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1. Introduction

The technique for finding the asymptotic number of unlabeled trees of
various sorts was developed by Polya (1937) and perfected by Otter (1948).
Modern presentations are available in the book of Harary and Palmer (1973;
Chapter 9), and in the paper of Bender (to appear).

An exposition of the basic method is here developed in the form of a 20
step algorithm, which should facilitate the finding of asymptotic formulas for
different kinds of trees. These 20 steps are presented in Section 2, and methods
of justifying the steps are supplied in Section 3. In Sections 4, 5 and 6, the
algorithm is applied to finding asymptotic values for the number of identity
trees, homeomorphically irreducible trees, and a class of blocks with tree-like
properties. The first two of these species were enumerated by Harary and Prins
(1959) and the third is easily done. However, no asymptotic analyses have been
given previously.

For the purpose of the discussion in Sections 2 and 3, a hypothetical class
lof trees is posed, of which there are Sn planted trees on n + 1 points (including
[the root which is an endpoint; hence there are n lines) and sn unrooted trees on
In points. We let S(x) and s(x) be the ordinary generating functions

s(x) = X we'.
1 = 1
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It is useful for the asymptotic analysis to regard S(x) and s(x) as power
series in the complex variable x. Let a be the radius of convergence of the
series 5(x).

Just two assumptions are made at the outset for our hypothetical class of
trees. The first is that there are infinitely many trees in the class. The second is
that no natural number except 1 divides every n for which Sn > 0. If the latter
failed, we could proceed by expressing the generating functions in terms of the
variable y = xm where m is the greatest common divisor of all n for which
5. >0.

2. The twenty steps

In this section we merely list the 20 steps which must be taken in order to
obtain an asymptotic evaluation for any given species of trees. Only enough
details are mentioned here to provide an understanding and flavor for each
step. Indications of the procedure and the justification of each step are given in
the next section.

STEP 1. Develop a functional relation giving S(x) in terms of S(x), S(x2),
S(x5), • • •. This is equivalent to a recurrence relation satisfied by the numbers
Sn.

STEP 2. Develop a second functional relation giving 5(x) in terms of S(x)
and S(x2). This will correspond to an identity giving the numbers sn in terms of
the S,.

STEP 3. Verify that the radius of convergence a of S(x) satisfies

STEP 4. Prove that S(cr) < =», and so <r < 1.

STEP 5. In the functional relation for S(x) obtained in Step 1, replace
each occurrence of S(x) by y to produce a function F(x,y) analytic for all y
and for all x with \x \ < a"2 such that

F(x,S(x)) = 0
for all x I < (T.

STEP 6. Observe that F(x,S(x)) = 0 for all x with |JC | = cr.

STEP 7. Take the partial derivative with respect to y of the function
F(x,y) to obtain Fy(x,y). First substitute y = S(x) in this last expression and
then substitute x = a. Argue analytically that

Fy(o-,S(o-)) = 0.

STEP 8. Use the result of Step 7 to evaluate 5(cr) in terms of cr. It often
transpires that S(cr) = 1.
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STEP 9. Use the equation F(<r, S(<J)) -0 (from Step 6) and the result of
Step 8 to find equations from which the value of a may be calculated to any
desired degree of accuracy.

STEP 10. Observe that we must have Fy(x,S(x))^0 for all x such that
|x | = cr except x = cr.

STEP 11. Deduce that cr is the unique singularity of S(x) on its circle of
convergence.

STEP 12. Using the results of Steps 3 and 7, verify that

STEP 13. Deduce that a is a branch point of order 2 for S(x).

STEP 14. By Step 13 and the relation from Step 2 giving s(x) in terms of
S(x) and S(x2), note that S(x) and s(x) have expansions of the form

S ( x ) = S ( a - ) - b,((T - x ) " 2 + b2(o- - x ) + b , ( a - x ) 3 ' 2 + • • • ,

s ( x ) = a , , + a l ( ( T - x ) " 2 + a 2 ( a - x ) + a , ( a - x ) " 2 + • • • ,

for some b, b2,b^, • • • and a,,, a,,a2, • • •., and these series converge absolutely
in some neighborhood of x = cr.

