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Abstract— In this paper, we provide a comprehensive survey of
the mixture of experts (ME). We discuss the fundamental models
for regression and classification and also their training with the
expectation-maximization algorithm. We follow the discussion
with improvements to the ME model and focus particularly on
the mixtures of Gaussian process experts. We provide a review of
the literature for other training methods, such as the alternative
localized ME training, and cover the variational learning of ME
in detail. In addition, we describe the model selection literature
which encompasses finding the optimum number of experts, as
well as the depth of the tree. We present the advances in ME
in the classification area and present some issues concerning
the classification model. We list the statistical properties of ME,
discuss how the model has been modified over the years, compare
ME to some popular algorithms, and list several applications.
We conclude our survey with future directions and provide a
list of publicly available datasets and a list of publicly available
software that implement ME. Finally, we provide examples for
regression and classification. We believe that the study described
in this paper will provide quick access to the relevant literature
for researchers and practitioners who would like to improve or
use ME, and that it will stimulate further studies in ME.

Index Terms— Applications, Bayesian, classification,
comparison, hierarchical mixture of experts (HME), mixture
of Gaussian process experts, regression, statistical properties,
survey, variational.

I. INTRODUCTION

S INCE its introduction 20 years ago, the mixture of experts
(ME) model has been used in numerous regression,

classification, and fusion applications in healthcare, finance,
surveillance, and recognition. Although some consider ME
modeling to be a solved problem, the significant number of
ME studies published in the last few years suggests otherwise.
These studies incorporate experts based on many different
regression and classification models such as support vector
machines (SVMs), Gaussian processes (GPs), and hidden
Markov models (HMMs), to name just a few. Combining these
models with ME has consistently yielded improved perfor-
mance. The ME model is competitive for regression problems
with nonstationary and piecewise continuous data, and for
nonlinear classification problems with data that contain natural
distinctive subsets of patterns. ME has a well-studied statistical
basis, and models can be easily trained with well-known
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techniques such as expectation-maximization (EM), variational
learning, and Markov chain Monte Carlo (MCMC) techniques
including Gibbs sampling. We believe that further research
can still move ME forward and, to this end, we provide a
comprehensive survey of the past 20 years of the ME model.
This comprehensive survey can stimulate further ME research,
demonstrate the latest research in ME, and provide quick
access to relevant literature for researchers and practitioners
who would like to use or improve the ME model.

The original ME model introduced by Jacobs et al. [1]
can be viewed as a tree-structured architecture, based on the
principle of divide and conquer, having three main compo-
nents: several experts that are either regression functions or
classifiers; a gate that makes soft partitions of the input space
and defines those regions where the individual expert opinions
are trustworthy; and a probabilistic model to combine the
experts and the gate. The model is a weighted sum of experts,
where the weights are the input-dependent gates. In this
simplified form, the original ME model has three important
properties: 1) it allows the individual experts to specialize on
smaller parts of a larger problem; 2) it uses soft partitions
of the data; and 3) it allows the splits to be formed along
hyperplanes at arbitrary orientations in the input space [2].
These properties support the representation of nonstationary
or piecewise continuous data in a complex regression process,
and identification of the nonlinearities in a classification
problem. Therefore, to understand systems that produce such
nonstationary data, ME has been revisited and revived over
the years in many publications. The linear experts and the
gate of the original ME model have been improved upon with
more complicated regression or classification functions, the
learning algorithm has been changed, and the mixture model
has been modified for density estimation and for time-series
data representation.

In the past 20 years, there have been solid statistical and
experimental analyses of ME, and a considerable number
of studies have been published in the areas of regression,
classification, and fusion. ME models have been found useful
in combination with many current classification and regression
algorithms because of their modular and flexible structure. In
the late 2000s, numerous ME studies have been published,
including [3]–[30]. Although many researchers think of ME
only in terms of the original model, it is clear that the ME
model is now much more varied and nuanced than when it
was introduced 20 years ago. In this paper, we attempt to
address all these changes and provide a unifying view that
covers all these improvements showing how the ME model has
progressed over the years. To this end, we divide the literature
into distinct areas of study and keep a semichronological order
within each area.
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To see the benefit that ME models have provided, we
can look at a 2008 survey that identified the top 10 most
influential algorithms in the data mining area. It cited C4.5,
k-Means, SVM, Apriori, EM, PageRank, AdaBoost, k-nearest
neighborhood, naive Bayes, and classification and regression
trees (CART) [31]. Although ME is not explicitly listed here,
it is closely related to most of these algorithms, and has been
shown to perform better than some of them and combined with
many of them to improve their performance. Specifically, MEs
have often been trained with EM [32] and have been initialized
using k-Means [15], [33]. It has been found that decision
trees have the potential advantage of computational scalability,
handling data of mixed types, handling missing values, and
dealing with irrelevant inputs [34]. However, decision trees
has the limitations of low prediction accuracy and high vari-
ance [35]. ME can be regarded as a statistical approach to
decision tree modeling where the decisions are treated as
hidden multinomial random variables. Therefore, ME has the
advantages of decision trees, but improves on them with its soft
boundaries, its lower variance, and its probabilistic framework
to allow for inference procedures, measures of uncertainty, and
Bayesian approaches [36]. On the other hand, decision trees
have been combined in ensembles, forming random forests, to
increase the performance of a single ensemble and increase
prediction accuracy while keeping other decision tree advan-
tages [37]. Similarly, ME has been combined with boosting
and, with a gating function that is a function of confidence, ME
has been shown to provide an effective dynamic combination
for the outputs of the experts [38].

One of the major advantages of ME is that it is flexible
enough to be combined with a variety of different models. It
has been combined with SVM [12]–[14] to partition the input
space and to allocate different kernel functions for different
input regions, which would not be possible with a single SVM.
Recently, ME has been combined with GPs to make them
accommodate nonstationary covariance and noise. A single
GP has a fixed covariance matrix, and its solution typically
requires the inversion of a large matrix. With the mixture of
GP experts model [6], [7], the computational complexity of
inverting a large matrix can be replaced with several inversions
of smaller matrices, providing the ability to solve larger scale
datasets. ME has also been used to make an HMM with
time-varying transition probabilities that are conditioned on
the input [4], [5].

A significant number of studies have been published on the
statistical properties and the training of ME to date. ME has
been regarded as a mixture model for estimating conditional
probability distributions and, with this interpretation, ME
statistical properties have been investigated during the period
from 1995 to 2011 (e.g., [39]–[42]). These statistical properties
have led to the development of various Bayesian training
methods between 1996 and 2010 (e.g., [23], [43]–[45]), and
ME has been trained with EM [46], variational learning [47],
and MCMC methods [48]. The Bayesian training methods
have introduced prior knowledge into the training, helped
avoid overtraining, and opened the search for the best model
(the number of experts and the depth of the tree) during 1994
to 2007 (e.g., [2], [10], [18], [49]). In the meantime, the model

Fig. 1. Outline of the survey.

has been used in a very wide range of applications, and has
been extended to handle time-series data.

In this paper, we survey each of the aforementioned areas
under three main groups: regression studies, classification
studies, and applications. For each one of these groups, we
describe how the models have progressed over the years, how
they have been extended to cover a wide range of applications,
as well as how they compare with other models. An outline
is shown in Fig. 1.

Within the regression and classification studies, we group
the core of the studies into three main groups; models for the
gate, models for the experts, and the inference techniques to
learn the parameters of these models. Some of the represen-
tative papers can be summarized as follows.

1) Inference.

a) EM-based methods: IRLS [2], generalized EM
[50], Newton–Raphson [51], ECM [52], single-
loop EM [53].

b) Variational [7], [43], [45], [54].
c) Sampling [6], [18], genetic training [25].

