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By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D)

and 38,987 controls of European descent and following up previously unidentified meta-analysis

signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association

signals with combinedP < 5 × 10−8. These include a second independent signal at the KCNQ1

locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a

further instance of overlap between loci implicated in monogenic and multifactorial forms of

diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and,

overall, T2D association signals show evidence of enrichment for genes involved in cell cycle

regulation. We also show that a high proportion of T2D susceptibility loci harbor independent

association signals influencing apparently unrelated complex traits.

Type 2 diabetes (T2D) is characterized by insulin resistance and deficient beta-cell

function1. The escalating prevalence of T2D and the limitations of currently available

preventative and therapeutic options highlight the need for a more complete understanding

of T2D pathogenesis. To date, approximately 25 genome-wide significant common variant

associations with T2D have been described, mostly through genome-wide association

(GWA) analyses2-13. The identities of the variants and genes mediating the susceptibility

effects at most of these signals have yet to be established, and the known variants account

for less than 10% of the overall estimated genetic contribution to T2D predisposition.

Although some of the unexplained heritability will reflect variants poorly captured by

existing GWA platforms, we reasoned that an expanded meta-analysis of existing GWA data

would offer augmented power to detect additional common variant signals of modest effect.

RESULTS

GWA meta-analysis and replication

We conducted a meta-analysis of eight T2D GWA studies comprising 8,130 T2D cases and

38,987 controls of European descent. We combined case-control data from the Wellcome

Trust Case Control Consortium (WTCCC), Diabetes Genetics Initiative (DGI) and Finland-

US Investigation of NIDDM genetics (FUSION) scans (the subjects of a previous joint

analysis7), with those from scans performed by deCODE genetics6, the Diabetes Gene

Discovery Group2, the Cooperative Health Research in the Region of Augsburg group

(KORAgen), the Rotterdam study and the European Special Population Research Network

(EUROSPAN). The effective sample size (n = 22,044) of stage 1 of the current (hereafter

designated ‘DIAGRAM+’) meta-analysis was more than twice that of the earlier

DIAGRAM (DIAbetes Genetics Replication and Meta-analysis) study7. After genomic

control correction of each component study, we combined association data for 2,426,886

imputed and genotyped autosomal SNPs into a fixed-effects, additive-model meta-analysis

using the inverse-variance method (Online Methods, Fig. 1, Supplementary Tables 1 and 2

and Supplementary Note). We observed only modest genomic control inflation (λgc = 1.07),

suggesting that the observed results were not due to population stratification. After removing

SNPs within established T2D loci (Supplementary Table 3), the resulting quantile-quantile

plot was consistent with a modest excess of disease associations of relatively small effect

(Supplementary Note). Weak evidence for association at HLA variants strongly associated

with autoimmune forms of diabetes (Supplementary Table 3 and Supplementary Note)

suggested some case admixture involving subjects with type 1 diabetes or latent

autoimmune diabetes of adult-hood; however, failure to detect T2D associations at other

non-HLA type 1 diabetes susceptibility loci (for example, INS, PTPN22 and IL2RA)

indicated that any such misclassification was too modest to drive stage 1 associations

outside the HLA. The stage 1 meta-analysis also provided further confirmation of many

previously reported signals and, at some of these, refinement of the peak association signal

(Fig. 1, Supplementary Table 3 and Supplementary Note).
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We selected for stage 2 follow-up the most strongly associated SNP from each of the 23 new

autosomal regions showing the most compelling evidence for association (all P < 10−5 in

stage 1; Supplementary Table 3). We combined exclusively in silico data from three GWA

samples (Atherosclerosis Risk in Communities (ARIC) study, Nurses’ Health Study and

Framingham Heart Study) not included in the primary meta-analysis (2,832 cases and

15,843 controls) with additional (predominantly de novo) genotyping in up to 31,580 cases

and 44,082 controls, for a maximum possible stage 2 sample size of 34,412 cases and 59,925

controls (effective sample size of 79,246), all of European descent (Supplementary Tables
1 and 2).