STEP 15. From Step 14, conclude that b\\2 = lim^_c,S'(x)(5(o-)- S(x)).

STEP 16. Use Step 15 and the functional equation (Step 1) for S(x) to find
an equation giving b, in terms of cr and the numbers S,, S2, Sy, • • •. Then b, can
be calculated to any desired degree of accuracy in view of Step 9. Show that

STEP 17. Deduce frofn b, >0and the form of S(x)given in Step 14 that

"" 2

STEP 18. Use the functional equation for s(x) from Step 2 to deduce that

STEP 19. On the basis of the functional equation for s (x) and the result of
Step 18, find an equation for a, similar to the one found in Step 16 for b,. Show
that a3 > 0 .

STEP 20. Deduce from a, = 0< a, and the form of s(x) given in Step 14
that

3a, /o-V2 -5/2 -»
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3. Justifying the steps in the algorithm

In this section, we indicate some justification for each of the 20 steps
presented above, insofar as this justification is independent of the hypothetical
species of tree counted by S(x) and s(x).

STEP 1. The specific functional equation satisfied by S(x) must be
deduced from the structure of the species of tree which is being counted.
(Examples are given in Harary and Prins (1959) and in Harary and Palmer
(1973; pages 59-68).) However the starting point is always to break each
planted tree into smaller ones, which are branches at the point adjacent to the
root endpoint. Polya's Hauptsatz (1937; page 163) is often useful for putting the
combinatorial relation entirely in terms of S(x), S(x2),S(xy), • • •.

STEP 2. Otter's dissimilarity characteristic (1948; page 588) can usually
be applied to express s(x) in terms of S(x) and S(x2). This will involve
analysing line-rooted trees of the species, and those with a symmetric line, in
terms of the pair of planted trees obtained when that line is cut and each cut
end is terminated by a root point.

In most cases the functional relations obtained in this step are sufficiently
manageable that the computations required later can be carried out explicitly.

STEP 3. The upper bound, <T ^ 1, follows from the fact that Sn g 1 for
infinitely many n. To establish the lower bound 0 < a, compare S(x) with some
larger generating function having a known positive radius of convergence. The
comparison series counts a wider species of trees. This is sometimes accom-
plished by embedding the given trees in the plane.

STEP 4. To obtain S(a)<^, it is necessary to study the functional
equation satisfied by S(x) as x approaches a from below. The key idea is to
rewrite this equation so that one side grows as a polynomial function of 5(JC),

while the other side grows exponentially in S(x). If S(x) were unbounded as x
approaches o\ the exponential side would have to exceed the polynomial side
for values of x sufficiently close to <x. From S(a)<^ and Sn =? 1 infinitely
often, it is seen at once that a < 1.

STEP 5. To see that the function F(x, y) obtained in this step is analytic at
any (xa,ya) with |JC0j < a"2, consider S(x2), 5(x3), • • • as given functions analytic
for \x\<a'n\ \X\<<T"\ ••• where a"2 < a'" < • ••. That F(x,S(x)) = 0 for

| x j< <r is a restatement of the functional equation satisfied by S(x), found in
Step 1.

STEP 6. Since S(a) < ^ and every S, S 0, one knows of course that S(x)
is finite for all x on the circle | -̂  | = o"-To extend the relation F(x,S(x)) = Ofrom
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the interior of this circle to the circumference, appeal can be made to Abel's
theorem on continuity up to the circle of convergence; see Whittaker and
Watson (1943; page 57).

STEP 7. We need to verify the equation Fy(cr, S(o-)) = 0. The justification
revolves around the fact that o- must be a singularity of S.(x). This follows at
once from Pringsheim's Theorem (see Hille (1959; page 133)) because S, s 0 for
all /. Assume now that Fy(cr,S(cr)) ^ 0. Then the inverse function theorem (see
Hille (1959; page 269)) implies that for each x in some neighborhood of o\ there
is just one number 4>{x) for which F(x,<t>(x)) = 0, and <i>(x) is analytic in this
neighborhood. But then by Step 5, cj>(x) = S(x) for all x in this neighborhood
for which | JC | § <x. Thus </>(*) would be a continuation of S(x) analytic at x = o\
contrary to the fact that a is a singularity of S(x). Thus in fact we must have
Fy(o-,S(o-)) = 0.