2) Models for the gate.

a) Gaussian mixture model GMM [7], softmax of
GPs [55], Dirichlet distribution [56], Dirichlet
process (DP) [18], neural networks (NNs) [12],
max/min networks [57], probit function [58].

3) Models for the experts.

a) Gaussian [2], [59], multinomial [23], [60], gener-
alized Bernoulli [51], GP [55], [61], SVM
[12], [14].

II. FUNDAMENTALS OF ME

In this section, we describe the original ME regression and
classification models. In the ME architecture, a set of experts
and a gate cooperate with each other to solve a nonlinear
supervised learning problem by dividing the input space into a
nested set of regions as shown in Fig. 2. The gate makes a soft
split of the whole input space, and the experts learn the simple
parameterized surfaces in these partitions of the regions. The
parameters of these surfaces in both the gate and the experts
can be learned using the EM algorithm.

Let D = {X, Y } denote the data where X = {x(n)}N
n=1 is

the input, Y = {y(n)}N
n=1 is the target, and N is the number

of training points. Also, let � = {�g,�e} denote the set of
all parameters where �g is set of the gate parameters and �e

is the set of the expert parameters. Unless necessary, we will
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Fig. 2. Simplified classification example for ME. The blue circles and the red
diamonds belong to classes 1 and 2, respectively, and they present a nonlinear
classification example. The gate makes a soft partition and defines the regions
where the individual expert opinions are trustworthy, such that, to the right of
the gating line, the first expert is responsible, and to the left of the gating line,
the second expert is responsible. With this divide-and-conquer approach, the
nonlinear classification problem has been simplified to two linear classification
problems. Modified with permission [62].

Fig. 3. Two-level HME architecture for regression. In this example, two ME
components at the bottom of the figure are combined with a gate at the top to
produce the hierarchical ME. Each ME model at the bottom is composed of
a single gate and two experts. At the experts, the notation i j is used such that
the letter i indexes the branches at the top level and the letter j indexes the
branches at the bottom level. For example, expert1,2 corresponds to the first
branch at the top level and the second branch at the bottom level. The outputs
of the gate are a set of scalar coefficients denoted by g j |i . The outputs of the
experts, ŷij, are weighted by these gating outputs.

denote an input vector x(n) with x, and a target vector y(n) with
y from now on. A superscript (n) will be used to indicate that
a variable depends on an input x(n).

Given an input vector x and a target vector y, the total
probability of observing y can be written in terms of the
experts, as

P(y|x,�) =
I∑

i=1

P(y, i |x,�)

=
I∑

i=1

P(i |x,�g)P(y|i, x,�e)

=
I∑

i=1

gi (x,�g)P(y|i, x�e) (1)

where I is the number of experts, the function gi (x,�g) =
P(i |x,�g) represents the gate’s rating, i.e., the probability of
the i th expert given x, and P(y|i, x, and �e) is the probability
of the i th expert generating y given x. The latter will be
denoted by Pi (y) from now on.

Fig. 4. Graphical representation of the ME regression model. The box denotes
a set of N independent identically distributed (i.i.d.) observations where x(n) is
the input, y(n) is the output, and z(n) is the latent variable. The output node
y(n) is shaded, indicating that these variables are observed [45], [63]. The
variables whose size does not change with the size of the dataset are regarded
as parameters. The parameters w, � of the experts have a direct link to the
output since the target vector y(n) is a function of w and �. The parameter
v of the gate is linked to the output through the indicator variable z(n).

The ME training algorithm maximizes the log-likelihood of
the probability in (1) to learn the parameters of the experts
and the gate. During the training of ME, the gate and experts
get decoupled, so the architecture attains a modular structure.
Using this property, the ME model was later extended into a
hierarchical mixture of experts (HME) [2], [39], as shown in
Fig. 3, for which the probability model is:

P(y|x,�) =
I∑

i=1

gi (x,�gi )

Ji∑

j=1

g j |i(x,�g j |i )Pij (y,�e) (2)

where I is the number of nodes connected to the gate at the
top layer, and Ji is the number of nodes connected to the i th
lower-level gating network, gi is the output of the gate in the
top layer, g j |i is the output of the j th gate connected to the i th
gate of the top layer, and �gi and �g j |i are their parameters,
respectively.

For both classification and regression, the gate is defined by
the softmax function

gi(x, v) = exp(βi (x, v))
∑I

j=1 exp(β j (x, v))
(3)

where the gate parameter �g = v, and the functions of the gate
parameter βi (x, v) are linear given by βi (x, v) = vT

i [x, 1]. The
softmax function is a smooth version of the winner-take-all
model. The experts, on the other hand, have different functions
for regression and classification, as explained below.

A. ME Regression Model

Let �e = {θi}I
i=1 = {wi , �i }I

i=1 be the parameters of the
experts with the graphical model as shown in Fig. 4. In the
original ME regression model, the experts follow the Gaussian
model:

P(y|x, θi ) = N(y|ŷi(x, wi ), �i ) (4)

where y ∈ RS , ŷi(x, wi ) is the mean, and �i is the covariance.
The vector ŷi(x, wi ) is the output of the i th expert, which, in
the original ME, was a linear function given by ŷi (x, w) =
wT

i [x, 1].
To make a single prediction, the expectation of (1) is used

as the output of the architecture, given by

ŷ =
∑

i

gi(x, v)ŷi(x, wi ). (5)
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Fig. 5. ME architecture for classification. In the classification model, each
expert produces as many outputs as there are classes. These outputs are
denoted by ŷik . The multinomial probabilistic outputs of the experts are
denoted by Pi .

B. ME Classification Model

The ME architecture for a K -class classification problem is
shown in Fig. 5, where K is the number of classes. Different
from regression, the desired output y is of length K and yk = 1
if x belongs to class k and 0 otherwise. Also, expert i has K
parameters {wik}K

k=1, corresponding to the parameters of each
class. For the i th expert and the kth class, the expert output
per class is given by the softmax function

ŷik = exp(wT
ik [x, 1])

∑K
r=1 exp(wT

ir [x, 1]) (6)

which are the means of the experts’ multinomial probability
models

Pi (y) =
∏

k

ŷ yk
ik . (7)

To make a single prediction, the outputs are computed per
class, as

ŷk =
∑

i

gi(x, v)ŷik

and for practical purposes, the input x is classified as belonging
to the class k that gives the maximum ŷk, k : 1, . . . , K .

C. Training of ME

The EM [46] algorithm is an iterative method for finding
the maximum likelihood (ML) of a probability model in which
some random variables are observed and others are hidden. In
training the ME, the indicator variables Z = {{z(n)

i }N
n=1}I

i=1
are introduced to solve the model with the EM algorithm.
With the indicator variables, the complete log-likelihood can
be written as

l(�; D; Z) =
N∑

n=1

I∑

i=1

z(n)
i {log g(n)

i + log Pi (y(n))} (8)

where g(n)
i = gi (x(n), v) is a shortcut to denote the gate.

Equation (8) is a random function of the missing random
variables zi ; therefore, the EM algorithm is employed to
average out zi and maximize the expected complete data
log-likelihood EZ (log P(D, Z |�)). The expectation of the

log-likelihood in (8) results in

Q(�,�(p)) =
N∑

n=1

I∑

i=1

h(n)
i {log g(n)

i + log Pi (y(n))}

=
I∑

i=1

(
Qg

i + Qe
i

)
(9)

where p is the iteration index, h(n)
i = E[z(n)

i |D], and

Qg
i =

∑

n

h(n)
i log g(n)

i (10)

Qe
i =

∑

n

h(n)
i log Pi (y(n)). (11)

The parameter � is estimated by the iterations through the
E and M steps given by:

1) E step: Compute h(n)
i , the expectation of the indicator

variables;
2) M step: Find a new estimate for the parameters, such

that v(p+1)
i = argmax

vi

Qg
i , and θ

(p+1)
i = argmax

θi

Qe
i .

