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Abstract. A function F on the space of n × n real symmetric matrices is called spectral if it
depends only on the eigenvalues of its argument. Spectral functions are just symmetric functions of
the eigenvalues. We show that a spectral function is twice (continuously) differentiable at a matrix if
and only if the corresponding symmetric function is twice (continuously) differentiable at the vector
of eigenvalues. We give a concise and usable formula for the Hessian.
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1. Introduction. In this paper we are interested in functions F of a symmetric
matrix argument that are invariant under orthogonal similarity transformations:

F (UTAU) = F (A) for all orthogonal U and symmetric A.

Every such function can be decomposed as F (A) = (f ◦λ)(A), where λ is the map that
gives the eigenvalues of the matrix A and f is a symmetric function. (See the next
section for more details.) We call such functions F spectral functions (or just functions
of eigenvalues) because they depend only on the spectrum of the operator A. Classical
interest in such functions arose from their important role in quantum mechanics [7, 20].
Nowadays they are an inseparable part of optimization [11] and matrix analysis [4, 5].
In modern optimization the key example is “semidefinite programming,” where one
encounters problems involving spectral functions like log det(A), the largest eigenvalue
of A, or the constraint that A must be positive definite.
There are many examples where a property of the spectral function F is actually

equivalent to the corresponding property of the underlying symmetric function f .
Among them are first-order differentiability [9], convexity [8], generalized first-order
differentiability [9, 10], analyticity [26], and various second-order properties [25, 24,
23]. It is also worth mentioning the “Chevalley restriction theorem,” which in this
context identifies spectral functions that are polynomials with symmetric polynomials
of the eigenvalues. Second-order properties of matrix functions are of great interest
for optimization because the application of Newton’s method, interior point methods
[13], or second-order nonsmooth optimality conditions [19] requires that we know the
second-order behavior of the functions involved in the mathematical model.
The standard reference for the behavior of the eigenvalues of a matrix subject to

perturbations in a particular direction is [6]. Second-order properties of eigenvalue
functions in a particular direction are derived in [25].
The problem that interests us in this paper is that of when a spectral function

is twice differentiable (as a function of the matrix itself, rather than in a particular
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direction) and when its Hessian is continuous. Analyticity is discussed in [26]: thus
our result lies in some sense between the results in [9] and [26]. Smoothness properties
of some special spectral functions (such as the largest eigenvalue) on certain manifolds
are helpful in perturbation theory and Newton-type methods; see, for example, [15,
16, 18, 17, 22, 21, 14].
We show that a spectral function is twice (continuously) differentiable at a matrix

if and only if the corresponding symmetric function is twice (continuously) differen-
tiable at the vector of eigenvalues. Thus, in particular, a spectral function is C2 if
and only if its restriction to the subspace of diagonal matrices is C2. For example,
the Schatten p-norm of a symmetric matrix is the pth root of the function

∑
i |λi|p

(where the λi’s are the eigenvalues of the matrix). We see that this latter function is
C2 for p ≥ 2, although it is not analytic unless p is an even integer.
As part of our general result, we also give a concise and easy-to-use formula for

the Hessian: the results in [26], for analytic functions, are rather implicit. The paper
is self-contained and the results are derived essentially from scratch, making no use of
complex-variable techniques as in [2], for example. In a parallel paper [12] we give an
analogous characterization of those spectral functions that have a quadratic expansion
at a point (but that may not be twice differentiable).

2. Notation and preliminary results. In what follows, Sn will denote the
Euclidean space of all n×n symmetric matrices with inner product 〈A,B〉 = tr (AB)
and forA ∈ Sn, λ(A) = (λ1(A), . . . , λn(A)) will be the vector of its eigenvalues ordered
in nonincreasing order. By On we will denote the set of all n×n orthogonal matrices.
For any vector x in R

n, Diagx will denote the diagonal matrix with the vector x on
the main diagonal, and x̄ will denote the vector with the same entries as x ordered in
nonincreasing order, that is, x̄1 ≥ x̄2 ≥ · · · ≥ x̄n. Let R

n
↓ denote the set of all vectors

x in R
n such that x1 ≥ x2 ≥ · · · ≥ xn. Let also the operator diag : S

n → R
n be

defined by diag (A) = (a11, . . . , ann). Throughout this paper, {Mm}∞m=1 will denote a
sequence of symmetric matrices converging to 0, and {Um}∞m=1 will denote a sequence
of orthogonal matrices. We describe sets in R

n and functions on R
n as symmetric

if they are invariant under coordinate permutations. Thus f : R
n → R denotes a

function, defined on an open symmetric set, with the property

f(x) = f(Px) for any permutation matrix P and any x ∈ domain f.
We denote the gradient of f by ∇f or f ′ and the Hessian by ∇2f or f ′′. Vectors are
understood to be column vectors unless stated otherwise. Whenever we denote by µ
a vector in R

n
↓ we make the convention that

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 . . . µkr (k0 = 0, kr = n).

Thus r is the number of distinct entries. We define a corresponding partition

I1 := {1, 2, . . . , k1}, I2 := {k1 + 1, k1 + 2, . . . , k2}, . . . , Ir := {kr−1 + 1, . . . , kr},
and we call these sets blocks. We denote the standard basis in R

n by e1, e2, . . . , en,
and e is the vector with all entries equal to 1. We also define corresponding matrices

Xl := [e
kl−1+1, . . . , ekl ] for all l = 1, . . . , r.

For an arbitrary matrix A, Ai will denote its ith row (a row vector), and Ai,j will
denote its (i, j)th entry. Finally, we say that a vector a is block refined by a vector b
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if

bi = bj implies ai = aj for all i, j.

