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Abstract

We consider the problem of 20 questions with noisy answers, in which we seek to

find a target by repeatedly choosing a set, asking an oracle whether the target

lies in this set, and obtaining an answer corrupted by noise. Starting with a

prior distribution on the target’s location, we seek to minimize the expected

entropy of the posterior distribution. We formulate this problem as a dynamic

program and show that any policy optimizing the one-step expected reduction

in entropy is also optimal over the full horizon. Two such Bayes-optimal policies

are presented: one generalizes the probabilistic bisection policy due to Horstein

and the other asks a deterministic set of questions. We study the structural

properties of the latter, and illustrate its use in a computer vision application.
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1. Introduction

In this article, we consider the problem of finding a target X∗ ∈ Rd by asking a

knowledgeable oracle questions. Each question consists in choosing a set A ⊆ Rd,
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querying the oracle whether X∗ lies in this set, and observing the associated response.

While this is closely related to the popular game of “twenty questions”, we consider here

the case where answers from the oracle are corrupted with noise from a known model.

This game appears naturally in a number of problems in stochastic search, stochastic

optimization, and stochastic root finding. In this paper we present an illustrative

application in computer vision.

We consider a Bayesian formulation of this problem using entropy loss. In d = 1

dimension, we seek to minimize the expected entropy of the posterior after a fixed

number of questions and provide two Bayes optimal policies for this problem. The first

policy poses questions about intervals, A = [−∞, x], while the second poses questions

about more general sets. In d = 2 dimensions, we seek to minimize the maximum

expected entropy of the posterior in each dimension, and provide an asymptotically

Bayes optimal procedure.

When the noise corrupting the oracle’s responses is of a special form, that of a

symmetric channel, and when the questions A are restricted to be intervals, the Bayes

optimal policy for d = 1 takes a particularly natural form: choose A = [−∞, x] where

x is the median of the posterior distribution. This policy, called the probabilistic

bisection strategy, was first proposed in [13] (later republished in [14]). This policy

was recently shown to be optimal in the binary symmetric case by one of the authors

in [10]. [4] introduces a similar procedure that measures on either side of the median of

the posterior over a discrete set of points, and shows that its error probability decays

at an asymptotically optimal rate. For a review of these two procedures, see [5]. [15, 1]

also both consider a noisy binary search problem with constant error probability over

a discrete set of points, and give optimality results for policies similar to measuring at

the median of the posterior. In [15], this is part of a larger analysis in which the error

probability may vary. In addition to this type of stochastic noise, a parallel line of

research has considered the case when the oracle is adversarial. For a survey, see [20].

When the questions are restricted to be about intervals, the problem that we consider

is similar to the stochastic root-finding problem considered by the seminal paper [23]

and generalized to multiple dimensions by [3]. In the stochastic root-finding problem,

one chooses a sequence of points x1, x2, . . . to query, and observes the corresponding

values f(x1), f(x2), . . . of some decreasing function f at x, obscured by noise. The goal
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in this problem is to find the root of f . Procedures include the stochastic approximation

methods of [23, 3], as well as Polyak-Ruppert averaging introduced independently by

[24, 21]. Asymptotic rates of convergence of these procedures are well understood —

see [16]. Our problem and the stochastic root-finding problem are similar because, if

X∗ is the root of f , then querying whether X∗ is in (−∞, x] can be recast as querying

whether f(x) < 0. The problems differ because the noise in observing whether f(x) < 0

depends upon x and is generally larger when f(x) is closer to 0, while in our formulation

we assume that the distribution of the oracle’s response depends only on whether X∗

is in the queried subset or not.

Both our problem and stochastic root-finding lie within the larger class of problems

in sequential experimental design, in which we choose at each point in time which

experiment to perform in order to optimize some overall value of the information

obtained. The study of this area began with [22], who introduced the multi-armed

bandit problem later studied by [17, 2, 12, 30, 31] and others. For a self-contained

discussion of sequential experimental design in a Bayesian context, see [7].

After formulating the problem in Sec. 2, we provide a general characterization of the

optimal policy in Sec. 3. Then, Sec. 4 provides two specific optimal policies for d = 1,

one using intervals as questions that generalizes the probabilistic bisection policy, and

the other using more general subsets as questions that we call the dyadic policy. It

also provides further analysis of the dyadic policy: a law of large numbers and a

central limit theorem for the posterior entropy; and an explicit characterization of the

expected number of size-limited noise-free questions required to find the target after

noisy questioning ceases. Sec. 5 considers a modified version of the entropic loss in d = 2

dimensions, and shows that a simple modification of the dyadic policy is asymptotically

Bayes optimal for this loss function. Sec. 6 provides a detailed illustrative application

in computer vision, and Sec. 7 concludes the paper.

2. Formulation of the problem

Nature chooses a continuous random variable X∗ with density p0 with respect to

the Lebesgues measure over Rd. The fact that X∗ is continuous will turn out to be

important and the arguments presented below do not generalize easily to the case
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where X∗ is a discrete random variable.

To discover X∗, we can sequentially ask N questions. Asking the nth question,

0 ≤ n ≤ N −1, involves choosing a Lebesgues measurable set An ⊂ Rd and evaluating:

“Is X∗ ∈ An?”. To avoid technical issues below, we require that An is the union of

at most Jn intervals. The answer, denoted Zn, is the indicator function of the event

{X∗ ∈ An}. However, Zn is not openly communicated to us. Instead, Zn is the input of

a memoryless noisy transmission channel from which we observe the output Yn+1. Yn+1

is a random variable which can be discrete or continuous, univariate or multivariate.

The memoryless property of the channel expresses the fact that Yn+1 depends on Zn,

but not on previous questions or answers. As a consequence, repeatedly answering

the same question may not provide the same answer each time. Moreover, we assume

that the distribution of Yn+1 given Zn does not depend on n. Finally, the probability

distribution of Yn+1 given Zn is as follows:

P (Yn+1 = y|Zn = z) =

 f1(y) if z = 1

f0(y) if z = 0
(1)

Here, we lump together the cases where Yn+1 is a discrete and continuous random

variable (or vector). In both cases the analysis is very similar: in the former, f0

and f1 are point mass functions, while in the latter case, f0 and f1 are densities

and the expression on the left hand side of the equal sign is the value at y of the

conditional density of Yn+1 given Zn = z (with a slight abuse of notation). We

require that the Shannon entropy of f0 and f1 be finite. At any time step n, we may

characterize what we know about X∗ by recalling the history of previous measurements

(Am, Ym+1)n−1
m=0 or equivalently by computing the posterior density pn ofX∗ given these

measurements. The study of the stochastic sequences of densities pn, under different

policies, constitutes the main mathematical contribution of this paper. For an event

A, we will use the notation

pn(A) =

∫
A

pn(x)dx.