There are three important points regarding the training.
First, (10) describes the cross-entropy between gi and hi . In
the M step, hi is held constant, so gi learns to approximate
hi . Remembering that 0 ≤ hi ≤ 1 and 0 ≤ gi ≤ 1, the
maximum Qg

i is reached if both gi and hi are 1 and the
others (g j , h j , i �= j ) are zero. This is in line with the initial
assumption from (1) that each pattern belongs to one and only
one expert. If the experts actually share a pattern, they pay an
entropy price for it. Because of this property, the ME algorithm
is also referred to as competitive learning among the experts,
as the experts are rewarded or penalized for sharing the data.
The readers are encouraged to read more about the effect of
entropy on the training [2], [64].

The second important point is that, by observing (10)
and (11), the gate and the expert parameters are estimated
separately owing to the use of the hidden variables. This
decoupling gives a modular structure to the ME training, and
has led to the development of the HME and to the use of other
modular networks at the experts and the gate.

The third important point is that in regression maxwi Qe
i

can be attained by solving ∂ Qe
i /∂wi = 0 if ŷi = wT

i [x, 1].
However, in general, it cannot be solved analytically when ŷi is
nonlinear. Similarly, it is difficult to find an analytical solution
to maxvi Qg

i because of the softmax function. Therefore, one
can either use the iterative recursive least squares (IRLS)
technique for linear gate and expert models [2], the extended
IRLS algorithm for nonlinear gate and experts [39], or the
generalized EM algorithm that increases the Q function but
does not necessarily fully maximize the likelihood [50]. An
alternative solution to overcoming this problem is detailed in
Section III-A.

D. Model Selection

Model selection for ME models refers to finding the depth
and connections of the tree, which in effect determines the
number of experts. Model selection for ME is not much
different from model selection for other tree-based algorithms,
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Fig. 6. Graphical representation of the variational ME model for classifica-
tion. The box denotes a set of N i.i.d. observations. The output node y(n) is
shaded, indicating that these variables are observed. In the variational model,
two hyperparameters have been introduced, where μ is the hyperparameter on
the gating parameter v, and α is the hyperparameter on the expert parameter
w. When compared to the regression model in Fig. 4, the classification model
does not have the parameter �.

and the main difference is the cost function that evaluates
the value of a branch. This cost function varies on the basis
of how the optimal structure is searched for. To this end,
the studies that aim to arrive at the optimal structure of the
tree can be divided into four main categories as follows:
growing models [2], [65], [66]; pruning models [49], [67],
[68]; exhaustive search [45]; and Bayesian models [10], [18],
[54], [69].

Growing models are based on adding more layers to a
tree and determining the depth of the tree as well as the
number of experts. Pruning models are aimed at reducing
the computational requirements. They either keep the model
parameters constant but consider the most likely paths as
in [49], or prune the least used branches as in [67] and
[68]. Exhaustive search refers to doing multiple runs and
testing multiple models to find the best model. On the other
hand, variational models [54] can simultaneously estimate the
parameters and the model structure of an ME model, whereas
DP models [18] do not place a bound on the number of
experts (which is also referred to as the infinite number of
experts). Finally, sparsity promotion studies [10], [69] use
sparsity-promoting priors on the parameters to encourage a
smaller number of nonzero weights.

Model selection for ME, as for other classes of model,
is very difficult, and these studies are important attempts at
solving this difficult problem. Unfortunately, to the best of
our knowledge, a study to compare all these model selection
methods does not exist.

III. ADVANCES IN ME FOR REGRESSION

In the original ME model, maximization of the likelihood
with respect to the parameters of the gate is analytically
unsolvable due to the nonlinearity of the softmax function.
Therefore, within the EM iterations, there is an inner loop
of iterations to update the parameters using the IRLS algo-
rithm. To avoid these inner loop iterations, Xu et al. [50]
proposed making the gate analytically solvable and introduced
an alternative gating function, which will be explained in
Section III-A. Recently, this alternative ME model has been
used in the training of mixture of GP experts, as explained in
Section III-B.

A. Alternative Model for ME

The alternative ME model uses Gaussian parametric forms
in the gate given by

gi (x, v) = ai P(x|vi )∑
j a j P(x|v j )

,
∑

i

ai = 1, ai ≥ 0 (12)

where P(x|vi ) are density functions from the exponential
family such as the Gaussian. In addition, to make the maxi-
mization with respect to the gate analytically solvable with this
new form, Xu et al. [50] proposed working on the joint density
P(y, x|�) instead of the likelihood P(y|x,�). Assuming

P(x) =
∑

j

a j P(x|v j ) (13)

the joint density is given as

P(y, x|�) = P(y|x,�)P(x) (14)

=
∑

i

ai P(x|vi )P(y|i, x, θe). (15)

Comparing this new parametric form to the original ME
model, the M step requires finding three sets of parameters
a, v, and θ , as opposed to the two sets of parameters v and θ
in the original model. This alternative model, also referred to
as the localized ME in the literature, does not require selecting
a learning step-size parameter and leads to faster convergence,
as the maximization with respect to the gate is solvable
analytically. Following up on this paper, Fritsch et al. [70]
used it for speech recognition, and Ramamurti and Ghosh [60]
added RBF kernels to the input of the HME as preprocessors.
Also, the alternative (localized) ME model has been used in
the mixture of GP experts.

B. Mixture of GP Experts

GPs are powerful nonparametric models that can provide
error terms for each data point. Recently, ME models have
been combined with GPs to overcome the limitation of the
latter, i.e., to make them more flexible by accommodating
nonstationary covariance and noise levels, and to decrease
their computational complexity. A GP is a generalization of
the Gaussian distribution, specified by a mean function and a
covariance function. It is defined by

y(n) = f (x(n)) + εn (16)

where f (x(n)) is a nonlinear function of x(n), and εn ∼
N(0, σ 2) is an error term on a data point [71]. The prior for
the function f is assumed to be a GP, i.e., for each n, f (x(n))
has a multivariate normal distribution with zero mean and a
covariance function C(x(n), x(m)). The covariance function is
a positive-definite kernel function such as the Gaussian kernel

C(x(n), x(m)) = A exp

(
−||x(n) − x(m)||2

2s2

)
(17)

with scale parameter s and amplitude A. Therefore, Y has a
normal distribution with zero mean and covariance


A,s = CA,s + σ 2 I (18)



1182 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

Fig. 7. Graphical representation of the modified HME model. Here, � is the
parameter of the top gate called the S-gate that operates on an observation
sequence X(n). ξ(n) are the indicator variables that result from the S-gate,
and they indicate the labels that specify x(n)

t in X(n). The rest of the model
is similar to ME.

where I is an identity matrix, and CA,s is the N × N matrix
with elements as defined in (17).

With this distribution, the log-likelihood of the training
data is

L A,s = −1

2
log |
A,s | − 1

2
Y T 
A,s

−1Y − N

2
log 2π. (19)

From (19), the ML estimate of the parameters A and s can be
computed with iterative optimization methods, which require
the evaluation of 
A,s

−1 and take time O(N3) [71].
There are two important limitations in this GP formulation.

The first limitation is that the inference requires the inversion
of the Gram matrix, which is very difficult for large training
datasets. The second limitation is the assumption that the scale
parameter s in (17) is stationary. A stationary covariance func-
tion limits the model flexibility if the noise is input-dependent
and if the noise variance is different in different parts of the
input space. For such data, one wishes to use smaller scale
parameters in regions with high data density and larger scale
parameters for regions that have little data. Recently, mixtures
of GP experts have been introduced as a solution to these two
limitations.