We need the following result.
Lemma 2.1. Let f : Rn → R be a symmetric function, twice differentiable at the

point µ ∈ R
n
↓ , and let P be a permutation matrix such that Pµ = µ. Then

(i) ∇f(µ) = PT∇f(µ) and
(ii) ∇2f(µ) = PT∇2f(µ)P .

In particular we have the representation

∇2f(µ) =




a11E11 + bk1
J1 a12E12 · · · a1rE1r

a21E21 a22E22 + bk2
J2 · · · a2rE2r

...
...

. . .
...

ar1Er1 ar2Er2 · · · arrRrr + bkr
Jr


 ,

where the Euv are matrices of dimensions |Iu| × |Iv| with all entries equal to one,
(aij)

r
i,j=1 is a real symmetric matrix, b := (b1, . . . , bn) is a vector which is block

refined by µ, and Ju is an identity matrix of the same dimensions as Euu.
Proof. Just apply the chain rule twice to the equality f(ν) = f(Pν) in order

to get parts (i) and (ii). To deduce the block structure of the Hessian, consider the
block structure of permutation matrices P such that Pµ = µ: then, when we permute
the rows and the columns of the Hessian in the way defined by P , it must stay
unchanged.
Using the notation of this lemma, we define the matrix

B := ∇2f(µ)−Diag b = (aijEij)
r
i,j=1.(2.1)

Note 2.2. We make the convention that if the ith diagonal block in the above
representation has dimensions 1×1, then we set aii = 0 and bki = f ′′

kiki
(µ). Otherwise

the value of bki
is uniquely determined as the difference between a diagonal and an

off-diagonal element of this block. Note also that the matrix B and the vector b depend
on the point µ and the function f .

Lemma 2.3. For µ ∈ R
n
↓ and a sequence of symmetric matrices Mm → 0 we have

that

λ(Diagµ+Mm)
T = µT +

(
λ(XT

1 MmX1)
T , . . . , λ(XT

r MmXr)
T
)
+ o(‖Mm‖).

Proof. Combine Lemma 5.10 in [10] and Theorem 3.12 in [3].
The following is our main technical tool.
Lemma 2.4. Let {Mm} be a sequence of symmetric matrices converging to 0 such

that Mm/‖Mm‖ converges to M . Let µ be in R
n
↓ and Um → U ∈ On be a sequence of

orthogonal matrices such that

Diagµ+Mm = Um

(
Diagλ(Diagµ+Mm)

)
UT
m for all m = 1, 2, . . . .(2.2)

Then the following properties hold.
(i) The orthogonal matrix U has the form

U =




V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vr


 ,
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where Vl is an orthogonal matrix with dimensions |Il| × |Il| for all l.
(ii) If i ∈ Il, then

lim
m→∞

1−∑p∈Il

(
U i,p
m

)2
‖Mm‖ = 0.

(iii) If i and j do not belong to the same block, then

lim
m→∞

(
U i,j
m

)2
‖Mm‖ = 0.

(iv) If i ∈ Il, then

V i
l

(
Diagλ(XT

l MXl)
)
(V i

l )
T =M i,i.

(v) If i, j ∈ Il, and p �∈ Il, then

lim
m→∞

U i,p
m U j,p

m

‖Mm‖ = 0.

(vi) For any indices i �= j such that i, j ∈ Il,

lim
m→∞

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ = 0.

(vii) For any indices i �= j such that i, j ∈ Il,

V i
l

(
Diagλ(XT

l MXl)
)
(V j

l )
T =M i,j .

(viii) For any three indices i, j, p in distinct blocks,

lim
m→∞

U i,p
m U j,p

m

‖Mm‖ = 0.

(ix) For any two indices i, j such that i ∈ Il, j ∈ Is, where l �= s,

lim
m→∞

(
µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ + µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)
=M i,j .

Proof.
(i) After taking the limit in (2.2) we are left with

(Diagµ)U = U(Diagµ).

The described representation of the matrix U follows.
(ii) Let us denote

hm =
(
λ(XT

1 MmX1)
T , . . . , λ(XT

r MmXr)
T
)T

.(2.3)

We use Lemma 2.3 in (2.2) to obtain

Diagµ+Mm = Um(Diagµ)U
T
m + Um(Diaghm)U

T
m + o(‖Mm‖)
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and the equivalent form

UT
m(Diagµ)Um + UT

mMmUm = Diagµ+Diaghm + o(‖Mm‖).

We now divide both sides of these equations by ‖Mm‖ and rearrange:

Diagµ− Um(Diagµ)U
T
m

‖Mm‖ = − Mm

‖Mm‖ +
Um(Diaghm)U

T
m

‖Mm‖ + o(1)(2.4)

and

Diagµ− UT
m(Diagµ)Um

‖Mm‖ =
UT
mMmUm

‖Mm‖ − Diaghm

‖Mm‖ − o(1).(2.5)

Notice that the right-hand sides of these equations converge to a finite limit
as m increases to infinity. If we call the matrix limit of the right-hand side of
the first equation L, then clearly the limit of the second equation is −UTLU .
We are now going to prove parts (ii) and (iii) together inductively by dividing
the orthogonal matrix Um into the same block structure as U . We begin by
considering the first row of blocks of Um.
Let i be an index in the first block, I1. Then the limit of the (i, i)th entry

in the matrix at the left-hand side of (2.4) is

lim
m→∞

(
µk1

(
1−∑p∈I1

(
U i,p
m

)2 )−∑r
s=2 µks

∑
p∈Is

(
U i,p
m

)2 )
‖Mm‖ = Li,i.(2.6)

Now recall that

Li,i = −M i,i + V i
1 (Diagλ(X

T
1 MX1))(V

i
1 )

T ,

and because V1 is an orthogonal matrix, notice that∑
i∈I1

Li,i = −tr (XT
1 MX1) +

∑
i∈I1

V i
1 (Diagλ(X

T
1 MX1))(V

i
1 )

T

= −tr (XT
1 MX1) +

∑
i∈I1

λi(X
T
1 MX1)

∑
j∈I1

(V j,i
1 )

2

= −tr (XT
1 MX1) +

∑
i∈I1

λi(X
T
1 MX1)

= 0.