STEP 8. This step is usually handled routinely. For in general the form of
F(x,y) is such that S(cr) can be determined explicitly from the equation
Fy(o\S(o-)) = 0.

STEP 9. Substituting into the equation F{a,S(a)) = 0 the expression for
S(cr) in terms of a given in Step 8, one can efficiently approximate a to any
desired degree of accuracy.

STEP 10. The form of Fy(x,S(x)) is a linear function of S(x) and we have
just shown that Fy(a,S(a)) = 0. Thus, to conclude that Fy(x,5(x))^0 for
JC | g<r, but x ^ a, it will suffice to show that for such* we have |S(x)| < S(o-).

The triangle inequality assures us that for |

with equality only if every nonzero term in the power series S(x) is in fact real
and positive. Hence we have verified the desired strict inequality unless
x" = a" whenever Sn > 0. But we were careful at the outset to define S(x) so
that these values of n have 1 as their greatest common divisor and so an
appropriate linear combination of values of n with x" = a-" yields in fact x = a.
But this is the single value of x excluded from consideration in this step, and so
we have verified that Fy(x,S(x))^0 for |X |SCT but x^<r.

STEP 11. In Step 7, it was seen that a is a singularity of S(x). For any
other point on the circle of convergence, the result of Step 10 allows the
implicit function theorem to be applied as in Step 7, showing that S(x) is
analytic there.

STEP 12. The inequality Fyy(o-,S(o^))/0 follows from an explicit second
differentiation of Fy(x,y) to obtain
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Fyy(x,y) = Fy(x,y) + c

where c is a nonzero constant, usually c = 1. Consequently the equality
Fy(<r,S(o-)) = 0 implies that

STEP 13. That a is a branch point of order 2 for S(x) follows from the
implicit function theorem, in view of the equations

Fy(o-,S(o-)) = 0 Fyv(

Bender (to appear) goes into considerable detail on this point.

STEP 14. S(x) is regular as a function of (a -x)'n near x = 0 because a
is a branch point of order 2 for S(x), justifying the validity of an expansion in
powers of (a - x)"2. The relation found in Step 2 for s(x) in terms of S(x) and
S(x2) provides at once a similar expansion for s(x).

STEP 15. The equation

bV2= lim S'(X)(S(<T)-S(X))

is a simple computation from the series expansion of Step 14, viz.

S ( x ) = S ( < T ) - b i ( a - x ) " 2 + b 2 ( c r - x ) + • • - .

STEP 16. By considering the equation

0= lim -j~F(x,S(x))

it will be found that

lim S'(x)(S(a-)-S(x))

can be evaluated explicitly in terms of a series in a involving the numbers
So, Si,S2, • • • in the coefficients. This is easily used to evaluate b] in view of the
procedure available from Step 9 for evaluating a to any desired degree of
accuracy. It will be obvious that b,/0. The sign of b, determines whether the
expansion about x = <r agrees with the expansion about JC = 0 where the
domains overlap, without having to circle the point x = a. For the next step, b\
must be positive.

STEP 17. The asymptotic behavior of Sn is deduced from the useful
lemma of Polya presented below, assuming that b, > 0 in the expansion of Step
14. Collecting alternate terms we have

= (cr-x)"2A(x) +
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where A(x) and B(x) are analytic at x = a and A(cr) = - b,. Use is made of
the fact that T ( - 1/2)= -2TT1/2.

LEMMA (Polya (1937; page 240)). Let the power series

f(x) = ao + a,x + a2x
2 + • • •

have the finite radius of convergence a > 0, with x = a the sole singularity on its
circle of convergence. Suppose that near x = a,f(x) has an expansion of the
form

where g(x) and h(x) are analytic at x = a, g(a)/^0, s and t are real,
s / 0, - 1, - 2, • • •, and either t <s or t = 0. Then

aan

STEP 18. In the series

s(x) = ao + a,(a - x)"2 + a2(cr - x) + • • •

obtained in Step 14, we must have a, = 0 if

lim s'(x) <oo.

