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Abstract

Neuron modeling may be said to have originated with the Hodgkin and Huxley action potential 

model in 1952 and Rall's models of integrative activity of dendrites in 1964. Over the ensuing 

decades, these approaches have led to a massive development of increasingly accurate and 

complex data-based models of neurons and neuronal circuits. ModelDB was founded in 1996 to 

support this new field and enhance the scientific credibility and utility of computational 

neuroscience models by providing a convenient venue for sharing them. It has grown to include 

over 1100 published models covering more than 130 research topics. It is actively curated and 

developed to help researchers discover and understand models of interest. ModelDB also provides 

mechanisms to assist running models both locally and remotely, and has a graphical tool that 

enables users to explore the anatomical and biophysical properties that are represented in a model. 

Each of its capabilities is undergoing continued refinement and improvement in response to user 

experience. Large research groups (Allen Brain Institute, EU Human Brain Project, etc.) are 

emerging that collect data across multiple scales and integrate that data into many complex 

models, presenting new challenges of scale. We end by predicting a future for neuroscience 

increasingly fueled by new technology and high performance computation, and increasingly in 

need of comprehensive user-friendly databases such as ModelDB to provide the means to integrate 

the data for deeper insights into brain function in health and disease.

Introduction

Neuroscience, like all fields of science, must be based on both experiment and theory. 

Traditionally, experimental data has dominated; theory has been difficult to develop due to 
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the complexity of neuronal structures and functions. Computational models, however, face a 

challenge: they are complex and difficult to describe completely and accurately in a 

publication (as reviewed in McDougal et al 2016). The ModelDB repository was created to 

address this issue by acting as a companion resource to traditional publications. Upon 

acceptance of an article involving computational neuroscience models, the authors can share 

their accompanying code on ModelDB without restriction on simulator choice, modeling 

topic, etc. This open-acceptance policy combined with active model curation and the 

development of tools to aid in model understanding has made ModelDB a one-stop resource 

for researchers looking for computational neuroscience models.

Twenty years have passed since the first publication on ModelDB (Peterson et al 1996). We 

take this occasion of ModelDB’s 20th anniversary to review ModelDB’s origins, its current 

state, and future plans for its development. It continues to grow and now hosts over 1100 

published models. ModelDB’s mission is to store the computer code associated with 

published computational neuroscience models so that they may be shared, in order to 

facilitate the verification, understanding, and extensions of the original paper, and so that 

they may be reused as templates for new projects or building blocks for new projects. To 

understand the scope of the models in ModelDB, as well as ModelDB’s mission, it helps to 

review its development in the context of historical developments in computational 

neuroscience, and the challenges it faces as neuroscience enters a new era of high 

performance computing and simulation.

ModelDB’s Origins

Computational modeling in the nervous system has two origins. One origin was the model of 

Alan Hodgkin and Andrew Huxley for the action potential in the squid giant axon. 

Developed during the late 1940s and early 1950s, the model represented the results of 

physiological experiments in a system of four ordinary differential equations. These 

equations not only reproduced the measured data, but they allowed quantitative predictions 

of axon response to different stimuli and introduced a framework for formalizing the 

response of an ion channel to changes in membrane potential that remains widely used. The 

second origin was compartmental modeling, introduced by Wilfrid Rall to study the spread 

of synaptic potentials in complex dendritic trees, initially of motor neurons (Rall 1964). 

These two methods were first combined in models of brain neurons in the olfactory bulb 

mitral cell and its synaptic interactions with granule cells which incorporated both synaptic 

potentials and Hodgkin-Huxley-like action potential dynamics (Rall and Shepherd 1968).

In each of these cases, the models provided critical tests of experimental data and made 

predictions that were confirmed by experimental tests. This was a significant advance over 

previous mathematical attempts to represent neuroscience data, which used analytical 

methods with limitations in representing morphology and function. Using numerical 

methods solved this problem, enabling arbitrary morphologies and channel dynamics to be 

simulated, limited mainly – especially in the early years – by available memory and 

computing power.
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Early computers were room-occupying leviathans, expensive, remote from the laboratory, 

and difficult to program. These limitations greatly slowed the incorporation of modeling into 

experimental study. The olfactory bulb work was followed in the 1970s with models for 

motor neurons (Dodge and Cooley, 1973; Traub and Llinas, 1977), Renshaw cells (Traub, 

1977), cortical pyramidal cells (Traub and Llinas, 1979) and a two-neuron dendro-dendritic 

microcircuit (Shepherd and Brayton, 1979). Modeling effort picked up in the 1980s, and 

began to be more common in the 1990s as computers morphed into desk-sized equipment 

within experimental laboratories, with adequate speed and memory to simulate neurons with 

realistic morphology and properties.

