, was used
to score each tweet based on the 2 sentiments and 8 emotions
defined in the Canadian National Research Council’s
Word-Emotion Association Lexicon [83,84]. There were 10
categories for scoring a tweet. The 2 sentiments were negative
and positive, while the 8 emotions were anger, fear, anticipation,
trust, surprise, sadness, joy, and disgust. The polarity of a tweet
could be positive or negative, whereas emotion recognition
aimed to identify the emotions that a tweet carried. If a tweet
was associated with a particular emotion or sentiment, it would
score points that reflect the degree of valence with respect to
that category. Otherwise, it would have no score for that
category.

Results

Overview

We first analyzed the preprocessed tweets by visualizing the
word tokens with a count of >250 in the corpus as shown in the
word cloud in Multimedia Appendix 5. The larger the word font
size in the cloud, the higher the number of counts in the corpus.
The top 10 high-frequency words were “trials,” “australia,”
“virus,” “news,” “developers,” “flu,” “people,” “years,” “world,”
and “testing.” Following that, other frequently used words
included: “research,” “working,” “timeline,” “immune,”
“australian,” “effects,” “russian,” “health,” “human,” and
“government.” Based on the descriptive statistics of word
counts, news about the pandemic, seasonal flu, and vaccine
trials were major discussion topics among Australians. Other
topics such as the effects of infection control strategies and

immunity, the situation overseas, and the government’s
responses were also relatively prominent.

Figure 1 shows the network of word pairs with counts above
150 in the corpus. The word tokens linked with edges, where
thicker and more opaque lines indicate a higher number of
counts. From the graph, a group of words that were frequently
used together were “trials,” “human,” “clinical,” “news,” and
“australia.” Moreover, the word “trials” was linked to a number
of word tokens such as “phase,” “australia,” “testing,”
“volunteers,” and “university”; the latter was linked to “oxford”
and “queensland.” Another cluster of words that were commonly
used together included “flu,” “years,” “virus,” and “people.”
Bigrams such as “herd” and “immune” had some associations
with “flu” and “virus.” There were a few word pairs, such as
“antivax” and “vaxxers,” which were not connected to the main
network and had a relatively small number of counts at the
periphery of the graph.

We further examined the correlations between word tokens.
The network of correlations (r>0.10) between word tokens with
a count above 250 in the corpus is visualized in Figure 2, where
the edges with a larger width and higher opacity indicate
stronger correlations between word tokens. A major network
of words consisted of keywords associated with the development
and clinical trial of vaccines such as “trials,” “clinical,”
“human,” “phase,” “volunteers,” “participant,” “astrazeneca,”
“university,” “queensland,” and “oxford.” Another noteworthy
major word network was composed of keywords that were
related to the Australian government’s partnership with vaccine
manufacturers in providing doses for the public: “deal,”
“federal,” “government,” “scotty,” “morrison,” “millions,” and
“doses.” On the other hand, “flu” was the center of another
cluster associated with “influenza,” “deaths,” “rates,” “vax,”
and “shot.” Some word pairs like “common” and “cold,” “herd”
and “immune,” and “antivax” and “vaxxers” had distal
associations with the main network. The pair “antivax” and
“vaxxers” had some associations with “conspiracies” and “vax”
linking with “flu” and “understand,” which in turn correlated
with “science” and “shared.” Furthermore, “social” and
“distancing” had a strong correlation, but this bigram, along
with a few words that had some associations with them, did not
link with the larger network of word tokens. Other similarly
independent bigrams included “fast track” and “big pharma.”

We built a 3-topic LDA model and visualized the top 100
probability (beta) distributions of words for each topic in word
clouds (Multimedia Appendix 6). The beta values are reported
in Multimedia Appendix 7, and the top 20 probability (theta)
distributions of topics in the tweet samples are shown in
Multimedia Appendices 8-10. Three topic themes were
synthesized from the word clouds and tweets extracted.
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Figure 1. Network of word pairs with counts above 150 in the corpus.