Stage 2 analyses indicated that the set of 23 signals was enriched for true association signals.

In all, 21 showed directional consistency of effect between stage 1 and 2 (binomial test, P

~3.3 × 10−5), and for 15, the stage 2 P value was <0.05 (Supplementary Note). In joint

analysis of stage 1 and 2 data (up to 42,542 cases and 98,912 controls), 13 autosomal loci

exceeded the threshold for genome-wide significance (P ranging from 2.8 × 10−8 to 1.4 ×

10−22) with allele-specific odds ratios (ORs) between 1.06 and 1.14 (Table 1 and Fig. 2). All

signals remained close to or beyond genome-wide significance thresholds (the least

significant P value was 5.2 × 10−8) when we repeated analyses after implementing a second

(post meta-analysis) round of genomic control adjustment within stage 1 data

(Supplementary Note).

We extended our search for susceptibility signals to the X chromosome, identifying one

further signal in the stage 1 discovery samples meeting our criteria for follow-up

(represented by rs5945326, near DUSP9, P = 2.3 × 10−6). This SNP showed strong evidence

for replication in 8,535 cases and 12,326 controls (OR (allowing for X-inactivation) 1.32

(95% CI 1.16–1.49), P = 2.3 × 10−5), for a combined association P value of 3.0 × 10−10 (OR

1.27 (95% CI 1.18–1.37)) (Table 1 and Fig. 2).

Fourteen signals reaching genome-wide significance

Two of the 14 signals reaching genome-wide significance on joint analysis (those near

MTNR1B and IRS1) represent loci for which T2D associations have been recently reported

in samples which partially overlap with those studied here10,14-16 (Table 1).

A third signal (rs231362) on 11p15 overlaps both intron 11 of KCNQ1 and the KCNQ1OT1

transcript that controls regional imprinting17 and influences expression of nearby genes

including CDKN1C, a known regulator of beta-cell development18. This signal maps ~150

kb from T2D-associated SNPs in the 3′ end of KCNQ1 first identified in East Asian GWA

scans8,9. SNPs within the 3′ signal were also detected in the current DIAGRAM+ meta-

analysis (for example, rs163184, P = 6.8 × 10−5), but they failed to meet the threshold for

initiating replication. A SNP in the 3′ region (rs2237895) that was reported to reach

genome-wide significance in Danish samples9 was neither typed nor imputed in the

DIAGRAM+ studies. In our European-descent samples, rs231362 and SNPs in the 3′ signal

were not correlated (r2 < 0.05), and conditional analyses (see below) establish these SNPs as

independent (Fig. 2 and Supplementary Table 4). Further analysis in Icelandic samples has

shown that both associations are restricted to the maternally transmitted allele11. Both T2D

loci are independent of the common variant associations with electrocardiographic QT

intervals that map at the 5′ end of KCNQ1 (r2 < 0.02, D′ < 0.35 in HapMap European CEU

data)19,20 (Supplementary Table 5).

Of the remaining loci, two (near BCL11A and HNF1A) have been highlighted in previous

studies7,21-23 but are now shown to reach genome-wide significance. Rare mutations in

HNF1A account for a substantial proportion of cases of maturity onset diabetes of the

young, and a population-specific variant (G319S) influences T2D risk in Oji-Cree Indians24.
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Confirmation of a common variant association at HNF1A brings to five the number of loci

known to harbor both rare mutations causal for monogenic forms of diabetes and common

variants predisposing to multifactorial diabetes, the others being PPARG, KCNJ11, WFS1

and HNF1B. A T2D association in the BCL11A region was suggested by the earlier

DIAGRAM meta-analysis (rs10490072, P = 3 × 10−5), but replication was inconclusive7;

there is only modest linkage disequilibrium (LD) between rs10490072 and the lead SNP

from the present analysis (rs243021, r2 = 0.22, D′ = 0.73 in HapMap CEU).