A new impediment arose, however, since each model often had to be built from scratch, 

usually by a graduate student or postdoctoral fellow in the research group, who might spend 

several years developing it and then move on, so that any attempt to test the model further 

was often prohibitively difficult. There was no infrastructure to allow modelers to readily 

share the full details of their work. Space in journals was limited, typesetting a full model 

was error-prone, and computer networks were in a nascent state. Thus at that time, computer 

modeling did not follow the rule that published work must provide sufficient information 

about the methods to allow verification of the results. This limitation risked skepticism about 

the results and threatened to limit the scientific basis and use of computational modeling.

There was therefore an urgent need to create a database where investigators could identify 

models already produced in their area of interest, download and run them to test them in a 

way analogous to testing results in any other area of science, and build on previous work to 

generate new models for new applications. The establishment of the US Human Brain 

Project (Martin and Pechura 1991) provided the opportunity to create such a database, since 

one of its aims was to advance neuroinformatics in a way inspired by the recently 

established gene and protein databases. It was recognized from the beginning that the 

neuroscience domain was more challenging. In contrast to the one-dimensional strings of 

letters used to represent major components of genomic data, neuroscience data is 

characterized by its great diversity of data types, from spatial images to temporal spike 

firing. This diversity combined with a diversity of data formats presented challenges for 

archiving and searching.

SenseLab (http://senselab.med.yale.edu), one of the early participants in the US Human 

Brain Project, committed itself to attempting to address many of these challenges. Built on a 

flexible EAV/CR architecture (Nadkarni et al 1999), SenseLab began by developing 

NeuronDB (Mirsky et al 1998), a multidisciplinary resource combining data on morphology, 

functional properties, and pharmacology, and representing that data in the context of 

canonical neuronal structures. In addition to facilitating comparisons of experimentally 

measured properties between different neuron types, NeuronDB serves as a starting point for 

building Rall-type neuron models by providing a reference for what channels are present in 

different parts of a neuron.

ModelDB, a freely-accessible repository for published neuroscience models in their original 

source code form, was created in response to the increasing feasibility of neuroscience 

simulations due to advances in personal computer technology. It was built by combining 

McDougal et al. Page 3

J Comput Neurosci. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://senselab.med.yale.edu


SenseLab’s informatics infrastructure with the neuronal modeling expertise of Michael 

Hines, creator of the NEURON simulation environment (http://neuron.yale.edu; Hines 1993) 

who joined the SenseLab group in 1995. The decision to preserve models in their original 

form allowed the ModelDB group to avoid the need for special expertise to reproduce 

models in a standardized format. Instead of converting code, they could focus on 

infrastructure development and on collecting models for all simulators and neuroscience 

topics. From the beginning, each model in ModelDB was associated with metadata linking it 

to the experimental resources in NeuronDB and the rest of SenseLab. An archetype sample 

process of collecting data, building models, and making predictions along with the role of 

ModelDB is summarized in Fig. 1.

ModelDB at present

Since 2000, ModelDB has grown steadily and now contains over 1100 models (Fig 2). Many 

of these models combine traced morphologies with conductance based ion channel models 

with experimentally derived channel distributions, in order to make predictions about 

dynamics that are currently impractical to test experimentally, such as calcium 

concentrations in the fine oblique dendrites of a pyramidal cell (Fig. 3).

With its steady expansion, ModelDB has emerged as a common place to seek out 

computational neuroscience models, both for specific known models and to discover other 

modeling work. For its recent renewal application, 30 users provided comments on aspects 

of ModelDB. We summarize some of those comments below.

Multiple platforms

Including models that run on different platforms is an attraction for many users. Unlike the 

CellML repository (Lloyd et al 2008) or Biomodels.net (Le Novere et al 2006), ModelDB 

hosts models expressed in any simulator format or programming language. Over 80 

simulators or programming languages are represented. Approximately half the models in 

ModelDB are coded in NEURON, followed by MATLAB, Python, C/C++, and XPP (Table 

1). Curation is carried out regardless of simulator.