Figure 2. Network of correlations (r>0.10) between word tokens with counts above 250 in the corpus.

Topic 1: Attitudes Toward COVID-19 and COVID-19

Vaccination

The latent topic 1 centered on the public’s attitudes or actions
toward COVID-19 vaccination, which were associated with
personal values, theories, information received, or personal
experiences. Vaccine supporters accepted COVID-19
vaccination because they considered that measures should be
taken to cope with the rising number of infections, deaths, health
care burden, and costs due to COVID-19. They scorned those
who pretended to be experts or posted misinformation such as
claiming that deaths from COVID-19 were attributable to other
diseases. In addition, they also supported public vaccinations

by taking actions such as seeking funding sources and media
to promote vaccine trials. Those who worried about the
COVID-19 vaccine were skeptical about conspiracy theories
such as the “mark of the beast” and microchips in vaccines. The
sudden pause of vaccine trials also triggered worries among
users about the safety of vaccination. Some Twitter users
claimed that they would not get vaccinated because of previous
experience with vaccination-related adverse effects. Nonetheless,
stock prices increased when positive news about vaccine
development were released. Other Twitter users disregarded
COVID-19, expressing that COVID-19 had a much lower death
rate than the flu, thus making it insignificant for vaccination,
which they deemed would only benefit pharmaceutical firms
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or be politicized. Moreover, implementing lockdowns before
mass vaccination was not considered efficient in the long run.
Users also thought that COVID-19 should not deserve more
attention than other global problems such as climate change,
aged care, or other diseases.

Topic 2: Advocating for Infection Control Measures

Against COVID-19

The latent topic 2 indicated that some Twitter users were
positive about the development of COVID-19 vaccines and
antivirals and recognized the need for these products.
Meanwhile, they also advocated following infection control
measures and disproved misinformation or conspiracy theories.
Some Twitter users rebutted tweets that may have been posted
by antivaxxers or conspiracy theorists. For example, these users
refuted skepticism over the safety of the rapidly produced
vaccines, false claims about the association between the flu
vaccine and COVID-19 infections and deaths, and inaccurate
beliefs about vaccination coverage for achieving herd immunity
differing across diseases. Some of their tweets emphasized the
rising number of deaths related to COVID-19 within a rather
short period compared with other pandemics in the past. They
argued that although there were deaths caused by the flu, there
were drugs, vaccines, and promotion campaigns targeting the
flu. In comparison, deaths from COVID-19 were soaring, and
even worse than the flu, without mass vaccinations or antivirals.
However, COVID-19 deaths could have been preventable. With
previous experiences in developing vaccines for other
coronaviruses such as MERS-CoV, users believed that the
COVID-19 vaccine could be successfully developed to protect
vulnerable groups like patients. They believed that everyone
was susceptible to COVID-19 after contracting the coronavirus
without vaccination. In the future, antivirals could also be
developed. Beyond vaccines and drugs, they thought physical
measures such as wearing masks and social distancing should
be followed, particularly at a time when mass vaccination and
antivirals are not yet available.

Topic 3: Misconceptions and Complaints About

COVID-19 Control

The latent topic 3 generally showed the baseless claims and
conspiracy theories that antivaxxers held against the COVID-19
vaccine as well as complaints and helplessness about testing
and lockdown measures, which would likely end with
vaccination-induced herd immunity. Some Twitter users made
claims that were unfounded or based on conspiracy theories
against the COVID-19 vaccine. For example, one concluded
that Australia suggested using a vaccine that had never been