In 2001, Tresp [55] proposed a model in which a set of
GP regression models with different scale parameters is used.
This mixture of GP experts model can autonomously decide
which GP regression model is best for a particular region of
the input space. In this model, three sets of GPs need to be
estimated: one set to model the mean of the experts; one set to
model the input-dependent noise variance of the GP regression
models; and a third set to learn the parameters for the gate.
With this assumption, the following mixture of GP experts
model is defined:

P(y|x) =
I∑

i=1

P(z = i |x)G(y; f μ
i (x), exp(2 f σ

i (x))) (20)

where G represents the GP experts and is also the Gaussian
density with mean f μ

i (x) and variance exp(2 f σ
i (x)). Here, f μ

i
is the GP that models the mean μ for expert i , and f σ

i is the
GP that models the variance. In addition, P(z = i |x) is the
gate given by

P(z = i |x) = exp( f z
i (x))

∑I
j=1 exp( f z

j (x))
(21)

where z is the discrete I -state indicator variable that deter-
mines which of the GP models (i.e., experts) is active for a

given input x. Just like the ME model, one can maximize
the log posterior of (20) using EM updates. In Tresp’s study,
where the experts are GPs and the gate is a softmax of GPs,
the mixture of GPs was shown to divide up complex tasks into
subtasks and perform better than any individual model. For I
experts, the model requires one to compute 3I GPs (for the
mean and variance of the experts, and the gate) each of which
requires computations over the entire dataset. In addition, the
model requires one to specify the hyperparameters and the
number of experts.

In 2002, Rasmussen and Ghahramani [18] argued that
the independent identically distributed (i.i.d.) assumption in
the traditional ME model is contrary to GP models that
model the dependencies in the joint distribution. Therefore,
as opposed to computing the expectations of the indicator
variables, they suggested obtaining the indicator variables from
Gibbs sampling. In addition, the gate was modified to be
an input-dependent DP, and the hyperparameters of the DP
controlled the prior probability of assigning a data point to a
new expert. Unlike Tresp’s work where the hyperparameters
were fixed, the hyperparameters of the DP prior were inferred
from the data. In doing so, instead of trying to find the
number of experts or specifying a number, Rasmussen and
Ghahramani assumed an infinite number of experts, most of
which contributed only a small mass to the distribution. In
addition, instead of using all the training data for all the
experts, the experts were trained with only the data that
was assigned to them. Thus, the problem was decomposed
into smaller matrix inversions at the GP experts, achieving
a significant reduction in the number of computations. In
2006, Meeds and Osindero [6] proposed learning the infinite
mixture of Gaussian ME using the alternative ME model,
which was described in Section III-A. This generative model
has the advantage of dealing with partially specified data and
providing inverse functional mappings. Meeds et al. also used
clustering in the input space and trained their experts on this
data; however, as they themselves pointed out, a potentially
undesirable aspect of the strong clustering in input space is
that it could lead to inferring several experts even if a single
expert could do a good job of modeling the data.

The previous inference algorithms in [6] and [18] were
based on Gibbs sampling, which can be very slow. To make
the learning faster, Yuan and Neubauer [7] proposed using
variational learning based on the alternative ME model. In this
variational mixture of GP experts (VMGPE) study, the experts
were still GPs, but were reformulated by a linear model. The
linear representation of the GPs helped break the dependency
of the outputs and the input variables, and made variational
learning feasible. Similar to [6] and [18], the gate followed
a Dirichlet distribution; but unlike those studies, in which
the input could only have one Gaussian distribution, VMGPE
models the inputs as GMM. With this structure in place,
variational inference is employed to find the model parameters.
Finally, in a recent study by Yang and Ma [61], an efficient
EM algorithm was proposed that is based on the leave-one-out
cross-validation probability decomposition. With this solution,
the expectations of assignment variables can be solved directly
in the E step.
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Fig. 8. Simple regression example. (a) Data to be approximated. (b) Three linear experts. (c) Linear parameters of the gate. (d) Corresponding softmax
outputs of the gate. The division of the input space can be understood by looking at the regions and then the corresponding expert. For example, the third
gating parameter in (d) is responsible of the right side of the space. In this part of the region, the blue line in (b) is effective.

To summarize, there are two aspects to be considered in the
mixture of GPs: 1) the type of the gate and 2) the inference
method. The gate can be a softmax of GPs [55], or it can
follow a Dirichlet distribution [56], a DP [18], or be a Gaussian
mixture model [7]. The second aspect is the inference method
such as the EM [61], sampling [6], [18], and variational [7].
With all these model details considered, the main advantages
of using a mixture of GP experts can be summarized as
follows: 1) it helps accommodate nonstationary covariance and
noise levels; 2) the computational complexity of inverting an
N × N matrix is replaced by several inversions of smaller
matrices leading to speedup and the possibility of solving
larger scale datasets; and 3) the number of experts can be
determined in the case of DP priors.

IV. ADVANCES IN ME FOR CLASSIFICATION

The ME model was designed mainly for function approxi-
mation rather than classification; however, it has a significant
appeal for multiclass classification due to the idea of training
the gate together with the individual classifiers through one
protocol. In fact, more recently, the ME model has been getting
attention as a means of finding subclusters within the data,
and learning experts for each of these subclusters. In doing
so, the ME model can benefit from the existence of common
characteristics among data of different classes. This is an
advantage compared to other classifiers that do not consider
the other classes when finding the class conditional density
estimates from the data of each class.

The ME model for classification was discussed in
Section II-B. Waterhouse and Robinson provided a nice
overview on parameter initialization, learning rates, and
stability issues in [72] for multiclass classification. Since then,
there have been reports in the literature [51], [60], [73] that
networks trained by the IRLS algorithm perform poorly in
multiclass classification. Although these arguments have merit,
it has also been shown that, if the step-size parameters are
small enough, then the log-likelihood is monotone increasing
and IRLS is stable [74]. In this section, we go over the
arguments against multiclass classification, and review the
solutions provided for it.

The IRLS algorithm makes a batch update, modifying all
the parameter vectors of an expert {wik}K

k=1 at once, and
implicitly assumes that these parameters are independent.
Chen et al. [51] pointed out that IRLS updates result in an
incomplete Hessian matrix, in which the off-diagonal elements

are nonzero, implying the dependence of the parameters.
In fact, in multiclass classification, each parameter vector
in an expert relates to all the others through the softmax
function in (6), and therefore, these parameter vectors cannot
be updated independently. Chen et al. noted that such updates
result in unstable log-likelihoods; so they suggested using the
Newton–Raphson algorithm and computing the exact Hessian
matrix in the inner loop of the EM algorithm. However, the use
of the exact Hessian matrix results in expensive computations,
and therefore they proposed using the generalized Bernoulli
density in the experts for multiclass classification as an approx-
imation to the multinomial density. With this approximation,
all of the off-diagonal block matrices in the Hessian matrix are
zero matrices, and the parameter vectors are separable. This
approximation results in simplified Newton–Raphson updates
and requires less time; however, the error rates increase
because of the fact that it is an approximation.

Following this paper, Ng and McLachlan [74] ran several
experiments to show that the convergence of the IRLS algo-
rithm is stable if the learning rate is kept small enough,
and the log-likelihood is monotone increasing even though
the assumption of independence is incorrect. However, they
also suggested using the expectation-conditional maximization
(ECM) algorithm with which the parameter vectors can be
estimated separately. The ECM algorithm basically learns
the parameter vectors one by one, and uses the updated
parameters while learning the next parameter vector. In doing
so, the maximizations are over smaller dimensional parameter
spaces and are simpler than a full maximization, and the
convergence property of the EM algorithm is maintained. In
2007, Ng and McLachlan [52] presented an ME model for
binary classification in which the interdependency between
the hierarchical data was taken into account by incorporating a
random effects term into the experts and the gate. The random
effects term in an expert provided information as to whether
there was a significant difference in local outputs from each
expert, which was shown to increase the classification rates.