The posterior density pn+1 of X∗ after observing (Ym)n+1
m=1 is elegantly described as

a function of pn, f0, f1, the nth question An = A and the answer to this question

Yn+1 = y.
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Lemma 1. The posterior density on X∗ is given by

pn+1(u|An = A, Yn+1 = y, pn) =
1

Z
(f1(y)1u∈A + f0(y)1u 6∈A) pn(u),

where

Z = P (Yn+1 = y|pn, An = A) = f1(y)pn(A) + f0(y)(1− pn(A)) (2)

Proof. The result follows from the straightforward use of the Bayes formula. The

posterior pn+1(u|An = A, Yn+1 = y, pn) can be written as

1

Z
P (Yn+1 = y|pn, An = A,X∗ = u)P (X∗ = u|pn, An = A)

=
1

Z
(f1(y)1u∈A + f0(y)1u6∈A) pn(u)

where Z =
∫
u

(f1(y)1u∈A + f0(y)1u6∈A) pn(u)du.

We will measure the quality of the information gained about X∗ from these N

questions using the Shannon differential entropy. The Shannon differential entropy

(see [6] Chapter 9), or simply “the entropy” of pn, H(pn), is defined as

H(pn) = −
∫ +∞

−∞
pn(x) log pn(x)dx

where log is the logarithm in base 2. In particular, we consider the problem of finding

a sequence of N questions such that the expected entropy of X∗ after observing the

N th answer is minimized.

We will write this problem more formally as the infimum over policies of the expec-

tation of the posterior entropy, but before doing so we must formally define a policy.

Informally, a policy is a method for choosing the questions An as a function of the

observations available at time n. The technical assumption that each question An is a

union of only finitely many intervals ensures the Borel-measurability of H(pN ) under

each policy.

First, An is the union of at most Jn half-open intervals, and so may be written

An =

Jn⋃
j=1

[an,j , bn,j),

where an,j ≤ bn,j are elements of R = R ∪ {−∞,+∞}. If an,j = −∞ then the

corresponding interval is understood to be open on the left. If An comprises strictly
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less than Jn intervals then we may take an,j = bn,j for some j. When An is written

in this way, the space in which An takes values may be identified with the space

An = {(aj , bj) : j = 1, . . . , Jn, aj ≤ bj}, which is a closed subset of R2Jn
.

Then, with p0 fixed, pn may be identified with the sequence ((am,j , bm,j)
Jm
j=1, Ym+1)n−1

m=0,

which takes values in the space Sn = (A0×· · ·×An−1)×Rn. Furthermore, the function

pn 7→ H(pn) may be written as a measurable function from Sn to R.

Thus, after having identified possible values for An with points in An and possible

values for pn with points in Sn, we define a policy π to be a sequence of functions

π = (π0, π1, . . .), where πn : Sn 7→ An is a measurable function. We let Π be

the space of all such policies. Any such policy π induces a probability measure on

((an,j , bn,j)
Jn
j=1, Yn+1)N−1

n=0 . We let Eπ indicate the expectation with respect to this

probability measure. In a slight abuse of notation, we will sometimes talk of p ∈ Sn
and A ∈ An, by which we mean the density p assocatied with a vector in Sn, or the

set A associated with a vector in An.

With this definition of a policy π, the associated measure Eπ, and the space of all

policies Π, the problem under consideration may be written,

inf
π∈Π

Eπ[H(pN )] (3)

Any policy attaining the infimum is called optimal. We consider this problem for the

general case in Sec. 3, and for the specific cases of d = 1 and d = 2 in Sec. 4 and Sec. 5

respectively. In Sec. 5, we also consider a modification of this objective function that

separately considers the entropy of the marginal posterior distribution, and ensures

that both entropies are small. This prevents a policy from obtaining optimality by

learning one coordinate of X∗ without learning the other.

3. Entropy Loss and Channel Capacity

In this section we consider the problem (3) of minimizing the expected entropy of

the posterior over Rd. We present general results characterizing optimal policies, which

will be used to create specific policies in Sec. 4 and Sec. 5.

We first present some notation that will be used within our results. Let ϕ be the
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function with domain [0, 1] defined by

ϕ(u) = H(uf1 + (1− u)f0)− uH(f1)− (1− u)H(f0).

The channel capacity, denoted C, is the supremum of ϕ,

C = sup
u∈[0,1]

ϕ(u).

Below, in Theorem 1, we show that this maximum is attained in (0, 1). Let u∗ ∈ (0, 1)

be a point attaining this maximum, so ϕ(u∗) = C.

We show that an optimal policy consists of choosing each An so that pn(An) = u∗.

When the An are chosen in this way, the expected entropy decreases arithmetically by

the constant C at each step. Moreover, if the communication channel is symmetric

in the sense that ϕ(1 − u) = ϕ(u), ∀0 ≤ u ≤ 1, then u∗ = 1
2 . Optimal policies

constructed by choosing pn(An) = u∗ are greedy policies (or “knowledge-gradient”

policies as defined in [9]), since they make decisions that would be optimal if only one

measurement remained, i.e., if N were equal to n+ 1. Such greedy policies are usually

used only as heuristics, and so it is interesting that they are optimal in this problem.

Our analysis relies on dynamic programming. To support this analysis, we define

the value function,

V (p, n) = inf
π∈Π

Eπ[H(pN )|pn = p], p ∈ Sn, n = 0, . . . , N.

Standard results from controlled Markov processes show that this value function

satisfies Bellman’s recursion (Section 3.7 of [8]),

V (p, n) = inf
A∈An

E[V (pn+1, n+ 1)|An = A, pn = p], p ∈ Sn, n < N, (4)

and any policy attaining the minimum of (4) is optimal (Section 2.3 of [8]). In

general, the results of [8] for general Borel models imply only that V (·, n) : Sn 7→ R

is universally measurable, and do not imply Borel-measurability. However, we show

below in Theorem 2 that, in our case, V (·, n) : Sn 7→ R is a Borel-measurable function.

As a preliminary step toward solving Bellman’s recursion, we present the following

theorem, which shows that minimizing the expected entropy of the posterior one step

into the future can be accomplished by choosing An as described above. Furthermore,

it shows that the expected reduction in entropy is the channel capacity C.
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Theorem 1.

inf
A∈An

E[H(pn+1)|An = A; pn] = H(pn)− C. (5)

Moreover, there exists a point u∗ ∈ (0, 1) such that ϕ(u∗) = C, and the minimum in

(5) is attained by choosing A such that pn(A) = u∗.

Proof. We first rewrite the expected entropy as

E[H(pn+1) | An = A, pn] = H(pn)− I(X∗, Yn+1 | An = A, pn),

where I(X∗, Yn+1 | An = A, pn) is the mutual information between the conditional

distributions of X∗ and Yn+1 (see [6] Chapter 2), and we have noted that the entropy

of X∗ given An = A and pn is exactly H(pn). This leads to

inf
A∈An

E[H(pn+1) | An = A, pn] = H(pn)− sup
A∈An

I(X∗, Yn+1 | An = A, pn). (6)

Temporarily fixing A, we expand the mutual information as

I(X∗, Yn+1 | An = A, pn) = H(Yn+1 | An = A, pn)− E[H(Yn+1) | X∗, An = A, pn].