We now sum (2.6) over all i in I1 to get

lim
m→∞

(
µk1

(
|I1| −

∑
i,p∈I1

(
U i,p
m

)2)−∑r
s=2 µks

∑
i∈I1, p∈Is

(
U i,p
m

)2)
‖Mm‖ = 0.

Notice here that the coefficients in front of the µkl
, l = 1, 2, . . . , r, in the

numerator sum up to zero. That is,

|I1| −
∑

i,p∈I1

(
U i,p
m

)2 − r∑
s=2

∑
i∈I1, p∈Is

(
U i,p
m

)2
= 0.
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So let us choose a number α such that

(µ+ αe)k1 > 0 > (µ+ αe)k1+1

and add α to every coordinate of the vector µ thus “shifting” it. The coordi-
nates of the shifted vector that are in the first block are strictly bigger than
zero, and the rest are strictly less than zero. By our comment above, the last
limit remains true if we “shift” µ in this way. If we rewrite the last limit for
the “shifted” vector, because all summands are positive, we immediately see
that we must have

lim
m→∞

|I1| −
∑

i,p∈I1

(
U i,p
m

)2
‖Mm‖ = 0(2.7)

and

lim
m→∞

∑
i∈I1, p∈Is

(
U i,p
m

)2
‖Mm‖ = 0 for all s = 2, . . . , r.(2.8)

The first of these limits can be written as

lim
m→∞

∑
i∈I1

(
1−∑p∈I1

(
U i,p
m

)2)
‖Mm‖ = 0,

and because all the summands are positive, we conclude that

lim
m→∞

1−∑p∈I1

(
U i,p
m

)2
‖Mm‖ = 0 for all i ∈ I1.

The second of the limits implies immediately that

lim
m→∞

(
U i,p
m

)2
‖Mm‖ = 0 for any i ∈ I1, p �∈ I1.

Thus we proved part (ii) for i ∈ I1 and part (iii) for the cases specified above.
Here is a good place to say a few more words about the idea of the proof.
As we said, we divide the matrix Um into blocks complying with the block
structure of the vector µ (exactly as in part (i) for the matrix U). We proved
parts (ii) and (iii) for the elements in the first row of blocks of this division.
What we are going to do now is prove the same thing for the first column of
blocks. In order to do this we fix an index i in I1 and consider the (i, i)th
entry in the matrix at the left-hand side of (2.5), and take the limit:

lim
m→∞

µk1

(
1−∑p∈I1

(
Up,i
m

)2)−∑r
s=2 µks

∑
p∈Is

(
Up,i
m

)2
‖Mm‖ = −(UTLU)i,i.

(2.9)

Using also the block-diagonal structure of the matrix U , we again have∑
i∈I1

(UTLU)i,i =
∑
i∈I1

Li,i = 0.



374 ADRIAN S. LEWIS AND HRISTO S. SENDOV

So we proceed just as before in order to conclude that

lim
m→∞

1−∑p∈I1

(
Up,i
m

)2
‖Mm‖ = 0 for all i ∈ I1

and

lim
m→∞

(
Up,i
m

)2
‖Mm‖ = 0 for any i ∈ I1, p �∈ I1.(2.10)

We are now ready for the second step of our induction. Let i be an index in
I2. Then the limit of the (i, i)th entry in the matrix at the left-hand side of
(2.4) is

lim
m→∞

1

‖Mm‖
(
− µk1

∑
p∈I1

(
U i,p
m

)2
+ µk2

(
1−

∑
p∈I2

(
U i,p
m

)2 )

−
r∑

s=3

µks

∑
p∈Is

(
U i,p
m

)2)
= Li,i.

Analogously to the above we have∑
i∈I2

Li,i = 0,

so summing the above limit over all i in I2 we get

lim
m→∞

1

‖Mm‖
(
− µk1

∑
i∈I2, p∈I1

(
U i,p
m

)2
+ µk2

(
|I2| −

∑
i,p∈I2

(
U i,p
m

)2 )

−
r∑

s=3

µks

∑
i∈I2, p∈Is

(
U i,p
m

)2)
= 0.

We know from (2.10) that

lim
m→∞

∑
i∈I2, p∈I1

(
U i,p
m

)2
‖Mm‖ = 0.

So now we choose a number α such that

(µ+ αe)k2
> 0 > (µ+ αe)k2+1

and as before exchange µ with its shifted version. Just as before we conclude
that

lim
m→∞

1−∑p∈I2

(
U i,p
m

)2
‖Mm‖ = 0 for all i ∈ I2

and

lim
m→∞

(
U i,p
m

)2
‖Mm‖ = 0 for any i ∈ I2, p �∈ I2.

We repeat the same steps for the second column of blocks in the matrix Um

and so on inductively until we exhaust all the blocks. This completes the
proof of parts (ii) and (iii).



TWICE DIFFERENTIABLE SPECTRAL FUNCTIONS 375

(iv) For the proof of this part, one needs to consider the (i, i)th entry of the right-
hand side of (2.4). Because the diagonal of the left-hand side converges to
zero (by (ii) and (iii)), taking the limit proves the statement in this part.

