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Abstract Psychologists, psycholinguists, and other
researchers using language stimuli have been struggling
for more than 30 years with the problem of how to analyze
experimental data that contain two crossed random effects
(items and participants). The classical analysis of variance
does not apply; alternatives have been proposed but have
failed to catch on, and a statistically unsatisfactory
procedure of using two approximations (known as F1 and
F2) has become the standard. A simple and elegant solution
using mixed model analysis has been available for 15 years,
and recent improvements in statistical software have made
mixed models analysis widely available. The aim of this
article is to increase the use of mixed models by giving a
concise practical introduction and by giving clear directions
for undertaking the analysis in the most popular statistical
packages. The article also introduces the DJMIXED add-on
package for SPSS, which makes entering the models and
reporting their results as straightforward as possible.

Keywords ANOVA .Mixed models . Hierarchical linear
modeling . Item effects . Language as a fixed effect fallacy

When the design of an experiment that is to be analyzed
with an analysis of variance (ANOVA) is considered, there
is a fundamental statistical difference between fixed factors
and random factors. An informal definition of random
factors is that they test only a subset of all possible levels of
that factor and that there are no theoretical implications of
the outcomes at each level of the factor. Participants are the
most common random factor in psychology experiments.
Only a subset of all available participants is tested, and
there is little or no theoretical interest in the performance of
individual participants (of course, the individual partici-
pants should be inspected and screened, and if unexpected
patterns of participant behavior are found, this should be
indicated).

Coleman (1964) and Clark (1973) realized that in all
language experiments, there are two random factors: partic-
ipants and words. One could argue that this realization came
too early for its own good: At that point in time, there was no
fully satisfactory way to deal with two random factors in one
ANOVA. Clark’s suggestion of using F’ or minF’ failed to
catch on, despite evidence of its virtues (Forster & Dickinson,
1976; Santa, Miller, & Shaw, 1979; Wickens & Keppel,
1983; and others). In his article, Clark also provided an
alternative technique of using two approximate values, which
was intended for reanalyzing existing experiments for which
the raw data were no longer available. This method of using
two approximate values, F1 and F2, has become the de facto
standard in the psycholinguistic literature.

Briefly refreshing well-known concepts will hopefully aid
understanding (but the impatient reader can skip ahead to
Example 1). The F test is a ratio of two variance estimates. It
is the between-conditions variance divided by the within-
conditions variance. The between-conditions variance is an
estimate of the influence of the factor under scrutiny. The
within-conditions variance (the error term) is an estimate of
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the noise in the data, at least in the simple case. We assume a
significant effect of the condition if the F test indicates that
the between-conditions variance is sufficiently larger than the
error term, where sufficiency is determined by the F
distribution and the degrees of freedom.

The presence of two random factors causes the estimate
of between-conditions variance to be contaminated by
unwanted interactions. For a design with exactly one
random factor, the unwanted interactions can be canceled
out by choosing an error term that also contains those
interactions. However, for a design with two random
factors, no appropriate error term exists (Clark, 1973; see
also Baayen, Tweedie, & Schreuder, 2002; Jackson &
Brashers, 1994; Keppel & Wickens, 2004, p. 539). Hence,
no algebraically exact F test can be computed for these
designs, if one stays within the framework of the ANOVA.

The solutions for this problem that have been proposed
before in the psycholinguistic literature can be divided into
four strands. First, some have proposed using the F’ (or
minF’) test, a test that constructs an approximate error term
(Forster & Dickinson, 1976; Maxwell & Bray, 1986; Santa
et al., 1979; Wickens & Keppel, 1983). Second, some have
proposed doing two analyses, F1 and F2. In each of these
analyses, one random factor is analyzed, and the other is
treated as fixed, leading to two approximate tests that
should then be evaluated together (Wike & Church, 1976).
Despite its obvious shortcoming of being based on incorrect
assumptions, this method has become standard practice.
Third, some have argued that, at least in certain experimental
settings, items could be classified as a fixed factor, by-passing
the problem all together (Raaijmakers, Schrijnemakers, &
Gremmen, 1999).

This article favors a fourth solution that is based on
mixed modeling, a technique for combining random and
fixed factors into one analysis, which has been developed
since the 1980s. The name mixed modeling refers to mixing
random and fixed effects, but the same technique is also
known under other names, such as cross-classificational
hierarchical linear models (Raudenbush, 1993). This
technique bypasses all the problems that the classical
ANOVA has, making it possible to present a very simple
and straightforward analysis of a design containing two
random factors.

This fourth solution has a number of separate origins,
most of which are outside of psycholinguistics. The mixed,
crossed-effects model that is the key to this solution was
used in Raudenbush (1993) and was further extended by
Rasbash and Goldstein (1994). An independently created
application to item response theory (IRT), including
predictors at the participant level, has been proposed by
Mislevy (1987) and others (see also Rijmen, Tuerlinckx, De
Boeck, & Kuppens, 2003, on the relationship between IRT
and mixed models). Baayen et al. (2002) were probably the

first to publish on it in the context of psycholinguistic
experimentation.

Mixed models and hierarchical models have been
popularized in a number of recent publications: For
example, Cheng, Sheu, and Yen (2009) have demonstrated
the use of subject-specific random effects in the expectancy
valence model of the Iowa gambling task. For the analysis
of eye-tracking data, Barr (2008) has made a case for using
hierarchical logistic regression. Lee and Vanpaemel (2008),
Rouder and Lu (2005), and Shiffrin, Lee, Kim, and
Wagenmakers (2008) have written on the general applica-
bility of hierarchical Bayesian methods for building and
comparing models of cognitive tasks. The aim of the
present article is to popularize the mixed model for
psychologists dealing with language materials.