tested or certified to fight the virus. Some others believed that
hydroxychloroquine was an effective treatment; hence, banning
its use was viewed as a politicized action. Users also thought
that those rejecting hydroxychloroquine should take vaccines
from Bill Gates, who was falsely accused of planning to implant
microchips into human bodies via vaccinations. However, other
Twitter users pointed out the limitations of vaccinations such
as their inability to prevent viral transmissions or treat
COVID-19 and its complications. Even if vaccines are available,
a high number of doses globally and tests for the virus or even
antibodies are required if COVID-19 is not eradicated. Some
complained that the tests led to an increase in known positive
cases and in turn a prolonged lockdown, making the situation
helpless without the availability of a vaccine. On the other hand,
provaxxers celebrated the success in vaccine development. They
criticized antivaxxers for not believing in science and accepting
vaccination, as well as for disregarding the serious consequences
of COVID-19 and for suggesting natural herd immunity, which
would be catastrophic. For example, allowing the rampant
spread of the coronavirus would lead to health care system
breakdown and loss of life.

Figure 3 shows the change in sentiment scores of all tweets
between January and October 2020. In each tweet, there could
be both positive and negative sentiment with valences in
opposite directions. Figure 3 shows that the scores increased
gradually between January and March 2020. The higher the
sentiment score, regardless of direction, the likelier the tweet
will have stronger sentiments. However, most tweets expressed
positive sentiment (score=62,498, 67%) rather than a negative
one (score=27,622, 30%), while 940 (3%) tweets were neutral.

Figure 4 shows the emotion scores with respect to anticipation,
joy, surprise, and trust in all tweets. The scores also rose in the
first quarter of 2020. Approximately 45% of the scores were
associated with these 4 emotions. Specifically, the emotion
components were trust (score=22,436, 17%) and anticipation
(score=19,278, 14%). Some tweets scored for surprise
(score=7865, 6%) and joy (score=10,296, 8%).

Figure 5 shows the scores of negative emotions such as anger,
disgust, fear, and sadness for all tweets. The scores increased
in the first 3 months of 2020; approximately one-third of the
scores were associated with these negative emotions. Among
them, fear was the most significant one (score=18,449, 14%).
Other emotions included sadness (score=11,082, 8%), anger
(score=9091, 7%), and disgust (score=6337, 5%). On the other
hand, nearly 22% (n=6994) of the tweets were emotionally
neutral.
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Figure 3. Distributions of sentiment valences between January and October 2020.

Figure 4. Distributions of emotion valences for (A) anticipation, (B) trust, (C) joy, and (D) surprise between January and October 2020.
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Figure 5. Distributions of emotion valences for (A) fear, (B) sadness, (C) anger, and (D) disgust between January and October 2020.

Discussion

Principal Findings

We found that the public opinion about COVID-19 vaccines
fell under 3 latent topics among Australian Twitter users from
January 22 to October 20, 2020. Topic 1 was about different
attitudes and actions toward COVID-19 and its vaccination.
Provaxxers recognized the consequences of the COVID-19
pandemic and supported vaccine trials. Those who were
skeptical about vaccines were affected by misinformation and
adverse effects, which are statistically rare. Some Twitter users
gave low priority to COVID-19 and hence vaccination against
it and other unrelated problems. Topic 2 showed that some
Twitter users advocated for infection control measures, had
confidence in COVID-19 vaccine trials, and rebutted tweets
that were derived from conspiracy theories or misinformation.
They argued that infections and deaths from COVID-19 had
overtaken previous pandemics, and other measures such as
wearing masks and social distancing should be followed when
mass vaccination is yet to come. Topic 3 centered on baseless
claims, conspiracy theories, complaints, and misconceptions
about various measures against COVID-19, including vaccines,
drugs, virus testing, lockdown, and herd immunity. The major
pitfall of these tweets was that their content could not be
supported with any valid scientific evidence; further, the
complaints were not directly associated with any solutions.
Another significant finding was that nearly two-thirds of the
sentiments in the tweets related to COVID-19 vaccines were
positive. Of those tweets analyzed, 17% of the emotions were
linked with trust and 14% were associated with anticipation.
However, 14% contained fear and 8% expressed sadness.
Overall, less than one-third of the tweets’ sentiments were
classified as negative, and one-third of the tweets were
associated with the 4 negative emotions (ie, fear, sadness, anger,
and disgust).