Using (2),

H(Yn+1 | An = A, pn) = H(pn(A)f1 + (1− pn(A))f0). (7)

Also,

E[H(Yn+1) | X∗, An = A, pn] =

∫
u

pn(u)H(Yn+1 | X∗ = u,An = A, pn)du

=

∫
u∈A

pn(u)H(f1)du+

∫
u6∈A

pn(u)H(f0)du

= H(f1)pn(A) +H(f0)(1− pn(A)). (8)

The difference between (7) and (8) is ϕ(pn(A)), and so I(X∗, Yn+1 | An = A, pn) =

ϕ(pn(A)). This and (6) together show that

sup
A∈An

I(X∗, Yn+1 | An = A, pn) = sup
A∈An

ϕ(pn(A)) = sup
u∈[0,1]

ϕ(u) = C.

This shows (5), and that the infimum in (5) is attained by any set A with ϕ(pn(A)) = C.

It remains only to show the existence of a point u∗ ∈ (0, 1), with ϕ(u∗) = C.

First, ϕ is a continuous function, so its maximum over the compact interval [0, 1]

is attained. If the maximum is attained in (0, 1), then we simply choose u∗ to be this
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point. Now consider the case when the maximum is attained at u ∈ {0, 1}. Because

ϕ is a mutual information, it is non-negative. Also, ϕ(0) = ϕ(1) = 0. Thus, if the

maximum is attained at u ∈ {0, 1}, then ϕ(u) = 0 for all u, and one can choose u∗ in

the open interval (0, 1).

We are ready now to present the main result of this section, which gives a simple

characterization of optimal policies.

Theorem 2. Any policy that chooses each An to satisfy

pn(An) = u∗ ∈ arg max
u∈[0,1]

ϕ(u) (9)

is optimal. In addition, for each n, the value function V (·, n) : Sn 7→ R is Borel-

measurable and is given by

V (pn, n) = H(pn)− (N − n)C. (10)

Proof. It is enough to show for each n = 0, 1, . . . , N that the value function is given

by (10), and that the described policy achieves the minimum in Bellman’s recursion

(4). Measurability of V (·, n) : Sn 7→ R then follows from the fact that pn 7→ H(pn) is

Borel-measurable when written as a function from Sn to R. We proceed by backward

induction on n. The value function clearly has the claimed form at the final time

n = N . Now, fix any n < N and assume that the value function is of the form claimed

for n+ 1. Then, Bellman’s recursion and the induction hypothesis show,

V (pn, n) = inf
A∈An

E[V (pn+1, n+ 1) | An = A, pn]

= inf
A∈An

E[H(pn+1)− (N − n− 1)C | An = A, pn]

= inf
A∈An

E[H(pn+1) | An = A, pn]− (N − n− 1)C (11)

= H(pn)− C − (N − n− 1)C

= H(pn)− (N − n)C

where we have used Theorem 1 in rewriting (11) in the next line. Theorem 1 also

shows that the infimum in (11) is attained when A satisfies pn(A) = u∗, and so the

described policy achieves the minimum in Bellman’s recursion.
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We offer the following interpretation of the optimal reduction in entropy shown in

Theorem 2. First, the entropy of a random variable uniformly distributed over [a, b]

is log(b − a). The quantity 2H(X) for a continuous random variable X can then be

interpreted as the length of the support of a uniform random variable with the same

entropy as X. We refer to this quantity more simply as the “length of X.” If the

prior distribution of X∗ is uniform over [0, 1], then the length of X∗ under p0 is 1 and

Theorem 2 shows that the expected length of X∗ under pN is no less than 2−CN , where

this bound on the expected length can be achieved using an optimal policy.

We conclude this section by discussing u∗ and C in a few specific cases. In general,

there is no simple expression for u∗ and for C. However, in certain symmetric cases

the following proposition shows that u∗ = 1
2 .

Proposition 1. If the channel has the following symmetry

ϕ(u) = ϕ(1− u),∀0 ≤ u ≤ 1

then 1
2 ∈ arg maxu∈[0,1] ϕ(u) and we may take u∗ = 1

2 .

Proof. Let u′ be a maximizer of ϕ(u). It might be equal to u∗, or if there is more

than one maximizer, it might differ. Note that 1
2 = 1

2u
′ + 1

2 (1 − u′). ϕ is concave

([6] Chapter 2, Theorem 2.7.4), implying ϕ( 1
2 ) ≥ 1

2ϕ(u′) + 1
2ϕ(1 − u′). Now, using

ϕ(u′) = ϕ(1− u′), we obtain ϕ( 1
2 ) ≥ ϕ(u′), which concludes the proof.

A few simple channels with expressions for u∗ and C are presented in Table 1. In

the multivariate normal case, one can directly check that ϕ(1− u) = ϕ(u), 0 ≤ u ≤ 1

and conclude that u∗ = 1
2 using Proposition 1.

4. 1-Dimensional Optimal Policies

We now present two specific policies in d = 1 dimension that satisfy the sufficient

conditions for optimality given in Theorem 2: the probabilistic bisection policy, and

the dyadic policy. After defining these two policies in Sections 4.1 and 4.2, we study

the sequence of entropies (H(pn) : n ≥ 1) that they generate, focusing on the dyadic

policy. In addition to Theorem 2, which shows that Eπ[H(pn)] = H(p0)− nC for any

optimal policy π, the analysis of the dyadic policy in Sec. 4.2 provides a strong law of
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Channel Model Channel Capacity u∗

Binary Symmetric

0 1

f0 1− ε ε

f1 ε 1− ε

1− h(ε) 1
2

Binary Eraser

0 1 e

f0 1− ε 0 ε

f1 0 1− ε ε

1− ε 1
2

Z

0 1

f0 1 0

f1 ε 1− ε

h(u∗(1− ε))− u∗h(ε) 1/(1−ε)
1+eh(ε)/(1−ε)

Multivariate Normal f0 ∼ N(m0,Σ)

f1 ∼ N(m1,Σ)
Not analytical 1

2
Symmetric

Table 1: Channel capacity, and the value u∗ at which the channel capacity is achieved

large numbers and a central limit theorem for H(pn). In further analysis of the dyadic

policy, Sec. 4.3 analyzes the number of size-limited noise-free questions required to find

X∗ after noisy questioning with the dyadic policy ceases, which is a metric important

in the application discussed in Sec. 6.

To support the analysis in Sections 4.1 and 4.2, we first give here a general expression

for the one-step change in entropy, H(pn+1) − H(pn), under any policy π satisfying

pn(An) = u∗. First, we define two densities:

p+
n (x) =


pn(x)
u∗ , if x ∈ An,

0, if x ∈ Ān,
p−n (x) =


pn(x)
1−u∗ , if x ∈ Ān,

0, if x ∈ An,
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where Ān is the complement of An. Their entropies are respectively,

H(p+
n ) = log u∗ − 1

u∗

∫
An

pn(x) log pn(x)dx,

H(p−n ) = log(1− u∗)− 1

1− u∗

∫
Ān

pn(x) log pn(x)dx,

and H(pn) = u∗H(p+
n ) + (1 − u∗)H(p−n ) + h(u∗), where h(u∗) is the entropy of a

Bernouilli random variable with parameter u∗, denoted B(u∗). Using Lemma 1, for a

given observation Yn+1 = y, we have

H(pn+1) = logZ − pn+1(An) log f1(y)− pn+1(Ān) log f0(y)

− 1

Z
f1(y)

∫
An

pn(x) log pn(x)dx− 1

Z
f0(y)

∫
Ān

pn(x) log pn(x)dx

= logZ − 1

Z
uf1(y) log f1(y)− 1

Z
(1− u)f0(y) log f0(y)

− 1

Z
u∗f1(y)(log u∗ −H(p+

n ))− 1

Z
(1− u∗)f0(y)(log(1− u∗)−H(p−n )).