Whether a factor is treated as random or fixed is, to a
certain extent, up to the researcher (Jackson & Brashers,
1994). The choice has implications for the generalizability
of the findings, for the type of statistical questions that can
be asked, for the fit between data and the model, and for the
conceptual match between the model and the theory. There
are various ways to define random factors (or more
generally speaking, random effects or random coefficients).
In the hierarchical linear modeling (HLM) literature,
random effects are introduced to account for the relatively
high correlation between data points that fall within one
hierarchical level (i.e., students in one class are more alike
than students across classes). From a Bayesian perspective,
random factors are introduced to increase generalizability
and accuracy. From a classical (frequentist) point of view,
random factors allow for more parsimonious models with
fewer parameters.

Without a good knowledge of the statistical under-
pinnings, it may be hard to determine which factors are
best treated as random in a psycholinguistic experiment. A
helpful guideline is whether the levels that are tested are of
direct theoretical relevance. Consider an experiment com-
paring the efficacy of complex and simplex primes in a
lexical decision task. The levels of the fixed factor prime
type (simplex and complex) are determined by and directly
related to the theoretical question under consideration. The
random factor words is different: Even if words are
carefully selected to match on many dimensions, the actual
words that are selected for the two levels of prime type do
not affect the conclusions drawn from the experiment. In
addition, there is no theoretical interest in the (average)
priming effect exhibited by individual words, whereas the
average priming effects of the prime type levels will be the
main finding of the experiment. As a rule of thumb, one can
look at the reported means: Studies invariably include a
table listing the average reaction time (RT) for each level of
each fixed factor in the experiment, whereas levels of the
random factors are not reported or are delegated to an
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appendix (see also Jackson & Brashers, 1994, for an in-
depth discussion of random factors).

As defendants of the third solution on how to combine
random items and participants, Raaijmakers et al. (1999)
suggested analyzing items as fixed in those experiments
that basically deplete the pool of possible words. In that
case, they argued, items are not selected at random.
However, random selection of words is a sufficient but
not a necessary condition for treating items as a random
factor (Jackson & Brashers, 1994; Raudenbush & Bryk,
2002). Even when (nearly) all possible items are used
because of multiple selection restrictions, the choice of
stimuli has little or no theoretical repercussions, and items
should be treated as random to allow generalization of the
findings beyond the set of items used in the experiment.
Raaijmakers et al.’s argument would hold for a hypothetical
experiment in phonology, in which the pronunciation time
for the words goat and goal are compared with that for coat
and coal. Here, the theoretical interest lies in the pronun-
ciation times for these actual four words, and items can be
treated as fixed.

The textbook ANOVA is limited to one random factor
because of restrictions in its underlying linear model and
the way this underlying model is computed. Another
limitation of the textbook ANOVA is that fixed factors
and random factors are treated very similarly, despite their
apparent differences. The mixed model analysis overcomes
both limitations: It allows for more than one random factor
in the design, and it treats random factors inherently
differently from fixed factors. The underlying linear model
of the mixed model is different and can often be solved
only by computer-intensive iteration and approximation
techniques. To a researcher using a modern computer, this
technical difference is irrelevant. Mixed models have
additional benefits, such as that they can naturally handle
unequal numbers of observations in the cells of the design.

Mixed models are closely related to HLMs. The
emergence of hierarchical linear modeling has transformed
statistical practice in many areas of the social sciences over
the past 15 years (Raudenbush & Bryk, 2002) and has been
available, in rudimentary form at first, in SPSS since
version 11. Mixed models differ from HLMs in that they do
not require a hierarchical relationship between the factors.
In fact, HLM can be viewed as a special case of mixed
modeling. This makes mixed models well suited for
language research: It is hard to convincingly argue that
items are nested under participants or that participants are
nested under items (but see Richter, 2006, for a defense of
the former). In almost all experiments, items and partic-
ipants are crossed, since every participant will see each item
or every participant will see one variant of each item, as has
been previously argued by Baayen, Davidson, and Bates
(2008), Quené and van den Bergh (2008), and others.

The fundamental difference between a textbook linear
model (also called classical linear model or ordinary least-
squares linear model) and a mixed model is the presence of
random effects in the model. To see how random effects are
represented, I will first revisit the representation of fixed
effects.

Consider the following simplistic standard linear model
of the simple experiment outlined above:

Yj ¼ b0 þ b1 � PrimeTypej þ "j:

Here, PrimeType is dummy coded (simplex is zero and
complex is one), and j indexes the different observations.
This formula says that the observed RT can be modeled as
the sum of the intercept (β0), an influence of the variable
PrimeType quantified by β1, and error. Because of the
dummy coding chosen, the value of PrimeType is zero for
simplex words, so the intercept (β0) will be the expected RT
for all simplex words. For the complex words, PrimeType
equals one, and an additional value (β1) allows complex
words to have a different expected RT from simplex words:
The expected RT for complex words is β0 + β1. The error
term εj is taken from a normal distribution with a mean of
zero, which allows actual observations to differ from
predictions.

If the experiment had four conditions, instead, and those
conditions were treated as a fixed factor, the formula would
look like this:

Yj ¼ b0 þ b1 � PTBj þ b2 � PTCj þ b3 � PTDj þ "j:

Here, the four levels of PrimeType are dummy coded in
three variables, PTB to PTD. The variables β1 to β3 will
represent the RT differences between levels B to D and the
comparison level A, as shown in Table 1.

