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Abstract Quantum chromodynamics (QCD) reduces the strong interactions, in all their vari-
ety, to an elegant nonabelian gauge theory. It clearly and elegantly explains hadrons at short
distances, which has led to its universal acceptance. Since its advent, however, many of its long-
distance, emergent properties have been believed to be true, without having been demonstrated

to be true. This paper reviews a variety of results in this regime that have been established
with lattice gauge theory, directly from the QCD Lagrangian. This body of work sheds light
on the origin of hadron masses, its interplay with dynamical symmetry breaking, as well as
on other intriguing features such as the phase structure of QCD. In addition, nonperturbative
QCD is quantitatively important to many aspects of particle physics (especially the quark flavor
sector), nuclear physics, and astrophysics. This review also surveys some of the most interesting
connections to those subjects.
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1 Introduction

Quantum chromodynamics (QCD) is the modern theory of the strong nuclear
force. It is part of the Standard Model of elementary particles and the underpin-
ning of terrestrial and astronomical nuclear physics

The conception of QCD is rightly hailed as a triumph of reductionism, meld-
ing the quark model, the idea of color, and the parton model into a dynamical
quantum field theory. At the same time, the scope of QCD is rich in emer-
gent phenomena. Symmetries emerge in idealized limits: C, P , and T are exact
when the total “vacuum angle” θ̄ = 0; chiral symmetries emerge when two or
more quark masses vanish (1, 2); and heavy-quark symmetries are revealed as
a quark mass goes to infinity (3, 4). More remarkable still are the phenomena
that emerge at a dynamically generated energy scale ΛQCD, the “typical scale
of QCD.” Much of what is “known” about QCD in this nonperturbative regime
has been, for a long time, based on belief. Evidence from high-energy scattering
fostered the opinion that QCD explains the strong interactions and, therefore,
the belief that QCD exhibits certain properties: otherwise it would not be con-
sistent with lower-energy observations. These emergent phenomena—such as
chiral symmetry breaking, the generation of hadron masses much larger than the
quark masses, and the thermodynamic phase structure—are the most profound
phenomena of gauge theories. The major aim of this review is to survey how
lattice QCD has enabled us to replace belief with knowledge. To do so, we shall
cover results that are interesting in their own right, influential in a wider arena,
qualitatively noteworthy, and/or quantitatively impressive.

The rest of this review is organized as follows. Section 2 introduces the QCD
Lagrangian and discusses how, in a general setting, to fix its free parameters.
Section 3 gives a short review of lattice-QCD methodology. Hadron masses and
their connection to chiral symmetry are discussed in Sections 4 and 5. An output
of these calculations are the quark masses and the gauge coupling, which are
discussed in Section 6, along with some timely results pertaining to flavor physics.
Some interesting properties of nucleons are presented in Section 7. The phase
structure of QCD is discussed in Section 8. Section 9 offers some perspective.
Appendix A contains pointers to resources for readers who wish to start research
in numerical lattice gauge theory.

2 Quantum Chromodynamics

The (renormalized) Lagrangian of QCD has “1 + nf + 1” free parameters:

LQCD =
1

2g2
tr[FµνF

µν ]−
nf
∑

f=1

ψ̄f (/D +mf )ψf +
iθ̄

32π2
εµνρσ tr[FµνFρσ ], (1)

where Fµν is the gluon’s field strength, /D = γµ(∂
µ+Aµ), and ψf denotes the quark

field of flavor f . The first parameter is the gauge coupling g2, the next nf are
the quark masses mf , and the last, θ̄, multiplies an interaction that violates CP
symmetry. Experiments have demonstrated the existence of nf = 6 quarks. At
energies below the top, bottom, and charm thresholds, however, it is convenient
and customary to absorb the short-distance effects of these quarks into a shift
of g2 and then take QCD with nf = 5, 4, or 3. The coupling g2 diminishes
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gradually with increasing energy, stemming from virtual processes of gluons and
the nf active quarks; this “running” is called asymptotic freedom (5,6).

In the Standard Model, quark masses arise from the matrix of Yukawa cou-
plings to the Higgs field. This matrix can be brought into a form with real
eigenvalues

√
2mf/v and an overall phase, arg detm. (Here v = 246 GeV is the

Higgs field’s vacuum expectation value.) In this context, the coupling multiplying
εµνρσ tr[FµνFρσ ] is altered: θ̄ = θ− arg detm, where θ is allowed in QCD as soon
as CP violation is admitted. Only the difference θ̄ is observable.

Before saying that a mathematical theory describes or explains the natural
world, one must fix its free parameters with the corresponding number of mea-
surements, in this case 1 + nf + 1. Because the color of quarks and gluons is
confined, the free parameters of QCD must be connected to properties of QCD’s
eigenstates, which are the color-singlet hadrons. From this perspective, the pa-
rameters of QCD may be fixed as follows. The electric-dipole moment of the
neutron is too small to measure, leading to a bound θ̄ < 10−11. Such delicate
cancellation of θ and arg detm is a mystery, known as the strong CP problem (7).
For QCD calculations it simply means we can set θ̄ = 0 with no significant con-
sequences. The rest are tuned to reproduce 1 + nf specific hadronic properties.
Because the gauge coupling runs, the physical interpretation of g2 is predicated
on the energy at which it reaches a fiducial value, say g2 = 1. But the mathe-
matics is, strictly speaking, dimensionless, so the energy at which g2 = 1 can be
computed only relative to some other standard mass. In practice, it is sensible
to choose this standard mass to be insensitive to the quark masses. Finally, the
nf quark masses are best related to nf hadron masses that depend sensitively
on them; for example, the kaon mass is used to tune the strange-quark mass,
because M2

K ∝ ms. With lattice gauge theory (8) one has a tool to relate the
QCD Lagrangian directly to such hadronic properties and, thus, fix the param-
eters this way. It is worth noting, however, that hadronic properties always fix
the parameters of QCD; the top-quark mass, for example, is measured at the
Tevatron via the total energy of the hadrons in jets.