Computing s'(x) from the functional relation obtained in Step 2 for s(x) in
terms of 5(JC) and S(x2), it will be found that since

lim S'(x)(S(o-)-S(x))<oo
X—*-<T

as shown in Step 15, we obtain the finiteness of limj-^s'Oc).

STEP 19. Once a, = 0 has been established, the proof that a, > 0 and the
evaluation of a3 parallel the corresponding procedures for b, followed in Step
16.

STEP 20. Collecting alternate terms in the expansion for s(x) around
x = o- we find that

s(x) = (o--x)il2c(x) +

where c(x) and d(x) are analytic at x = a- and c(a) = a,. As T(-3/2) =
(4/3)7r "2 we can at once determine the asymptotic behavior of sn from Polya's
Lemma.

4. Identity trees

A free tree is unrooted. An identity tree is a tree for which the only
automorphism is the identity. An identity rooted tree is a rooted tree for which
the only automorphism preserving the root point is the identity. An identity
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plane tree is an identity rooted tree which is rooted at an endpoint. Note that
the underlying (unrooted) tree of an identity rooted tree may not itself be an
identity tree.

Let Un be the number of nonisomorphic identity planted trees on n + 1
points, which is easily seen to be the number of nonisomorphic identity rooted
trees on n points. Let un be the number of free identity trees on n points. Thus
in this section Un will play the role of Sn and un that of sn.

Let U(x) and u(x) be the ordinary generating functions

U(x)= 2 Unx", u(x)= J "«*".

Then U(x) and u(x) take the place of S(x) and s(x). Let /u be the radius of
convergence of U(x), viewed as a power series in the complex variable x. The
place of a- is taken by i*.

Note that Ui § 1 for all / g 1. As an example, the result of rooting a path of
length j at one of its endpoints is an identity planted tree which is among those
counted by Ut. Thus the sequence U,, U2, • • • satisfies the two simple supposi-
tions stipulated at the end of Section 1.

We now develop the 20 steps of Section 2 as they apply to U(x) and u(x).
Specific details are supplied when necessary to complete the verifications
indicated for the various steps in Section 3.

STEPS 1 AND 2. Harary and Prins (1959; page 155) derived the basic
functional relations

(1) '

The relation (1) for U(x) is easily seen to be equivalent to

(1*) = xf\(\+x')u:

Relation (1*) can be established in a direct manner since each factor (1 +x')v'
serves to enumerate the ways of choosing identity branches of weight i without
repetition. We consider these branches to be taken at the point adjacent to the
root, and multiply by JC to include this point in the count.

STEP 3. If Tn is the number of rooted trees on n points, then Tn g Un for
every n. Thus ^ is at least as large as the radius of convergence p of the series

T(x)= S 7>".

Polya (1937) showed that p > 0 by comparing T(x) with the generating function
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for planted plane trees, expanded around x = 0, which gives i as a lower bound
for p. We conclude as in Section 3 that

STEP 4. Since [ / , g l for all / ̂  1, it is clear that U(x) is strictly
increasing on the real interval [0,/JL). Since /u. S 1, we have

for x in [0,/z). From (1) it follows that

holds on this interval. As JC approaches /LA from below, the left side is linear in
U(x) while the right side increases exponentially with U(x). Thus U(x) must
be bounded as x ranges over [0,/i), so U(pi)<*>, From [7(/u.)<°° and U, S 1
for all / S'l, we have /n, < 1.

STEP 5. Define

G(x, y) = - y

Then G(x, y) is analytic at (x,y) if |x |</LA"2, and by (1) we have

(3) G(x,U(x)) = 0

for | x | < fi.

STEP 6. Equation (3) is extended to the circle of convergence \x | = fj. as
\ in Section 3.

STEP 7. It is concluded that

exactly as in Section 3.

STEP 8. Differentiating G(x,y) directly from its definition, one has

(4) . G y ( x , y ) = G ( x , y ) + y - l .

Putting x = jLt and y = C/(/n), this gives

Gy(n,U(n))=U(ti)-l

in view of Steps 5 and 6. By Step 7, then, U(fi)= 1.