Expanding and rearranging, we obtain,

H(pn+1)−H(pn) = −D
(
B

(
u∗f1(y)

Z

)
, B(u∗)

)
+
u(1− u∗)

Z
(f1(y)− f0(y))(H(p+

n )− log u∗ −H(p−n ) + log(1− u∗)), (12)

where D is the Kullback-Leibler divergence.

Under an optimal policy, the density of Yn+1 is the mixture of densities u∗f1 + (1−

u∗)f0 according to Lemma 1, and the random variables Y1, Y2, . . . are i.i.d.

4.1. Probabilistic Bisection Policy

We first consider the case when questions are limited to intervals A = (−∞, a),

a ∈ R. This limitation appears naturally in applications such as stochastic root-finding

[23] and signal estimation [5]. In this case, an optimal policy consists of choosing an

such that
∫ an
−∞ pn(x)dx = u∗. Such an an always exists but is not necessarily unique.

When the model is symmetric, u∗ = 1
2 , and an is the median of pn. This policy of

measuring at the median of the posterior is the probabilistic bisection policy introduced

by [13]. Thus, the optimal policy with interval questions and general channels is a

generalization of the probabilistic bisection policy, and we continue to refer to it as the

probabilistic bisection policy even when u∗ 6= 1
2 .
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We briefly consider the behavior of (H(pn) : n ≥ 1) under the probabilistic bisection

policy. We assume a binary symmetric channel with noise parameter ε. Recall that

u∗ = 1
2 in this case, and

D

(
B

(
f1(Yn+1)

2Z

)
, B

(
1

2

))
= 1− h(ε).

Moreover,

H(pn+1)−H(pn) = h(ε)− 1 +

(
1

2
− ε
)
Wn+1(H(p+

n )−H(p−n ),

where the Wn are i.i.d Rademacher random variables. In this situation, even when p0

is the density of the uniform distribution over the interval [0, 1], the behavior of the

process H(pn) can be complicated. A simulation of H(pn) is presented in Fig. 1. The

variance of H(pn) increases with n at a high rate. This high degree of variation may be

disadvantageous in some applications, and we do not pursue the probabilistic bisection

policy further in this paper.

4.2. Dyadic Policy

Consider now the situation where all sets in An are available as questions, and p0

is piecewise constant with finite support. Let I = {Ik : k = 0, . . . ,K − 1} be a finite

partition of the support of p0 into intervals such that p0 is constant and strictly positive

in each of these intervals. We assume that each interval Ik is closed on the left and

open on the right, so Ik = [ak, bk) with ak ∈ R and bk ∈ R. This assumption is without

loss of generality, because if it is not met, we can alter the prior density p0 on a set

of Lebesgue measure 0 (which does not change the corresponding prior probability

measure) to meet it. We also assume that the constants Jn used to construct An
satisfy Jn ≥ 2n+1K. If this restriction is not met, then we are free to increase Jn in

most applications.

For each k = 0, . . . ,K − 1 we partition Ik into two intervals, A0,2k and A0,2k+1, as

follows:

A0,2k = [a0,2k, b0,2k) = [ak, ak + u∗(bk − ak)),

A0,2k+1 = [a0,2k+1, b0,2k+1) = [ak + u∗(bk − ak), bk).
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Figure 1: The process H(pn) for the binary symmetric channel. Top: The questions are

the intervals (−∞,Median(pn)]. p0 is Uniform([0, 1]). Top Left: ε = 0.2, C = 0.28. Top

Right: ε = 0.4, C = 0.03. Bottom: The questions are chosen according to the dyadic

policy. Bottom Left: binary symmetric channel ε = 0.2 Bottom Right: Normal channel.

f0 ∼ N(−1, 1), f1 ∼ N(1, 1). C = 0.47.
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A0,0 A0,1

A1,0 A1,1 A1,2 A1,3

A2,0 A1,1 A2,2 A2,3 A2,4 A2,5 A2,6
A2,7

p0(x)

x0 1

n = 0

n = 1

n = 2

prior

Figure 2: Illustration of the dyadic policy when p0 is uniform on [0, 1] and u∗ = 5/8. The

prior is displayed on top. Below, the sets An,k are illustrated for n = 0, 1, 2. Each question

An is the union of the dark grey subsets An,k for that value of n.

With this partition, the mass p0(A0,2k) = u∗ p0(Ik). The question asked at time 0 is

A0 =

K−1⋃
k=0

A0,2k,

and p0(A0) = u∗.

We use a similar procedure recursively for each n = 0, 1, . . . to partition each An,k

into two intervals, An+1,2k and An+1,2k+1, and then construct the question An+1 from

these partitions. Let Kn = 2n+1K and for k = 0, . . . ,Kn − 1 define

An+1,2k = [an+1,2k, bn+1,2k) = [an,k, an,k + u∗(bn,k − an,k)),

An+1,2k+1 = [an+1,2k+1, bn+1,2k+1) = [an,k + u∗(bn,k − an,k), bn,k).

Then from these, we define the question to be asked at time n+ 1,

An+1 =

Kn−1⋃
k=0

An+1,2k.

This construction is illustrated in Fig. 2.

Observe pn+1(An+1,2k) = u∗ pn+1(An,k) implies pn+1(An+1) =
∑Kn−1
k=0 u∗ pn+1(An,k) =

u∗ because {An,k : k = 0, . . . ,Kn−1} is a partition of the support of p0. Thus, this con-

struction satisfies pn(An+1) = u∗, and is optimal. In addition, the setsA0, . . . , An−1 are

constructed without knowledge of the responses, and thus this policy is non-adaptive.

This is useful in applications allowing multiple questions to be asked simultaneously.
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We call this policy the dyadic policy because each question is constructed by dividing

the previous question’s intervals into two pieces.

We now provide an analysis that leads to a law of large numbers and a central limit

theorem for H(pn) under this policy when n is large. Under the dyadic policy, we have

H(p+
n ) = H(pn) + log u∗ and H(p−n ) = H(pn) + log(1− u∗),

which implies, using (12), that

H(pn+1)−H(pn) = −D
(
B

(
u∗f1(Yn+1)

u∗f1(Yn+1) + (1− u∗)f0(Yn+1)

)
, B(u∗)

)
, (13)

where Yn is, as already stated, a sequence of i.i.d random variables with density the

mixture u∗f1 + (1−u∗)f0. We read from (13) that H(pn) is, in this case, a sum of i.i.d

random variables. Moreover, each one is bounded above and below. Indeed,

0 ≤ D
(
B

(
u∗f1(Yn+1)

u∗f1(Yn+1) + (1− u∗)f0(Yn+1)

)
, B(u∗)

)
≤ max(D(B(0), B(u∗)), D(B(1), B(u∗))),

implying the bound

min(log(u∗), log(1− u∗)) ≤ H(pn+1)−H(pn) ≤ 0. (14)

This proves the following theorem.