(v) This part follows immediately from part (iii).
(vi) Taking the limit in (2.4) gives

lim
m→∞−

∑
s 	=l

µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ − µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ = Li,j ,

where Li,j is the (i, j)th entry of the limit of the right-hand side of (2.4).
Note that the coefficients of µks

again sum up to zero:

∑
s 	=l

∑
p∈Is

U i,p
m U j,p

m +
∑
p∈Il

U i,p
m U j,p

m = 0

because Um is an orthogonal matrix. Now by part (v) we have

0 = lim
m→∞−

∑
s 	=l

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ = lim
m→∞

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖

as required, and moreover Li,j = 0.
(vii) The statement of this part is the detailed way of writing the fact, proved in

the previous part, that Li,j = 0.
(viii) This part follows immediately from part (iii). (In fact the expression in

part (v) is identical to the one in part (viii), reiterated with different index
conditions for later convenience.)

(ix) We again take the limit of the (i, j)th entry of the matrices on both sides of
(2.4):

lim
m→∞

(
−
∑
t	=l,s

µkt

∑
p∈It

U i,p
m U j,p

m

‖Mm‖ − µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖

− µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)
= Li,j .

By part (viii) we have that all but the lth and the sth summand above
converge to zero. On the other hand

Li,j = lim
m→∞

(
− Mm

‖Mm‖ +
Um(Diaghm)U

T
m

‖Mm‖
)i,j

= −M i,j + U i

(
lim

m→∞
Diaghm

‖Mm‖
)
(U j)T

= −M i,j

because U i and U j are rows in different blocks and (Diaghm)/‖Mm‖ con-
verges to a diagonal matrix.

Now we have all the tools to prove the main result of the paper.
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3. Twice differentiable spectral functions. In this section we prove that
a symmetric function f is twice differentiable at the point λ(A) if and only if the
corresponding spectral function f ◦ λ is twice differentiable at the matrix A.
Recall that the Hadamard product of two matrices A = [Ai,j ] and B = [Bi,j ] of

the same size is the matrix of their elementwise products A ◦B = [Ai,jBi,j ]. Let the
symmetric function f : Rn → R be twice differentiable at the point µ ∈ R

n
↓ , where, as

before,

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 . . . µkr (k0 = 0, kr = n).

We define the vector b(µ) = (b1(µ), . . . , bn(µ)) as in Lemma 2.1. Specifically, for any
index i (say i ∈ Il for some l ∈ {1, 2, . . . , r}), we define

bi(µ) =

{
f ′′
ii(µ) if |Il| = 1,

f ′′
pp(µ)− f ′′

pq(µ) for any p �= q ∈ Il.

Lemma 2.1 guarantees that the second case of this definition doesn’t depend on the
choice of p and q. We also define the matrix A(µ):

Ai,j(µ) =



0 if i = j,

bi(µ) if i �= j but i, j ∈ Il,

f ′
i(µ)−f ′

j(µ)

µi−µj
otherwise.

(3.1)

Notice the similarity between this definition and classical divided difference construc-
tions in Löwner theory (see [1, Chap. V], for example). For simplicity, when the
argument is understood by the context, we will write just bi and Ai,j . The following
lemma is Theorem 1.1 in [9].

Lemma 3.1. Let A ∈ Sn and suppose λ(A) belongs to the domain of the sym-
metric function f : Rn → R. Then f is differentiable at the point λ(A) if and only if
f ◦ λ is differentiable at the point A. In that case we have the formula

∇(f ◦ λ)(A) = U
(
Diag∇f(λ(A))

)
UT

for any orthogonal matrix U satisfying A = U
(
Diagλ(A)

)
UT .

We recall some standard notions about twice differentiability. Consider a function
F from Sn to R. Its gradient at any point A (when it exists) is a linear functional
on the Euclidean space Sn and thus can be identified with an element of Sn, which
we denote ∇F (A). Thus ∇F is a map from Sn to Sn. When this map is itself
differentiable at A we say F is twice differentiable at A. In this case we can interpret
the Hessian ∇2F (A) as a symmetric, bilinear function from Sn×Sn into R. Its value
at a particular point (H,Y ) ∈ Sn × Sn will be denoted ∇2F (A)[H,Y ]. In particular,
for fixed H, the function ∇2F (A)[H, ·] is again a linear functional on Sn, which we
consider an element of Sn, for brevity denoted by ∇2F (A)[H]. When the Hessian is
continuous at A we say F is twice continuously differentiable at A. In that case the
following identity holds:

∇2F (A)[H,H] =
d2

dt2
F (A+ tH)

∣∣∣∣
t=0

.

The next theorem is a preliminary version of our main result.
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Theorem 3.2. The symmetric function f : Rn → R is twice differentiable at the
point µ ∈ R

n
↓ if and only if f ◦ λ is twice differentiable at the point Diagµ. In that

case the Hessian is given by

∇2(f ◦ λ)(Diagµ)[H] = Diag (∇2f(µ)(diagH)
)
+A ◦H.(3.2)

Hence

∇2(f ◦ λ)(Diagµ)[H,H] = ∇2f(µ)[diagH,diagH] + 〈A, H ◦H〉.
Proof. It is easy to see that f must be twice differentiable at the point µ whenever

f ◦ λ is twice differentiable at Diagµ because by restricting f ◦ λ to the subspace of
diagonal matrices we get the function f . So the interesting case is the other direction.
Let f be twice differentiable at the point µ ∈ R

n
↓ and suppose on the contrary that

either f ◦λ is not twice differentiable at the point Diagµ, or (3.2) fails. Define a linear
operator ∆ by

∆(H) := Diag
(
(∇2f(µ)(diagH)

)
+A ◦H.

(Lemma 3.1 tells us that f ◦ λ is at least differentiable around Diagµ.) So, for this
linear operator ∆ there is an ε > 0 and a sequence of symmetric matrices {Mm}∞m=1

converging to 0 such that

‖∇(f ◦ λ)(Diagµ+Mm)−∇(f ◦ λ)(Diagµ)−∆(Mm)‖
‖Mm‖ > ε

for all m = 1, 2, . . . . Without loss of generality we may assume that the sequence
{Mm}∞m=1 is such thatMm/‖Mm‖ converges to a matrixM because some subsequence
of {Mm}∞m=1 surely has this property. Let {Um}∞m=1 be a sequence of orthogonal
matrices such that

Diagµ+Mm = Um

(
Diagλ(Diagµ+Mm)

)
UT
m for all m = 1, 2, . . . .