3 Numerical Lattice QCD

Lattice gauge theory (8) was invented in an attempt to understand asymptotic
freedom without gauge-fixing and ghosts (9). The key innovation is to formulate
nonabelian gauge invariance on a spacetime lattice. Then the functional integrals
defining QCD correlation functions are well-defined:

〈•〉 = 1

Z

∫

DADψDψ̄ [•] exp (−S) , (2)

because the measures DU , Dψ, and Dψ̄ are products of a countable number
of individual differentials. Here S =

∫

d4xLQCD is the action, • is just about
anything, and Z ensures 〈1〉 = 1. This formulation is formally equivalent to
classical statistical mechanics, enabling theorists to apply a larger tool-kit to
quantum field theory. For example, Wilson used a strong-coupling expansion to
lowest order in 1/g2 to demonstrate confinement (8).

The results presented below have been obtained by integrating expressions of
the form (2) on big computers with Monte Carlo methods. Lattice gauge theory
defines QCD mathematically and, thus, in principle provides an algorithm for
computing anything. Nevertheless, the computer imposes practical constraints.
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To compute anything within a human lifetime, the integrals are defined at imag-
inary time, t = −ix4, turning Feynman’s phase factor into the exponential of
Equation 2. A computer, obviously, has finite memory and processing power, so
the spatial volume and time extent of the lattice must be finite.

These limitations do not impair the computation of many important classes
of quantities. The imaginary time imposes no problem whatsoever for static
quantities. The finite volume introduces errors in one-particle states that are
exponentially suppressed and, hence, a minor source of uncertainty. In two-
particle states, the finite-volume effects are stronger, but the volume dependence
yields information such as scattering lengths. Similarly, effects of the finite time
extent are exponentially suppressed, except in thermodynamics, where it becomes
a tool. Finally, the continuum limit must be taken as part of the renormalization
procedure (10,11).

From Equation 2, it is straightforward to derive some simple results for corre-
lation functions. The two-point function

〈π(x4)π†(0)〉 =
∑

n

|〈0|π̂|πn〉|2e−mπnx4 , (3)

where π is a composite field of definite quantum numbers (e.g., of the pion), and
the sum ranges over all radial excitations. For time separation x4 large enough,
a fit to an exponential yields the lowest-lying mπ1

and |〈0|π̂|π1〉|. Using a larger
set of operators, one can extend this method to compute excited-state properties.
For a transition with no hadrons in the final state, as in leptonic decays, simply
replace π(x4) with a current J :

〈J(x4)π†(0)〉 =
∑

n

〈0|Ĵ |πn〉〈πn|π̂†|0〉e−mπnx4 , (4)

in which the only new information is 〈0|Ĵ |πn〉, yielding for large x4 the decay
matrix element of the lowest-lying state. For a transition with one hadron in the
final state, one needs a three-point function:

〈π(x4)J(y4)B†(0)〉 =
∑

mn

〈0|π̂|πm〉〈πn|Ĵ |Bm〉〈Bm|B̂†|0〉e−mπn (x4−y4)−mBmy4 (5)

in which the only new information is 〈πn|Ĵ |Bm〉, yielding for large x4, y4 the
matrix element between the lowest-lying states. We compute matrix elements for
flavor-changing processes, dark-matter detection, and nucleon structure this way.

Equations (3)–(5) are derived by inserting complete sets of eigenstates of the
QCD Hamiltonian. The only assumption is that these eigenstates are hadrons.
Thus, every successful fit of these formulae for hadronic correlators provides a pos-

teriori incremental evidence that hadrons are indeed the eigenstates of QCD.
In all cases of interest, the fermion action is of the form ψ̄Mψ, where the

spacetime matrix M is a discretization of the Dirac operator (plus quark mass).
Then the fermionic integration in Equation 2 can be carried out by hand:

〈•〉 = 1

Z

∫

DA [•′] detM exp (−Sgauge) , (6)

in which the fermionic integration replaces ψiψ̄j with [M−1]ij to yield •′. Impor-
tance sampling, which is crucial, is feasible only if detM exp (−Sgauge) is positive.
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Table 1: Pattern of chiral symmetry breaking for nf lattice fermion fields.

Formulation flavor×spacetime ⊂ continuum limit
Staggered (14,15) U(1)nf × Γ4 ⋉ SW4 ⊂ SU(4nf )× SU(4nf )× SO(4)
Rooted (16) U(1)nf × Γ4 × SW4 ⊂ SU(nf )× SU(nf )× SO(4)
Wilson (17) SUV(nf )× SW4 ⊂ SU(nf )× SU(nf )× SO(4)
Chiral (18) SU(nf )× SU(nf )× SW4 ⊂ SU(nf )× SU(nf )× SO(4)

In most cases, a notable exception being the case of nonzero baryon chemical po-
tential, this condition holds.

The determinant detM represents virtual quark-antiquark pairs, also called
sea quarks. The matrix inverse M−1 is the propagator of a valence quark moving
through a stew of gluons A and sea quarks. Several quark propagators are sewn
together to form hadronic correlation functions, which via Equations 3–5 yield
masses and transition matrix elements. The sea detM poses the biggest, and
the propagator M−1 the second biggest, computational challenge. The numerical
algorithms become even more demanding as the quark mass is reduced. Lattice-
QCD data with unphysically heavy up and down quarks can be extrapolated
to the physical limit guided by chiral perturbation theory (12, 13). This step
removes the cloud of unphysically massive pions and replaces it with a better
(and improvable) approximation to the physical pion cloud.