More recently, Yang and Ma [53] introduced an elegant least
mean squares solution to directly update the parameters of a
gate with linear weights. This solution eliminates the need for
the inner loop of iterations, and has been shown to be faster
and more accurate on a number of synthetic and real datasets.

In the aforementioned studies [51]–[53], [72], [74], the
focus was on the training of the gate. In another batch
of studies, the focus was clustering of the data, and ME
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was found useful in classification studies that could benefit
from the existence of subclusters within the data. In a
study by Titsias and Likas [75], a three-level hierarchical
mixture model for classification was presented. This model
assumes that: 1) data are generated by I sources (clusters or
experts) and 2) there are subclusters (class-labeled sources)
within each cluster. These assumptions lead to the following
log-likelihood:

l(�; D; Z) =
K∑

k=1

∑

x∈Xk

I∑

i=1

log{P(i)P(k|i)p(x|k, i, θki )}
(22)

where Xk denotes all the data with class label k, p(x|k, i, θki )
is the Gaussian model of a subcluster of class k, and θki is its
corresponding parameter. With this formulation, the classical
ME was written more explicitly, separating the probability
of selecting an expert and the probability of selecting the
subcluster of a class within an expert.

In a 2008 study by Xing and Hu [15], unsupervised clus-
tering was used to initialize the ME model. In the first stage, a
fuzzy C-means [76] based algorithm was used to separate all
the unlabeled data into several clusters and a small fraction
of these samples from the cluster centers were chosen as
training data. In the second stage, several parallel two-class
MEs were trained with the corresponding two-class training
datasets. Finally, the class label of a test datum was determined
by plurality vote of the MEs.

In using clustering approaches for the initialization of ME,
a good cluster can be a good initialization to the gate and
speed up the training significantly. On the other hand, strong
clustering may lead to an unnecessary number of experts, or
lead to overtraining. It might also force the ME to a local
optimum that would be hard to escape. Therefore, it would be
interesting to see the effect of initialization with clustering on
the ME model. Another work that would be interesting would
be to see the performance of ME for a K -class problem where
K > 2 and compare it to the

(K
2

)
comparisons of two-class

MEs and the decision from their popular vote.

V. BAYESIAN ME

HME model parameters are traditionally learned using ML
estimation, for which there is an EM algorithm. However, the
ML approach typically leads to overfitting, especially if the
number of data points in the training set is low compared
to the number of parameters in the model. Also, because the
HME model is based on the divide-and-conquer approach, the
experts’ effective training sets are relatively small, increasing
the likelihood of introducing bias into solutions as a result
of low variance. Moreover, ML does not provide a way
to determine the number of experts/gates in the HME tree,
as it always prefers more complex models. To solve these
problems, two Bayesian approaches have been introduced
based on: 1) variational learning and 2) maximum a posteriori
solution. These solutions are also not trivial because the
softmax function at the gate does not admit conjugate priors.
The sophisticated approximations needed to arrive at these
solutions will be explained in this section.

A. Variational Learning of ME

Variational methods, also called ensemble methods, vari-
ational Bayes, or variational free energy minimization, are
techniques for approximating a complicated posterior prob-
ability distribution P by a simpler ensemble Q. The key to
this approach is that, as opposed to the traditional approaches
where the parameter � is optimized to find the mode of
the distribution, variational methods define an approximating
probability distribution over the parameters Q(�,�), and
optimize this distribution by varying � so that it approximates
the posterior distribution well [47]. Hence, instead of point
estimates for � representing the mode of a distribution in the
ML learning, variational methods produce estimates for the
distribution of the parameters.

Variational learning can be summarized with three main
steps. In the first step, we take advantage of the Bayesian
methods, i.e., we assume prior distributions on the parameters
and write the joint distribution. In the second step, we assume
a factorizable distribution Q; and in the third step, we solve
the variational learning equations to find the Q distribution
that would best estimate the posterior distribution.

The earliest studies on the variational treatment of HME
were by Waterhouse et al. [43], where they assumed Gaussian
priors on the parameters of the experts and the gate given by

P(wik |αik ) = N
(

wik |0, α−1
ik I

)

and
P (vi |μi ) = N

(
vi |0, μ−1

i I
)

and Gamma priors on these Gaussian parameters given by

P(αik ) = Gam(αik |a0, b0)

and
P(μi ) = Gam(μi |c0, d0)

where a0, b0, c0, and d0 are the hyper-hyperparameters, where
a0, c0 control the shape and b0, d0 control the scale in a
Gamma distribution. The zero mean Gaussian priors on the
parameters wik and vi correspond to the weight decay in
NNs. The hyperparameters αik and μi are the precisions
(inverse variances) of the Gaussian distributions; so large
hyperparameter values correspond to small variances, which
constrain the parameters to be close to 0 (for the zero-mean
Gaussian priors) [77]. The graphical representation of the
parameters is given in Fig. 6.

Denoting all the hyperparameters with �, and using these
distributions of the hyperparameters, the joint distribution can
be written as

P(�,�, Z , D) = P(Y, Z |w, v)P(w|α)P(α)P(v|μ)P(μ)
(23)

which is the first step in variational learning, as mentioned
previously.

In the second step, the approximating distribution Q is
assumed to factorize over the partition of the variables as

Q(�,�, Z) = Q(Z)
∏

i

Q(vi )Q(μi )
∏

k

Q(wik)Q(αik ).

(24)
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Fig. 9. Mesh of the input space covered by the experts showing the soft partitioning of the input space and the total probabilistic output for the data shown
in Fig. 8. (a)–(c) Gaussian surfaces corresponding to the three experts. These are the probabilistic outputs Pi of expert i , where i = {1, 2, 3}. (d) Final result∑

i gi Pi .

Finally, in the third step, the goal is to find this factorizable
distribution Q that best approximates the posterior distribution.
Hence, the evidence P(D) is decomposed using

log P(D) = L(Q) + K L(Q||P) (25)

where L is the lower bound

L(Q) =
∫

Q(�,�, Z) log
P(�,�, Z , D)

Q(�,�, Z)
d�d�d Z (26)

and KL is the Kullback–Leibler divergence defined as

K L(Q||P) = −
∫

Q(�,�, Z) log
P(�,�, Z |D)

Q(�,�, Z)
d�d�d Z .

(27)
The Q distribution that best approximates the posterior

distribution minimizes the KL divergence; however, working
on the KL divergence would be intractable, so we look
for the Q that maximizes the lower bound L instead [63].
Plugging the joint distribution (23) and the Q distribution (24)
into the lower bound equation (26), one then computes each
factorized distribution (24) of the Q distribution by taking the
expectations with respect to all the other variables [78].

In maximizing the lower bound for the distribution of the
gate parameter, Waterhouse et al. used a Laplacian approxi-
mation to compute the expectation that involved the softmax
function. However, this trick introduces some challenges.
Because of the Laplace approximation, the lower bound cannot
get tight enough, so the full advantage of the ensemble
learning methods are hard to obtain. Also, when predicting
the distribution of the missing data, one must integrate the
product of a Gaussian and the log of a sigmoid, requiring yet
another approximation. The practical solution is to evaluate
the sigmoid at the mean of the Gaussian [77].

One of the major advantages of variational learning is that it
finds the distributions of the latent variables in the E step and
the distributions of the parameters and the hyperparameters of
the gate and the experts in the M step. In addition, the benefit
of using a variational solution can be seen by the effect of the
hyperparameters that appear as a regularizer in the Hessian.
In fact, if one constrains the hyperparameters to be 0 and uses
the delta function for Q, the EM algorithm is obtained. It has
been shown that the variational approach avoids overfitting
and outperforms the ML solution for regression [43] and for
classification [23].