Theorem 3. For any piecewise constant p0, using the dyadic policy,

lim
n→∞

H(pn)

n
= −C a.s. (15)

and

lim
n→∞

H(pn) + nC√
n

D
= N(0, σ2), (16)

where σ2 is the variance of the increment H(pn+1)−H(pn), and can be computed from

the distribution given in (13). A degenerate situation occurs for the binary symmetric

channel with noise ε. In this case, the sequence H(pn) = H(p0)− nC is constant.

The dyadic policy is illustrated in the bottom graphs of Fig 1. H(pn) is plotted as

a function of n. The binary symmetric channel model with ε = 0.2 is shown on the

bottom left. The sequence H(pn) is constant, in sharp contrast with the behavior of

H(pn) for the same model under the probabilistic bisection policy, shown on the top

left of the same figure. Finally, a Normal channel is presented on the bottom right.
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4.3. Expected number of noise-free questions

Throughout this article we have proposed optimal policies in order to reduce the

expected entropy of the posterior distribution over X∗. It remains to measure how this

will permit us to better estimate X∗, which often is the practical goal.

In this section, we investigate a setting addressing this issue. Suppose that, in

addition to the noisy questions previously discussed, we also have the ability to ask

a noise-free oracle whether X∗ lies in a given set, where the sets about which we can

ask noise-free questions come from some restricted class, e.g., their size is below a

threshold. This situation occurs in the example considered in Sec. 6, where the sets

about which we can ask noise-free questions correspond to pixels in an image. We

suppose that after a fixed number N of noisy questions, we query sets using the noise-

free questions until we find X∗. The loss function that arises naturally in this situation

is the expected number of noise-free questions until X∗ is found.

Given a posterior pN that results from the first stage of noisy questions, the optimal

way in which to ask the noise-free questions is to first sort the available sets about which

noise-free questions can be asked, in decreasing order of their probability of containing

X∗ under pN . Then, these sets should be queried in this order until X∗ is found. Note

that observing that X∗ is not in a particular set alters the probability of the other

sets, but does not change the order of these probabilities. Thus it is sufficient to ask

the noise-free questions in an order that depends only upon pN , and no subsequent

information.

We consider the binary symmetric channel with a uniform p0, and give an explicit

expression for the expected number of noise-free questions required after the dyadic

policy completes. We assume that the sets about which we can ask noise-free questions

evenly subdivide each interval AN−1,k, for k = 0, . . . , 2N − 1. That is, each interval

AN−1,k has some fixed number ` of equally sized sets about which we can ask noise-free

questions. We refer here to AN−1,k more simply as Bk.

Each Bk has some corresponding number Mk of questions to which the oracle has

responded that X∗ ∈ Bk, either because Bk ⊆ An and Yn = 1, or because Bk ⊆ I \An
and Yn = 0.

Each time the oracle indicates that X∗ ∈ Bk, we multiply the posterior density on
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Bk by 2(1 − ε), and each time the oracle indicates that X∗ /∈ Bk we multiply by 2ε.

Since the prior density was |I|−1, the posterior density on Bk after all N measurements

is

|I|−12N (1− ε)MkεN−Mk .

Since Mk depends on the oracle’s responses, it is random. However, for each m ∈

{0, . . . , N}, the number of k with Mk = m is deterministic and is equal to
(
N
m

)
. This

is shown in the following proposition.

Proposition 2. For fixed N and any m ∈ {0, . . . , N}, the number of sets Bk with

Mk = m is
(
N
m

)
.

Proof. Fix N . For each k ∈ {0, . . . , 2N − 1}, let bkn = II{Bk ⊆ An}, and define the

binary sequence bk = (bk1, . . . , bkN ). By construction of the sets Bk, each bk is unique.

Since there are 2N possible binary sequences of N bits, and 2N sets Bk, the mapping

between Bk and bk is a bijection.

Consider a sequence of responses from the oracle, Y1, . . . , YN . For each bk define a

subset Dk = {n ∈ {1, . . . , N} : bkn = Yn}. Each bk defines a unique subset Dk. Since

there are 2N subsets and 2N sequences bk, each subset D ⊆ {1, . . . , N} is equal to

some Dk. Thus, the mapping between bk and Dk is a bijection.

Because Mk = |Dk|, the number of k with Mk = m is equal to the number of subsets

D ⊆ {1, . . . , N} of size m. This number is exactly
(
N
m

)
.

Thus, the number of Bk with any given posterior density |I|−12N (1 − ε)mεN−m is

deterministic. Because the expected number of noise-free questions required to find

X∗ depends only upon the posterior probability density after sorting, this quantity is

also deterministic. Fig. 3(a) shows this sorted probability distribution for particular

values of N and ε.

The expected number of questions before finding X∗ in this procedure can be

calculated as follows. We first observe that, if we have a collection of disjoint subsets

C1, . . . , CK , each with equal probability 1/K of containing X∗, and we query each

subset in order of increasing index until we find X∗, then we ask k questions when

X∗ ∈ Ck and the expected number of questions asked is

K∑
k=1

kP{X∗ ∈ Ck} =

K∑
k=1

k/K = (K + 1)/2.
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We now observe that X∗ has probability(
N

m

)
(1− ε)mεN−m

of being in a subset Bk with Mk = m (this is because there are
(
N
m

)
such intervals, and

each has size 2−N |I|). Recalling that the number of available questions within a set

Bk is notated `, the expected number of noise-free questions, conditioned on X∗ being

in a subset Bk with Mk = m, is(
N
m

)
`+ 1

2
+

N∑
m′=m+1

(
N

m′

)
`,

where the first term is the number of questions asked in subsets with Mk = m, and the

second term is the number asked in subsets with Mk > m (these subsets had a strictly

higher density pN (x), and were queried earlier).

Thus, the expected total number of noise-free questions is

N∑
m=0

(
N

m

)
(1− ε)mεN−m

[(
N
m

)
+ 1/`

2
+

N∑
m′=m+1

(
N

m′

)]
`. (17)

Using this expression, we may consider the effect of varying N . Suppose one has

a fixed collections of sets about which noise-free questions may be asked, as in the

example in Sec. 6 where these sets correspond to pixels in an image. Take I = [0, 1]

and suppose each pixel is of size 2−L and occupies a region [k2−L, (k+1)2−L] for some

k = 0, . . . , 2L. If sets Bk must contain integer numbers of pixels, then we may naturally

consider any N between 0 and L. For any such N , the number of pixels ` in a subset

Bk is ` = 2L−N .

From the expression (17) one can then compute the expected number of noise-free

questions that will need to be queried as a function of N . This is shown in Fig. 3(b)

for L = 16 and ε = 0.3. The figure shows a dramatic decrease in the expected number

of noise-free questions as the number of noisy questions increases.