Because detM and M
−1 are so CPU-intensive, several formulations of lattice

fermions are used. As one might anticipate, the computationally fastest and
theoretically cleanest methods are not the same. (If one formulation were both
fastest and cleanest, no one would use anything else.) Each formulation can
be characterized by the amount of flavor symmetry retained by the lattice, as
shown in Table 1. Staggered fermions are computationally the fastest, but the
flavor group comes in a semi-direct product with the symmetry group of the
hypercube, SW4, and the total number of species in the continuum limit, for
nf fields, is 4nf . This fermion doubling is not a problem for the propagators

M
−1
stag. For the sea, however, one must take (16) [detMstag]

1/4 and appeal to
numerical and perturbative evidence that the rooting yields a local field theory
in the continuum limit (19).

Because of the expense of sea quarks, many lattice-QCD calculations have
been carried out with 2 or fewer (light) flavors. The error entailed in omitting
the strange-quark sea is difficult to estimate, so this review mostly considers
results with 2+1 flavors in the sea. Here “2+1” denotes the strange sea and two
more flavors, for up and down, taken as light as possible. Such simulations made
a breakthrough early in the century (20). Now the first results including the
charm-quark sea, “2+1+1,” are becoming available.

4 Hadron Spectrum

We compute the masses of hadrons not only for a quantitative comparison of
QCD with nature, but also to learn how gauge theories generate mass. As we
shall see in Section 6, hadron masses are much larger than the sum of the masses
of the underlying quarks. The positive binding energy stems from the confining
properties of the gluon field and from the kinetic energy of the quarks.

Let us begin with the energy in a flux tube between a static quark and anti-
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quark, as a function of separation r. The lowest energy level of the flux tube is the
potential energy V (r), and the excitations of the flux tube are informative too.
The states are labeled Σg,u,Πg,u,∆g,u, . . ., according to the eigenvalues of gluonic
angular momentum along r and of CP [in the subscript g (u) for “(un)gerade,”
which is German for even (odd)]. The Σ states also carry a superscript ± denot-
ing the change of sign (or not) of the wave function upon reflection in the plane
containing r; otherwise such reflections relate degenerate pairs.

Figure 1 shows the lowest-lying levels in the SU(3) gauge theory without light
quarks (21). At short distances, the level spacing and ordering is consistent
with asymptotic freedom: V (r), for example, is Coulombic up to logarithmic
corrections. As r increases, the spacing changes, and at a separation of around
2 fm, the level ordering rearranges to that of a string. The level spacing does
not become fully string-like until larger separations (22). The behavior of the
excitations is instructive, because the lowest level, V (r), becomes consistent with
a string at a relatively short distance around 1

2 fm (23). A vivid picture of the
flux tube has it narrowing as r increases, owing to the attraction between gluons,
but the details suggest that the flux tube looks more like a sausage than a string.

One can imagine connecting the ends of the sausage to obtain non-qq̄ states
called glueballs. Such mesons have no counterpart in the quark model, and lattice
gauge theory provides the best (theoretical) evidence that these states do indeed
exist. Glueball masses with 2+1 flavors of sea quarks show little change (24) from
earlier calculations with no sea quarks (25). In particular, the masses remain
consistent with the idea, motivated by lattice QCD, that the fJ(1710) is the
lightest scalar glueball (26). The pseudoscalar, tensor, and first radially excited
scalar glueballs are all 800–900 MeV higher than the lowest scalar (24).

Lattice QCD has been used to verify the mass spectrum of quark-model hadrons
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Figure 1: Excitations of the chromoelectric field between two static sources at
separation r, in units of the string tension σ ≈ 400–440 MeV. The lowest excita-
tion EΣ+

g
(r) = V (r) is the heavy-quark potential, exhibiting Coulombic behavior

at short distances and linearly confining behavior at large distances. The higher
excitations also exhibit the level ordering of electrodynamics at short distances
but the level ordering of a string at large distances. Data from Reference (21).
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within a few percent. Figure 2 shows three broad efforts on the spectrum of the
isopsin-1 light mesons and the isospin-12 and -32 baryons (27, 28, 29, 30). These
simulations all include 2 + 1 flavors of sea quarks, and the error bars, for the
most part, are based on thorough analyses of systematics. A satisfying feature
of Figure 2 is that the results do not depend in a systematic way on the fermion
formulation chosen for the quarks. Even the latest results for the difficult η-η′

splitting are encouraging (31,32,33).
Figure 2 includes predictions for mesons with quark content b̄c (37, 35, 38).

The prediction for the pseudoscalar Bc has been (subsequently) confirmed by
experiment (39), whereas the prediction for the vector B∗

c awaits confirmation.
These predictions build on successful calculations of the bb̄ and cc̄ spectra (36,
40,41,42,43) (not shown), which reproduce experiment well.

The most striking aspect of the spectrum is how well it agrees with nature.
The nucleons provide almost all the mass in everyday objects, and their masses
have been verified within 3.5%. Their mass mostly comes, via m = E/c2, from
the kinetic energy of the quarks and the energy stored in the sausage-like flux
tube(s) holding the quarks together.
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Figure 2: Hadron spectrum from lattice QCD. Comprehensive results for mesons
and baryons are from MILC (27, 28), PACS-CS (29), and BMW (30). Results
for the η and η′ from RBC/UKQCD (31), Hadron Spectrum (32) (also the
onlyω mass), and UKQCD (33). Results for heavy-light hadrons from Fermilab-
MILC (34), HPQCD (35), and Mohler and Woloshyn (36). Symbol code: cir-
cles, squares, and diamonds for staggered, Wilson, and chiral sea quarks; aster-
isks for anisotropic lattices; open symbols denote masses used to fix parameters;
filled symbols (and asterisks) are results. Color code: red, orange, yellow, green,
and blue for increasing numbers of ensembles (i.e., lattice spacing and sea-quark
mass). Horizontal bars (gray boxes) denote experimentally measured masses
(widths). b-flavored mesons offset by −4000 MeV.
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5 Chiral Symmetry Breaking

A striking feature of the hadron spectrum in Figure 2 is that the pion has a
small mass, around 135 MeV, when the other hadrons have masses more than
five times larger. To understand the origin of the difference, Nambu (1) applied
lessons from superconductivity, noting (four years before quarks were proposed)
that a spontaneously broken axial symmetry would constrain the pion’s mass to
vanish, with small explicit symmetry breaking allowing it to be nonzero.