STEP 9. Substituting 1 for U(/JL) in the relation

https://doi.org/10.1017/S1446788700016190 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016190


492 F.Harary, R.W.Robinson and A. J.Schwenk [10]

justified in Step 7, we find

This can be used to determine p to a high degree of accuracy from a sufficiently
long initial segment of the numbers U,, U2, Ut, • • •. These are readily computed
by a recurrence relation derived directly from (1*). In Table 1 the results of
such computations are presented.

The determination of /x is now illustrated in showing that n < 1/2, a fact
put to use below in Step 16. If the relation for fi is expressed in the product
form (1*) it becomes

If fj. ^ 1/2 then a contradiction arises from the inequality

which follows from U, = U2 = l/3 = 1 •

STEP 10, As in Step 8 for the case of x = fi, we have

G,(x,U(x))=U(x)-l

for |x | = /*. As explained in Section 3, it follows that

if | x | = ft and x / ft.

STEP 11. As in Section 3, it is concluded that x = /x is the sole singularity
of U(x) on its circle of convergence.

STEP 12. If we differentiate (4) and simplify using (4) itself we find

Gn(x,y)

Thus,

in view of Step 6.
STEPS 13, 14 AND 15. As in Section 3, we see that expansions of the

form

U ( x ) = l - b , ( f i - x ) m + b 2 ( n . - x ) + b £ n - x ) 3 / 2 + •••

U ( x ) = ao + a , ( n - x ) m + a2(fJi - x ) + a,(fi - x ) m + •••

are valid in some neighborhood of x — /x, and
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(5) bV2= lim U'(x)(l-U(x)).

STEP 16. By (3) we have

for | x | < n.. Defining

we have

- U'(x)+ U(x)(U'(x) + Q'(x))+ U(x)lx = 0
or

U'(x)(\ - U(x)) = U(x) (<?'(*) + £)•

Since Q(x) has radius of convergence /A "2 > /A, the term Q'(x) is bounded at
x = fi. Thus, taking the limit as x approaches (i from below and applying (5),

2 1

[ that is,

(6) b2l2 = — [l-n2l
i p

i It remains to show from this that b2/2>0. Since xU'(x) is strictly
I increasing for x in the interval [0, /A ) and 0 < n < 1, we find at once that

Thus we need only show

\>ii
2U'{li

2).

It was established in Step 9 that fi < 1/2, so «>' < /2"' < 1 for i g 1. Therefore

The value b\ calculated from (6) is contained in Table 1.

STEP 17. As in Section 3 it now follows that
1/2

STEP 18. By the expansion in Step 14,
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u'(x)= -\a,(iJi -x)~m - a2 - |a3(/u. - x ) " 2 .

On the other hand

u'(x)= U'(x)(] - U(x))-xU'(x2)

results from differentiating (2). The last term is analytic at x = /x while the
other term on the right was shown to be bounded in Step 15. Thus

lim u'(x)<<x,

and so a, = 0.

STEP 19. Differentiating the series for u(x) about x = JJ. again, we have

where the remainder is bounded as x approaches /n. In Step 16 it was shown
that

£/'(x) (1-[ /(*)) =l / (x) ((?'(*) + j ) ,

so from Step 18 we find

Differentiating gives

Each term on the right is bounded as x approaches n from below except for
U'(x). As seen in Step 16,

lim Q'(x) + -

Since

the remainder being bounded near x = fi, we have

3 bi b2 . ,,
4a' = y y ' or a, = b;l

STEP 20. As in Section 3, it follows that
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5. Homeomorphically irreducible trees

A tree is homeomorphically irreducible if no point has degree 2. Let Hn be
the number of nonisomorphic planted homeomorphically irreducible trees on
n + 1 points. In general Hn will not be the number of rooted homeomorphically
irreducible trees on n points because the operation of attaching a new root to
the old will increase by one the degree of the old root point. Let hn be the
number of free homeomorphically irreducible trees of order n. Thus Hn and hn

will substitute for Sn and sn in this section.
Let H(x) and h(x) be the ordinary generating functions

H(x)= ^ Hnx", h(x)= X hnx".

Then H(x) and h(x) take the place of S(x) and s(x). Let 0 be the radius of
convergence of H(x), viewed as a power series in the complex variable x. Thus
0 takes the place of a.