Comparison With Prior Work

In the past decade, machine learning has been applied to explore
topics and sentiments of content from Twitter users about
vaccinations. Some studies have examined tweets related to
vaccinations in general, while others have analyzed
vaccination-related tweets focusing on a particular virus or
disease, such as the influenza virus, which causes respiratory
illness, or HPV, which is mainly sexually transmitted. Those
studies identified both positive and negative sentiments toward
vaccinations, as well as neutral sentiment. Nevertheless, the
outcomes of sentiment categories and the topics identified from
Twitter users varied across studies focusing on different
countries, years, viruses, and thus diseases.

For example, Jamison et al [85] generated 100 topics using LDA
in which nearly half were annotated as provaccination, and less
than 30% were coded as antivaccination from English,
vaccine-relevant tweets between 2014 and 2017. However,
Raghupathi et al [60] found that both positive and negative
sentiments accounted for 40% of English tweets in the first half
of 2019. On the other hand, the composition of sentiments in
non-English tweets could be different from of English tweets.
In Italy, Tavoschi et al [51] used support vector machine to
classify tweets’ term frequency–inverse document frequency
between 2016 and 2017, and found that 60% were neutral, 23%
were against vaccination, and only 17% were provaccination.
It was also found that the number of provaccine tweets became
greater than the number of antivaccine tweets when news about
compulsory vaccination and the soaring rate of positive cases
or deaths were broadcast [86].

The topics identified were not entirely similar across studies.
For instance, Jamison et al [85] summarized 5 provaccine
themes and 5 antivaccine themes from 100 topics; and
Raghupathi et al [60] identified 3 focus areas (eg, the search for
better vaccines, the disease outbreak, and debates between
provaxxers and antivaxxers regarding measles). Chan et al [74],
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who studied influenza vaccination in the United States, used
LDA to create 10 topics in which some shared similar attributes
with the themes of Jamison et al [85], such as vaccine science,
safety concerns, and conspiracy theories. Some, but not all, of
the similar themes, focus areas, and topics could also be seen
in the analyses of tweets about vaccination regardless of virus
types such as those in the studies surrounding HPV vaccinations
[73,87-90].

Added Value of This Study

This study is the first topic modeling and sentiment analysis of
tweets in Australia about COVID-19 vaccinations. As
COVID-19 has turned into a pandemic, it is necessary to explore
and summarize public opinion and sentiments pertaining to
discussions on the COVID-19 vaccine, so as to prepare for the
promotion of vaccination, which needs to be strengthened. This
study used a traditional natural language processing
technique—LDA—to identify 3 latent topics in the tweets
associated with COVID-19 vaccinations: (1) attitudes toward
COVID-19 and its vaccination, (2) advocating infection control
measures against COVID-19, and (3) misconceptions and
complaints about COVID-19 control. Furthermore, this study
discovered that positive sentiment in COVID-19 vaccine
discussions was higher than negative sentiment, and trust and
anticipation comprised relatively large proportions of the
emotions observed, as well as fear. This study visualized results
using word clouds, counts of word pairs, and correlations
between words, which offer supplementary angles in interpreting
the results. For example, high-frequency words and word pairs
that commonly appeared together were intuitively presented.

The Australian population has been the focus of research on
tweets related to vaccination in previous studies. Taking the
HPV vaccine as an example, nearly one-fifth of Australian
Twitter users expressed health concerns about the vaccine [88],
and around one-third of the exposure to information on Twitter
was associated with misinformation or adverse effects of the
vaccine [89]. Our study provides new insights into topics of
discussion in Australia and sentiments toward vaccination
against COVID-19, which is now a global pandemic and has
caused over 900 deaths in Australia [3] and over 1.8 million
deaths worldwide [4] as of early January 2021. By assessing
public opinion and the sentiments associated with COVID-19
vaccination, governments and health agencies can plan, tailor,
and implement a timely promotion of vaccination to achieve
herd immunity as soon as possible.