5. Optimal Policies in 2 Dimensions with Entropy Loss

We now consider the case d = 2, in which X∗ is a two-dimensional random variable,

X∗ = (X∗1 , X
∗
2 ), with joint density p0. To minimize the expected entropy E[H(pN )] of
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Figure 3: (a) The posterior density pN for the binary symmetric channel with the dyadic

policy, with subsets Ak,N sorted in order of decreasing posterior density pN (x), and N = 5.

(b) The expected number of noise-free questions as a function of N , for a fixed collection of

216 subsets about which noise-free questions may be asked. In both panels, ε = 0.3.

the two-dimensional posterior distribution on X∗ at time N , Theorem 2 from Section 3

shows it is optimal to use any policy satisfying pn(An) = u∗.

While the objective function E[H(pN )] is natural in d = 1 dimension, it has a

drawback in d = 2 and higher dimensions. This is well illustrated using an example.

Assume that X∗1 and X∗2 are independent and uniformly distributed over intervals of

lengths s1 and s2 respectively. Then H(p) = log(s1s2). In this case, H(p) can be

arbitrarily small even if the entropy of one of the marginal densities remains large, e.g.

s2 = 1.

This leads us to consider objective functions without this drawback. For example, we

might wish to solve infπ E
π [max (H1(pN ), H2(pN ))] whereH1(pN ) = H(

∫
pN ( · , u2) du2)

and H2(pN ) = H(
∫
pN (u1, · ) du1) are the entropies of the marginals. However,

solving this problem directly seems out of reach. Instead, we focus on reducing

Eπ[max (H1(pN ), H2(pN ))] at an asymptotically optimal rate by solving

V (p) = inf
π

lim inf
N→∞

1

N
Eπ[max (H1(pN ), H2(pN )) |p0 = p]. (18)

We use the lim inf to include policies for which the limit might not exist. Throughout

this section, we assume that both H1(p0) and H2(p0) are finite.
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For further simplification, we assume that questions concern only one coordinate.

That is, the sets queried are either of type 1, An = B × R where B is a finite union

of intervals of R, or alternatively of type 2, An = R × B. In each case, we assume

that the response passes through a memoryless noisy channel with densities f
(1)
0 and

f
(1)
1 for questions of type 1, and f

(2)
0 and f

(2)
1 for questions of type 2. We also assume

that p0 is a product of its marginals. This guarantees that pn for all n > 0 remains a

product of its marginals and that only one marginal distribution is modified at each

point in time. This is shown by the following lemma.

Lemma 2. Assume pn(u1, u2) = p
(1)
n (u1) p

(2)
n (u2) and we choose a question of type 1

with An = B × R. Then, given Yn+1 = y,

pn+1(u1, u2) =
1

Z1

(
f

(1)
1 (y)1{u1∈B} + f

(1)
0 (y)1{u1 6∈B}

)
p(1)
n (u1) p(2)

n (u2),

where Z1 = P (Yn+1 = y | pn, An = B × R) = f
(1)
1 (y) p

(1)
n (B) + f

(1)
0 (y)(1− p(1)

n (B)).

Similarly, if we choose a question of type 2 with An = R×B then

pn+1(u1, u2) =
1

Z2

(
f

(2)
1 (y)1{u2∈B} + f

(2)
0 (y)1{u2 6∈B}

)
p(2)
n (u2) p(1)

n (u1)

where Z2 = P (Yn+1 = y | pn, An = B × R) = f
(2)
1 (y) p

(2)
n (B) + f

(2)
0 (y)(1− p(2)

n (B)).

Proof. The proof is straightforward using Bayes formula, and is similar to the proof

of Lemma 1 from the 1-dimensional case.

In the 2-dimensional setting, any policy can be understood as making two decisions

at each time n. The first decision is which coordinate to query, that is, whether to ask

a question of type 1 or type 2. Given this choice, the second decision is which question

of this type to ask, which corresponds to a finite union of intervals of R. As before,

these decisions may depend only upon the information gathered by time n, for which

the corresponding sigma-algebra is Fn. For N > 0, let SN be the number of questions

of type 1 answered by time N . That is, SN is the number of n ∈ {0, . . . , N − 1} such

that An is of the form An = B × R. We take S0 = 0.

We first present a lower bound on the expected decrease in the entropy of each

marginal posterior distribution.
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Lemma 3. Under any valid policy π,

Eπ[H1(pn)] ≥ H1(p0)− C1E
π[Sn],

Eπ[H2(pn)] ≥ H2(p0)− C2(n− Eπ[Sn]).

Proof. Define M
(1)
n = H1(pn) + C1Sn and M

(2)
n = H2(pn) + C2(n − Sn). We will

show that M (1) and M (2) are sub-martingales. Focusing first on M (1), we calculate,

Eπ[M
(1)
n+1 | Fn] = Eπ[H1(pn+1) | Fn] + C1Sn+1

since Sn+1 is Fn-measurable. We consider two cases. First, if Sn+1 = Sn (which occurs

if An is of type 2) then H1(pn+1) = H1(pn) and the Fn-measurability of H1(pn) implies

Eπ[M
(1)
n+1 | Fn] = M

(1)
n . Second, if Sn+1

n = Sn + 1 (which occurs if An is of type 1),

then Theorem 2 implies

Eπ[H1(pn+1) | Fn] ≥ H1(pn)− C1.

Hence,

Eπ[M
(1)
n+1 | Fn] ≥ C1(Sn + 1) +H1(pn)− C1 = M (1)

n ,

which shows that M
(1)
n is a sub-martingale. The proof is similar for M

(2)
n .

Now, becauseM
(1)
n is a sub-martingale, Eπ[M

(1)
n ] ≥M (1)

0 , which implies Eπ[H1(pn)] ≥

H1(p0)− C1E
π[Sn]. Proceeding simlarly for M

(2)
n concludes the proof.

Consider the following policy, notated π∗. At step n, choose the type of question at

random, choosing type 1 with probability C2

C1+C2
and type 2 with probability C1

C1+C2
.

Then, in the dimension chosen, choose the subset to be queried according to the 1-

dimensional dyadic policy.

We show below in Theorem 4 that π∗ is optimal for the objective function (18).

Before presenting this result, which is the main result of this section, we present an

intermediate result concerning the limiting behavior of π∗. This intermediate result is

essentially a strong law of large numbers for the objective function (18).

Lemma 4. Let

TN =
1

N
max(H1(pN ), H2(pN )),

Under π∗, as N →∞,

TN → −
C1C2

C1 + C2
a.s. (19)
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Moreover there is a constant K such that |TN | < K for all N .

Proof. Recall that SN is the number of questions of type 1 answered by time N ,

so SN/N → C2/(C1 + C2) a.s. The law of large numbers established in (15) for the

one-dimensional posterior shows H1(pN )/SN → −C1 a.s. Combining these two facts

shows H1(pN )/N → −C1C2/(C1 + C2) a.s. By a similar argument, H2(pN )/N →

−C1C2/(C1 + C2) a.s., which shows (19).