Note that Ht = 1, H2 = 0, and //„ g 1 for n s 3. The latter can be seen by
rooting any endpoint of the star KlM. Therefore the sequence Ht,H2, H,,- • •
satisfies the two assumptions made with regard to S,,S2,S^,- • • at the end of
Section 1.

The remainder of this section consists of the 20 steps applied to H(x) and
h(x). Details are supplied when necesssary to complete the verifications
indicated for each step in Section 3, provided that they differ from the details
presented for the corresponding step in Section 4.

STEPS 1 AND 2. The relations derived by Harary and Prins (1959; page
150) for homeomorphically irreducible trees can be simplified to the pair

(7) ^

(8)

STEP 3. We have Tn s^Hn for all n g l , and so just as in Section 4 it
follows that

0 < p S f l g l .

STEP 4. Again H(x) is strictly increasing on the interval [0,6). Relation
(7) has the left hand side increasing as H(x) and the right side as e"'x\ so H(x)
must be bounded on this interval. Thus H(0)< °°, and, recalling that H, g 1 for
all i S 3, we note that 0 < 1.

STEP 5. Define
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Hx,y) = Y^ey+'H(x2>+'H'x''+ - y.

Then J(x,y) is analytic at (x,y) if | JC | < 0"2, and by (7),

(9) J(x,H(x)) = 0

whenever \x\< 0.

STEP 6. Equation (9) is extended to the circle of convergence | x | = 6 just
as in Section 3.

STEP 7. It is deduced that

/y(0,H(0)) = O
as in Section 3.

STEP 8. As in Section 4 it is seen that

(10) Jy(x,y) = J(x,y) + y-l, Jy(6,H(0)) = H(O)-\, and

H(6)=\.

STEP 9. The relation J(0,H(0)) = O can be written as

a = I _ ] + e i + j H ( e 2 ) + i H ( « ' ) + i - i

In Table 1 we present a good estimate for 0 computed from this equation, as
well as the initial segment of values of H,,H2,- • • which was needed.

STEP 10. Just as in Section 4 we have

Jy(x,H(x))/0
whenever \x | = 6 but x^ 6.

STEP 11. As in Section 3 it follows that 6 is the sole singularity of H(x)
on its circle of convergence \x \ = 6.

STEP 12. By differentiating (10) again it is found (exactly as in Section 4)
that

STEPS 13, 14 AND 15. As in Section 3,0 is a branch point of order 2, so
that H(x)and h(x) have expansions near* - 0 in powers of (0 -x)" 2 , that is,

H ( x ) = 1 - b , ( 6 - x ) " 2 + b 2 ( 6 - x ) + b , ( 0 - x ) m + •••

h ( x ) = a 0 + a , ( 0 - x ) m + a 2 ( 0 - x ) + a , ( 0 -xfn +•••

In addition, b, satisfies the relation

^ = lim H'(x)(l-H(x)).
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STEP 16. Differentiating (7) one finds

for \x | < 6, where we use the notation

In the limit x-*~0 this implies, in view of Step 15, that

(11) y - g ( 1 ' + e) + 0H'(82) + fl2H'(g3) + • • •.

It is immediately seen that b2 > 0. The value of b, can be computed on the basis
of (11), the value of 0 obtained earlier and a segment values of H,, H2, • • •. The
result is presented in Table 1.

STEP 17. It follows as in Section 3 that

STEP 18. Differentiating (8) gives

from which it is seen that

I lim h'(x

I so that a, = 0 as in Section 3.
I"
**. STEP 19. Much as in Section 4 the identity of Step 16 can be substituted
I into that of Step 18; upon differentiating again one finds

All terms are bounded as x—>~0 except for H'(x), and in particular

l i m \- + ( l + x ) P ( x ) + l H ( x ) ] (l + 0 ) ^ .
\X J I

As in Section 4 it follows that

4 3 2 2 '
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Then a,>0 follows from 0 > 0 and b, > 0 .