This is a variant of the items-as-a-fixed-effect model. There
are two statistical complications with this model. First, when
the number of levels of a fixed factor is increased, the model
becomes more complex. Second, because the β terms are
model parameters (they determine the content of the
statistical model), any conclusions drawn from this experi-
ment are, strictly speaking, conditional upon the values of β
that were observed. This is less surprising than it may sound.

Table 1 Dummy coding for a predictor with four levels and
corresponding expected reaction times, E(Y)

Dummy

PrimeType PTB PTC PTD E(Y)

A 0 0 0 β0
B 1 0 0 β0 + β1
C 0 1 0 β0 + β2
D 0 0 1 β0 + β2
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If a simplex versus complex difference of 100 ms was
observed, the conclusion drawn from the first model would
be that future research will also find a 100 ms difference. If
the observed difference (β1) is different, the prediction
changes. Therefore, the predictions of the model are
conditional on the values of the model parameters.

It follows that if the factor item with k levels (items) is
modeled as a fixed factor, k − 1 dummy variables and k − 1
corresponding βs are included in the model formula. When
interactions between item and another dummy-coded (cate-
gorical) factor R are included in the model, another (k − 1) ×
(r − 1) terms are required (where r is the number of levels of
R). Clearly, applying the fixed factor approach to items can
lead to very complex models: If there are 32 items in four
conditions, ð32� 1Þ � ð4� 1Þ ¼ 93 different β terms are
required. Despite its complexity, this model would not
constrain the values of the various βs at all. An experimenter
would reasonably expect that items within one condition
have similar average RTs (βs), but no statistical property of
this items-as-a-fixed-effect model enforces this.

Whereas β0 and β1 are parameters of the model that
represent one single value (e.g., a 500 ms intercept, a 100 ms
condition effect), the error term ε is a vector parameter that
represents as many values as there are observations: There is
one value εj for each observation j. In statistical output, the
individual values εj are normally not listed, but the variance
of all values is reported as the variance of ε, denoted s2" or
error variance. Mathematically, the values of the vector ε are
modeled by a known statistical distribution with a certain
mean and variance. The usual assumptions for ε are that its
shape is that of the normal (Gaussian) distribution with a
mean of zero and a variance that is a model parameter, the
error variance s2" . In terms of conditional inference, this
means that the conclusions drawn from this model are

conditional only on the variance of the error term and on the
fact that the errors should be normally distributed, and not on
the actual error values that were observed. In other words,
the conclusions from one experiment hold for all future
experiments in which a similar error variance is obtained.

Vector parameters are used in mixed models to model
random effects in a way that is quite similar to the treatment of
residuals in the classical model. Instead of assuming a
different β for each level of the factor item, the levels are
modeled by a vector parameter u, which has a different value
for each item i. A value ui reflects the relative speed of item i,
as compared with the prototypical item in that condition. For
an average item, ui is close to zero, since the average item is
close to the prototypical item. For a slow item, ui is relatively
large and positive, increasing the expected RT. For a fast
item, ui will be relatively large and negative, reducing RT.

In other words, the item-specific value ui adjusts the
expected RT to reflect the relative speed of item i. The
conceptualization of u as a vector of item-specific adjust-
ments to the modeled RTs has been shown to greatly aid
understanding of mixed models. Quite intuitively, all
adjustments ui are assumed to center around a mean
according to a normal distribution with a certain variance,
as shown in Fig. 1. In the left panel, each line represents the
effect of priming on one (hypothetical) item. The priming
effect is constant, but some items are inherently faster or
slower than others, which leads to a distribution of lines. In
the right panel, the distribution of item adjustments around
the overall item mean is shown, which is close to normal.
This means that the items within one condition are modeled
as necessarily similar to each other, with the majority of the
items having an adjustment that is close to zero. Outlier
items are possible, but they should be less likely the further
they are removed from zero.
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Fig. 1 Left panel: reaction times for 60 hypothetical items in unprimed and primed conditions; each item has an individual adjustment (ui) to
reflect its inherent speed. Right panel: distribution of adjustment values ui is close to normal



Returning to the experiment with simplex and complex
words, the expected RT for a morphologically complex
item i will have three parts in a mixed model: the intercept
β0, the effect of condition β1, and the adjustment specific to
this item ui. This leads to the following mixed model
formula (which does not yet include any effects related to
participants):

Yij ¼ b0 þ ui þ b1 � PrimeTypei þ "ij

with u 2 Nð0; s2
uÞ and " 2 Nð0; s2

"Þ:

Here, the jth observed RT for item i is modeled as the
intercept β0, a random effect (relative adjustment) for this
ith item that has strength ui, an effect of the PrimeType
(simplex vs. complex) that has strength β1, and a residual
value specific to this observation. The values of vector u are
taken from a normal distribution (N ) with a mean of zero
and variance s2

u, making u similar in many ways to residual
vector ε, which is taken from a normal distribution with a
mean of zero and variance s2

" . Because the average values
of ui and of εij are both zero (see Fig. 1), the expected RT
for any item is based on the intercept and the effect of
PrimeType only:

EðY Þ ¼ b0 þ b1 � PrimeType:

Although a separate value ui for each item is computed,
only one model parameter is used. This model parameter
represents the variance between items, s2u. The parametri-
zation on the variance implies that the conclusions drawn
from this model are conditional only on the observed
variance between the words and the fact that they are
approximately normally distributed with a mean of zero. In
practical terms, the conclusions drawn from this experiment
should hold for all future experiments in which a similar
item variance is obtained. The items-as-a-fixed-effect model
above would be conditional on the actual effects found for
individual words.