If the up and down quarks may be neglected, the QCD Lagrangian acquires
an SUL(2) × SUR(2) symmetry, thereby explaining the origin of Nambu’s axial
symmetry. The consequences of spontaneous symmetry breaking were studied
further by Goldstone (44), leading to a formula (45),

m2
π〈ψ̄ψ〉 = 0, (7)

when applied to QCD with massless up and down quarks. The flavor-singlet
expectation value 〈ψ̄ψ〉 is called the chiral condensate. If either factor on the
left-hand side of Equation 7 is nonzero, the other must vanish.

From the earliest days of QCD, most physicists were confident that it explained
the richness of the strong interactions. Because QCD and Nambu’s picture of
the pion were both considered right, it was believed that QCD must generate a
chiral condensate. Until recently, however, no ab initio calculation of 〈ψ̄ψ〉 tested
Equation 7. Lattice QCD has now filled this gap (46,47,48):

〈ψ̄ψ〉 = [234± 4± 17 MeV]3 (MS scheme at 2 GeV), (8)

where the first uncertainty is statistical and the second a combination of sys-
tematics, and the quark masses have been adjusted to Nambu’s idealization,
mu = md → 0, ms physical (48). In summary, QCD’s symmetries and dynamics
have now been demonstrated to account for the hierarchy between the pion and
the other hadron masses.

6 Standard Model Parameters

The Standard Model (with nonzero neutrino masses and mixing angles) has 28
free parameters:

• Gauge couplings: αs, αQED, αW = (MW/v)
2/π;

• Quark sector: mue
iθ̄, md, ms, mc, mb, mt; |Vus|, |Vcb|, |Vub|, δKM;

• Lepton sector: mν1 , mν2 , mν3 , me, mµ, mτ ; θ12, θ23, θ13, δPMNS, α21, α31;

• Standard electroweak symmetry breaking: v = 246 GeV, λ = (MH/v)
2/2.

Lattice QCD is essential or important in determining the values of eleven pa-
rameters (those set in bold). Lattice field theory (without QCD) is also useful
for shedding light on the Higgs self-coupling λ (49) and the top Yukawa coupling√
2mt/v (50).

6.1 Quark masses and αs

Confinement precludes the direct measurement of quark masses. Instead, the
masses in Equation 1 must be determined from measurable properties of hadrons.
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Table 2: Quark masses from lattice QCD converted to the MS scheme and run
to the scale indicated. Entries in MeV.

Flavor (scale) Ref. (28) Ref. (51) Ref. (52) Ref. (53) Ref. (54)
m̄u(2 GeV) 1.9± 0.2 2.01± 0.14 2.37± 0.26 2.15± 0.11
m̄d(2 GeV) 4.6± 0.3 4.79± 0.16 4.52± 0.30 4.79± 0.14
m̄s(2 GeV) 88± 5 92.4± 1.5 97.7± 6.0 95.5± 1.9
m̄c(3 GeV) 986± 10
m̄b(10 GeV) 3617± 25

The nf bare quark masses are adjusted until nf hadron masses of suitable flavor
agree with experiment. Four sets of results are shown in Table 2, after being
converted to the conventional MS scheme. The results in the first, third, and
fourth columns are completely independent, employing different formulations for
sea quarks and different treatments of electromagnetic effects. The results in the
second column are derived from mass ratios [2ms/(md + mu) = 27.3 ± 0.3 and
mu/md = 0.42±0.04] underlying those in the first column, combined with precise
values of the ratio mc/ms = 11.85 ± 0.16 (51) and m̄c (55).

These results are remarkable for at least two reasons. First, the up and down
masses are very small, about four and nine times the electron mass. Quark masses
arise from interactions with the Higgs field (or something like it). This sector is,
thus, not the origin of much mass. Second, mu, though very small, is also very
significantly far from zero. This is interesting, because were mu = 0, then the
additional symmetry of the Lagrangian would render θ̄ unphysical, obviating the
strong CP problem (7). (A subtlety could arise from a nonperturbative additive
correction to mu, but it is probably too small to alter this conclusion.)

The heavy charm- and bottom-quark masses can be determined along the same
lines, but the most accurate results come from computing quarkonium correlation
functions and taking their continuum limit (56). These functions give spacelike
information on the same function measured in the timelike region in e+e− →
cc̄ (bb̄). Perturbation theory to order α3

s (57) can then be used to extract the
heavy-quark masses and αs (55). This approach yields the results in the fifth
column of Table 2, which are in near perfect agreement with the corresponding
determinations from e+e− collisions (58).

Lattice QCD provides excellent ways to determine the gauge coupling αs =
g2/4π. In lattice gauge theory, the bare coupling g20 is an input. Alas, for
many lattice gauge actions, perturbation theory in g20 converges poorly (59),
obstructing a perturbative conversion to the MS or other such schemes. Two
other strategies are adopted to circumvent this obstacle. One is to compute a
short-distance lattice quantity—like a Wilson loop—and reexpress perturbation
theory for the Monte Carlo results in a way that eliminates g20 in favor of a
renormalized g2 (59, 60). The other is to compute a short-distance quantity
with a continuum limit, and then apply continuum perturbation theory. The
quarkonium correlator used for mc and mb is an example (57). Other examples
include the Schrödinger functional (61) and the Adler function (62).