The remaining nine signals map near the genes HMGA2, CENTD2, KLF14, PRC1,

TP53INP1, ZBED3, ZFAND6, CHCHD9 and DUSP9 (Table 1 and Figs. 1 and 2) and

represent new T2D risk loci uncovered by the DIAGRAM+ meta-analysis.

Understanding the genetic architecture of type 2 diabetes

Combining newly identified and previously reported loci and assuming a multiplicative

model, the sibling relative risk attributable to the 32 T2D susceptibility variants described in

this paper is ~1.14. With addition of the five T2D loci recently identified by the Meta-

Analysis of Glucose and Insulin-related traits Consortium (MAGIC) investigators12,13 and

incorporation of estimates of parent-of-origin–specific effect sizes observed at the KCNQ1

and KLF14 signals and at a recently described locus on chromosome 11p15 (which confers

substantial risk when paternally inherited but is protective when maternally transmitted11),

this figure rises to ~1.16. Given estimates of sibling relative risk for T2D in Europeans of ~3

(ref. 25), variant discovery efforts to date have therefore explained only ~10% of observed

familial clustering. We used available data to evaluate several mechanisms that might be

contributing to that proportion of familiality which reflects residual, unexplained

heritability26.

Copy number variants (CNVs)—We re-examined stage 1 data looking for associations

with SNPs known to provide robust, high-LD tags for common CNVs in European

populations. After combining four inventories of CNV-tagging SNPs that survey at least

40% of common CNVs genome-wide >1 kb in size, we found no convincing evidence that

this class of variants contributes substantially to T2D risk (Supplementary Note).

Secondary signals revealed by conditional analysis—If there are additional

independent susceptibility variants at the loci identified, total genetic variance attributable to

these regions will be underestimated when based on the lead common variants alone. To

explore the potential for independent secondary alleles, we repeated the stage 1 meta-

analysis after simultaneously conditioning on 30 known and newly discovered autosomal

loci (Supplementary Note). Using a cutoff of P < 1 × 10−4 (to reflect approximate

adjustment for the number of independent SNPs in a ~2 Mb interval), we found preliminary

evidence for secondary signals at five loci (TP53INP1, CDKN2A, HHEX-IDE and

KCNJ11, in addition to that at KCNQ1; Fig. 1, Supplementary Fig. 1 and Supplementary

Table 4). At CDKN2A, the secondary signal is consistent with evidence that haplotype-

based analyses generate considerably stronger evidence for association than either signal

alone3,27. Further fine-mapping efforts will be required to confirm the secondary signals at

TP53INP1, HHEX-IDE and KCNJ11.

The conditional analysis also provided preliminary (P < 10−5, our stage 1 threshold)

evidence for 19 signals outside known loci (Fig. 1 and Supplementary Table 6). The most

notable signal (rs1481279, conditional P = 8.4 × 10−9) maps near NHEDC1 and corresponds

to one of the signals of interest following stage 1 (rs7674212, P = 1.7 × 10−7 unconditioned).

Failure to replicate that signal (P = 0.3 in 21,889 stage 2 cases and 39,568 controls) suggests

this was a false positive (Supplementary Note). Several regions showed substantial
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incremental evidence for association in the conditional analysis as compared to unadjusted

analyses and represent potential targets for large-scale replication and gene-gene interaction

analyses. Indeed, one of these regions (at rs11708067 near ADCY5, unadjusted P = 1.7 ×

10−4, conditional P = 2.2 × 10−6) has recently been shown, following initial identification

through GWA analysis of continuous glucose measures, to have genome-wide significant

associations with T2D in large-scale case-control analyses that involved several DIAGRAM

+ samples12,13.