Without loss of generality we may assume that Um → U ∈ On, or otherwise we will
just take subsequences of {Mm}∞m=1 and {Um}∞m=1. The above inequality shows that
for every m there corresponds a pair (or more precisely at least one pair) of indices
(i, j) such that

|(∇(f ◦ λ)(Diagµ+Mm)−Diag∇f(µ)−∆(Mm)
)i,j |

‖Mm‖ >
ε

n
.(3.3)

So at least for one pair of indices, call it again (i, j), we have infinitely many numbers
m for which (i, j) is the corresponding pair, and because if necessary we can again
take a subsequence of {Mm}∞m=1 and {Um}∞m=1, we may assume without loss of gen-
erality that there is a pair of indices (i, j) for which the last inequality holds for all
m = 1, 2, . . . . Define the symbol hm again by (2.3). Notice that using Lemma 3.1,
Lemma 2.3, and the fact that ∇f is differentiable at µ we get

∇(f ◦ λ)(Diagµ+Mm) = Um

(
Diag∇f(λ(Diagµ+Mm))

)
UT
m

= Um

(
Diag∇f(µ+ hm + o(‖Mm‖)))UT

m
(3.4)

= Um(Diag (∇f(µ) +∇2f(µ)hm + o(‖Mm‖)))UT
m

= Um(Diag∇f(µ))UT
m + Um(Diag (∇2f(µ)hm))U

T
m + o(‖Mm‖).
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We consider three cases. In every case we are going to show that the left-hand side
of inequality (3.3) actually converges to zero, which contradicts the assumption.
Case I. If i = j, then using (3.4) the left-hand side of inequality (3.3) is less than

or equal to

|U i
m

(
Diag∇f(µ)

)
(U i

m)
T − f ′

i(µ)|
‖Mm‖

+
|U i

m

(
Diag∇2f(µ)hm

)
(U i

m)
T − (∇2f(µ)(diagMm)

)
i
|

‖Mm‖ + o(1).

We are going to show that each summand approaches zero as m goes to infinity.
Assume that i ∈ Il for some l ∈ {1, . . . , r}. Using the fact that the vector µ block
refines the vector ∇f(µ) (Lemma 2.1, part (i)) the first term can be written as

1

‖Mm‖

∣∣∣∣∣∣f ′
kl
(µ)


1−∑

p∈Il

(
U i,p
m

)2−
∑
s:s 	=l

f ′
ks
(µ)

∑
p∈Is

(
U i,p
m

)2∣∣∣∣∣∣ .
We now apply Lemma 2.4, parts (ii) and (iii) to the last expression.
We concentrate now on the second term above. Using the notation of (2.1) (that

is, ∇2f(µ) = B +Diag b) this term is less than or equal to

|U i
m

(
Diag (Bhm)

)
(U i

m)
T − (B(diagMm)

)
i
|

‖Mm‖
(3.5)

+
|U i

m

(
Diag ((Diag b)hm)

)
(U i

m)
T − ((Diag b)(diagMm)

)
i
|

‖Mm‖ .

As m approaches infinity, we have that U i
m → U i. We define the vector h to be

h := lim
m→∞

hm

‖Mm‖ =
(
λ(XT

1 MX1)
T , . . . , λ(XT

r MXr)
T
)T

.

So taking limits, expression (3.5) turns into

|U i
(
Diag (Bh)

)
(U i)T − (B(diagM))

i
|

+|U i
(
Diag ((Diag b

)
h))(U i)T − ((Diag b)(diagM))

i
|.

We are going to investigate each term in this sum separately and show that they are
both actually equal to zero. For the first, we use the block structure of the matrix B
(see Lemma 2.1) and the block structure of the vector h to obtain

(Bh)j =

r∑
s=1

aqstr (X
T
s MXs) when j ∈ Iq.

Using the fact that i ∈ Il and that Vl is orthogonal we get

U i
(
Diag (Bh)

)
(U i)T =

(
V i
l X

T
l

)(
Diag (Bh)

)(
Xl(V

i
l )

T
)

= V i
l

(
XT

l (Diag (Bh))Xl

)
(V i

l )
T

=

(
r∑

s=1

alstr (X
T
s MXs)

) |Il|∑
s=1

(V i,s
l )

2
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=

r∑
s=1

alstr (X
T
s MXs)

= (BdiagM)i,

which shows that the first term is zero. For the second term, we use the block structure
of the vector b to write

(Diag b)h =
(
bk1λ(X

T
1 MX1)

T , . . . , bkrλ(X
T
r MXr)

T
)T

.

In the next to the last equality below we use part (iv) of Lemma 2.4:

U i
(
Diag ((Diag b)h)

)
(U i)T =

(
V i
l X

T
l

)(
Diag ((Diag b)h)

)(
Xl(V

i
l )

T
)

= V i
l

(
XT

l (Diag ((Diag b)h))Xl

)
(V i

l )
T

= V i
l

(
Diag bkl

λ(XT
l MXl)

)
(V i

l )
T

= bkl
M i,i

=
(
(Diag b)(diagM)

)
i
.

We can see now that the second term is also zero.
Case II. If i �= j but i, j ∈ Il for some l ∈ {1, 2, . . . r}, then using (3.4) the

left-hand side of inequality (3.3) becomes

|U i
m

(
Diag∇f(µ)

)
(U j

m)
T + U i

m

(
Diag (∇2f(µ)hm)

)
(U j

m)
T − bkl

M i,j
m |

‖Mm‖ + o(1).