Multiple research topics

Over 130 topics (for examples of the most frequent, see Table 1) range over many scales, 

including action potentials, calcium dynamics, influence of dendritic geometry, 

invertebrates, learning and memory, pattern recognition, synaptic integration and synaptic 

plasticity. Over 150 models focus on pathophysiology of the nervous system. By collecting 

this diversity in one location, ModelDB promotes model discovery in a way that is not 

possible when models are scattered across laboratory websites or general purpose code 

repositories.

Model search and discovery

ModelDB provides several tools to assist with model discovery. As part of the model entry 

and curation process (Hines et al 2004), models are associated with categorized tags 

indicating the model type (e.g., neuron vs. network), brain region, cell types, channels, 
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receptors, genes, transmitters, simulation environment, and model concepts (Spatio-temporal 

activity patterns, calcium dynamics, Schizophrenia, etc.). Links in the left column of every 

ModelDB page ((2) in Fig 4) allow browsing by each of these categories. Where appropriate 

(e.g., cell types, currents, and model concepts) browsing is hierarchical. Clicking on a 

selection displays a new page listing all models so tagged and a brief explanation of the tag. 

According to one user, ModelDB’s “cross-referencing with keywords and related literature, 

and a simple yet very effective ontology… can also help to identify relevant related work 

that is not always easily found by traditional methods such as PubMed searches.” Some 

users have reported that their code being discovered on ModelDB led to new collaborations

Search tags

A unified search box on the upper-left of each page ((1) in Fig 4) allows models to be 

searched by tag, authors, full-text contents, or accession numbers. Suggestions and matches 

are displayed as text is entered into the search box, avoiding the need to fully enter the 

search query. The full-text searching also supports searching for words beginning with a 

given character sequence, case-sensitive searches, and restricting searches to filenames 

matching a pattern or from a model of a certain year. The advanced search page allows more 

complicated queries.

Model viewing

For most NEURON and some NeuroML models, a Web tool called ModelView (McDougal 

et al 2015; Fig 4C) is provided in the Model Views tab which allows a modeler to examine 

the run-time morphology, channel types, and values of parameters in a model. A browsable 

tree ((17) in Fig 4) provides information on both the basic structure of the model (how many 

cells or compartments, and which mechanisms such as ion channels or receptors, are 

present) and also the values of parameters (such as conductance densities, reversal 

potentials, specific membrane capacitance, etc.) at run time. This provides a quickly 

graspable overview of the model helpful for modelers and experimentalists.

Reuse

ModelDB automatically indicates when a file (e.g., describing a specific ion channel) is 

reused regardless of context, thus allowing comparisons across models. One file, a model of 

an A current (kaprox.mod in modeldb.yale.edu/2796) has been reused in at least 26 models; 

the corresponding paper has been cited by the papers accompanying 52 other ModelDB 

entries, as of August 1, 2016. This level of reuse -- in papers with a total of at least 50 

distinct authors -- would likely be impossible if individual modelers had to contact the 

original modeler and request code.

This highlights a key benefit of ModelDB. It facilitates the reuse of model code. Reuse is 

possible at many scales: code snippets, model components such as ion channels, and whole 

models. In each case, reuse saves time and effort. As one user wrote, “By using well 

established model components in my network model, I have saved myself the better part of a 

year of work, reduced opportunities for error, and ensured that a greater proportion of my 

model has already been validated.”
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ModelDB’s citation browser ((11) in Fig 4) allows researchers to quickly identify what 

modeling papers are cited-by and cite the papers associated with a given model, providing 

another metric of reuse specific to the computational neuroscience community. Hodgkin and 

Huxley 1952, which helped launch computational neuroscience, is cited by more ModelDB 

models (185) than any other model. The next three models most cited by other ModelDB 

models are from three distinct areas of research: kinetic synaptic models for networks 

(ModelDB 18500; multiple papers including Destexhe et al 1994; 74 citing models, 372 

downloads), the Izhikevich model for spiking neurons (ModelDB 39948; multiple papers 

beginning with Izhikevich 2003; 73 citing models, 1219 downloads), and a model 

investigating the role of morphology (ModelDB 2488; Mainen and Sejnowski 1996; 73 

citing models, 1438 downloads). Citations counts are as of August 1, 2016; download counts 

are as of July 20, 2016 and count only unique non-search engine IP addresses.