Etiological heterogeneity—To determine whether etiological heterogeneity might have

compromised power to detect genuine T2D susceptibility signals, we performed BMI- and

age-of-diagnosis (AOD)-stratified analyses within stage 1 data. We compared effect size

estimates for all known T2D risk variants in 2,877 obese (defined as BMI > 30 kgm−2) and

4,048 nonobese (BMI ≤ 30 kgm−2) T2D cases when compared to similarly stratified controls

(Supplementary Note). Although risk estimates for 23 of the 30 autosomal loci were

numerically greater in the nonobese comparison than in the obese comparison (binomial test,

P = 0.0018), only TCF7L2 (P < 0.001) and BCL11A (P = 0.02) showed significant (P <

0.05) evidence for effect-size heterogeneity. For AOD, we compared risk-locus genotypes

for 1,317 cases with AOD <45 years of age and 4,283 cases with AOD >45 years of age, as

well as continuous analyses of AOD within all cases (n = 7,104; Supplementary Note), and

found no strong evidence of differential effects. Although recognizing that BMI at

examination and AOD are imperfect measures of BMI and age at disease onset, we conclude

that a focus on more homogeneous subsamples would not have provided more efficient

identification of known T2D susceptibility variants. Furthermore, these data argue against

the potential for these common variant signals to afford clinically useful subclassification of

individuals with T2D.

Overlap with GWA signals for other diseases—We noted that seven of the newly

discovered autosomal loci (near BCL11A, ZBED3, KLF14, CHCHD9, HMGA2, HNF1A

and PRC1) are characterized by strong (P < 10−6) associations with phenotypes other than

T2D (Supplementary Table 5). In each case, these appear to be distinct and independent

signals. For example, variants at the 3′ end of HMGA2 (~180 kb distant from the T2D

signal) have widely replicated effects on adult height28 but are weakly correlated with the

T2D-associated SNP rs1531343 (r2 < 0.01, D′ < 0.15 in HapMap CEU). The KLF14 region

harbors distinct signals for both T2D and basal cell carcinoma29. At HNF1A, previous

studies have reported a cluster of associations, with phenotypes including low-density

lipoptrotein (LDL) cholesterol30 and circulating C-reactive protein levels31-33, mapping

~18–72 kb from the peak T2D signal. Though these two sets of HNF1A signals maintain

appreciable LD in European samples (r2 ~0.1, D′ ~1), they are likely to be independent; the

T2D association at the lead SNP for lipids (rs2650000) is far weaker than the association at

rs7957197 (P = 0.003 compared to P = 4.6 × 10−7 in stage 1 samples), whereas LDL

cholesterol shows a reciprocal pattern of association (P = 7 × 10−9 at rs2650000 compared to

P = 0.73 at rs7957197 in the same lipid meta-analysis data30).

If we include the KCNQ1 associations described above, previous reports at JAZF1,

CDKN2A and CDKAL1 (refs. 34-40) and other signals identified by systematic analysis of

the National Human Genome Research Institute (NHGRI) GWA catalog41 (Supplementary

Table 5 and Supplementary Note), at least 13 of 30 autosomal T2D loci show this pattern of

closely approximated (within 500 kb) but distinct associations with traits other than T2D or

related anthropometric and glycemic phenotypes. This is in addition to what appear to be

coincident signals involving T2D susceptibility variants at IRS1 (associated with coronary

disease), JAZF1 (associated with height) and HNF1B (associated with prostate cancer)

(Supplementary Table 5). Simulations conducted using the NHGRI catalog as a reference set

indicate that the number of non-T2D signals observed at T2D loci significantly exceeds

Voight et al. Page 7

Nat Genet. Author manuscript; available in PMC 2011 April 21.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



expectation (P ~1.6 × 10−3 for non-T2D signals within 500 kb of T2D loci, P ~7.0 × 10−5 (n

= 8) for non-T2D signals within 100 kb of T2D loci). Many of these instances of

colocalization may represent variants within different regulatory domains that result in

tissue- and disease-specific effects mediated through the same genes and pathways.

