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Abstract

Because of the inherent complexity of bioprocesses, mathematical models are more and

more used for process design, control, optimization, etc. These models are generally based

on a set of biochemical reactions. Model equations are then derived frommass balance,

coupled with empirical kinetics. Biological models are nonlinear and represent processes,

which by essence are dynamic and adaptive. The temptation to embed most of the biology

is high, with the risk that calibration would not be significant anymore. The most important

task for a modeler is thus to ensure a balance between model complexity and ease of use.

Since a model should be tailored to the objectives, which will depend on applications and

environment, a universal model representing any possible situation is probably not the best

option.

Here are 12 tips to develop your own bioprocess model. For more details on bioprocess model-

ing, the readers could refer to [1]. More tips concerning computational aspects can be found

in [2, 3].

Tip 1: Define your objective and the application context

Years of high school learning about how to set up mechanistic models based on the fundamen-

tal F =m.a relationship of mechanics or on the Ohm law have corrupted our minds. It took

centuries to identify the corpus of laws supporting today’s physical models. Fig 1 recalls that,

previously, there used to be some "less accurate" predictive models that have been forgotten.

At present, models in these fields, even if empirical, are excellent approximations and—at least

for those we studied at school—always ended up in rather simple, often linear, and mathemati-

cally tractable models. The complexity of biological systems requires a more open viewpoint,

for which different models of the same process can be useful and complementary. Therefore,

before writing equations, one must first clearly define the model objective. The model can be

designed for numerous reasons, among them prediction of future evolution, understanding of

the process behavior, estimation of unmeasured variables or fluxes, operator training, detec-

tion and diagnosis of failures, optimization, and control.
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Tip 2: Adapt your modeling framework with your objective, your
knowledge, and your data set

When developing a model, it is crucial to keep in mind the objectives of the model and the

framework for its application. A model targeting the understanding of some metabolic pro-

cesses inherently requires the user to embark on the details of the cell metabolism [4, 5].

Predicting the impact of meteorology on outdoor microalgal processes means that light and

temperature must be included somewhere in the model. A model for online control can be

more straightforward (often because it will benefit from online information on process state).

So keeping in mind the model objective, one has to choose which variables to include but also

the type of model: deterministic versus stochastic, homogeneous versus heterogeneous (in

terms of space or phenotype). The available data set or data that can be provided by the experi-

mental setup will also constrain the choice of model complexity. Parameters should be cali-

brated at some point or at least reasonably determined from the experimental information.

Model complexity can first be measured by the number of state variables (variables with dynam-

ics) together with the number of parameters and stay compatible with the objectives and data.

Tip 3: Take care with dimensions, intensive, and extensive
properties

This tip seems very basic, but, in our opinion, it is worth emphasizing. The dimension of the

model equation should be checked. Particular care should be taken between intensive and

Fig 1. Medieval theory of the canon ball trajectory fromWalther Hermann Ryff (1547) [6]. The canon ball
trajectory was an assemblage of circular arcs and segments. Models in physics are now excellent approximations, but
they have sometimes been improved during century-long periods. In biology, we are still at the dawn of model
development.

https://doi.org/10.1371/journal.pcbi.1007222.g001
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extensive variables [7]. This is particularly true when dealing with a metabolic model. A metab-

olite concentration could be expressed per unit of culture volume or intracellular volume. The

concentration dynamics should then include the dilution by the reactor feeding or by cellular

growth, respectively. Moreover, the kinetics of intracellular reactions should depend on intra-

cellular concentrations, not culture concentrations. In several studies, it remains unclear.

Tip 4: Do not assume gas concentrations equilibrate with
atmosphere

Assuming gas concentrations equilibrate with the atmosphere is a common mistake. If we

measure the dissolved CO2 concentration in a glass of water in equilibrium with the atmo-

sphere, it will be proportional to PCO2
, the CO2 partial pressure at the interface (i.e., in the air):

½CO
2
� ¼ KhPCO2

in which Kh is Henry’s constant at the considered temperature and salinity. At

steady state, there is no more gas exchange between the atmosphere and liquid phase.

If algae are developing in the glass, the CO2 concentration will be lower, because the algae

permanently consume it. As a consequence, there is a permanent flux of CO2 from air to

water, with a flow rate

QCO2
¼ KLaðKH

PCO
2
� CO

2
Þ;

which will balance the consumption of CO2 by the algae. Now the concentration of CO2 is

lower than KhPCO2
, its natural equilibrium value without algae.