Results from several complementary lattice-QCD methods (55,63,64,65,66) are
collected in Table 3 and compared to an average of determinations from high-
energy scattering and decays (67). One sees excellent consistency among results
not only with different discretizations of the determinant for sea quarks, but also
when the charmed sea is included (66). An important source of uncertainty is
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Table 3: Values of αs(MZ) from lattice QCD and an average of determinations
from high-energy scattering and decays. An update to the values on the first
two rows can be found in Reference (54). The central values and error bars from
References (64, 65) have been symmetrized to ease comparison. In principle,
“nature’s sea” includes non-SM colored particles.

αs(MZ) Observable Sea formulation Ref.
0.1174± 0.0012 Charmonium correlator 2+1 asqtad staggered (55)
0.1183± 0.0008 Small Wilson loops 2+1 asqtad staggered (63)
0.1197± 0.0013 Schrödinger functional 2+1 improved Wilson (64)
0.1185± 0.0009 Adler function 2+1 overlap (65)
0.1200± 0.0014 Ghost-gluon vertex 2+1+1 twisted Wilson (66)
0.1186± 0.0011 Scattering, τ decay, etc. nature’s sea (67)

the truncation of perturbation theory, including strategies for matching to the
MS scheme, and running to scale MZ . In the example of the small Wilson loops,
an independent analysis of the data from Reference (63) has been carried out,
yielding αs(MZ) = 0.1192 ± 0.011 (68), to be compared with the second line of
Table 3.

The agreement of the lattice- and perturbative QCD results for αs, mc, and mb

is especially compelling since QCD is the union of the quark model of hadrons
and the parton model of high-energy scattering. The consistency is evidence that
the QCD of hadrons and the QCD of partons are the same.

6.2 Flavor Physics

As mentioned in Section 2, the quark masses arise from the electroweak interac-
tions. In a basis where the mass matrix is diagonal, the W boson couples to all
combinations of (u, c, t, . . .) ⊗ (d, s, b, . . .)T quarks. Along with the SU(2) gauge
coupling, the udW vertex carries a factor Vud, and similarly for all other com-
binations. As a change of basis (from the W to the mass basis), the Cabibbo-
Kobayashi-Maskawa (69, 70) (CKM) quark-mixing matrix V is unitary. After
considering global symmetries of the gauge interactions, one sees that the CKM
matrix has fewer parameters than a generic unitary matrix. For three genera-
tions, three mixing angles and one CP -violating phase remain, and a convenient
choice consists of |Vus|, |Vub|, |Vcb|, and arg V ∗

ub.
Lattice QCD calculations play a key role in flavor physics. The phase and,

except for |Vtb|, all magnitudes of the CKM matrix can be accessed via processes
for which the corresponding lattice-QCD calculations are under good control:

V =



























|Vud| |Vus| |Vub| arg V ∗
ub

π → ℓν K → ℓν B → τν 〈K0|K̄0〉
n→ pe−ν̄ K → πℓν B → πℓν

|Vcd| |Vcs| |Vcb|
D → ℓν Ds → ℓν B → Dℓν

D → πℓν D → Kℓν B → D∗ℓν

|Vtd| |Vts| |Vtb|
〈Bd|B̄d〉 〈Bs|B̄s〉 (no tq̄ hadrons)



























. (9)

These leptonic and semileptonic decays (first two rows) or meson-antimeson os-
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cillations (phase and third row) have one hadron in the initial state and one (or
none) in the final state. Thus, all of these flavor-changing amplitudes can be com-
puted in lattice QCD via Equations 4 or 5. Semileptonic transition form factors
for K → πℓν (71,72), B → πℓν (73,74), and B → D∗ℓν (75) are sensitive to the
mixing angles, and K0-K̄0 mixing (76,77,78,79) is sensitive to the CP -violating
phase. Together with calculations of D-meson decays (80, 81, 82) and B0

(s)-B̄
0
(s)

mixing (83), the full suite of lattice-QCD calculations overdetermines the CKM
matrix and, thus, tests for consistency. The semileptonic D decays are considered
crosschecks. Taking |Vcd| and |Vcs| from CKM unitarity (which is very precise),
one finds that lattice-QCD calculations of the kinematic distributions (80) and
the normalization of the rate (81,82) agree with several experiments.

Non-SM particles could spoil this picture, which is why it is interesting to test
it in detail. With a fourth generation of quarks and leptons, the 3× 3 submatrix
generically would not be unitary. If other particles, such as supersymmetric
partners of the known particles, change quark flavor, the SM relation between a
flavor-changing process and V is spoiled. The off-diagonal elements are small—
|Vus| ∼ 0.2, |Vcb| ∼ 4×10−2, and |Vub| ∼ 3×10−3—so it is not out of the question
that (widely anticipated) TeV-scale particles make detectable contributions.

During the first decade of the 21st century, all simple, pertinent lattice-QCD
calculations were carried out with 2+1 sea quarks. In most cases, more than
one collaboration has published results, and, in many cases, the literature covers
more than one fermion formulation for the quarks. The calculations most directly
connected to determining the CKM parameters have been combined—with an eye
to correlations in the errors—in Reference (84).

Despite the broad agreement of flavor-physics measurements with the Standard
Model, some tension appears in global fits to the four CKM parameters (85).
Some mild discrepancies also arise in a few isolated processes, and here we shall
consider two leptonic decays where lattice-QCD plays a key role.

Let us begin by noting that the semileptonic and leptonic determinations of
|Vus| are completely compatible (86) [based on References (87,88,89) and (71,72)].
The vector component of theW boson mediates the former, and the axial current
the latter. Since they are compatible, nothing other than the SM W boson is
needed to describe these decays.