We now show the bound on |TN |. Using π∗, according to (14),

H1(pN ) = H1(p0) +

N∑
n=1

Zn,

where Zn are independent bounded random variables and |Zn| ≤ |min(log(u), log(1−

u))| = β. As a consequence, for any N ≥ 1,∣∣∣∣H1(pN )

N

∣∣∣∣ ≤ |H1(p0)|+ β.

The same is true for H2(pN ), which proves there is a constant K such that |TN | < K.

We now present the main result of this section.

Theorem 4. The policy π∗ is optimal with respect to (18). Moreover, the optimal

value is, for any p0, with H(p0) <∞,

V (p0) = − C1C2

C1 + C2
(20)

Proof. First we show that the value in (20) constitutes a lower bound for V (p0).

Second, we show (20) is an upper bound on V (p0) using the properties of the policy

π∗ presented in the Lemma 4.

V (p0) ≥ inf
π

lim inf
N→∞

1

N
max(Eπ[H1(pN )], (Eπ[H1(pN )])

≥ inf
π

lim inf
N→∞

1

N
max(H1(p0)− E[SN ]C1, H2(p0)− (N − E[SN ])C2)

= inf
0≤a≤1

max(−aC1,−(1− a)C2)

= − C1C2

C1 + C2
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We obtain the first line using Jensen inequality, the second line using Lemma 3, the

third line by choosing a = lim infn→∞E[SN ]/N and the fourth line by recalling that

C1 > 0 and C2 > 0.

Now, the other equality,

V (p0) ≤ lim inf
N→∞

Eπ
∗
[
max

(
H1(pN )

N
,
H2(pN )

N

)]
= Eπ

∗
[
max

(
lim inf
N→∞

H1(pN )

N
, lim inf
N→∞

H2(pN )

N

)]
= − C1C2

C1 + C2

The uniform bound on TN from Lemma 4 is sufficient to justify the exchange between

the limit and the expected value in going from the first to the second line.

We remark as an aside that in the case where C1 = C2, this policy is also optimal for

the value function (3) since it verifies (10).

We conclude this section by providing a central limit theorem for the objective under

this policy π∗.

Theorem 5. Under π∗,

lim
n→∞

1√
n

[
max(H1(pn), H2(pn)) +

C1C2

C1 + C2
n

]
D
=

max
(
σ1

√
C2Z1, σ2

√
C1Z2

)
√
C1 + C2

. (21)

Here, Z1 and Z2 are independent standard normal random variables, and σ2
i is the vari-

ance of the increment of Hi(pn+1)−Hi(pn) when measuring type i, whose distribution

is given by (13).

Proof. For i = 1, 2, let Sn,i be the number of questions of type i answered by time

n, so Sn,1 = Sn and Sn,2 = n − Sn. Let ts,i = inf{n : Sn,i = s} for s = 0, 1, . . ..

Then t0,i = 0 and {ts,i : s = 1, 2, . . .} are the times when questions of type i are

answered. Thus, each stochastic process {Hi(pts,i) : s = 0, 1, . . .} for i = 1, 2 has a

distribution identical to that of the entropy of the one-dimensional posterior under the

dyadic policy. In addition, the two stochastic processes are independent.

The central limit theorem established in (16) shows

lim
s→∞

Hi(pts,i) + sCi√
s

D
= σiZi,

where each Zi is a standard normal random variable and Z1 is independent of Z2.

From the definition of ts,i,

lim
s→∞

Hi(pts,i) + sCi√
s

D
= lim
n→∞

Hi(pn) + Sn,iCi√
Sn,i
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Let j = 1 when i = 2, and j = 2 when i = 1. Then limn→∞ Sn,i/n = Cj/(C1 + C2)

a.s. and

lim
n→∞

Hi(pn) + Sn,iCi√
Sn,i

D
= lim
n→∞

Hi(pn) + n C1C2

C1+C2√
n

√
C1 + C2

Cj
.

These three facts imply,

lim
n→∞

Hi(pn) + n C1C2

C1+C2√
n

D
=

√
Cj

C1 + C2
σiZi.

This shows the expression (21) for the limit.

6. LATEX Character Localization

In this section we present an application of the dyadic policy to a well-established

problem in computer vision: object localization. While the probabilistic bisection

policy has already been applied in computer vision, see [11, 26], the dyadic policy has

not, and we feel that it offers considerable promise in this application area.

In the object localization problem, we are given an image and a known object,

and must output parameters that describe the pose of the object in the image. In

the simplest case, the pose is defined by a single pixel, but more complex cases can

include, e.g. a rotation angle, a scale factor or a bounding box. Machine learning

techniques have led to the development of classifiers that, given a specific pose, provide

accurate answers to the binary question “Is the object in this pose?” Classifiers such

as Support Vector Machines [27] and boosting [25] are combined with discriminant

features, e.g. [19], to provide the most accurate algorithms, [29, 28]. To find the

object’s pose within an image, classifiers are evaluated at nearly every possible pose,

which is computationally costly. We demonstrate that using the dyadic policy rather

than this brute force approach considerably reduces this computational cost. Although

a detailed comparison would be beyond the scope of the illustrative example we present

here, the branch and bound algorithm used in [18] is an alternative methodology for

reducing computational cost in object localization.

6.1. LATEX Character Images, Noisy Queries, and Model Estimation

The task we consider is localizing a specific LATEX character in a binary image. In

this setting, an image is a binary matrix I ∈ {0, 1}m×m, where the image has m rows
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Figure 4: From left to right: Example of an image containing the character “T”. Examples

of subset-based questions. In each image, we show the queried region by the gray area,

respectively A1
2, A2

2 and A3
1.

and m columns. A LATEX character is another smaller binary image J ∈ {0, 1}j×j ,

where j < m. We present experiments where the character of interest, or pattern, is

the letter “T”. We assume that the pattern is always present in the image, and fully

visible (i.e. not occluded by other objects or only partially visible in the image).The

goal is to find the location X∗ = (X∗1 , X
∗
2 ) of the pixel at the upper left corner of the

pattern within the image.

We generated 1000 images, each of size 256 × 256 pixels. Each image has a black

background (i.e. pixel values of zero), and contains a single fully visible “T” at a

random location in the image. This “T” is a binary image of size 32 × 32 pixels (see

Fig. 4(a)). Noise is added to the image by flipping each pixel value independently

with probability 0.1. We then randomly assign each image into one of two sets of

approximately equal size: one for training and the other for testing. The training set is

used to learn the noise model as described below, and the testing set is used to evaluate

the performance of the algorithm.

In this task, querying a set A corresponds to asking whether the upper left corner

of the “T” resides in this set. We use a simple image-processing technique to provide

a noisy answer to this question. The technique we use is chosen for its simplicity,

and other more complex image-processing techniques might produce more informative

responses, improving the overall performance of the algorithm.

In describing this technique, we first observe that all the images are of size 256×256

pixels and so any pixel coordinate can be represented in base 2 using two 8-bit strings,

or octets. For example, the pixel with column-row location (32,14) is represented by
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(00100000, 00001110). We define 16 sets of pixels. Let Ai1, i = 1 . . . , 8 be the set

of pixels whose column pixel coordinate has a 1 for its ith bit. Similarly, let Ai2,

i = 1, . . . , 8 be the set of pixels whose row pixel coordinate has a 1 for its ith bit.