Modeling the factor item with a random effect u in a
mixed model has a number of interesting conceptual
implications, when compared with the item-as-a-fixed-
effect model discussed above: Similar to the earlier
guideline criterion for random factors, modeling the values
as a distribution in the mixed model agrees with a limited
theoretical interest in specific values for each item. Second,
the generalizability of the model with a random effect is
greater, because the conclusions are conditional only on the
variance of all words (s2u), and not on the number and
values of the individual β weights, as in the items-as-a-
fixed-effect case. In the mixed model, the length of the
vector u is not a model parameter, whereas the number of β
weights in the fixed effects model changes if more items are
added. Because the effects of individual words are modeled

as taken from a normal distribution, the mixed model assumes
that most words are similar, centered around a prototypical or
ideal word, with outlier words becoming less frequent as they
get further removed from the average. If item is modeled as a
fixed effect, there are no constraints on the values of the
individual item effects (β weights) at all. Because a mixed
model estimates the model means and parameters using a
precision weighted average (see Raudenbush & Bryk, 2002,
p. 40, for details), the number of observations per participant
and per item can vary substantially without any
repercussions for the analysis. Finally, as will be
outlined in more detail below, testing the mixed model
does not depend on approximating F-values, which
allows for a larger and more diverse set of statistical
questions that can be answered.

One note of caution is in place here: Statistical inference
from one model to a second set of data is, strictly speaking,
conditional on the actual value of each parameter of the
model: An item-as-a-fixed-factor model based on 20 items
cannot be extended to a data set with 21 items. In practice,
researchers would use inductive reasoning to argue that
extending the model to the second data set is reasonable:
The similarity between the two data sets and the lack of
evidence indicating that one extra item may drastically
change the outcomes will convince most readers that this is
appropriate. The critical consideration here is that a mixed
model approach does not require inductive logic in this
case, since the number of items is not a model parameter
and the model can be applied without reservations.

We have so far dealt only with the effect of the random
factor of items. Below, the example will be extended to
include a random factor of participants. A commonly raised
question is how this mixed model analysis (and especially
one with a random factor for participants) compares with a
repeated measures ANOVA. The difference between the two
approaches is that in mixed models, items, participants, and
the random variation between individual items and partic-
ipants are included predictors in the model. A repeated
measures analysis, on the other hand, includes only a
predictor that captures the differences between participants’
average RTs. With this, it can partition the sum of squares
into three parts: within-condition variance, between-
condition variance, and between-participant variance. The
additional third source of variance sets it apart from the
normal ANOVA and reduces the error term (within-
condition variance) so that a more sensitive F value can
be computed.

Example 1

After this theoretical and conceptual overview of how
mixed modeling works and how it accounts for random
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factors in the data, a number of examples will be presented
that will be analyzed in SPSS. Both the standard SPSS
MIXED syntax and the use of the SPSS extension package
DJMIXED will be discussed. Matching syntax for SAS and
the free statistical package R is supplied in the online
Appendix.

The procedure and implications of using a mixed model
analysis will be demonstrated from an example data set
containing priming data obtained from 34 participants.
Each participant made a lexical decision on 62 experimen-
tal items, for a total of 2,004 valid data points (5% missing
data). The two factors of interest were priming (the critical
word was the first word of a pair, priming absent, or the
second word of a pair, priming present) and morph (the
critical word was part of an inflectional or a derivational
pair). Other properties of the items that might influence the
RT were matched. All stimulus words were part of 31
triplets formed by a base word, one of its inflections, and
one of its derivations. Each participant first saw either a
derivation or an inflection, followed by the matching base
word. As is shown in Table 2, there is an indication of an
interaction between priming and morph, but the standard
deviations of the cell means are sizable. (This is a real data
set, in which I artificially strengthened the effect of morph
for didactic purposes.)

For comparison, an F1/F2-based analysis, using repeated
measures in the F1, resulted in the following mixture of
significances. The factor priming is significant by F1 and by
F2, F1(1, 33) = 74.6, MSE = 2,609, p = .000; F2(1, 30) =
77.4, MSE = 2,317, p = .000. The factor morph is significant
by F1 and by F2, F1(1, 33) = 18.3, MSE = 1,013, p = .000;
F2(1, 30) = 14.9, MSE = 1,204, p = .001. The interaction
between morph and priming is significant in F1, but not in
F2, F1(1, 33) = 9.4, MSE = 860, p = .004; F2(1, 30) = 3.9,
MSE = 2,200, p = .058.

Below, arguments for using a slightly more complex
approach will be outlined, but it is instrumental to see what
a very straightforward mixed model for these data looks
like. In the terminology introduced above, the mixed model
will contain item-specific adjustments to the predicted RTs,
to model that some items are easy (negative adjustments)
and some items are hard (positive adjustments). The set of

all item-specific adjustments is modeled by a normal
distribution with a mean of zero, which has two con-
sequences: The average adjustment is zero, and larger
adjustments should be less frequent than small adjustments.

In addition to the item-specific adjustments, we will also
introduce participant-specific adjustments in this model.
These adjustments are drawn from a second, independent
normal distribution, and they model that some participants are
fast (large negative adjustments) and some participants are
slow (large positive adjustments), but most participants are
close to average (have an adjustment that is close to zero).

We have to extend the notation introduced above to
incorporate item-specific adjustments (u0i) and participant-
specific adjustments (u0p). The letters i and p indicate the
type of adjustment; the zero will be used later. The resulting
model is identical to the corresponding classical regression
or ANOVA model, but for the inclusion of the two random
effects.