The present status of semileptonic and leptonic determinations of |Vub| is not
so tidy. Combining lattice QCD for the B → πℓν form factor (73, 74) with
measurements from BaBar (90) yields |Vub| = (2.95±0.31)×10−3 ; with Belle (91)
|Vub| = (3.43±0.33)×10−3 . The average taken here is |Vub|B→πℓν = (3.19±0.32)×
10−3. Combining lattice QCD for the B-meson decay constant (83,92) with the
world average of the rate for B+ → τ+ν (93), however, suggests |Vub|B→τν =
(4.95 ± 0.55) × 10−3, which deviates by 2.8σ from |Vub|B→τν . This discrepancy
could be explained if another particle (or particles) were to mediate the decays
with a coupling different from theW boson’s V −A. Examples include a charged
Higgs boson (94,95) or a right-handed vector current (96). The plot thickens when
one considers inclusive charmless semileptonic B decays, which are mediated by
all possible currents. These decays imply a value of |Vub| in between those from
the two exclusive methods.

A cautionary tale comes, however, from Ds → µ+ν, and Ds → τ+ν decays.
In 2008, the measured branching fractions exceeded the SM prediction by nearly
4σ, as shown in Figure 3. This discrepancy relies on the decay constant fDs
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from lattice QCD (97, 87). Using the same methods as for the π and K decay
constants (87,98), the Ds decay constant can be computed to 1–2%. At the time,
some experimenters asserted that either the lattice-QCD calculations were wrong
or that new physics mediated the decay. For example, the excesses of Ds → ℓ+ν
could be due to leptoquarks (99), with a few-percent amplitude constructively
interfering. As more measurements came in, however, the discrepancy softened,
and it is now only 1.6σ. Although the lattice-QCD average has increased 8 MeV,
the experimental average has decreased 18 MeV. The early measurements fluc-
tuated up; perhaps the same holds for B → τν.
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Figure 3: Comparison of fDs since 2005. The green line (right axis) shows the
discrepancy in σ. The gray band shows the running average of 2+1-flavor lattice
QCD calculations from Fermilab-MILC (97,92), HPQCD (87,98), and PACS-CS
(100). [The 2-flavor cyan point from ETM (101) is not included in the average.]
The yellow band shows the running average of measurements from BaBar, Belle,
and CLEO-c (93). Updated from Reference (102).

7 Nucleon Matrix Elements, Dark Matter, and the LHC

Two of the most compelling questions facing particle physics are the origin of
electroweak symmetry breaking and the composition of dark matter. The exper-
iments built to address them rely on the humble proton and neutron. The Large
Hadron Collider (LHC) collides pp—and the Tevatron pp̄, and detectors buried
deep underground hope to see weakly-interacting massive particles (WIMPs) scat-
ter of the protons and neutrons in nuclei. To interpret the results of these exper-
iments, it is helpful to calculate certain matrix elements of the nucleon (103).

Let us start with WIMP-nucleon scattering. The key information needed to
compute the cross section is

σq = mq〈N |q̄q|N〉 = mq
∂MN

∂mq
, (10)

for quarks q in the nucleon, including virtual quarks like s and c. The partial
derivative should be taken with the other nf QCD parameters held fixed. Usually
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Table 4: Table of scalar-density matrix elements. The first and fourth rows use
2 flavors of sea quarks; the others 2+1. Entries in MeV.

Method σu+d σs Reference
πN scattering ⊕ baryon octet masses 45± 8 122 ± 143 (104,106)

64± 7 378 ± 135 (105,106)

Lattice QCD Feynman-Hellman 53± 2+21
− 7 (108)

Lattice QCD MN χPT 47± 8± 3 31 ± 15± 4 (109)
Lattice QCD Feynman-Hellman 59± 7± 8 (110)
Lattice QCD matrix element 30 ± 8± 21 (111)
Lattice QCD Feynman-Hellman 39± 4+18

− 7 34± 14+28
−23 (112)

Lattice QCD Feynman-Hellman 31± 3± 4 71± 34± 59 (113)

the light quarks are combined into the isospin-singlet

σu+d = 1
2(mu +md)〈N |(ūu+ d̄d)|N〉. (11)

(The reader should beware of factors of 2 in the definitions of these and similar
quantities, sometimes denoted Σ, in the literature.) For WIMP detection, σu+d

and σs are especially important.
Until recent lattice-QCD calculations became available, the light-quark “sigma

term” has been extracted from πN scattering, with the help of chiral perturbation
theory (104,105). As seen in the first two row of the σu+d column of Table 4, the
extraction depends more on assumptions than on the experimental data. To esti-
mate σs, information from the baryon octet masses is used (106). Unfortunately,
this information must be subtracted from σu+d, rendering σs rather unstable. It
is a pressing need to improve both matrix elements (107).

Equation 10 suggests two methods to compute σq in lattice QCD, either from
a three-point function, as in Equation 5, or by studying the mass dependence of
the nucleon mass MN . The latter is known as the Feynman-Hellman theorem,
and here one can either reweight the Monte Carlo ensemble to take the deriva-
tive locally, or study the chiral extrapolation to obtain a global handle on the
derivative. Several recent results are compiled in Table 4. From a quantitative
perspective, it seems that the results are still settling down, though they tend
to favor lower values of σu+d. More striking (and self-consistent with low σu+d),
the results for σs dramatically contradict the high values used in WIMP phe-
nomenology. Thus, even if these results are not yet as mature as those reported
in Sections 4, 5, and 6, their influence could be precocious.