In comparison to ML learning, which prefers more complex
models, Bayesian learning makes a compromise between
model structure and data-fitting and hence makes it possible

to learn the structure of the HME tree. Therefore, in another
variational study, Ueda and Ghahramani [44], [54] provided an
algorithm to simultaneously estimate the parameters and the
model structure of an MEs based on the variational framework.
To accomplish this goal, the number of experts was treated
as a random variable, and a prior distribution P(I ) on the
number of experts was included in the joint distribution.
Hence, with M representing the maximum number of experts,
and I representing the number of experts where I = 1, . . . , M ,
the joint distribution was modified as

P(�,�, Z , D) = P(Y, Z |w, v, I )P(w|α, I )

P(α|I )P(v|μ, I )P(μ|I )P(I ). (28)

To maximize L(Q), first the optimal posteriors over the
parameters for each I were found, and then they were used to
find the optimal posterior over the model. This paper provided
the first method for learning both the parameters and the model
structure of an ME in a Bayesian way; however, it required
optimization for every possible number of experts, requiring
significant computation.

Therefore, in 2003, Bishop and Svensen [45] presented
another Bayesian HME where they considered only binary
trees. With this binary structure, the softmax function of the
gate was modified to be

P(zi |x, vi ) = σ(vT
i x)zi [1 − σ(vT

i x)]1−zi (29)

= exp(zi vT
i x)zi σ(−vT

i x) (30)

where σ(a) = (1/1 + exp(−a)) is the logistic sigmoid func-
tion and zi ∈ {0, 1} is a binary variable indicating the left
and right branches. With this new representation, Bishop and
Svensen wrote a variational lower bound for the logistic
sigmoid in terms of an exponential function multiplied by
a logistic sigmoid. The lower bound that is obtained from
this approximation gives a tighter bound because of the fact
that the logistic sigmoid function and its lower bound attain
exactly the same values with an appropriate choice of the vari-
ational parameters. However, this model only admits binary
trees, and assumes that a deep-enough tree would be able to
divide the input space. Hence, to find the best model, they
exhaustively search all possible trees with multiple runs and
multiple initializations. Bishop and Svensen’s algorithm was
later used by Mossavat et al. [28] to estimate speech quality,
and was found to work better than the P.563 standard and
the Bayesian MARS (multivariate adaptive regression splines)
algorithm.
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Fig. 10. Classification results on a simple example. (a) Blue and the red points belong to classes 1 and 2, respectively. The gate divides the region in two
in (b), such that, to the left of the gating line the first expert is responsible and to the right of the gating line the second expert is responsible. In (c), expert
1 divides the red and blue points that are to the left of the gate. In (d), the second expert divides the red and the blue points that are to the right of the gate.

One problem associated with these variational techniques
is that the variational bound will have many local maxima.
Therefore, a good variational solution requires multiple runs
and random initializations, which can be computationally
costly. Another solution is to use sampling tools to approach
a global solution; however, these are also known to increase
computational complexity.

B. Maximum a Posteriori Learning of ME

In 2006, Kanaujia and Metaxas [69] used the maximum
a posteriori approach to compute the Bayesian MEs. The
quadratic weight decay term of prior distributions is very
similar to the diagonalization term that appears in the vari-
ational approach, and it is reflected in the log-posterior as a
regularization parameter. The estimated hyperparameters were
used to prune out weights and to generate sparse models at
every EM iteration. In 2007, Sminchisescu et al. [9], [10] used
this MAP learning with sparse priors to estimate 3-D human
motion in video sequences. In 2008, Bo et al. [16] extended
this paper for training sparse conditional Bayesian mixtures of
experts with high-dimensional inputs.

Recently, other ways of training the ME model have been
proposed. Versace et al. [25] proposed using genetic training
instead of gradient descent. Lu [17] introduced a regularization
term to the cross-entropy term in ML training of an ME.

VI. STATISTICAL PROPERTIES OF MIXTURE OF EXPERTS

Formal statistical justification of ME has been a more recent
development. EM training was shown to converge linearly to
a local solution by Jordan et al. [39]. Jacobs [79] analyzed
the bias and variance of ME architectures and showed that
ME produces biased experts whose estimates are negatively
correlated. Zeevi et al. [80] established upper bounds on
the approximation error, and demonstrated that by increasing
the number of experts, one-layer mixtures of linear model
experts can approximate a class of smooth functions. They also
showed that, by increasing the sample size, the least-squares
method can be used to estimate the mean response consistently.
Later, Jiang and Tanner [40] generalized these results using
HME and the ML method, and showed that the HME mean
functions can approximate the true mean function at a rate of
O(I−2/d ) in the L p norm, where I is the number of experts
and d is the dimension of the input. In 2000, Jiang [81]
proved that the Vapnik–Chervonenkis (VC) dimension of ME

is bounded below by I and above by O(I 4d2). The VC dimen-
sion provides a bound on the rate of uniform convergence
of empirical risk to actual risk [82], [83], and is used for
planning the number of training samples and for estimating
computational efficiency [84]. Jiang and Tanner [85] also
provided regularity conditions on the gate and on the experts
under which the ML method in the large sample limit produces
a consistent and asymptotically normal estimator of the mean
response. Under these regularity conditions, they showed that
the ML estimators are consistent and asymptotically normal. In
addition, they showed that ME is identifiable [86] if the experts
are ordered and the gate is initialized. For a statistical model
to support inference, it must be identifiable, that is, it must be
theoretically possible to learn the true value of this model’s
underlying parameter after obtaining an infinite number of
observations from it [87]. Jiang and Tanner [88] also showed
that HME is capable of approximating any function in a
Sobolev space, and that HME probability density functions
can approximate the data generating density at a rate of
O(I−4/d ) in KL divergence. Following these results, Carvalho
and Tanner [41] presented a formal treatment of conditions
to guarantee the asymptotic normality of the ML estimator
under stationarity and nonstationarity. More recently, Yang and
Ma [42] investigated the asymptotic convergence properties of
the EM algorithm for ME. Ge and Jiang [89], [90] showed the
consistency properties of Bayesian inference using mixtures
of logistic regression models, and they gave conditions on
choosing the number of experts so that Bayesian inference
is consistent in approximating the underlying true relationship
between y and x. These statistical justifications have gone hand
in hand with the development of the Bayesian ME models,
which were described in the previous section.

VII. MODIFICATIONS TO ME TO HANDLE

SEQUENTIAL DATA

The original formulation of ME was for static data, and
was based on the statistical independence assumption of
the training pairs. Hence, it did not have a formulation to
handle causal dependencies. To overcome this problem, several
studies extended ME for time-series data. In the past decade,
ME has been applied to regression of time-series data in
a variety of applications that require time-series modeling.
ME was found to be a good fit in such applications where
the time-series data is nonstationary, meaning the time series
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switch their dynamics in different regions of the input space,
and it is difficult for a single model to capture the entire
dynamics of the data. For example, Weigend et al. [64]
used ME to predict the daily electricity demand of France,
which switches among regimes depending on the weather,
season, holidays, and workdays, establishing daily, seasonal,
and yearly patterns. Similarly, Lu [17] used ME for climate
prediction because the time-series dynamics switch seasonally.
For such data, ME showed success in finding both the decom-
position and the piecewise solution in parallel. In most of the
following papers, the main idea is that the gate divides the
data into regimes, and the experts learn local models for each
regime. In the rest of this section, we will refer to the original
ME as the static model, and the extensions as the time-series
ME models.