Using the fact that µ block refines the vector ∇f(µ), we can write the first summand
above as

1

‖Mm‖


∑

s 	=l

f ′
ks
(µ)

∑
p∈Is

U i,p
m U j,p

m + f ′
kl
(µ)

∑
p∈Il

U i,p
m U j,p

m


 .

We use parts (v) and (vi) of Lemma 2.4 to conclude that this expression converges to
zero. We are left with

|U i
m

(
Diag (∇2f(µ)hm)

)
(U j

m)
T − bkl

M i,j
m |

‖Mm‖ .

Substituting ∇2f(µ) = B +Diag b we get

|U i
m

(
Diag (Bhm)

)
(U j

m)
T + U i

m

(
Diag ((Diag b)hm)

)
(U j

m)
T − bkl

M i,j
m |

‖Mm‖ .

Recall the notation from Lemma 2.1 used to denote the entries of the matrix B. Then
the limit of the first summand above can be written as

lim
m→∞

U i
m

(
Diag (Bhm)

)
(U j

m)
T

‖Mm‖ = U i
(
Diag (Bh)

)
(U j)T

=

r∑
s=1


( r∑

l=1

asl tr (X
T
l MXl)

)∑
p∈Is

U i,pU j,p




= 0
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because clearly
∑

p∈Is
U i,pU j,p = 0 for all s ∈ {1, 2, . . . , r}. We are left with the

following limit:

lim
m→∞

|U i
m

(
Diag ((Diag b)hm)

)
(U j

m)
T − bkl

M i,j
m |

‖Mm‖
= |U i

(
Diag ((Diag b)h)

)
(U j)T − bkl

M i,j |.
Using Lemma 2.4, part (vii) we observe that the right-hand side is zero.
Case III. If i ∈ Il and j ∈ Is, where l �= s, then using (3.4), the left-hand side of

inequality (3.3) becomes (up to o(1))

|U i
m

(
Diag∇f(µ)

)
(U j

m)
T + U i

m

(
Diag∇2f(µ)hm

)
(U j

m)
T − f ′

kl
(µ)−f ′

ks
(µ)

µkl
−µks

M i,j
m |

‖Mm‖ .

We start with the second term above. Its limit is

lim
m→∞

U i
m

(
Diag (∇2f(µ)hm)

)
(U j

m)
T

‖Mm‖ = U i
(
Diag (∇2f(µ)h)

)
(U j)T = 0

because in our case U i has nonzero coordinates where the entries of U j are zero. We
are left with

lim
m→∞

∣∣∣∣∣U
i
m

(
Diag∇f(µ)

)
(U j

m)
T

‖Mm‖ − f ′
kl
(µ)− f ′

ks
(µ)

µkl
− µks

M i,j
m

‖Mm‖

∣∣∣∣∣ .(3.6)

We expand the first term in this limit:

U i
m

(
Diag∇f(µ)

)
(U j

m)
T

‖Mm‖ = f ′
kl
(µ)

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖

+ f ′
ks
(µ)

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖ +
∑
t	=l,s

f ′
kt
(µ)

∑
p∈It

U i,p
m U j,p

m

‖Mm‖ .

Using Lemma 2.4, part (viii) we see that the third summand above converges to zero
as m goes to infinity. Part (ix) of the same lemma tells us that

lim
m→∞

M i,j
m

‖Mm‖ = limm→∞

(
µkl

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ + µks

∑
p∈Is

U i,p
m U j,p

m

‖Mm‖
)
.

In order to abbreviate the formulae we introduce the following notation:

βl
m :=

∑
p∈Il

U i,p
m U j,p

m

‖Mm‖ for all l = 1, 2, . . . , r.

Substituting everything in (3.6) we get the following equivalent limit:

lim
m→∞

∣∣∣∣(f ′
kl
(µ)βl

m + f ′
ks
(µ)βs

m

)
− f ′

kl
(µ)− f ′

ks
(µ)

µkl
− µks

(
µkl

βl
m + µksβ

s
m

)∣∣∣∣ .
Simplifying we get

lim
m→∞(β

l
m + βs

m)
f ′
ks
(µ)µkl

− f ′
kl
(µ)µks

µkl
− µks

.
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Notice now that

r∑
l=1

βl
m = 0 for all m

because Um is an orthogonal matrix and the numerator of the above sum is the
product of its ith and the jth row. Next, Lemma 2.4, part (viii) says that

lim
m→∞

∑
t	=l,s

βt
m = 0,

so

lim
m→∞(β

l
m + βs

m) = 0,

which completes the proof.
We are finally ready to give and prove the full version of our main result.
Theorem 3.3. Let A be an n × n symmetric matrix. The symmetric function

f : Rn → R is twice differentiable at the point λ(A) if and only if the spectral function
f ◦λ is twice differentiable at the matrix A. Moreover, in this case the Hessian of the
spectral function at the matrix A is

∇2(f ◦ λ)(A)[H] =W
(
Diag

(∇2f(λ(A))diag H̃
)
+A ◦ H̃)WT ,

where W is any orthogonal matrix such that A = W
(
Diagλ(A)

)
WT , H̃ = WTHW ,

and A = A(λ(A)) is defined by (3.1). Hence
∇2(f ◦ λ)(A)[H,H] = ∇2f(λ(A))[diag H̃,diag H̃] + 〈A, H̃ ◦ H̃〉.

Proof. LetW be an orthogonal matrix which diagonalizes A in an ordered fashion,
that is,

A =W
(
Diagλ(A)

)
WT .

Let Mm be a sequence of symmetric matrices converging to zero, and let Um be a
sequence of orthogonal matrices such that

Diagλ(A) +WTMmW = Um

(
Diagλ(Diagλ(A) +WTMmW )

)
UT
m.