STEP 20. As in Section 3 it is concluded that

6. Tree-like Blocks

Our final example is a family of graphs whose tree-like properties are a bit
less obvious. It will be necessary to prove a lemma first which will demonstrate
that the graphs in question correspond to certain "colored" trees. Then we may
enumerate these particular colored trees in a manner similar to the one used by
Riordan (1957) to count unrestricted colored trees. Only then can the asympto-
tic analysis be carried out.

In an attempt to extend the successful reconstruction of trees to that of
blocks, it recently has been shown that those blocks having a point whose
removal leaves a tree are in fact reconstructible. Let us call such blocks
tree-like. The principal conclusion of our asymptotic analysis is that the
fraction of all blocks which happen to be tree-like quickly decreases to 0 as the
number of points increases. Thus, unfortunately, this effort has not signifi-
cantly dented the vast stockpile of still unreconstructed blocks.

We begin by transforming the problem. If G is a tree-like block, then G
has a point v, whose removal leaves the tree T, = G - v,. We proceed to color
the points of Ti, coloring point w red if w was adjacent to v, and blue
otherwise. Note that this coloring is not completely arbitrary, for, since G is a
block, every endpoint must be red. Clearly the colored tree T, uniquely
specifies G, for we may replace v, and rejoin it to all the red points. However, it
is not immediately obvious that T, has been determined uniquely, for G may
have had other points v2, v,, • • • whose removal produced different trees
T2, T3, • • •. We now show that all these colored trees are identical.

LEMMA. If G is a block with points v, and v2 whose removal leaves colored
trees T, and T2 then T\ and T2 are isomorphic colored trees.

PROOF. Clearly v, and v2 must have the same degree, for each tree has the
same number of lines. Let d be the degree of v, and v2 in G, and let e = 1 if u,
and v2 are adjacent and 0 otherwise. Then v2 has degree d - e in T,, and so Tx

has at least d — e endpoints. But v, has exactly d - e lines joining it to T,, and
so these lines must be joined precisely to those endpoints mentioned. Thus, T,
must have no other endpoints, and only the endpoints may be red. We
immediately observe that T, and T2 must be isomorphic colored trees.

This lemma permits us to count 2-colored trees with only red endpoints
instead of tree-like blocks. We proceed with this point of view. For conveni-
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ence, we henceforth refer to such trees as blocky. Let C(x) and c(x) denote the
generating functions for planted and free blocky trees, and let y be the radius
of convergence. Note that since the planted path of order n + 1 may be colored
in 2"'' ways, we have G § 2""' for all n g 1. As in the previous two sections,
we shall present only those details which are necessary to carry out the 20-step
algorithm.

STEP 1. The relation for C(x) differs from the one for ordinary planted
trees in two respects. First of all, the point adjacent to the plant can be colored
in two ways, so we insert a factor of 2. However, in the special case when there
is only one line, we must color this point red, and so we have overcounted this
term as 2x. To correct for this, we simply subtract X to obtain

(12) C(x) = 2xeCM+cu*>'2+Ci*^- - x.

STEP 2. The number of rooted blocky trees is basically the number of
planted ones, except that we have overcounted when the new root is also a
plant, for then it must be red. Thus, rooted blocky trees are counted by
(1 -x)C(x). This may be used in the analog of Otter's equation to obtain the
equation for free blocky trees:

(13) c(x) = (\-x)C(x)-^C2(x) + ~C(x2).

STEP 3. Since Cn>2"~', we may conclude that C(0.5) is infinite, so
y ̂  0.5. Moreover, G < Tn 2" since, as a crude estimate, every point of each
rooted blocky tree can be colored in at most two ways. Thus, recalling from
Step 3 of Section 4 that the radius of convergence p of T(x) is at least 0.25, we
have

(14) 0.125 g y =g 0.5.

STEP 4. Since C(x)>0 for 0 < x < -y, we estimate equation (1) by

Thus, C(x) is bounded as x approaches y, and so C(y) is finite. In this instance,
we already know y S 0.5 so we need not now observe that y is strictly less than
1.

STEP 5. Define

(15) K(x,y) = - x -y + 2xey+C(x2y/a+C(x')n+-.

Then K(x,y) is analytic at (JC,V) if |x \<y"2 and by (12)

(16) K(x, C(x)) = 0 whenever |x | < y.