Reproducibility and replicability

In addition to facilitating reuse, sharing code on ModelDB or otherwise promotes 

reproducibility and replicability in computational neuroscience (Crook et al 2013, 

McDougal et al 2016). These are related but distinct aspects of the scientific method. 

Reproducibility is the ability to re-implement a model and get the same qualitative result. 

Replicability is the ability to repeat a simulation exactly. Replicability follows mostly from 

sharing code and the deterministic nature of digital computers, but is assisted by the curation 

process which seeks to ensure that models are run on as many platforms as possible (Linux, 

Macintosh, Windows, clusters, supercomputers), and that they contain no bugs that restrict 

their ability to run on different simulator versions. Reproducibility is assisted because the 

shared code provides a reference implementation for debugging, and parameters that are 

necessarily the same as those used in the simulation. Furthermore, ModelDB promotes both 

reproducibility and replicability by functioning as a stable, long-term home for code, 

ensuring that it does not get lost over time as individuals enter and leave research groups.

Running models

ModelDB currently offers several ways to make models more accessible for assessment, 

thereby making them more understandable. First, from the beginning, users have been able 

to download any model entry's source code and run it on local hardware. This allows testing 

with different inputs and/or recording and analysis of different outputs than were used in the 

publication. Help pages in ModelDB provide notes on how to run models (in general) for 

many of the simulation environments. Second, many model entries (246 as of February 28, 

2016) have a link that triggers interactive simulation over the Web on the INCF Japan 

Node’s Simulation Platform (launched by (7) in Fig 4). Data generated during the interactive 

session may be downloaded for further analysis. Third, most NEURON model entries in 

ModelDB have an auto-launch button; a single click on this button downloads, compiles, 

and runs a simulation, provided that NEURON is installed and the browser is configured 

correctly. Finally, large network models that are impractical or impossible to run on a 

personal workstation may be uploaded and run on a cluster using the freely available 

Neuroscience Gateway resource (Carnevale et al 2014).
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Assisting review

ModelDB assists in the review process. Although public models must have an associated 

publication, ModelDB allows authors to upload their unpublished models privately and 

provide their reviewers with a read-only password that allows downloading (and thereby 

reviewing) the code and examining the model’s output. ModelDB’s auto-launch 

functionality further assists review by simplifying the launching process for NEURON 

models, and is in principle extendable to other simulation environments.

Creating a sharing community

ModelDB’s existence and the presence of over 1100 models on the site promotes sharing of 

model source code, which has been noted to be less common than data sharing in fields such 

as molecular biology (Ascoli 2006). Many journals now ask authors to explicitly address 

whether or not they will share model code. The Journal of Computational Neuroscience 

specifically suggests that authors share their model code via ModelDB.

ModelDB and most submitting authors impose no restrictions on the use of models obtained 

from the database beyond citing ModelDB and the model’s publication in any resulting 

work. Most of the remainder release code under GPL or free for non-commercial use 

licenses by including a file with the appropriate license text.

Full model descriptions

As one user summarized it, “I have found ModelDB to be an essential complement to formal 

publications in computational neuroscience, since most articles cannot provide the level of 

detail necessary to answer all questions that one may have about a particular model.” 

Sharing code provides a full description of a model in a way that a paper cannot. Generally, 

space limitations in publications preclude complete descriptions of model equations, 

parameters, numerical methods, etc. Even if there were no space limitations, typesetting and 

conversion back into source code risk introducing errors. Sharing source code avoids such 

errors and allows others to augment their own understanding of the model beyond the textual 

content of the associated publication. It increases the chance that model errors will be found, 

their seriousness examined, and the errors corrected.

Teaching

In addition to its role in research, ModelDB facilitates teaching in computational 

neuroscience courses around the world. Among its entries are many excellent examples of 

how to write code for various simulators, and how to document code so that others may 

understand it. In providing model source code linked to research publications, ModelDB 

makes those publications’ models interactive and thus more easily studied for both research 

and educational purposes.

ModelDB and the future of neuroscience

New trends are emerging that will shape the future of neuroscience; ModelDB and modeling 

are poised to play key roles in this development. New initiatives and new technology are 

leading to data being collected at an increasing rate; this data will need to be bound together 
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with models to form coherent frameworks to give insight and guide future experiments. 