Then using Lemma 3.1 we get

∇(f ◦ λ)(A+Mm)

= ∇(f ◦ λ)(W (Diagλ(A) +WTMmW )WT
)

= ∇(f ◦ λ)(WUm(Diagλ(Diagλ(A) +WTMmW ))UT
mWT

)
=WUm

(
Diag∇f(λ(Diagλ(A) +WTMmW ))

)
UT
mWT .

We also have that

∇(f ◦ λ)(A) =W
(
Diag∇f(λ(A))

)
WT ,

and WTMmW → 0, as m goes to infinity. Because W is an orthogonal matrix we
have ‖WXWT ‖ = ‖X‖ for any matrix X. It is now easy to check the result by
Theorem 3.2.
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4. Continuity of the Hessian. Suppose now that the symmetric function f :
R

n → R is twice differentiable in a neighborhood of the point λ(A) and that its
Hessian is continuous at the point λ(A). Then Theorem 3.3 shows that f ◦λ must be
twice differentiable in a neighborhood of the point A, and in this section we are going
to show that ∇2(f ◦ λ) is also continuous at the point A.
We define a basis, {Hij}, on the space of symmetric matrices. If i �= j all the

entries of the matrix Hij are zeros, except the (i, j)th and (j, i)th, which are one. If
i = j we have one only on the (i, i)th position. It suffices to prove that the Hessian is
continuous when applied to any matrix of the basis. We begin with a lemma.

Lemma 4.1. Let µ ∈ R
n
↓ be such that

µ1 = · · · = µk1
> µk1+1 = · · · = µk2 > µk2+1 . . . µkr (k0 = 0, kr = n),

and let the symmetric function f : Rn → R be twice continuously differentiable at the
point µ. Let {µm}∞m=1 be a sequence of vectors in R

n converging to µ. Then

lim
m→∞∇2(f ◦ λ)(Diagµm) = ∇2(f ◦ λ)(Diagµ).

Proof. For every m there is a permutation matrix Pm such that P
T
mµm = µm.

(See the beginning of section 2 for the meaning of the bar above a vector.) But there
are finitely many permutation matrices (namely, n!) so we can form n! subsequences
of {µm} such that any two vectors in a particular subsequence can be ordered in
descending order by the same permutation matrix. If we prove the lemma for every
such subsequence we will be done. So without loss of generality we may assume that
PTµm = µm for every m and some fixed permutation matrix P . Clearly, for all large
enough m, we have

µm
k1

> µm
k1+1, µm

k2
> µm

k2+1, . . . , µ
m
kr−1

> µm
kr−1+1.

Consequently the matrix P is block-diagonal with permutation matrices on the main
diagonal, and dimensions matching the block structure of µ, so Pµ = µ. Consider
now the block structure of the vectors {µm}. Because there are finitely many different
block structures, we can divide this sequence into subsequences such that the vectors
in a particular subsequence have the same block structure. If we prove the lemma for
each subsequence we will be done. So without loss of generality we may assume that
the vectors {µm} have the same block structure for every m. Next, using the formula
for the Hessian in Theorem 3.3 we have

∇2(f◦λ)(Diagµm)[Hij ] = P
(
Diag

(∇2f(µm)diag (PTHijP )
)
+A(µm)◦(PTHijP )

)
PT ,

and Lemma 2.1 together with Theorem 3.2 gives us

∇2(f ◦ λ)(Diagµ)[Hij ] = Diag
(∇2f(µ)diagHij

)
+A(µ) ◦Hij

= P
(
Diag

(∇2f(µ)diag (PTHijP )
)

+ A(µ) ◦ (PTHijP )
)
PT .

These equations show that without loss of generality it suffices to prove the lemma
only in the case when all vectors {µm} are ordered in descending order, that is, the
vectors µm all block refine the vector µ. In that case we have

∇2(f ◦ λ)(Diagµm)[Hij ] = Diag
(∇2f(µm)diagHij

)
+A(µm) ◦Hij
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and

∇2(f ◦ λ)(Diagµ)[Hij ] = Diag
(∇2f(µ)diagHij

)
+A(µ) ◦Hij .

We consider four cases.
Case I. If i = j, then

lim
m→∞∇2(f ◦ λ)(Diagµm)[Hij ] = lim

m→∞Diag
(∇2f(µm)ei

)
= Diag

(∇2f(µ)ei
)

= ∇2(f ◦ λ)(Diagµ)[Hij ]

just because ∇2f(·) is continuous at µ.
Case II. If i �= j but belong to the same block for µm, then i, j will be in the

same block of µ as well and we have

lim
m→∞∇2(f ◦ λ)(Diagµm)[Hij ] = lim

m→∞ bi(µ
m)Hij

= bi(µ)Hij

= ∇2(f ◦ λ)(Diagµ)[Hij ]

again because ∇2f(·) is continuous at µ.
Case III. If i and j belong to different blocks of µm but to the same block of µ,

then

lim
m→∞∇2(f ◦ λ)(Diagµm)[Hij ] = lim

m→∞
f ′
i(µ

m)− f ′
j(µ

m)

µm
i − µm

j

Hij

and

∇2(f ◦ λ)(Diagµ)[Hij ] = bi(µ)Hij .

So we have to prove that

lim
m→∞

f ′
i(µ

m)− f ′
j(µ

m)

µm
i − µm

j

= f ′′
ii(µ)− f ′′

ij(µ).

(See the definition of bi(µ) in the beginning of section 3.) For every m we define the
vectors µ̇m and µ̈m coordinatewise as follows:

µ̇m
p =

{
µm
p , p �= i,

µm
j , p = i,

µ̈m
p =




µm
p , p �= i, j,

µm
j , p = i,

µm
i , p = j.