For time-series data, Zeevi et al. [91] and Wong et al. [92]
generalized the autoregressive models for time-series data
by combining them with an ME structure. In the
speech-processing community, Chen et al. [73], [93], [94]
used HME for text-dependent speaker identification. In [73],
the features were calculated from a window of utterances
to introduce temporal information into the solution. In [94],
a modified HME structure was introduced. In the modified
HME, a new gate was added to make use of the transitional
information while the original HME architecture dealt with
instantaneous information. The new gate, called the S-gate, is
placed at the top of the tree and calculates a weighted average
of the output of the HME model. Thus, for a given observation
sequence X(n) = {x(n)

1 , . . . , x(n)
t , . . . , x(n)

T }, where x(n)
t is the

input at time t , and a given static ME model P(y(n)|x(n)
t ), the

probabilistic model in (2) was modified for time-series ME as

P
(

y(n)|X(n),�
)

=
T∑

t=1

λX

(
x(n)

t ; �
)

P
(

y(n)|x(n)
t

)
(31)

with

λX (x(n)
t ; �) =

P
(

x(n)
t |�

)

∑T
s=1 P

(
x(n)

s |�
) (32)

where P(x(n)
t |�) is a Gaussian distribution and � is the para-

meters of a Gaussian distribution as shown in Fig. 7. Then, for
a speaker identification system of population K , they selected
the unknown speaker k∗ that gives the highest regression
probability out of the K models. Here, the traditional ME
works on x(n)

t , and the extra gate includes the computations
for all t . Using this model, Chen et al. [94] modified the EM
update equations and solved for the parameters of the topmost
Gaussian gate analytically, whereas the rest of the parameters
for the experts and the gate were found iteratively. With this
paper, HME gained the capability to handle sequences of
observations, but the experts and the gate (except the extra
gate) were still linear models.

For nonstationary data, Cacciatore and Nowlan [95]
suggested using recurrence in the gate, setting one input of
the gate to the ratio of the outputs from two preceding time
steps. Weigend et al. [64] developed a gated ME to handle
time-series data that switches regimes. A gate in the form of

a multilayer perceptron combines the outputs of the neural
network experts. Hence, while the gate discovers the hidden
regimes, the experts learn to predict the next observed value.
This gated ME was extended by Coelho et al. [3], where
training was accomplished using genetic algorithms instead of
gradient descent. A similar idea to detect switching regimes
was also visited by Liehr et al. [96], where the gate was a
transition matrix, and the experts were Gaussian functions.

Most of these ME models for time-series regression use
a one-step-ahead or multistep-ahead prediction, in which the
last d values of the time-series data are used as a feature
of d dimensions in a neural network. The benefit of using
such sliding-window techniques is that a sequential supervised
learning problem can be converted into a classical supervised
learning problem. However, these algorithms cannot handle
data with varying length, and the use of multilayer network
approaches prevents them from completely describing the
temporal properties of time-series data. Such problems were
discussed by Dietterich in [97].

To remove the i.i.d. assumption of the data that was
necessary in the original HME model, and to find a model
appropriate for time-series data, Jordan et al. [98] described a
decision tree with Markov temporal structure referred to as a
hidden Markov decision tree, in which each decision in the tree
is dependent on the decision taken at the node at the previous
step. The result was an HMM in which the state at each
moment in time was factorized, and the factors were coupled
to form a decision tree. This model was an effort to combine
adaptive graphical probabilistic models such as the HMM,
HME, input-output HMM [99], and factorial HMM [100] in
a variational study.

Other extensions of ME to time-series data include studies
where the experts are the states of an HMM [4], [5], studies
that mimic the probability density estimation of an HMM
using ME systems [70], [99], [101]–[103], and studies on
ME with recurrent neural nets associated with the states of
an HMM [104], [105].

VIII. COMPARISON TO POPULAR ALGORITHMS

HME can be regarded as a statistical approach to decision
tree modeling where the decisions are treated as hidden
multinomial random variables. Therefore, in comparison to
decision tree methods such as CART [106], HME uses soft
boundaries, and allows us to develop inference procedures,
measures of uncertainty, and Bayesian approaches. Also,
Haykin [36] pointed out that an HME can recover from a poor
decision somewhere further up the tree, whereas a standard
decision tree suffers from a greediness problem, and gets stuck
once a decision is made.

HME bears a resemblance to the boosting algorithm [107],
[108] in that weak classifiers are combined to create a single
strong classifier. ME finds the subsets of patterns that naturally
exist within the data, and learns these easier subsets to solve
the bigger problem. In boosting, on the other hand, each
classifier becomes an expert on difficult patterns on which
other classifiers make an error. Hence, the mixture coefficient
in boosting depends on the classification error and provides a
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Fig. 11. Classification results are shown as areas for the data shown in Fig. 10. The final classification is shown in (a), where the dark region corresponds
to class 1 (blue points) and the white region corresponds to class 2 (red points). The gate in (b) divides the area into two. On the dark region that has been
marked by the gate, expert 1 is active and makes a correct decision in separating the red and the blue point at this region in (c). Similarly, expert 2 makes a
successful classification between the red and the blue points at the yellow region that has been selected by the gate in (d).

linear combination, whereas the mixture coefficient (the gate)
in the HME depends on the input and makes probabilistic
combination of experts. This difference in mixing makes the
training of these two algorithms significantly different. In
boosting, the classifiers are trained sequentially on the basis of
data that was filtered by the previously trained networks. Once
the training data is specified, the boosting networks are learned
independently, and combined with a mixture coefficient that
is learned from the classification error. In HME, the experts
compete with each other for the right to learn particular
patterns; hence, all the experts are updated at each iteration
depending on the gate’s selection. In an effort to incorporate
boosting into ME, Waterhouse and Cook [109] initialized a
split of the training set learned from boosting to different
experts. The benefits of ensembles (such as boosting and ME)
in improving the bias/variance problem were discussed by
Shimshoni and Intrator [110]. In another boosted ME study,
Avnimelech and Intrator [38] added the experts one by one,
and trained the new experts with the data on which the other
experts were not confident. The gating function in this case
was a function of the confidence. From the boosting perspec-
tive, boosted ME provides a dynamic combination model for
the outputs of the networks. From the ME perspective, one can
think of it as a smart preprocessing of the data. Another study
on preprocessing was published by Tang et al. [33] where
self-organizing maps (SOMs) were used, in which, as opposed
to feeding all the data into the experts, local regions of the
input space found by the SOM were assigned to individual
experts.

MARS partitions the input space into overlapping regions
and fits a univariate spline to the training data in each region.
The same mixture coefficient argument also applies to the
MARS model [111], which has the equational form of a sum
of weighted splines. In comparison to the latent variables
of HME, MARS defines the states by the proximity of the
observed variables. On the other hand, the Bayesian MARS is
nonparametric, and requires sampling methods. It was found
that HME requires less memory because it is a parametric
regression approach, and the variational Bayesian inference
for HME converges faster [28] .

In comparison to NNs, Nowlan and Hinton [112] found
ME to be better at fitting the training data. When forced
to deal with relatively small training sets, ME was better
at generalizing than a comparable single backpropagation
network on a vowel recognition task. HME was shown to

learn much faster than backpropagation for the same number
of parameters by Jordan and Jacobs [113]; however, it is ques-
tionable whether this was a good comparison since the NNs
were trained using a gradient-descent algorithm, whereas the
HME was trained using second-order methods. Additionally,
HMEs provide insightful and interpretable results, which NNs
do not. In terms of the degree of approximation bounds, NNs
and MEs were found to be equivalent by Zeevi et al. [80].

Other models of ME include the max-min propagation
neural network by Estevez et al. [57], where the softmax
function was replaced with max(min) units; the probit func-
tion by Geweke [58] which computes the inverse cumulative
distribution function, and the model by Lima et al. [12], where
NNs were used at the gate and SVMs at the experts.