Advances in computer technology, especially the increasing performance and availability of 

high performance computers (HPCs) and graphics processing unit (GPU)-based parallelism, 

will allow larger, more-realistic multi-scale models. These models often will be built as a 

collaborative endeavor, combining expertise and data from many interdisciplinary 

researchers. Many of these more-realistic models will be used to study pathophysiology of 

complex disorders.

More data

Multiple factors are converging to lead to a rapid increase in neuroscience data collection 

and availability. Governments in many countries have prioritized developing a better 

understanding of the brain, most famously in the United States and Europe by funding the 

US Brain Initiative (Insel et al 2013) and the EU Human Brain Project (Markram 2012). 

Simultaneously, new methods such as CLARITY (Chung and Deisseroth 2013) and 

Expansion Microscopy (Chen et al 2015) allow imaging the brain in novel ways. Automated 

large-scale morphology reconstruction (Kasthuri et al 2015) will extract neuron 

morphologies from the images and in addition will provide insight into cell types and 

possible connectivity within the local microcircuit. Electrophysiology data sets will likewise 

become more numerous due to the increasing use and availability of optogenetics techniques 

(Deisseroth 2011), multi-electrode arrays (Najafi and Wise 1986), and voltage and calcium 

sensitive dyes (reviewed in Baker et al 2005). A gradually increasing expectation of data 

sharing will make more of the data that is gathered available to all.

To address this explosion of data, ModelDB will increase our outgoing links to related data 

resources (e.g., ModelDB currently links to NeuronDB to allow exploring information about 

what is experimentally known about a modeled cell type) and standardizing the 

identification of what data led to the model while simultaneously refining the specificity of 

our links. These links have been historically hampered by the lack of a widely adopted 

shared language (ontology) for identifying neuroscience concepts, but NeuroLex (Hamilton 

et al 2012) and the Computational Neuroscience Ontology (Le Franc et al 2012) offer the 

potential to overcome this challenge.

New models and new modelers

The explosion of data will drive the development of new models as experimentalists seek to 

infer concepts that can account for their own data and relate it to observations by others. 

ModelDB already provides a wealth of code examples and full mechanisms (e.g., ion 

channel models) associated with peer-reviewed publications that can help those new to 

modeling get started. In the future it will make discovering examples easier by manually and 

automatically adding more searchable metadata that identifies parts of model code with 

specific biological context (e.g., rat hippocampal CA1 pyramidal cell, Kv3.1 channel).

ModelDB’s ModelView tool is already creating the expectation that simulators other than 

NEURON should make their model structure graphically discoverable. This will become 

increasingly necessary as new simulators are created that address the specific needs of 

particular user groups. A big step in this direction would be for simulator developers to 
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adopt interoperability with declarative model specification standards such as NeuroML 

(Gleeson et al 2010); once exported to NeuroML, models originally written for arbitrary 

simulators can then be visualized with the existing ModelView tool. This standardization 

would facilitate comparing models and the data they generate. By providing visualization 

and analysis tools compatible with emerging model specification standards, ModelDB can 

further the adoption of such standards, making it easier for more researchers to use tools to 

combine and extend established models.

As the number of models produced increases, ModelDB will expand to include them. At 

present, many new model codes are never shared on ModelDB. Although some models may 

never be shared, ModelDB will work to expand the percentage of models made publicly 

available both by general advocacy and by actively soliciting models. Ascoli 2015 showed 

that for neuron morphology data, soliciting data in a transparent way increased the 

prevalence of sharing. To accommodate an increased volume of model submission, 

ModelDB will automate aspects of the curation process (metadata tagging, model testing) to 

continue to ensure quality and discoverability without overwhelming available resources.

Larger, multi-scale research

Many new models will be larger models spanning multiple spatial and temporal scales. This 

will be driven by two factors: (1) increased availability and discoverability of established 

model components on resources like ModelDB will reduce the amount of effort involved in 

building a multi-scale model, and (2) advancements in computer technology and availability, 

in particular developments in high performance computers (HPCs) and increased use of 

GPU acceleration (e.g., Yavuz et al 2016). Resources like the Neuroscience Gateway 

(Sivaganam et al 2013) make HPC technology freely available to all researchers.