Mixed model 1

A mixed model was fitted to the data that contained the
fixed effects of priming, morph, and their interaction and
two random effects accounting for participant-specific and
item-specific adjustments to the intercept. The mixed model
formula is

Ypi ¼ b0 þ u0p þ u0i þ b1Primingi þ b2Morphi
þ b3ðPrimingi �MorphiÞ þ "pi:

This model claims that observed RTs can be modeled
with a general intercept term β0, which is modified by a
participant-specific adjustment u0p (which distinguishes fast
from slow participants) and an item-specific adjustment u0i
(which distinguishes fast from slow items). The expected
RT is further modified by the effect of priming (of strength
β1), the effect of morph (of strength β2), and their
interaction (of strength β3). Finally, the observed RTs differ
from the predicted RTs by an observation-specific amount
of error, εpi (error is observation specific because each
participant sees each item only once).

Because both priming and morph are dummy coded, the
interaction effect β3 applies only to the observations for
which morph equals 1 and priming equals 1. The presence
of a significant interaction term tells us that the combined
effect of morph and priming is different from the sum of
their effects (β1 + β2).

The results of this model are summarized in Table 3. The
fixed effect of priming was highly significant, F(1, 72) =
47.9, p = .000, the effect of morph reached significance, F
(1, 184) = 9.2, p = .003, and so did the interaction, F(1,
174) = 4.2, p = .042. Both random effects were significant:

Table 2 Data for Example 1: average reaction times (in milliseconds)
and standard deviations

Morph

Derivation Inflection

Priming Unprimed 683 (172) 646 (162)

Primed 594 (141) 588 (140)

Difference 89 58
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for u0p, Z = 3.90, p = .000; for u0i, Z = 4.27, p = .000,
showing that their inclusion was warranted.

One could clearly argue that a mixed model analysis is
easier to report and easier to understand than the matching
F1/F2 analysis, since there are simply fewer F tests. The
significance of the random effects u0i and u0p should be
reported, but they are not of direct theoretical relevance.

The significance of u0i and u0p effectively means that items
differed from each other and participants differed from each
other, which is to be expected in any experiment. In fact,
absence of significance should be discussed in more detail:
If the effect of u0i were nonsignificant, this could mean that
items are almost identical, which is unexpected and may be
theoretically interesting.

To stay within the classical ANOVA report, two degrees
of freedom were reported for each F-test. However, for
mixed models, the denominator degrees of freedom does
not correspond to the number of cases or items, but it is
computed in a different way (via the Satherthwaite method).
The numerator degrees of freedom is identical to the
number of levels of the factor minus one, as usual.

Although the model formula may look complex, the
matching SPSS syntax is very simple when the SPSS
extension module that was specifically written for this
article is used (the extension module can be downloaded
from the journal’s archives and from djmixed.googlecode.
com). Figure 2 shows the graphical interface to the DJMIXED

package, while Fig. 3 shows the corresponding DJMIXED

syntax: The part that spans lines 2–7 defines the mixed

Table 3 Fixed and random effects for model 1, example 1

Fixed Effects

Model term Category β F p

Priming Unprimed 59.55 47.9 .000

Morph Inflected 8.29 9.2 .003

Priming × Morph Unpr + Infl 32.44 4.2 .042

Random effects

Model term Adjustment for Variance Z p

u0p Intercept Participants 5,144 3.90 .000

u0i Intercept Words 1,774 4.27 .000

ε Error – 16,880 30.55 .000

Fig. 2 DJMIXED point-and-click
interface
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model discussed here. Most parts should be self-
explanatory. The PREDICTORS statement (line 4) simply
lists the factorial predictors and their interactions. Currently,
covariates (interval-level predictors) cannot be included in
DJMIXED. The NAME statement (line 7) is used to give the
model a name. Names should be enclosed in quotes but can
otherwise be freely chosen.

The second block of code, lines 8–10, prints out a
summary table of the named model. The table is very
similar to the one shown in Table 3. The output of the
MIXEDMODEL subcommand (and the underlying SPSS
MIXED command) is quite verbose, so this summary table
can help users find the relevant numbers quickly.

To help the user keep track of the voluminous output, the
first command has an extra option, OUTPUT. If this is set
to “split” (the default), the full analysis results are directed
to a secondary output window, and the model summary is
automatically generated in the main output window. The
other two possible values are “full” (no secondary window
is used; the full SPSS output is shown without summary)
and “none” (no output is generated at all).

Similar output can be generated with plain SPSS
commands: The DJMIXED package prints out the
equivalent syntax every time it is run. The plain SPSS
syntax for all commands used here is listed in the
online Appendix and, for this model, is shown in Fig. 4.
When DJMIXED is not used, the output cannot be
directed to two windows, and the model summary is not
available (and neither is the model comparison that we
will encounter later).

Example 2, stepwise analysis

The analysis presented above is a significant statistical
improvement over the double approximation via F1 and F2

and the other approaches mentioned earlier. For most
purposes, this analysis should suffice. For the interested

reader, a statistically more thorough exploration of the
significance of the priming × morph interaction can be
made by presenting a stepwise analysis.

A stepwise mixed model analysis is very similar to a
forward-stepping linear regression analysis: Starting with a
very simple model, additional model terms are introduced
until the point that model fit is no longer improved. A
stepwise mixed model analysis should start with a model
(often called the null model) that contains the random
effects of participants and items but no other predictors
(model 2, introduced below). In the next step, the fixed
effects of priming and morph are added (model 3). With
only two factors, the most complex model has two main
effects and one interaction; this is model 1, discussed
above. For each subsequent model, the improvement in
model fit is evaluated against the cost of introducing extra
factors or interactions. In an article that does not focus on
statistical issues, not all steps have to be reported in full, but
a summary of the steps taken to arrive at the final (best-
fitting) model should be given.