Understanding the biology of T2D-susceptibility loci

This analysis takes the number of independent loci showing genome-wide significant

associations with T2D beyond 35. For some, such as those at KCNJ11 and SLC30A8, the

molecular mechanisms responsible for the susceptibility effect can be assigned with some

confidence42. At others, the identities of the causal variants, the genes through which they

act and the pathophysiological processes which they influence remain obscure. We used

several approaches designed to link DIAGRAM+ and previously reported T2D association

signals to biological insights relevant to T2D pathogenesis.

Physiological analyses—Variants at FTO are known to influence T2D predisposition

through an effect on BMI. In ~21,000 population sample individuals from the GWA meta-

analysis of adult BMI completed by the Genetic Investigation of ANthropmetric Traits

(GIANT) consortium43, no other autosomal T2D susceptibility locus had the property that

the T2D risk allele was significantly associated with higher BMI (Supplementary Note).

FTO is therefore the only one of the known T2D signals driven by a strong primary causal

association with obesity.

We also examined the effect of T2D susceptibility alleles on continuous glycemic measures

in up to 46,186 nondiabetic subjects from the MAGIC meta-analysis12,13. Coefficients for

association between the T2D risk allele and higher fasting glucose were positive for 28 of

the 31 loci, and 17 of these T2D loci showed significant (P < 0.05) directionally consistent

associations with fasting glucose (Fig. 3 and Supplementary Note). However, the

magnitudes of effect sizes for fasting glucose and T2D were only weakly correlated

(Supplementary Fig. 2 and Supplementary Note), indicating that the mechanisms

influencing normal glucose homeostasis and those responsible for the development of T2D

are not entirely congruent. T2D risk alleles at four loci (at PPARG, FTO, IRS1 and KLF14)

were associated (P < 0.05) with higher fasting insulin, consistent with a primary effect on

insulin action, whereas at three other loci (at TCF7L2, CENTD2 and CDKAL1), the

association with reduced fasting insulin indicates beta-cell dysfunction (Fig. 3). Indices of

beta-cell function (HOMA-B) and insulin sensitivity (HOMA-IR) derived from paired

fasting glucose and insulin measures from ~37,000 individuals supported these mechanistic

inferences (Fig. 3). In all, risk alleles at ten loci (the previously reported loci at MTNR1B,

SLC30A8, THADA, TCF7L2, KCNQ1, CAMK1D, CDKAL1, IGF2BP2 and HNF1B and

the newly discovered locus at CENTD2) were associated (P < 0.05) with reduced beta-cell

function, and three loci (previously reported loci at PPARG and FTO and the newly

discovered locus at KLF14) were associated with reduced insulin sensitivity. The

associations with improved insulin sensitivity evident for risk alleles at TCF7L2, IGF2BP2

and CDKAL1 probably reflect truncated ascertainment, as the MAGIC analyses were

restricted to nondiabetic individuals. For the previously reported loci, these findings are

broadly consistent with those from more detailed physiological studies6,8,44 and suggest

that, of the newly discovered loci, the risk alleles at CENTD2 modify T2D susceptibility

through a detrimental effect on beta-cell function. In contrast, the risk alleles at KLF14 and

possibly HMGA2 (ref. 45), along with those at PPARG, IRS1 (ref. 10) and ADAMTS9 (ref.
46), appear to have a primary effect on insulin action which is not driven by obesity, unlike

the alleles at FTO. The MAGIC meta-analysis did not extend to the X chromosome, but

analysis of rs5945326, near DUSP9, in a sub-set of MAGIC samples (n = 14,644–21,118),

revealed no significant (P < 0.05) associations with any fasting glycemic trait. For this
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signal, as with the other newly identified loci, more detailed phenotypic analyses will be

required to determine how these impact T2D risk. Overall, these data are consistent with the

impression that common T2D risk alleles more often act through beta-cell dysfunction12,44,

but they provide further examples of T2D risk variants that exert their primary effects on

insulin action.