In pp or pp̄ collisions, the essential long-distance ingredient in computing cross
sections are the moments of the parton distribution functions. These moments
are given by matrix elements of local operators, similar to the q̄q in Equation 10
but with different Dirac structures, such as γµ or γµγ5, and derivatives (to pull
out higher powers of the momentum fraction). Figure 4 shows some recent lattice-
QCD results for the nonsinglet average momentum fraction 〈x〉u−d as a function of
simulation m2

π (114,115,116), compared with two phenomenological results (117,
118). The latter are obtained by fitting experimental data, which exist over
a large but limited range of x, to reasonable parametrizations. In principle,
the lattice-QCD moments add extra information, but the status of the chiral
extrapolation may not be ready for this step, although some functional forms do
indeed extrapolate to results (114, 115) that agree with the fits to experiment.
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Figure 4: Nonsinglet average momentum fraction 〈x〉u−d vs. m2
π from LHP (114),

RBC and UKQCD (115), and ETM (116). The last has 2+1+1 flavors of sea
quark, the others 2+1. Fits to experiment from MSTW (117) and ABM (118);
others fall between these two.

Note that earlier work with only 2 flavors of sea quark yielded confusing results.
The low moments of quark densities from 2+1- and 2+1+1-flavor simulations are
approaching the point where the lattice-QCD results could be incorporated into
the traditional fits of experimental data. For collider phenomenology, the real
challenge for lattice QCD is to compute similar moments of the gluon density,
which are less well constrained by low-energy experiments.

8 QCD Thermodynamics

The previous sections consider isolated hadrons at zero temperature. Soon after
the Big Bang, however, the universe was much hotter than it is now, and in
neutron stars, for example, the baryon density is much higher than in normal
nuclear matter. These phenomena motivate the study of the thermodynamics of
QCD. Even within lattice gauge theory, thermodynamics is a vast subject (119,
120), so this review touches only on some of the more fascinating aspects.

Thermodynamics starts with thermal averages in the canonical ensemble

〈•〉 =
Tr

[

• e−Ĥ/T
]

Tr e−Ĥ/T
, (12)

where T is the temperature, and the traces Tr are over the Hilbert space of the
QCD Hamiltonian Ĥ. In fact, the average on the left-hand side of Equation 12
is precisely that of Equation 2; the time extent N4 specifies the temperature
T = (N4a)

−1. The eigenstates of Ĥ—a.k.a. hadrons—do not change with T , but
as T increases the vacuum no longer dominates the way it does in Equations 3–5,
and multi-hadron states begin to play a role in the thermal average.

The simplest observables are quantities like the energy, pressure, and entropy
density, and order parameters sensitive to symmetry breaking. The thermal state
can either restore a spontaneously broken symmetry of the vacuum or be a state
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of broken symmetry itself. Of course, the (approximate) symmetry of the Hamil-
tonian remains intact. Figure 5 shows order parameters for deconfinement and
chiral symmetry restoration, as the temperature increases from normal hadronic
matter to the “quark-gluon plasma.” Both quantities change dramatically for a
temperature around 145–170 MeV (123, 124), but neither, especially deconfine-
ment, exhibits the sharp change characteristic of a phase transition. Studying a
whole suite of thermodynamic observables confirms that the transition is smooth
crossover (125,122). This result came as a surprise, and below we shall see why.

The crossover means that as the early universe cools, hot matter gradually
becomes more and more like a gas of distinct hadrons. With a first-order phase
transition, on the other hand, bubbles of the hadronic phase would form inside
the quark-gluon plasma. Without a real phase transition, the quark-gluon plasma
is not necessarily a fluid of quasi-free quarks and gluons. The eigenstates in
Equation 12 remain color singlets, but a thermal medium can be qualitatively
different. First, thermal fluctuations encompass states with many overlapping
hadrons, so color can propagate from one hadron to the next, as if deconfined.
Second, the thermal average applies nearly equal Boltzmann weights to states of
both parities, so chiral symmetry can be restored in the thermal average, even
though the vacuum breaks it.

The nature of the QCD phase transition is influenced by the physical values
of the up, down, and strange quark masses. For vanishing quark masses, the
transition would be first order, but as the masses are increased, the strength of

100 150 200 250 300 350 400 450
T (MeV)

0.0

0.2

0.4

0.6

0.8

1.0

de
co

nf
in

em
en

t o
rd

er
 p

ar
am

et
er

Nτ = 4

Nτ = 6

Nτ = 8

0.0

0.2

0.4

0.6

0.8

1.0

ch
ir

al
 o

rd
er

 p
ar

am
et

er

Nτ = 4

Nτ = 6

Nτ = 8

© 2012 Andreas Kronfeld/Fermi Natl Accerator Lab.

© Andreas Kronfeld/Fermi Natl Accelerator Lab.

Figure 5: Order parameters for deconfinement (bottom) and chiral symmetry
restoration (top), as a function of temperature. The physical temperature T =
a/Nτ , where a is the lattice spacing. Agreement for several values of Nτ thus
indicates that discretization effects from the lattice are under control. Data from
References (121,122).
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the transition diminishes. As sketched in Figure 6a, the physical quark masses
(cf. Table 2) are just large enough to render the transition a crossover. If the light
quark masses—crucially ms—were around half their physical size, the universe
would cool through a first-order transition. Before lattice QCD established these
results, the conventional wisdom was that the quark masses are somewhat larger
than shown in Table 2, yet small enough to remain in the first-order basin of
massless quarks.

At nonzero baryon density (chemical potential µ 6= 0), the fermion determinant
becomes complex, which is an obstacle to importance sampling. This restricts
lattice-QCD calculations to small µ. It is thought that the transition becomes
first order for µ ∼ few 100 MeV (126), as shown in Figure 6b, but the matter is
not yet settled (127).
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quark-gluon plasma
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Figure 6: QCD phase diagrams. (a) The ms-
1
2(mu + md) plane at (µ, T ) =

(0, Tc), showing the order of the transition: the shaded regions at very small
and nearly infinite masses are first order; the red line shows the physical ratio of
2ms/(mu+md). (b) The µ-T plane, showing the crossover at small µ determined
from lattice QCD; the neutron star (n⋆) and “other” phases are expected, but
lattice QCD has not yet is a position to provide useful information.