In a stepwise regression analysis, we look at the R2 to
see whether the inclusion of additional terms improved the
model fit of the data. In a mixed model approach, there is
no direct equivalent of R2, and the quantities Akaike
information criterion (AIC) and -2LL are considered
instead. These will be discussed in more detail below; for
now, AIC can be viewed as an unstandardized, adjusted R2,
and -2LL will feed into a formal model comparison test,
discussed below.

Mixed model 2

The second model fitted is a so-called null model, which is
an intercept-only model without any predictors. In a mixed
model analysis, the null model should contain the random
factors as described above: adjustments to the intercept for

Fig. 4 SPSS syntax for Example 1

Fig. 3 DJMIXED syntax for Example 1
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individual items and individual participants. The model
formula is

Ypi ¼ b0 þ u0p þ u0i þ "pi

which indicates that the one RT obtained for each
participant (p) and item (i) combination is modeled as the
intercept β0 with an adjustment to that intercept for the
relative speed of this particular participant u0p, an adjust-
ment for the relative ease of this item u0i, and residual error.
Intercept adjustments u0s and u0i both sum to zero, as does
εij, such that the expected RT for each observation is the
intercept, E(Y) = β0.

The results of the null model are summarized in Table 4. The
null model had four parameters and resulted in the following
fit indices: -2LL = 25,443, AIC = 25,451. There were no
fixed effects of interest. Both random effects were significant:
for u0p, Z = 3.90, p = .000; for u0i, Z = 5.31, p = .000.

This short report on the null model does not include the fixed
effect intercept and the variance explained by ε, since these
effects do not aid in our understanding of the model. The
reported fit indices will be used as a basis for comparison in
the next steps. In an ANOVA context, the variances of u0p, u0i,
and ε are summed to compute the contribution of each term to
the total variance. In a mixed model context, this is not
possible, because the u variances are usually correlated.

Mixed model 3

The third model extends the null model with the fixed
factors priming and morph, but it does not include their
interaction. No additional random effects are included in
this model, but the existing random effects that adjust the
intercept for participants and items may change due to the
inclusion of the new predictors. The model formula is

Ypi ¼ b0 þ u0p þ u0i þ b1Primingi þ b2Morphi þ "pi

which indicates that the one RT obtained for each
participant (p) and item (i) combination, is modeled as the
intercept β0, to which there is a participant-specific
adjustment u0p and an item-specific adjustment u0i. The
predicted RT varies by the factor priming, with a slope β1,
and by the factor morph, with a slope β2. The word slope is

used here for compatibility with the hierarchical linear
modeling literature. The expected RT for each observation
is EðY Þ ¼ b0 þ b1Primingþ b2Morph.

The results of the third model are summarized in Table 5.
The model had six parameters and resulted in the following
fit indices: -2LL = 25,403, AIC = 25,415. The fixed effect
of priming was highly significant, F(1, 70) = 46.0, p = .000,
and so was the effect of morph, F(1, 1012) = 5.39, p = .020.
Both random effects were significant: for u0p, Z = 3.90, p =
.000; for u0i, Z = 4.30, p = .000. As compared with the null
model (shown in Table 4), the variation related to
participants did not change, whereas the variation related
to items was reduced substantially. This is to be expected:
The fixed factors morph and priming should explain some
of the variation between items.

There are two ways to compare the fit of the null model
(model 2) with the fit of this model (model 3). First, the
values of AIC can be directly compared between the
models, with lower values indicating a better fit. The AIC
value for model 3 is 25,415, 36 points lower than the value
of 25,451 obtained for model 2, indicating an improvement
in fit. One cannot determine whether this difference is a
significant improvement, since AIC values are unscaled.
(However, as a rule of thumb, a difference of more than 10
points is usually an indicator of a significant improvement.)

A second way of comparing the models is via the
likelihood ratio test (LRT). This test uses the raw fit
measure deviance or log-likelihood. Because the likelihood
value reported by most programs is log-transformed and
multiplied by -2, the abbreviation used in SPSS and SAS is
-2LL for minus two times log-likelihood. Similar to the F-
test, which divides within-variance by between-variance,
the LRT evaluates the relative fit of model 3 by dividing it
by the fit of model 2. Division of two likelihoods is
mathematically identical to the difference of two log-
likelihoods, so we obtain LRT = 25,443 - 25,403 = 40 for
the comparison between models 2 and 3 (the AIC is derived
from the -2LL but also takes the number of parameters into

Table 5 Fixed and random effects in the third model, main effects
only

Fixed effects

Model term Category β F p

Priming Unprimed 75.5 46.0 .000

Morph Inflection 16.7 5.4 .020

Random effects

Model term Adjustment for Variance Z p

u0p Intercept Participants 5,142 3.90 .000

u0i Intercept Words 1,858 4.30 .000

ε Error – 16,891 30.6 .000

Table 4 Random effects for model 2, the null model

Model term Random effects

Adjustment for Variance Z p

u0p Intercept Participants 5,129 3.90 .000

u0i Intercept Words 3,507 5.31 .000

ε Error – 16,861 30.61 .000
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account, so the difference in AIC values is similar to the
difference in -2LL).

The value of LRT can be statistically evaluated against a
chi-squared distribution, using the difference in the number
of model parameters as the degrees of freedom. Model 2
has four parameters, and model 3 has six, so a chi-squared
with 2 degrees of freedom should be used. The test is
LRTð2Þ ¼ 40; p < :0001, which means that model 3 has a
significantly better fit than model 2 (see also Table 6 for an
overview of model comparisons).