Implications

In the results of the previous studies, we did not see a prevalent
objection or opposition, in terms of topics identified or
sentiments, toward vaccination regardless of virus types. A
number of topics’ focus areas or themes shared a certain level
of similarity across studies concerning different viruses. For
instance, topics of safety, scientific evidence, and conspiracy
theories were commonly found across studies. Topics like
scandals associated with vaccines, misinformation, and disease
outbreaks were identified in some other studies. These results
indicated public concern about the benefits and risks of
vaccination at the individual and social levels, and the type of

virus or disease when deciding whether to receive a vaccine or
not.

In our study, besides fabricated information such as microchips
in vaccines and the flu vaccine causing COVID-19 deaths, some
Twitter users thought that COVID-19 was not serious enough
compared to other existing global crises, and that the pandemic
was being politicized or commercialized. These conspiracy
theories, along with other antivaccine propagandas such as
encouraging natural herd immunity, indicated that the risks of
deaths, complications, or sequela arising from COVID-19 to
others, or to oneself, were acceptable to some members of the
public.

Although the Australian opinion showed more positive sentiment
related to COVID-19 vaccinations, the positive sentiment was
not a leading majority compared to the negative one. This means
more work needs to be done to promote vaccination so as to
achieve herd immunity to protect vulnerable and minority
groups. Rigorous science that is easily understandable needs to
replace biased, fabricated, or outdated information in the public.
Governments should build and strengthen the public’s
confidence in COVID-19 vaccination, if it is not mandatory,
that is, required by law, beyond arranging vaccine delivery
logistically and vaccine administration clinically.

Limitations

Our results represent Twitter users in the Australian public,
which is a different approach from national survey statistics.
However, the public opinions collected on Twitter may represent
views from younger populations. Previous studies showed that
around 85% to 90% of Twitter users were aged less than 25-40
years, which varied across locations such as the Netherlands
[91], the United Kingdom [92] and other places [93]. Older
adults’opinions require further investigations with modifications
to the study design whereas younger adults’ opinions on the
vaccine deserve continuous attention. Goldstein et al [94]
reported that those aged less than 35 years had high cumulative
rates of COVID-19 infections in the community where
transmissions in secondary schools or high schools were robust.
A report published by the US Centers for Disease Control and
Prevention [95] showed that the percent positivity of
SARS-CoV-2 RT-PCR (reverse transcription–polymerase chain
reaction) tests increased early among young people, followed
by a rise in positivity in middle-aged and older adults.
Consequently, around 20% of adolescents manifested symptoms
compared with nearly 70% of the elderly [96], who are subject
to a higher probability of further developments leading to death.
Hence, there is an urgent need to explore younger population’s
opinion and acceptability of vaccination, which could have
significant impact on disease control in the first place.

In addition to the study period and the country of concern,
analysis methods might lead to variation in topics and sentiments
toward vaccinations. For supervised learning such as support
vector machine, a training set is required, which needs to be
manually labeled; this might carry some subjectivity in
categorizing tweets into predefined topics for training. However,
the advantage is that the set could be used to validate the model
performance and then test a large data set. Considering
unsupervised learning such as LDA, Dirichlet multinomial
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mixtures (DMM), and k-means of term frequency–inverse
document frequency, the primary limitation is the subjectivity
in defining the topics created [60,74]. In addition, a sound reason
or calculation is needed to support the preset number of topics,
which would affect the results.