Expression analyses—We used expression data to seek clues to the genes mediating the

T2D susceptibility effects we had detected. First, we examined expression-QTL (eQTL) data

(in 23,720 transcripts) for subcutaneous adipose tissue (n = 603 with GWA data) and blood

(n = 745) samples typed with the Illumina 300K chip47 (Table 2 and Supplementary Note).

Among the newly identified loci, the most compelling signal was at rs972283, strongly

associated with expression of KLF14 in adipose tissue and correlated (r2 = 0.3 in HapMap

CEU) with the SNP (rs738134) with the strongest KLF14 cis expression signal. Both the

T2D and cis eQTL associations at this locus showed strong parent-of-origin effects11. At the

TP53INP1 locus, the cis-eQTL data suggest the T2D susceptibility effect is mediated via

altered CCNE2 expression. In contrast, the significant cis-eQTL associations at the ZBED3,

CENTD2, HNF1A and PRC1 T2D susceptibility signals are likely to be misleading, as the

patterns of conditional association indicate that the T2D association and cis eQTL signals

are not coincident. At previously reported T2D association signals, we found strong overlap

with cis eQTL effects for IRS1 (consistent with data on IRS1 protein expression and

function in skeletal muscle10), JAZF1 and CAMK1D7.

We also explored the tissue expression profiles of 27 autosomal genes mapping to the newly

discovered regions of association and performed quantitative RT-PCR analyses across a

panel of human tissues relevant to T2D pathogenesis (Supplementary Note). The broad

expression of many of the transcripts, including 24 transcripts with evidence of beta-cell

transcription (Supplementary Note), limited our ability to prioritize among candidate

transcripts on the basis of static patterns of transcript expression.

Pathway and protein-protein interaction analyses—Reasoning that the additional

T2D susceptibility loci would amplify our ability to identify over-represented molecular

processes48, we deployed several complementary approaches to detect evidence of pathway

or network enrichment (Supplementary Note). Using GRAIL49, we found that genes within

T2D-associated regions showed evidence of increased connectivity within PubMed

abstracts, though this largely reflects shared roles in monogenic or syndromic diabetes

(involving HNF1A, HNF1B and WFS1). We also showed that the extent of protein-protein

interaction between the products of genes mapping to the association signals substantially

exceeded expectation (Supplementary Note). Pathway enrichment analyses using the

PANTHER database50 uncovered some evidence of over-representation of signal

transduction and protein metabolism and modification, and Reactome51 highlighted a

separate set of pathways including metabolism of lipids and lipoproteins, endothelins and

beta-arrestins (for details, see Supplementary Note).

The only consistent signal to emerge across multiple analyses involved cell-cycle regulation.

Network analyses based on protein-protein interaction data detected (unadjusted P ~0.004)

an 18-member subnetwork characterized by enhanced protein-protein interaction

connectivity and highly enriched for genes implicated in cell cycle regulation (P = 2.8 ×

10−7). A smaller (five, only partly overlapping genes) cell-cycle network independently

emerged from the Reactome analyses, and gene-set enrichment analysis of selected

candidate pathways52 also detected over-representation of association signals (P ~0.006)

among cell-cycle genes (Supplementary Note). Because many genes within these networks

are expressed in pancreatic islets and T2D-association effects at several of these loci are
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mediated primarily through beta-cell dysfunction44, these findings highlight the contribution

of regulation of beta-cell mass to the long-term maintenance of normal glucose homeostasis.

In addition, these analyses highlighted notable biological connections between sets of genes

within confirmed T2D-association regions. For example, HMGA2 emerges as a key

transcriptional regulator of IGF2BP2 (refs. 53,54). However, because Hmga/Hmg1c

knockout mice are deficient in adipocyte differentiation45, and the IGF2BP2 risk allele is

associated with reduced beta-cell function55, further work is required to establish the

relevance of this regulatory interaction to T2D pathogenesis. Our analyses also revealed that

TLE4 (at the CHCHD9 locus) encodes a homolog of Groucho that forms complexes with

TCF proteins, including TCF7L2, to modulate transcription at target sites56. Finally,

FURIN, one of the genes mapping to the newly identified PRC1 locus, encodes a paired

basic amino acid cleaving enzyme; both NOTCH2 and ADAMTS9 (ref. 7) are known targets

of FURIN cleavage57-59.