Already neuroscience research, both modeling and experiment, spans many scales, most of 

which are represented on ModelDB or its companion SenseLab sites. The structure of 

receptors is predicted using protein folding simulations (e.g., olfactory receptor structure in 

Man et al 2004; ORModelDB 150627). MCell (Stiles and Bartol 2001) and Smoldyn 

(Andrews et al 2010) allow high-resolution stochastic explorations of molecular dynamics in 

microdomains (e.g., Keller et al 2015; ModelDB 182142). Deterministic approximations 

allow examining reaction-diffusion dynamics in whole dendrites (e.g., Calcium Waves in 

Neymotin et al 2015; ModelDB 168874). Single cell models allow investigating the effects 

of modulators on the electrophysiology of individual neurons (e.g., Morse et al 2010; 

ModelDB 87284 explores the early effects of amyloid beta on a CA1 pyramidal neuron). 

Another class of single cell models focuses on gene expression (e.g., circadian rhythms in 

the suprachiasmatic nucleus of the brain, Kim and Forger 2012; ModelDB 145801). 

Network models explore emergent effects from the interaction of multiple neurons (e.g., 

self-organization in the olfactory bulb in Migliore et al 2014; ModelDB 151681). Functional 

aspects of the brain are explored with networks spanning multiple brain regions (e.g., 

Eliasmith et al 2012; ModelDB 147103).

To date, these spatial scales have been largely studied independently; e.g., the multiple brain 

region model of Eliasmith et al 2012 does not directly incorporate protein folding. Some 

work, however, is beginning to bridge these scales. Neymotin et al 2016 (ModelDB 185858), 
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for instance, incorporates ER calcium dynamics in a model of persistent activity. That study 

was performed using a single simulator, NEURON; others (e.g., Brandi et al 2011) are 

building multiple-scale models by connecting multiple simulators. As this latter case 

becomes more common, ModelDB will begin to identify what parts of the code is associated 

with which simulator. In every case, ModelDB will expand its tools to facilitate navigating 

between spatial scales while visualizing the model structure and results.

Collaborative interdisciplinary research

Multi-scale study will require the collaboration of experimentalists and modelers who 

specialize in many different subfields. Two strategies for organizing these collaborations are 

emerging: formal structures like the large research groups of the Allen Brain Institute and 

the EU Human Brain Project, and ad-hoc collaborations such as the OpenWorm project 

(Szigeti et al 2014) or others using the Open Source Brain (Gleeson et al 2012) 

infrastructure.

The Allen Brain Institute and the EU Human Brain Project conduct experiments to collect 

data on morphology, electrophysiology, and connectivity which they use to build large 

numbers of single cell models (e.g., on one day in 2015, the Allen Brain Institute released 73 

single cell models) and network models. Although these models represent different cells, 

they are not independent as they were developed with the same methodology. For example, 

the Allen Brain Institute models used the same set of ion channels. ModelDB will adapt its 

tools to group related models together to allow them to remain individually discoverable 

without impairing the discoverability of models constructed using different methodologies.

Ad-hoc alliances of researchers developing a shared model are another emerging form of 

collaboration. In this strategy, promoted by the Open Source Brain and embraced by 

OpenWorm, models are continually improved as new data becomes available. General 

purpose code repositories like GitHub (github.com) and Bitbucket (bitbucket.org) similarly 

provide tools to facilitate ongoing development work. ModelDB’s specialist nature will 

provide complementary support for these collaborations by: hosting the code version of 

record as used in a given publication, improving discoverability by adding curated 

neurobiological metadata in a standardized way, promoting model understandability with 

tools like ModelView (McDougal et al 2015) that graphically present model structure and 

biological underpinnings, and providing models and to be a source of model components 

(e.g., ion channel model code). To further the latter role, ModelDB will provide tools to 

assist extracting code associated with biological concepts as this may be scattered across 

multiple files.

New modeling domains

Collaborative models will facilitate the entry of modeling into relatively new areas of 

research including the study of disease and eventually personalized medicine. The nascent 

field of computational psychiatry seeks to use models to better understand psychiatric 

conditions and potentially personalize treatment (Montague et al 2012; Wang and Krystal 

2014). Already ModelDB is home to seven schizophrenia-related models. As new fields 

become computationally tractable, ModelDB will expand its supported metadata, will add 
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links, and will add domain-specific tools to welcome researchers from these fields into the 

modeling community.