IX. APPLICATIONS OF MIXTURE OF EXPERTS

Applications of ME have been seen in various areas,
such as electricity demand prediction [64], climate predic-
tion [17], handwriting recognition [19], [114], robot naviga-
tion [104], sensor fusion [22], face recognition [20], [115],
electroencephalogram signal classification [26], electrocardio-
gram heart-beat classifier for personalized health care [116],
[117], stellar data classification [27], text classification [118],
bioinformatics [8], protein interaction prediction [21], gender
and ethnic classification of human faces [119], speech recog-
nition and quality estimation [28], [67], [120], audio classi-
fication [29], learning appearance models [121], 3-D object
recognition [122], image transport regression [30], deformable
model fitting [11], filter selection [123], nonlinear system
identification of a robotic arm [113], connectivity analysis in
the brain from fMRI (functional magnetic resonance imaging)
data [13], 3-D human motion reconstruction [9], [10], and for
landmine detection [23]. In social studies, ME has been used
to analyze social networks and to model voting behavior in
elections [124]–[126]. In financial analysis, ME has been used
for financial forecasting [127], [128], for risk estimation of
asset returns [24], for predicting the exchange rate between
the U.S. dollar and the British pound (USD/GBP) [3], and for
predicting the direction of variation of the closing price of the
Dow Jones industrial average [25].

X. CONCLUSION

This paper presented a comprehensive survey of develop-
ments in the ME model which has been used in a variety
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of applications in the areas of regression, classification, and
fusion. Over the years, researchers have studied the statistical
properties of ME, suggested various training approaches for
it (such as EM, variational learning, and Gibbs sampling),
and attempted to combine various classification and regression
models such as the SVMs and GPs using ME. Therefore, one
could perhaps argue that the major advantage of ME is its
flexibility in admitting different types of models, and learning
model parameters with well-understood optimization methods.
In doing so, ME has a niche in modeling nonstationary and
piecewise continuous problems.

Given the progression of the ME model, one area that has
been underdeveloped is the classification of time-series data.
HMM models and ME have been combined for regression and
density estimation, but no extension thus far has provided a
natural method of finding the subsets of time-series data using
an ME model. Such an extension would require a major change
in the learning of the experts and the gate; however, it should
be possible considering that both the HMM and ME models
can be trained with the EM algorithm.

Another area that has not been fully addressed with ME
models is context-based classification. In context-based clas-
sification, models are learned for the context in which they
appear. For example, in landmine detection, radar signals
vary significantly for the same underlying object depending
on the weather conditions. Therefore, it makes sense to
use features that reflect temperature and humidity, and to
learn models that distinguish mines from non-mines based on
these weather-based features. Although ME has been cited
as a context-dependent method in the literature owing to
its success in dividing the data in the input or the kernel
space, examples such as the one given above have not been
specifically addressed. One could, for instance, modify the
gate to make distinctions based solely on weather conditions,
and modify the experts to work just on the mine/non-mine
models. Therefore, the gate and the experts structure of the
ME model could provide a solid base from which to learn
such context-dependent models.

On the other hand, even though the ME model has matured
much over the years, a standard dataset for research has
not been established, and the efficiency of the model on
large volumes of data or on high-dimensional data has not
been extensively tested. We hope that the publicly available
datasets and the software listed in the Appendix can be
useful for researchers who would like to go further in this
area. For such a model as well known and well used as
ME, detailed studies on robustness to outliers and noise
would be very useful. In addition, although some of the
closed-form solutions were listed throughout this paper, most
of the inference algorithms are based on iterative techniques
and require good initializations. The computational complexity
of these inference techniques on small mid-size and large
datasets, as well as their sensitivity to initialization, would
be worth investigating. Also, in most of the studies, finding
the number of experts has been left to the expertise of the
software developer instead of an automatic approach. Hence,
a combination of the latest Bayesian and clustering studies
can potentially provide methods to automate the selection of

the number of experts, and simplify the search for the pruning
and tree-growing algorithms that have been discussed in this
survey.

APPENDIX A
PUBLICLY AVAILABLE DATASETS

Some of the benchmark data that have been used to test
HME include the following.

1) Motorcycle data from [129], available at:
http://www.stat.cmu.edu/∼larry/all-of-statistics/.

2) DELVE data, specifically the Boston, Kin-8nm, and
Pumadyn-32nm datasets, available at: http://www.cs.
toronto.edu/∼delve/.

3) Vowel formant frequency database by Peterson and Bar-
ney [130], available at: http://www.cs.cmu.edu/afs/cs/
project/ai-repository/ai/areas/speech/database/pb/0.html.

4) Thyroid dataset, available at:
http://www.uni-koblenz.de/∼evol/bp-race/thyroid.html.

5) Robot arm data, explained by Bishop [45].

APPENDIX B
AVAILABLE SOFTWARE

The following software is freely available on the Internet.

1) The MIXLAB software in MATLAB, by P. Moeller,
available at: http://ftp.idiap.ch/pub/OLD/perry/toolbox.

2) DELVE project in C++, available at: http://www.cs.
toronto.edu/∼delve/methods/hme-el-1/codePage.html.

3) Fast training of ME model by C. Sminchisescu [16], at:
http://sminchisescu.ins.uni-bonn.de/code/fbme.html.

4) Bayes Net Toolbox for MATLAB, available at:
http://code.google.com/p/bnt/.

5) Stand-alone HME MATLAB code by D. Martin, at:
http://www.ics.uci.edu/∼fowlkes/software/hme.

6) HME by L. Evers [131] in R environment [132], at:
http://www.stats.gla.ac.uk/∼levers/software.html.

7) Mixtools [133] software in R environment, available at:
http://CRAN.R-project.org/package=mixtools.

8) Integrative ME software in R environment, available at:
http://cran.r-project.org/web/packages/integrativeME/.

APPENDIX C
ME REGRESSION EXAMPLE

In this appendix, we demonstrate the divide-and-conquer
property of ME with a simple regression example shown in
Fig. 8(a). Such data can be encountered in inverse problems as
explained by Bishop [63]. For three experts, in 21 iterations,
the randomly initialized expert and gating parameters become
aligned as shown in Fig. 8(b) and (c). In Fig. 8(b), the
colors green, red, and blue indicate the three experts, and
the lines are the plots of the parameters wi as a function of
the input x ; i.e., each parameter wi = [ai , bi ] is plotted as
a line ai x (n) + bi for i = 1, 2, 3. Similarly, in Fig. 8(c), we
plot the parameters of the gate vi . In Fig. 8(d), the gating
parameters are evaluated in the softmax function, and the
mixing coefficients gi(x (n)) are plotted. Note that for each



1190 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

input x (n), the mixing coefficients sum to 1. It can be observed
that around x < 0.3, the gate overwhelmingly picks the second
expert with a soft decision on the boundary. In Fig. 8(b), this
corresponds to choosing the red line for regression. However,
it should be noted that the red line only shows the mean
wT x (n), where the Gaussian probabilities are centered. These
Gaussian surfaces for the expert probabilistic outputs Pi (x (n))
are displayed in Fig. 9(a)–(c), and the resulting probabilistic
output

∑
i gi (x (n))Pi (x (n)) is displayed in Fig. 9(d).

APPENDIX D
ME CLASSIFICATION EXAMPLE

A simple classification problem is shown in Fig. 10(a), in
which the blue plus signs from the first class and the red
asterisks from the second class are not linearly separable.
However, once the data is partitioned in two groups by the
gate shown in Fig. 10(b), the data on either side of the gate
are linearly separable and can be classified by linear experts
as shown in Fig. 10(c) and (d). The parameters of the gate
and the experts have been plotted as lines. The gate divides
the region into two in Fig. 10(b), such that, to the left of the
gating line the first expert is responsible and to the right of
the gating line the second expert is responsible. In Fig. 10(c),
expert 1 separates the two classes of points that are to the left
of the gate. In Fig. 10(d), expert 2 separates the two classes
of points that are to the right of the gate. These regions have
been explicitly shown in Fig. 11, with the final classification
given in (a), the region divided by the gate in (b), and the
regions divided by the experts in (c) and (d). The decisions of
the gate and the experts are probabilistic, so these regions are
actually soft partitions. To make these sharp plots, we picked
the maximum of the probabilistic outputs.
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