9 Summary and Outlook

The topics discussed above demonstrate that we have learned a great deal in this
century about QCD from lattice gauge theory. The 21st century is still young,
and the prospects for learning more are bright.

Although the mass spectrum of the lowest-lying hadrons has been well verified,
it will be interesting to extend the calculations to excited states (128, 129) and
even to small nuclei like the deuteron (130) or the H dibaryon (131,132). Beyond
QCD, one can wonder whether nature uses gauge theories to generate quark,
lepton, and weak boson masses (133).

Most of the calculations related to flavor physics are entering an industrial
phase, where the objective is higher and higher precision. An exception is the
measurement of direct CP violation in the kaon system. This calculation requires
a two-pion final state, and although the formalism for handling this state has long
been available (134), only now have K → ππ amplitudes become feasible (135,
136). These finite-volume techniques are related to methods (137) for computing
scattering lengths (138,139), with many applications in hadronic physics.
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A Tools

Research in lattice QCD requires computer time and software. Through several
efforts around the world, these needs pose lower obstacles than ever before. Sev-
eral groups have made documented software available, so that new programs can
be modeled after existing code, rather than being built from scratch. Further-
more, many groups make ensembles of lattice gauge fields available, principally
via the International Lattice Data Grid (ILDG) (140). In exchange for suitable
citation of a paper describing the content of the ensembles, anyone can use these
simulation data for their own physics analyses. In many cases, even more ensem-
bles are available from collaborations with newer ensembles under generous terms:
most of these collaborations have some core physics analyses but are happy if the
expensive simulation data are mined for more results.

The ILDG has portals in Australia (141), continental Europe (142), Japan (143),
the United Kingdom (144), and the United States (145). The technical un-
derpinnings are described in Reference (146). Further ensembles are available
from the Gauge Connection (147) and the QCDOC Gauge Field Configuration
Archive (148).

Publicly available software can be obtained from the USQCD Collaboration
(149). Newcomers should start with one of the Applications Packages, chroma,
cps, milc, or FermiQCD. A useful tutorial on this software has been put to-
gether by Joó (150) (slides only).

Two kinds of computing are important to lattice gauge theory, capability and
capacity. One needs access to computers of the greatest capability—i.e., able to
run large-memory jobs with huge appetite in CPU time—to generate the ensem-
bles of lattice gauge fields. On these ensembles an analysis consists of a huge
number of small-to-medium computing demands; this step requires computers of
high capacity. Most university groups have access to computers of sufficiently
high capacity to analyze publicly available ensembles.

Literature Cited

1. Nambu Y, Phys. Rev. Lett. 4:380 (1960).
2. Weinberg S, Phys. Rev. Lett. 18:188 (1967).
3. Shifman MA, Voloshin MB, Sov. J. Nucl. Phys. 45:292 (1987).
4. Isgur N, Wise MB, Phys. Lett. B232:113 (1989).
5. Politzer HD, Phys. Rev. Lett. 30:1346 (1973).
6. Gross DJ, Wilczek F, Phys. Rev. Lett. 30:1343 (1973).
7. Kim JE, Carosi G, Rev. Mod. Phys. 82:557 (2010), 0807.3125.
8. Wilson KG, Phys. Rev. D10:2445 (1974).
9. Wilson KG, Nucl. Phys. Proc. Suppl. 140:3 (2005), hep-lat/0412043.

10. Symanzik K, Nucl. Phys. B226:187 (1983).
11. Symanzik K, Nucl. Phys. B226:205 (1983).



21st Century Lattice QCD 18

12. Sharpe SR, Shoresh N, Phys. Rev. D62:094503 (2000), hep-lat/0006017.
13. Bijnens J, PoS LAT2007:004 (2007), 0708.1377.
14. Susskind L, Phys. Rev. D16:3031 (1977).
15. Sharatchandra HS, Thun HJ, Weisz P, Nucl. Phys. B192:205 (1981).
16. Hamber HW, Marinari E, Parisi G, Rebbi C, Phys. Lett. B124:99 (1983).
17. Wilson KG, Quantum chromodynamics on a lattice, in New Phenomena in

Subnuclear Physics, Zichichi A, Plenum, New York, 1977.
18. Ginsparg PH, Wilson KG, Phys. Rev. D25:2649 (1982).
19. Donald GC, Davies CTH, Follana E, Kronfeld AS, Phys. Rev. D84:054504

(2011), 1106.2412.
20. HPQCD, MILC, and Fermilab Lattice, Davies CTH, et al., Phys. Rev. Lett.

92:022001 (2004), hep-lat/0304004.
21. Juge KJ, Kuti J, Morningstar C, Phys. Rev. Lett. 90:161601 (2003), hep-

lat/0207004.
22. Juge KJ, Kuti J, Morningstar C, QCD string formation and the Casimir

energy, in Confinement 2003, Suganuma H, et al., pp. 233–248, Singapore,
2004, World Scientific, hep-lat/0401032.
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53. BMW, Dürr S, et al., Phys. Lett. B701:265 (2011), 1011.2403.
54. HPQCD, McNeile C, Davies CTH, Follana E, Hornbostel K, Lepage GP,

Phys. Rev. D82:034512 (2010), 1004.4285.
55. HPQCD, Allison I, et al., Phys. Rev. D78:054513 (2008), 0805.2999.
56. Bochkarev A, de Forcrand P, Nucl. Phys. B477:489 (1996), hep-lat/9505025.
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