Fig. 4 (b-d) show the sets A1
1, A

2
1 and A3

2, respectively. For any given image I and set

Aij , we define the response

y(Aij) =
∑
x∈Aij

I(x)−
∑
x 6∈Aij

I(x) (22)

where I(x) ∈ {0, 1} is the binary image’s value at pixel x. The motivation for using

the response defined by (22) is that y(Aij) is more likely to be large when Aij contains

the “T”.

Although the response y(Aij) is entirely determined by the image I and the location

of the “T” within it, our algorithm models the response using a noise model of the

form (1). For simplicity, we assume that both the density f1 of y(A) when A contains

the “T”, and the density f0 of y(A) when A does not contain the “T”, are normal

with respective distributions N(µ, σ2) and N(−µ, σ2). The training set is used to

estimate these parameters, leading to µ = 64.76 and σ = 105.7. Because the model is

symmetric, u∗ = 0.5. The channel capacity is estimated with Monte Carlo integration

to be C = 0.23.

6.2. Prior, Posterior, and Algorithm

We let X∗ = (X∗1 , X
∗
2 ), X∗1 ∈ [0, 255] and X∗2 ∈ [0, 255], with p0 uniform over the

domain of X∗. Since the sets Aij constrain only one coordinate, the posterior over X∗

is a product distribution as was discussed in Sec. 5. The posterior for each coordinate

j = 1, 2 was computed in Lemma 2. We now specialize to the model at hand using the

notation ∝ to define equality up to a term that does not depend on xj .

p
(j)
8 (xj) ∝

8∏
i=1

(f1(yij)1xj∈Aij + f0(yij)1xj 6∈Aij )

log p
(j)
8 (xj) ∝

∑
i:xj∈Aij

log
f1(yij)

f0(yij)
∝

∑
i:xj∈Aij

yij

The algorithm has two phases: (i) the noisy query phase; and (ii) the noise-free

query phase. The noisy query phase comes first, and uses the dyadic policy to obtain
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a posterior distribution on X∗. The implementation of this noisy query phase is

facilitated by the non-adaptive nature of the dyadic policy’s questions, which allows us

to compute the answers to the questions all at once. The noise-free query phase then

uses the posterior resulting from the first phase, together with a sequence of size-limited

noise-free questions, to determine the exact location of X∗.

Noisy Query Phase: Given an image I, we begin by computing y(Aij) = yij , for each

j = 1, 2, and i = 1, . . . , 8. We then compute `(x) for each pixel x, which is proportional

to the logarithm of the posterior density at x,

`(x) =
∑
i:x∈Ai1

yi1 +
∑
i:x∈Ai2

yi2.

Fig. 5(top) shows example images from our test set, while (bottom) shows the corre-

sponding `-images, in which the value of `(x) is plotted for each pixel. Dark regions of

the `-image indicate pixels with large `(x), which are more likely to contain the “T”.

Noise-free Query Phase: We sort the pixels in decreasing order of `(x). We then

sequentially perform noise-free evaluations at each pixel x in this order until the true

pixel location X∗ is found. To perform a noise-free evaluation at a given pixel, we

compare the “T” pattern with the 32× 32 pixel square from the image with upper left

corner at x to see if they match. When X∗ is found, we stop and record the number

of noise-free evaluations performed.

6.3. Results

We validated the algorithm above by evaluating it on the test set described in

Sec. 6.1. To do this, we ran the algorithm on each image and recorded the number

of noise-free evaluations required to locate the target character. The results described

below (i) demonstrate that the dyadic policy significantly reduces the number of noise-

free evaluations required to locate the “T” character, and (ii) allows us to visualize the

results summarized in (10), (15) and (16) within the context of this application.

Recall that each image has 256 × 256 = 65, 536 pixels. Over 500 test images,

the mean, median and standard deviation of the number of noise-free evaluations are

2021.5, 647 and 4066.9, respectively. This corresponds to a speed-up factor of 15 over

an exhaustive (and typical) search policy. Fig. 6(a) shows the sample distribution of

the number of noise-free evaluations. We also computed the entropy of the posterior
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Figure 5: Pixel Reordering: (top) Example images from the test set. (bottom) Corresponding

`-images. Dark regions indicate pixels more likely to contain the character, while light regions

are less likely.

distribution after the 16 noisy questions are answered. According to (10), E[H(p16)] =

H(p0) − 16C = 16 − 16(.23) = 12.32, which is in agreement with the empirically

observed value E[H(p16)] = 12.3 (with standard deviation 0.716). We also visualized

the convergence of the entropy for each image, as predicted by the law of large numbers

in (15). In Fig. 6(b), we plot H(pn)
n , n = 0, . . . , 16, for each image in our test set. The

empirical variance at n = 16 is very small. Finally, according to (16), the distribution

of H(pn)−(H(p0)−nC)√
n

should be approximately normal. Fig. 7(a) shows the histogram

and (b) shows a normal Q-Q plot, demonstrating close agreement with the normal

distribution.

7. Conclusion

We have considered the problem of 20 questions with noisy responses, which arises

in stochastic search, stochastic optimization, computer vision, and other application

areas. By considering the entropy as our objective function, we obtained sufficient

conditions for Bayes optimality, which we then used to show optimality of two specific

policies: probabilistic bisection and the dyadic policy. This probabilistic bisection

policy generalizes a previously studied policy, while we believe that the dyadic policy
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(a) (b)

Figure 6: Noise-free evaluations and convergence in entropy. (a) The distribution of number

of noise-free evaluations needed to locate the target character. (b) Plot of H(pn)/n as a

function of n. Each line corresponds to one image, with H(pn)/n plotted over n = 1, . . . , 16.

H(pn)/n converges to 1-C.

has not been previously considered.

The dyadic policy asks a deterministic set of question, despite being optimal among

fully sequential policies. This lends it to applications that allow multiple questions

to be asked simultaneously. The structure of this policy also lends itself to further

analysis. We provided a law of large numbers, a central limit theorem, and an analysis

of the number of noise-free questions required after noisy questioning ceases. We

also showed that a generalized version of the dyadic policy is asymptotically optimal

in two dimensions for a more robust version of the entropy loss function. We then

demonstrated the use of this policy on an example problem from computer vision.

A number of interesting and practically important questions present themselves for

future work. First, our optimality results assume the entropy as the objective, but in

many applications other objectives are more natural, e.g., the expected number of noise-

free questions as in Section 4.3, or mean-squared error. Second, our results assume that

noise is added by a memoryless transmission channel. In many applications, however,

the structure of the noise depends upon the questions asked, which calls for generalizing

the results herein to this more complex style of noise dependence. We feel that these

and other questions will be fruitful areas for further study.
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(a) (b)

Figure 7: Central Limit Theorem: (a) Distribution of H(pn)−(H(p0)−nC)√
n

, with mean -0.01.

The distribution is closely Gaussian as the Q-Q plot (b) shows.
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