Notably, these global approaches failed to provide any consistent support for many other

mechanisms previously promoted on the basis of biochemical or physiological evidence as

likely contributors to T2D pathogenesis1 (Supplementary Note). Overall, the relative paucity

of signals from these analyses—particularly when contrasted with the compelling patterns of

enrichment seen for other complex traits48—indicates, either that T2D pathogenesis is

characterized by substantial etiological heterogeneity or that the processes critical to T2D

development are poorly represented in existing pathway and interaction databases.

DISCUSSION

By increasing the discovery sample size, our study has substantially expanded the number of

loci for which there is strong statistical evidence indicating a role in T2D predisposition.

When combined with recent reports of additional T2D susceptibility loci arising from

studies of continuous glycemic traits12,13 and parent-of-origin effects11, the number of

confirmed loci for T2D currently stands at 38.

Although these discoveries represent new opportunities to explore the biology of T2D

predisposition, the challenges inherent in translating these common variant association

signals into biological mechanisms of disease causation are clear. Nevertheless, the analyses

we report have generated several mechanistic hypotheses that can direct future efforts at

functional evaluation and genetic refinement. At some loci, particularly those near HNF1A,

HMGA2 and KLF14, existing biology, coupled with phenotypic and expression data

presented here, highlight the named genes as prime candidates for mediating the

susceptibility effect. For example, the T2D susceptibility effect near KLF14, which maps

within an imprinted region on chromosome 7q32 and which, on the basis of the MAGIC

meta-analysis data, appears to be driven by reduced insulin action, is restricted to the

maternally transmitted allele11. As KLF14 is maternally expressed, and the eQTL

association between rs972283 and KLF14 expression (see above) is similarly restricted to

the maternal allele, KLF14 (a widely expressed, intronless member of the Krüppel-like

family of transcription factors60) emerges as the main regional candidate. At the X-

chromosome signal, evidence implicating DUSP9 (mitogen-activated protein kinase

phosphatase-4) in the regulation of insulin action in mice gives DUSP9 particular salience as

an association candidate61,62. However, as described above, failure to detect associations

with continuous glycemic phenotypes (including fasting insulin and HOMA-IR) means that

the functional connection with DUSP9 remains speculative.

In other regions, such as those near PRC1, TP53INP1 and CHCHD9, the functional

connections and/or eQTL associations of particular genes mapping within or close to the
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respective association intervals show FURIN, CCNE2 and TLE4, respectively, to be

promising biological candidates. At yet other loci, such as those centered around ZBED3,

CENTD2 and ZFAND6, existing data provide little, if any, basis for strong inferences

concerning the genes likely to mediate the T2D susceptibility effect. Accumulation of new

data—through deep resequencing of the regions, fine-mapping and functional studies in

humans and in animal models—will be required to characterize the specific variants

responsible and the genes and pathways through which they execute their effect on T2D

risk.

One theme emerging from this work is the high frequency with which loci implicated in

T2D susceptibility harbor variants that influence other common traits. This colocalization of

common risk variants exceeds chance expectation, often connects diseases with little

obvious mechanistic overlap and typically involves statistically independent susceptibility

signals. Recent evidence that tissue-specific eQTL signals are preferentially located in

regulatory sequences some distance from transcriptional start sites63—in common with

many complex trait association signals—suggests that further dissection of these regions

should improve understanding of the genomic organization of tissue- and/or developmental-

stage-specific regulation.