Tip 5: Check the mathematical soundness of your model

Amathematical analysis of your model may help to detect potential errors, limitations, and

drawbacks in model design and to better apprehend the process. Whenever possible, one

should check mass conservations, check the boundedness of the variables (in particular their

positivity), and study the asymptotic behavior of the model. This last point could be, for some

models, particularly challenging. It is essential to keep in mind that nonlinear dynamical mod-

els are complex mathematical objects with potentially weird behaviors, including limit cycles,

chaos, or abrupt change in behaviors after bifurcation when one of the model parameters has

been slightly modified [8]. Mathematicians spend months trying to understand and prove the

behavior of systems of low dimension, e.g., with "only" three state variables. The mathematical

complexity is breathtaking when considering standard bioprocess models. Often, the proper-

ties of these models are hardly suspected, and Pandora’s box stays closed. Even the number of

equilibria that can be produced is rarely discussed. Adding new features or including more

realism into a model extends the risk of unexpected model behaviors.

The objective is to determine whether the trajectories of your system converge toward an

equilibrium (a global equilibrium or different equilibria, depending on the initial conditions),

if they present sustained oscillations (limit cycle) or even show a chaotic behaviour. These

properties should be in line with the behavior of your bioprocess, otherwise the model should

be revised.

Tip 6: Be aware of structural identifiability

Most of the parameters in physical modeling have a clear meaning and can be directly mea-

sured on the process. Also, physical models are often linear. The theory of linear systems

and their identification has received much attention; indirect identification of a tenth of

parameters can be accurately carried out by modern algorithms [9, 10]. For the biological
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systems, which are in turn nonlinear and described by rough approximations, more modesty

is required.

Theoretical identifiability of the parameters is a complex mathematical property [11],

which is often characterized by cryptic (but accurate) mathematical formulations. In a nut-

shell, this theoretical mathematical property states that a parameter value can be uniquely

determined by (nonlinear) combinations of measurements and their derivatives (with respect

to time) at any order. More simply, a unique set of parameters can produce a given model out-

put. With nonlinear models, it is possible that two sets of parameters can produce exactly the

same results. To illustrate the nonidentifiability pathology, we present in Table 1 two illustra-

tive astonishing examples for trivial models.

The first example is unfortunately not so rare. It consists of representing an inhibition

kinetics (from substrate S) with a product of Monod and a hyperbolic inhibition term. A

numerical example is given in Table 1 (Example 1), in which two parameter sets produce

exactly the same values. Parameters here are only locally structurally identifiable.

The second example in Table 1 uses a trivial logistic equation (x is the biomass) modified to

deal with mortality rate (which is obviously a very bad idea). Here, an infinity of parameters

provide the same biomass dynamics; they are structurally not identifiable.

These two examples also demonstrate that it is useless to attribute a biological meaning to a

nonidentifiable parameter. In the first case, what was, in turn, the inhibition constant: Ki or

Ks? In the second example, is K the carrying capacity of the medium?

Perhaps more problematic when using an automatic algorithm for parameter identification,

nonidentifiable parameters will kill any approach. Especially if it is a global approach, any opti-

mization algorithm will oscillate between several of the possible solutions, or average them,

and often will never converge.

In general, assessing identifiability for complex dynamical models is very challenging. This

is a reason why modelers must refrain from embedding too many processes into a model and

privilege lower complexity models when only a limited set of measurements is available for

validation.

Table 1. Analysis of two simple examples with identifiability issues.

Parameter set 1 Parameter set 2 False claim parameter meaning Function

Example 1: Substrate upake with inhibition �ðSÞ ¼ �m S
SþKs

Ki

SþKi

Numerical values �m ¼ 2

Ki = 1
Ks = 2

�m ¼ 1

Ki = 2
Ks = 1

Max. growth rate
Inhibition constant
Affinity constant

�ðSÞ ¼ 2
S

ðSþ1ÞðSþ2Þ

General case �m

Ki

Ks

�m Ki

Ks

Ks

Ki

Max. growth rate
Inhibition constant
Affinity constant

�ðSÞ ¼ �m S
SþKs

Ki

SþKi

Example 2: Logistic growth with mortality _x ¼ �mð1� x
K
Þx� Rx

Numerical values �m ¼ 2

K = 1
R = 1

�m ¼ 3

K = 1.5
R = 2

Max. growth rate
Carrying capacity
Mortality rate

_x ¼ ð1� 2xÞx

General case �m

K
R

�m þ y

K �mþy

�m

R + θ

Max. growth rate
Carrying capacity
Mortality rate

_x ¼ �mð1� x
K
Þx� Rx

In Example 1, two different parameter sets produce the same value of the function ϕ(S). In Example 2, an infinite number of parameter sets can produce the same

dynamics _x for an arbitrary value of θ. The parameters meaning (as often claimed) does then not make any sense.