STEPS 6 AND 7. These steps are the same as in previous sections.
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STEP 8. Differentiating (15) directly, we have

K,(x,y)

From Step 7 we conclude that

Note that this time C(y) = 1 — y instead of simply 1 as in the other examples
we have considered.

STEP 9. The equation K(y, C(y)) = 0 from Step 6 can now be rewritten as

In this form, we may obtain a good estimate for y using the first several
coefficients d , C2,

STEPS 10-15. These steps are similar to those in the two previous
sections, only this time the expansion for C(x) near x = y takes the form

Consequently, b, satisfies the relation

= lim C'

STEP 16. Differentiating (12) and setting

R(x)= 2
i=2

we obtain

(17) C'(x)(\-x-C(x)) = C(x)lx+(x+C(x))R'(x).

Taking the limit as x -»'y yields

(18) ^=]-^+R'(y).

Finally, this expression can be used to evaluate b, in terms of y in the form

2 y &(l-yn)

The resulting value of b, is presented in Table 2.

STEP 17. As in Sections 3 and 4, it follows that
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STEP 18. Differentiating (13) gives

(19) C(x) = C'(x)(l-x-C(x))-C(x) + xC'(x2),

from which we see that
lim c'(x) < oo,

so that a, = 0.

STEP 19. Substituting from equation (17) of Step 16 into equation (19)
above and then differentiating a second time yields

C(x)
x2

The only unbounded term as x approaches y from below is C'(x), and so we

use equation (18) to obtain

3 b,

just as in Section 4. Thus, a3 = fei/3.

STEP 20. As in Section 3, we conclude that
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Table 1

POINTS
n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

IDENTITY TREES
I/*

1
1
1
2
3
6
12
25
52
113
247
548
1226
2770
6299
14426
33209
76851
178618
416848
9762%
2294224
5407384
12780394
30283120
71924647
171196956
408310668
975662480
2335443077
5599508648
13446130438
32334837886
77863375126
187737500013
453203435319
1095295264857
2649957419351
6417886638389

«»

1
0
0
0
0
0
1
1
3
6
15
29
67
139
310
667
1480
3244
7241
16104
36192
81435
184452
418870
955860
2187664
5025990
11580130
26765230
62027433
144133676
335731381
783859852
1834104934
4300433063
10102854473
23778351222
56063415268
132404269770

HOMEOMORPHICALLY
IRREDUCIBLE TREES

0
1
0
1
1
2
3
6
10
19
35
67
127
248
482
952
1885
3765
7546
15221
30802
62620
127702
261335
536278
1103600
2276499
4706985
9752585
20247033
42110393
87733197
183074638
382599946
800701320
1677922740
3520581954
7395528814
15552771085

= 0.395 954 952 562 9

= 2.433 764 035 9317

, , ) =0.432 012 613 274 4

a, = 4.805 229 701 7080

4 \
= 0.506 604 623 9

8 = 0.456 733 209 5% 3

b, = 3.152 443 364 089 5

y ( — ) =0.600 998 871 180 3

a, = 15.212 501 885 717 4

3j3, /0_\"2
= ]_986--922---182
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Table 2

TWO-COLORED TREES WITH RED ENDPOINTS
h. C. c.

1
2
6
18
60

204
734

2 694
10 162
38 982
151 920
599 244

2 389 028
9 608 668

38 945 230
158 904 230
652 178 206

2 690 598 570

1
2
5
10
20
41
84
171
350
715

1 464

1
2
5
10
21
41
81
160
316
629
256
515
049
172
543
602
440
794
238
497
407

1
1
0
1
1
2
2
4
5
10
14
26
42
78
132
249
445
842
561
988
671
981
209
472
181
176
749
933
070
169
816
638
579
425
886
492
175
037
113

2
8
32
128

1
3
12
43
158
590
230
521
889
064

1
1
2
5
12
33
98
305
002
424
016
230
516
621
450
967
238
009

y= 0.222 511 168 8

b, = 2.509 669 780

^r(—)'2 = 0.333 954 697 4

03 = 5.269 003 521

^ ( 3 L ) " 2 = 0.234 014 376 3
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