Mixed model 1, revisited

Model 1, presented in Example 1 above, is similar to model
3, but model 1 also contains the interaction between morph
and priming among the fixed effects. The random effects
are still participant-specific and item-specific adjustments to
the intercept.

The results of this model are summarized in Table 3 above.
The model had seven parameters and resulted in -2LL =
25,399, AIC = 25,413. Model 1 has a lower (better) AIC
value than does the previous models, although the difference
with the third model (main effects only) is small and on the
edge of significance (p = .041) according to the LRT.

Using this stepwise procedure, we can conclude that
there is some statistical evidence for the presence of an
interaction term morph× priming: The interaction term is
significant in the F-test presented in model 1, and model 1
is a slightly better fit of the data according to AIC values
and the LRT test.

As compared with the normal ANOVA procedure, we
have two statistical tests of the interaction at our disposal
(F-test and LRT). Because both tests result in p-values that
are rather close to our alpha level (p = .042 for F-test; p =
.041 for LRT), it would be wise to investigate this
interaction further in a follow-up experiment or by
introducing additional predictors in the design (Keppel &

Wickens, 2004), but for now, the conclusion of a statisti-
cally significant effect of the interaction can be maintained.

Figure 5 shows the syntax for the steps just taken. The
null model (model 2) is specified by removing the
PREDICTORS line (or by specifying PREDICTORS =
NONE). After constructing model 3, the models are
compared with each other via the COMPAREMODELS
command. The output of these commands can be found
(slightly reformatted) in Table 6.

In an article that does not focus on statistical issues, the
detailed report of each modeling step given above can be
reduced to the findings reported for the final model 1,
including Table 3. The stepwise procedure can be summa-
rized by including Table 6 and a short text such as the
following: “A statistical model of the data was built from a
null model (model 2) by stepwise adding all main effects
(model 3), and all interactions (model 1). In each step, the
more complex model showed a significant better fit of the
data (see Table 6), leading to the final model 1.”

Example 3: Contrasts and post hoc tests

The examples above have all dealt with one or more factors
that each had only two levels (e.g., primed vs. unprimed). If
a factor has more than two levels, a test for a significant
effect of that factor is usually followed by an examination
of which levels differ from each other. Similar to normal
ANOVA procedures, this examination can be done with
planned comparisons (also called contrasts) or omnibus
comparisons (also called post hoc tests).

To illustrate this, the same data set is used as before,
but the two factors priming and morph are now
combined into one factor, form. Note that the factor
form is constructed for didactic purposes only; this
analysis will not clearly distinguish between primed and
unprimed words, thereby obscuring one of the more
important influences on RT.

Table 6 Overview of models 1–3, with the degrees of freedom (df),
deviance (-2LL), and the Akaike fit index (AIC). Models are
compared with the likelihood ratio test (LRT); a significant results
indicates that the more complex model is preferable. For each

comparison, base for comparison, the comparison df, and LRT value
are shown. All models contain random adjustments to the intercept for
participants and items (u0p and u0i)

Model details Likelihood ratio

Fixed effects df -2LL AIC Comparison df LRT

2 None 4 25,443 25,403 – – –

3 Priming, morph 6 25,403 25,415 2 2 39.92***

1 Priming * morph 7 25,399 25,413 3 1 4.16*

*p < .05; **p < .01; ***p < .001
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The new factor form has three levels—stem, inflected,
and derived—matching the morphological status of the
target word (see also Table 7).

Mixed model 4

This model has one theoretically relevant predictor, the
factor form with three levels. The model contains an
intercept and random effects for participant-specific and
item-specific adjustments to the intercept.

The analysis yields a model with six parameters and fit
indices -2LL = 25,395, AIC = 25,407. The fixed effect of

form was highly significant, F(2, 1945) = 90.7, p = .000.
The random effects adjusting the intercept were significant:
for u0p, Z = 3.90, p = .000;for u0i, Z = 3.11, p = .002, so
inclusion of all random effects was warranted.

Two planned comparisons were run, one comparing the
levels inflection and derivation, and one comparing the
average of these two levels with the stem form. Both
planned comparisons were significant: Derivations versus
inflections has a difference estimate of 39.56, t(1949) =
4.62, p = .000. Stems versus mean of inflections and
derivations has a difference estimate of -75.43, t(1942) =
-12.80, p = .000.

The DJMIXED syntax for this model is shown in Fig. 6.
The specification of the fixed and random terms follows the
same pattern as before. In line 7, post hoc tests are
requested, which will be discussed below. Although the
post hoc tests are a theory-free and cautious approach to
determining any difference in levels, the application of
planned comparisons is more popular. The drawback of
using planned comparisons is that any application that is
slightly data driven leads to highly inflated alpha rates. In
other words, if the planned comparison was determined
after obtaining the means (or preliminary means), the alpha
rate is much higher than promised.

The DJMIXED syntax for planned comparison is shown in
Fig. 6: Line 8 shows how the keyword CONTRAST is
followed by the name of the variable, followed by a pipe
symbol (|), followed by a specification of the contrast
coefficients. Similar to standard ANOVA contrasts, there
should be as many coefficients per contrast as there are
levels of the variable. The coefficients in each contrast
should sum to zero. The number of contrasts should equal
the number of levels minus one, with individual contrasts
separated by pipe symbols. As with the standard ANOVA,
using independent or orthogonal contrasts is advisable
(Keppel & Wickens, 2004).