https://doi.org/10.1371/journal.pcbi.1007222.t001
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Tip 7: Double check numerical implementation

If your model has been implemented only once, then it probably contains at least three mis-

takes. We know this is not true for you, but it is for most of the people. So if the model was

right, after a rapid change in one of the equations for testing the effect of one factor, it would

become wrong because eventually the test is not removed. There are strict coding rules and

use of validation tests [12], but they are rarely respected for model development because the

model implementation is generally not carried out by computer scientists. Also, the way mod-

els are implemented can highly differ, and some computer languages may be more difficult to

cross check. Excel is an excellent tool for displaying data and for simple computations, but it is

not an appropriate tool for simulating complex models since it is almost impossible to cross-

check implementation. Some graphical languages also have these drawbacks when a connec-

tion to a wrong node can corrupt the result while being almost impossible to detect.

One way of reducing the risk of error is a double implementation, with two different com-

puter programmers and two different languages. This has been the case for the models used in

wastewater treatment, Anaerobic Digestion Model No.1 (ADM1) for anaerobic digestion [13],

and Activated Sludge Model No. 1 (ASM1) for activated sludge [14]. The first comparison

between different implementations revealed to be quite quaint. Also, simple case studies must

help to check simple theoretical properties (positivity of variables, mass conservation, etc.) that

must be respected.

Tip 8: Pay attention to practical identifiability

The cost criterion to be optimized (typically the sum of squared errors) is generally nonconvex,

and many local minima perturb parameter identification. In practice, it is often not possible

to get an accurate estimate of parameters from the data sets. The most efficient algorithms are

generally limited to three parameters to be determined per measured quantity (assuming a

reasonable sampling over time). The weird consequence is that fitting a model to a set of

data is generally possible but that does not mean that the estimated parameters are reasonable.

Whenever a parameter has a clear meaning, the validity of the identified value must always be

checked, and bounds can be added during the identification process. Multiple algorithm initia-

lisations are also strongly recommended. Collecting informative data is also key for practical

identifiability, which means data corresponding to high sensitivities of the model outputs with

respect to parameter variations (cf. Fisher information matrix [9]). As a matter of illustration,

it is not possible to estimate a parameter related to growth inhibition if substrate concentration

is always too low to trigger inhibition.

Finally, a literature review is an essential resource for parameter values, in particular for

algorithm initialisation. Nonetheless, exotic chimaera can appear when picking up parameters

from different papers.

Tip 9: Apply the "divide and conquer" strategy to identify your
parameters

Do not try to get all your parameters at once, through a never converging optimization algo-

rithm and rather identify subsets of parameters. In many cases, after simple algebraic manipu-

lations, some parts of the model can lead to relationships between some measured quantities

and eventually provide some combinations of the parameters. For example, the pseudo-stoi-

chiometry can often be identified independently of the reaction rates after some straightfor-

ward transformations [15]. Some working modes do considerably simplify the model and are

often an opportunity to extract such relationships. For example, during a phase when nutrients
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are nonlimiting, the Michaelis–Menten kinetics can be replaced by constants. Similarly, if dif-

ferent equilibria can be observed for various inputs, they would probably lead to very interest-

ing relationships between some of the model parameters [16].

Tip 10: Determine parameter andmodel uncertainties

Assessing measurement uncertainty propagation is of utmost importance to assess model

accuracy. This first means that the experimental data must be associated to the variance of

their measurement error. There are different strategies to compute not only the parameter val-

ues but also their confidence intervals. This is straightforward when parameters are deduced

from linear relationship but can also be estimated in a more complex case thanks to the covari-

ance matrix of parametric errors [9]. The strong scientific added value is that the simulation

scheme will predict not only outputs but also the confidence intervals derived from the covari-

ance matrix of prediction errors or fromMonte Carlo simulations.