Because µi = µj we conclude that both sequences {µ̇m}∞m=1 and {µ̈m}∞m=1 converge
to µ because {µm}∞m=1 does so. Below we are applying the mean value theorem twice:

f ′
i(µ

m)− f ′
j(µ

m)

µm
i − µm

j

=
f ′
i(µ

m)− f ′
i(µ̇

m) + f ′
i(µ̇

m)− f ′
j(µ

m)

µm
i − µm

j

=
(µm

i − µm
j )f

′′
ii(ξ

m) + f ′
i(µ̇

m)− f ′
j(µ

m)

µm
i − µm

j
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= f ′′
ii(ξ

m) +
f ′
i(µ̇

m)− f ′
i(µ̈

m) + f ′
i(µ̈

m)− f ′
j(µ

m)

µm
i − µm

j

= f ′′
ii(ξ

m) +
(µm

j − µm
i )f

′′
ij(η

m) + f ′
i(µ̈

m)− f ′
j(µ

m)

µm
i − µm

j

= f ′′
ii(ξ

m)− f ′′
ij(η

m),

where ξm is a vector between µm and µ̇m, and ηm is a vector between µ̇m and µ̈m.
Consequently, ξm → µ and ηm → µ. Notice that vector µ̈m is obtained from µm by
swapping the ith and the jth coordinate. Then using the first part of Lemma 2.1 we
see that f ′

i(µ̈
m) = f ′

j(µ
m). Finally we just have to take the limit above and use again

the continuity of the Hessian of f at the point µ.
Case IV. If i and j belong to different blocks of µm and to different blocks of µ,

then

lim
m→∞∇2(f ◦ λ)(Diagµm)[Hij ] = lim

m→∞
f ′
i(µ

m)− f ′
j(µ

m)

µm
i − µm

j

Hij

=
f ′
i(µ)− f ′

j(µ)

µi − µj
Hij

= ∇2(f ◦ λ)(Diagµ)[Hij ]

because ∇f(·) is continuous at µ and the denominator is never zero.
Now we are ready to prove the main result of this section.
Theorem 4.2. Let A be an n × n symmetric matrix. The symmetric function

f : R
n → R is twice continuously differentiable at the point λ(A) if and only if the

spectral function f ◦ λ is twice continuously differentiable at the matrix A.
Proof. We know that f ◦ λ is twice differentiable at A if and only if f is twice

differentiable at λ(A), so what is left to prove is the continuity of the Hessian. Sup-
pose that f is twice continuously differentiable at λ(A) and that f ◦ λ is not twice
continuously differentiable at A, that is, the Hessian ∇2(f ◦ λ) is not continuous at
A. Take a sequence, {Am}∞m=1, of symmetric matrices converging to A such that for
some ε > 0 we have

‖∇2(f ◦ λ)(Am)−∇2(f ◦ λ)(A)‖ > ε

for all m. Let {Um}∞m=1 be a sequence of orthogonal matrices such that

Am = Um

(
Diagλ(Am)

)
UT
m.

Without loss of generality we may assume that Um → U , where U is orthogonal and
then

A = U
(
Diagλ(A)

)
UT .

(Otherwise we take subsequences of {Am} and {Um}.) Using the formula for the
Hessian given in Theorem 3.3 and Lemma 4.1 we can easily see that

lim
m→∞∇2(f ◦ λ)(Am)[H] = ∇2(f ◦ λ)(A)[H]

for every symmetric H. This is a contradiction.
The other direction follows from the chain rule after observing

f(x) = (f ◦ λ)(Diagx).
This completes the proof.
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5. Example and conjecture. As an example, suppose we require the second
directional derivative of the function f ◦ λ at the point A in the direction B. That is,
we want to find the second derivative of the function

g(t) = (f ◦ λ)(A+ tB)

at t = 0. Let W be an orthogonal matrix such that A = W (Diagλ(A))WT . Let
B̃ =WTBW . We differentiate twice:

g′′(t) = ∇2(f ◦ λ)(A+ tB)[B,B].

Using Lemma 3.1 and Theorem 3.3 at t = 0 we get

g(0) = f(λ(A)),

g′(0) = tr
(
B̃Diag∇f(λ(A))

)
,

g′′(0) = ∇2(f ◦ λ)(λ(A))[diag B̃,diag B̃] + 〈A, B̃ ◦ B̃〉

=

n∑
i,j=1

f ′′
ij(λ(A))(B̃

i,i)(B̃j,j) +
∑
i�=j

λi=λj

bi(B̃
i,j)2

+
∑
i,j

λi �=λj

f ′
i(λ(A))− f ′

j(λ(A))

λi(A)− λj(A)
(B̃i,j)2.

In principle, if the function f is analytic, this second directional derivative can also be
computed using the implicit formulae from [26]. Some work shows that the answers
agree.
As a final illustration, consider the classical example of the power series expansion

of a simple eigenvalue. In this case we consider the function f given by

f(x) = x̄k := the kth largest entry in x

and the matrix

A = Diagµ,

where µ ∈ R
n
↓ and

µk−1 > µk > µk+1.

Then we have

f ′(µ) = ek and f ′′(µ) = 0,

so for the function g(t) = λk(Diagµ + tB) our results show the following formulae
(familiar in perturbation theory and quantum mechanics):

g(0) = µk,

g′(0) = Bk,k,

g′′(0) =
∑
j 	=k

1

µk − µj
(Bk,j)2 +

∑
i 	=k

−1
µi − µk

(Bi,k)2

= 2
∑
j 	=k

1

µk − µj
(Bk,j)2.
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This agrees with the result in [6, p. 92].
We conclude with the following natural conjecture.
Conjecture 5.1. A spectral function f ◦λ is k-times differentiable at the matrix

A if and only if its corresponding symmetric function f is k-times differentiable at
the point λ(A). Moreover, f ◦ λ is Ck if and only if f is Ck.
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