Some previous studies generated a rather high number of topics
(30-100) using an LDA or DMM model, and then manually
grouped the topics into themes [73,85,89]. However, there was
risk of bias since the content of each topic was not reported in
detail, and the contents of the themes could be mixed, which is
difficult to interpret. Furthermore, the manual grouping also
contained the risk of subjectivity. In the current study, we
adopted LDA, which was similar to the one used by Chan et al
[74]. We identified 3 latent topics in which the importance of
words were visualized; the frequency of word pairs and
correlations between words provided additional results
corresponding to the topic content.

Regarding sentiment analysis, the number of emotion categories
were limited to 8 [83,97], but emotion is an abstract and broad
concept that may involve as many as 27 categories [98].
Furthermore, words with spelling mistakes could not be
identified and analyzed in the algorithm. With respect to each
term for the development of an emotion lexicon by Mohammad
and Turney [83], only 5 individuals in the public were recruited
to annotate a term against each of the 8 emotions. The emotions
of a term were annotated without considering possible contexts.
Moreover, the interrater reliability statistics were not reported
though the agreement percentages were apparently high.

Future Directions

Our study adopted an unsupervised machine learning
method—LDA—for topic analysis. Future studies could
investigate supervised learning to train classifiers to categorize
tweets into different topics and sentiments based on a recognized
theoretical framework. Such a framework could be proposed
after an extensive literature review and qualitative synthesis;
manual annotations should be as transparent, objective, and
reliable as possible. Results from supervised learning following
the same theoretical framework could be compared across the
analyses of different data sets, for example, the results from

different countries as shown by Shapiro et al [88]. Public
opinions across countries require further study. For instance,
recent online surveys of US adults found that only half claimed
that they were “very likely” to get the COVID-19 vaccine [99],
and one-third would not accept recommendations for vaccination
[100]. In the United Kingdom, around one-third of the adult
sample showed hesitancy or resistance against COVID-19
vaccination [101,102]. In the future, a spatiotemporal analysis
of tweets about COVID-19 vaccination could be attempted.
Similar studies have been conducted on Twitter data to study
emergency department visits for influenza-like illness in New
York City [103], COVID-19–related stress symptoms in the
United States [104], and communicating the risk of MERS
infections in South Korea [105]. Furthermore, individual
reactions toward the COVID-19 vaccine in tweets could be
monitored over time and tested for correlations between
frequencies of identified topics or emotions, important real
events, and health indicators such as vaccination coverage,
infection rate, and death rate. In addition to studying the spread
of misinformation and conspiracy theories on social media,
future research should explore personal values that might hinder
collective health care strategies and positive outcomes.

Conclusions

Our findings indicate that the Australian public possessed
varying attitudes toward COVID-19 and its vaccination.
Moreover, some had misconceptions and complaints about
COVID-19 and infection control measures, while others
advocated for pharmaceutical and nonpharmacological measures
against COVID-19. Nonetheless, in our sentiment analysis, the
level of positive sentiment in public opinion may not be strong
enough to further a high vaccination coverage to achieve
vaccination-induced herd immunity, which is essential to protect
oneself and others. For those without contraindications, getting
vaccinated is not merely a personal choice but is also a way of
protecting the community. Governments should explore public
opinion and sentiments toward COVID-19 vaccination and get
the public psychologically prepared for vaccination with
evidence-based, authorized, and understandable information,
in addition to supporting the biomedical development, storage,
delivery, and clinical administration of vaccines.
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HPV: human papillomavirus
LDA: latent Dirichlet allocation
MERS: Middle East respiratory syndrome
MERS-CoV: Middle East respiratory syndrome coronavirus
MMR: measles, mumps, and rubella
NASA: National Aeronautics and Space Administration
R0: reproductive number

NLP: natural language processing
PCV13: 13-valent pneumococcal conjugate vaccines
RT-PCR: reverse transcription–polymerase chain reaction
SAO: Smithsonian Astrophysical Observatory
SARS: severe acute respiratory syndrome
SARS-CoV: severe acute respiratory syndrome coronavirus
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