Conclusions

As the amount of neuroscience data continues to grow, there will be an increased need for 

computational modeling to provide a rigorous basis for integrating the data into unified and 

predictive theoretical frameworks. The availability of published models within ModelDB, 

the enhanced ability to discover them, and the tools to understand them, help ensure that 

these models will be built on strong, established, peer-reviewed foundations. ModelDB will 

continue to become a more comprehensive resource, representing a larger portion of 

modeling research, and to make its models more accessible. Our goal is to enable theoretical 

work to advance more quickly, with fewer errors, in a way that will allow it to increasingly 

support the field’s ability to understand the neural basis of behavior.
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Figure 1. 
Experimental data can be combined via computer modeling to make predictions about not-

directly measurable dynamics (membrane potential across the entire cell, intracellular 

chemical concentrations, etc.) or the response to new experimental protocols. The 

experimental data used as the basis of a model and for validation may come directly from a 

research group, from the literature, or from a database such as NeuronDB, NeuroElectro 

(Tripathy et al 2014), or NeuroMorpho.Org (Ascoli et al 2007). ModelDB provides the 

infrastructure to allow researchers to build on prior published models instead of having to 

create a new virtual model system de novo. The morphology in this figure is from (Barthó et 

al 2007) via NeuroMorpho.Org.
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Figure 2. 
ModelDB has grown steadily since 2001. The first five years of ModelDB’s existence 

(1996–2001) focused more on defining the nature of the platform and building the 

technology, so that period is omitted from this figure. Inset: In 2015, 132 models were 

added, including 49 (or 37%) on one day from the Allen Brain Institute (enlarged in inset). 

The solid line indicates the total number of models; the dashed line shows the count without 

this large contribution.
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Figure 3. 
A typical morphologically detailed single neuron model (modeldb.yale.edu/87284; Morse et 

al 2010). (A) A traced neuron (NeuroMorpho.Org c91662) is discretized into many (here 

974) compartments. Each compartment has been assigned a random color. For visualization, 

the diameters have been expanded by a factor of 3 from the measured and simulated 

morphology. Numbered diamonds indicate locations measured in (D). (B) Each 

compartment has some density of a number of ion channels, modeled with Hodgkin-Huxley 

style dynamics. The compartments are connected to each other via the Cable Equation. (C) 

The conductances need not be uniform; here, A-type K+ current (IA) conductance grew with 

distance from the soma, and faster on the oblique dendrites (above the main diagonal line, 

red) than on the apical trunk (diagonal line). (D) The model makes a prediction; here: peak 

calcium concentration increases in the presence of IA block (thick lines), but the locations of 

the peaks are independent of IA blockade. Adapted from Morse et al 2010; used by 

permission.
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Figure 4. 
ModelDB offers many ways to find and explore models. (A) The full web page showing the 

Model Information Tab. (1) Search models. (2) Browse models by category. (3) Download 

the model. (4) Auto-launch a NEURON simulation. (5) Model file browser. (6) ModelView: 

visualize model structure. (7) Simulation platform. (8) 3D printable versions of cells from 

the model. (9) Summary of the model. (10) Paper(s) describing or using the model. (11) 

Find models and papers cited by this model’s paper or that cite this model. (12) Searchable 

metadata. (13) Links to NeuronDB for related experimental data. (B) The Model File tab 
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allows exploring the model files. (14) Download the current file. (15) Directory browser, 

showing model file names. (16) View pane for the currently selected file. The readme file for 

model 87284 (Morse et al; 2010) is shown; modeldb.yale.edu/87284. (C) The Model Views 

tab displays a graphical representation of the model structure. (17) Interactive tree for 

exploring the model structure.
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Table 1

The top five most frequently associated regions, cell types, model concepts, and simulation environments for 

model entries in ModelDB as of February 28, 2016. The numbers in parentheses are the number of associated 

models. For simulation environments, the count includes both models hosted locally on ModelDB and those 

linked to from ModelDB.

Region Cell Type Model Concept Simulation
Environment

Neocortex (134) Neocortex layer 5–6 pyramidal cell (104) Action Potentials (194) NEURON (523)

Hippocampus (69) Hippocampus CA1 pyramidal cell (99) Activity Patterns (172) MATLAB (247)

Basal ganglia (23) Neocortex layer 2–3 pyramidal cell (58) Detailed Neuronal Models (144) Python (104)

Cerebellum (23) Hippocampus CA3 pyramidal cell (33) Ion Channel Kinetics (140) C/C++ (102)

Thalamus (23) Olfactory bulb main mitral cell (30) Simplified Models (139) XPP (87)
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