A further conclusion is that common SNP signals are likely to fall short in explaining the

observed familial aggregation of T2D, at least in European descent populations. The limited

power of our study (Table 1) to detect several of the genome-wide significant variants we

report here (based on the stage 1 sample size and stage 2 odds ratios that minimize ‘winner’s

curse’ effects) indicates that there are likely to be many additional common variant signals

of similar effect that could be detected by further expansion of the GWA meta-analysis

approach. However, it seems unlikely that these will explain a substantial proportion of

unex-plained heritability. Based on the data presented, the same is likely to be true for

common CNVs and for variation on the sex chromosomes. As a result, the attention of

researchers in the field is increasingly directed toward evaluation of the contribution of low

frequency and rare variants to complex trait susceptibility. Several lines of evidence—the

overlap in loci implicated in monogenic and multifactorial diabetes, the congregation of

multiple disease signals at a limited number of loci the conditional analyses—point toward

the importance of obtaining complete descriptions of causal genetic variation (of all types

and frequencies) at the loci uncovered by this and other GWA studies. Such loci are likely to

represent hotspots at which the overall contribution to T2D predisposition and biology may

be considerably greater than that estimated using the discovered common variants alone.

METHODS

Methods and any associated references are available in the online version of the paper at

http://www.nature.com/naturegenetics/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Genome-wide Manhattan plots for the DIAGRAM+ stage 1 meta-analysis. Top panel

summarizes the results of the unconditional meta-analysis. Previously established loci are

denoted in red and loci identified by the current study are denoted in green. The ten signals

in blue are those taken forward but not confirmed in stage 2 analyses. The genes used to

name signals have been chosen on the basis of proximity to the index SNP and should not be

presumed to indicate causality. The lower panel summarizes the results of equivalent meta-

analysis after conditioning on 30 previously established and newly identified autosomal

T2D-associated SNPs (denoted by the dotted lines below these loci in the upper panel).

Newly discovered conditional signals (outside established loci) are denoted with an orange

dot if they show suggestive levels of significance (P < 10−5), whereas secondary signals

close to already confirmed T2D loci are shown in purple (P < 10−4).
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Figure 2.
Regional plots of the 12 newly discovered T2D loci. Genotyped and imputed SNPs passing

quality control measures across all stage 1 studies are plotted with their meta-analysis P

values (as −log10 values) as a function of genomic position (NCBI Build 36). In each panel,

the index association SNP is represented by a diamond, with stage 1 meta-analysis results

denoted by a red diamond and the combined stage 1 and stage 2 meta-analysis results

denoted with a clear symbol. Estimated recombination rates (taken from HapMap CEU) are

plotted to reflect the local LD structure. Color of remaining SNPs (circles) indicates LD with

the index SNP according to a scale from r2 = 0 to r2 = 1 based on pairwise r2 values from

HapMap CEU (red, r2 = 0.8–1.0; orange, r2 = 0.6–0.8; green, r2 = 0.4–0.6; blue, r2 = 0.2–

0.4; black, r2 < 0.2; gray, no r2 value available). Gene annotations were taken from the

University of California Santa Cruz genome browser.
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Figure 3.
Plots of fasting blood glucose, insulin and derived indices for the established and new T2D

loci. (a,b) Plots of fasting glucose (x axis) and fasting insulin (y axis). (c,d) Plots of HOMA-

B (an index of beta cell function; x axis) and HOMA-IR (an index of insulin sensitivity; y

axis). Each point refers to a single T2D association signal, with colors denoting the strength

of the association to either the x-axis variable (left-hand of each pair of plots) or y-axis

variable (right-hand of each pair) (red, P < 10−3; orange, 10−3 < P < 10−2; yellow, 0.01 < P <

0.05; green, 0.05 < P < 0.20; blue, P > 0.20). The two KCNQ1 associations are distinguished

by the notation KCNQ1 for rs163184 and KCNQ1* for rs231362. The gene names

associated with each signal have been chosen on the basis of proximity to the index SNP and

should not be presumed to indicate causality.
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