Tip 11: Validate the model with data not used for identification

When observing the vast diversity in bioprocess models, only a few of them have been appro-

priately validated. First, because it is not possible to validate a model, a model can only be dis-

carded when it is not compliant with experimental records [17]. However, assuming a relaxed

use of the "validation" term, it would mean that the model has been proven accurate for a large

variety of cases, particularly for cases significantly different from the learning data set (data

that has been used for the calibration). This ideal situation is very difficult to meet in practice,

and most of the time, the validation data sets only differ by some initial conditions or by a sin-

gle different forcing variable. If the model has enough parameters, it can probably fit a calibra-

tion data set nicely with only a few points. However, it will exhibit abysmal performances for

cross-validation. For larger calibration data sets, the fit will probably less successfully highlight

the quality of the model, but prediction capacity might be highly enhanced. The plot will not

look that nice, but the model will definitely be more powerful and relevant.

Claiming that the model is valid is, therefore, an act of faith, and a very weak scientific

assertion. As running experiments takes time and is money consuming, the number of experi-

ments is, by essence, limited. As a consequence, it becomes clear that the conditions for which

the model has been validated must be clearly stated. Knowing the "model validation domain"

will in itself be precious for future model use. Also, providing data sets for which the model

did not do its job is intrinsically useful, although rarely done.

Often, the question is instead to choose the best model among a few candidates. A more

complex model, with more parameters, will mechanically better fit the data. However, that

does not mean it is more correct, it just means it is more flexible. The Akaike criterion [18] is a

good option to compare the performance of two models of different levels of complexity. How-

ever, the only real criterion to assess the predictive power of a model, and therefore to compare

model performances is cross-validation, assessing the model with data that were not used for

calibration (and data whose dynamics are significantly different from the calibration data set).

Additionally, the candidate models can even be used to find the experimental conditions that

will allow to differentiate them better [17].

Finally, models can include the effects of different factors, which often have been studied

separately. The models then gather these effects classically by multiplying the different terms

or using Liebig’s law of minimum. Validation experiments could be the last chance to test pos-

sible interactions between these factors and find the best way to combine their effects in the

model.
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Tip 12: Share codes, tips, tools, andmodel limitations

More and more journals require this, and it is to be welcomed. Providing your model—with all

the files necessary to reproduce your simulations (including parameter values, initial condi-

tions, etc.)—will favor its dissemination within the scientific community. Your model would

thus be further validated with new data sets. Additionally, it promotes error checking, helps the

reader if some model details in the manuscript are unclear, and removes any suspicion of fraud.

More generally, what makes the success and the efficiency of a model is not limited to the

biology it embeds and to the realism of its predictions. A model is inexorably associated with a

set of tools to calibrate it, estimate which are the most sensitive parameters, optimize a crite-

rion, determine the input which maximizes productivity, etc. The associated toolbox to make

the model applicable and efficient is probably at least as necessary as the model itself. Great

models can have complex structures or behaviors, which eventually make their use more

tricky. For example, the outstanding Geider model [19] is in turn rather challenging to cali-

brate, and specific methods dedicated to its calibration are needed [20]. Even simpler models,

such as the Hinshelwood model [21] for temperature, advantageously predicts a mortality rate

[22], but calibrating this model often turns into a nightmare [23]. Keeping two different

modeling approaches can significantly help in this case by using the toolbox of one of the mod-

els to manage the other one. Typically, using a temperature response model from [24] as a

gauging device makes the calibration of Hinshelwood’s model much less painful. Providing all

these kinds of information on your model should promote its adoption by the community.

Conclusion

Modeling in biology is a question of choices and trade-offs. The striking difference between

two different modelers is often the choice in model complexity. Extensive tests, using cross-

validation data sets or based on Akaike criteria, may reveal that one model has a better predic-

tion capability than the other, but in other circumstances, it might be the opposite. Our culture

has contributed to hatch the illusion of a unique and universal model behind nature. However,

even if this idea was right, we are far from having discovered it. Also, always trying to run after

such universal representations of nature inexorably leads to models whose complexities do not

match the available measurements and our capability to validate the model. So, why should we

keep a unique model? Why not use a series of models of increasing complexity? Surrogate

models consist of a simplified version of a simulator, which is easier to handle mathematically,

resulting in more straightforward use for optimization or control. The surrogate model can be

derived and calibrated from the most complex model, but the opposite is also true. A simpli-

fied model, with limited accuracy, can provide bounds for a more detailed model. Also, a com-

plicated model can be simplified into different submodels depending on the environment and

the limiting factor (nutrients, light, or temperature). Working with a set of coherent models

should not necessarily increase difficulty, it creates a consistent framework that can prove to

be very useful for different purposes, from model calibration and process optimization to

advanced control.
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