A knowledge of the ordering of the levels of the
variable is necessary to design and interpret contrasts.
SPSS orders levels either numerically or alphabetically,
depending on the values of the variable. It is advisable
to use a numerical coding with value labels to avoid
surprises. Here, numerical values are used, and the
ordering is stem, derivation, and inflection. Note that
while the post hoc output shows the variable labels, the
output of planned comparison does not include this

Fig. 5 DJMIXED syntax for remaining models and model compar-
ison (line numbers added)

Factor prime Description Factor morph

Inflection Derivation

Unprimed Presented first Inflectional form Derivational form

Primed Presented following related inflection Stem form –

Presented following related derivation – Stem form

Table 7 Relationship between
the factors priming, morph, and
form
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convenience. The two planned comparisons are labeled
L1 and L2 in the SPSS output.

Post hoc tests were requested in line 7; the option is
followed by the name of the variable for which post
hoc tests have to be computed. The additional SPSS
output caused by this command has two parts: First, a
table shows the mean and standard deviation for each
condition, which is useful for creating graphs; second,
six pairwise comparisons are performed that are all
highly significant for the current data (p = .000 for
each, significant after Sidak adjustment for multiple
comparison).

Because post hoc tests involve multiple comparisons,
the familywise alpha has to be controlled. Instead of the
familiar Bonferonni approximation to the correct alpha
for multiple comparisons, the exact formula for alpha
correction, as proposed by Šidák, is recommended (see
also Abdi, 2007).

Note that all comparisons are based on expected means,
not observed means. This implies that a comparison based

on a model that does not fit the data well may result in
unreliable post hoc comparisons.

Regression diagnostics and transforms

In both regression and the ANOVA, the distribution of the
residuals can inform us about the overall fit of the data and
about the specifics of the fit. The DJMIXED package can
produce four informative plots: a histogram of residuals, a
Q-Q plot of observed versus expected residuals, a
detrended Q-Q plot, and a plot of normalized residuals by
predicted values. We will look only at the first plot here.

The histogram of residuals for Model 1 is shown in the
left panel of Fig. 7. This distribution should be close to
normal, and some appreciable differences exist for this
model (the Kolmogorov–Smirnov test is significant, KS
(2004) = 0.106, p = .000, indicating a significant difference
between the observed curve and a normal curve).

On the one hand, the aim of psycholinguistic studies is
usually not to provide a perfect fitting model of the data but
to determine whether certain factors make a significant
contribution to the prediction of RT or not. Under that view,
a moderate to small departure from normality should not
overly worry us, although it should be reported. However,
ill-fitting residuals can be a sign of a model that does not
capture the data very well. The significance of factors and
their interactions may be hidden by or caused by the fact
that the model does not fit well (see Rouder, Tuerlinckx,
Speckman, Lu, & Gomez, 2008, for a promising approach
to increasing the model fit of RT data).

A commonly suggested transform for RT data is the
logarithmic transform (Keppel & Wickens, 2004; Van
Breukelen, 2005), which will reshape the distribution of

Fig. 6 Syntax for mixed model 4 with specification of post hoc tests
and contrasts, line numbers added
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RT data so that its heavy right tail is removed and it
becomes more akin to a normal distribution. A mixed
model analysis of log-transformed RTs resulted in the same
significance levels as in model 1 but improved the
distribution of residuals (Fig. 7, right panel).

Whether the additional fit gained from log-
transformation is important should be decided on a case-
by-case basis. Log transforms are not frequently used in the
psychology of language literature, but they are common in
neighboring fields such as cognitive modeling and corpus
research. One issue that arises is that a simple log transform
[xl = log(x)] will often turn the shortest RTs into outliers.
The solution is to subtract an estimate of the minimum RT,
effectively moving the zero point to the right (Rouder et al.,
2008): For the log-RT analysis reported in Fig. 7, xl ¼
logðx� 100Þ was chosen.

Raw data plots and plots of residuals after intermediary
models are fit can also be very instructive as to the structure
of the data set. Textbooks such as Raudenbush and Bryk
(2002) and Piñheiro and Bates (2000) show many examples
of this. For the present data set, a plot of the observed data
for the primed versus unprimed condition (for derivational
pairs only) is shown in Fig. 8. In this plot, every item set is
represented by a single line. Evidence for word-specific
adjustments to the intercept can be found at the left edge of
the figure, which shows that the item-specific intercepts
differ substantially. The statistically significant but not
completely compelling interaction effect morph × priming
may well be due to the heterogeneity of the priming effect
on the items: In the figure, three items show negative
priming effects (dashed heavy lines), and six items show
much stronger effects of priming than do the others (solid
heavy lines). This could be unsystematic variation of the

efficacy of priming, but facing such data, it is wise to
investigate whether there are any factors that may help
explain this.

More complex models

In almost every case, the stepwise analysis presented above
should be sufficient to draw psycholinguistically valid
conclusions from the data. The mixed model can be further
extended in two ways, which will be briefly outlined here.

The first extension concerns covariates: On some
occasions, there are known covariates that may help explain
the differences between items (or more rarely, participants).
If there are theoretical reasons to expect that, for example,
log frequency will co-determine RTs, this predictor should
be included in the model. The mixed models described here
are very similar to normal regression models, and an effect
of frequency can be added as a predictor in a straightfor-
ward way. The model formula and the DJMIXED syntax are
included in the online Appendix.

The second possible extension concerns the way differences
between items and participants influence the expected out-
comes. In the models so far, the random effect of items (and
participants) has been added to the intercept to indicate whether
an item is generally easy or hard. It is possible that the effect
of a predictor (say, priming) also differs between items (or
between participants). One way to account for that is to
include a second random effect for items, which modifies the
strength of the effect of priming. Mathematically, a new
random effect u1i is added to the β for priming, as shown in
this partial formula: Yij ¼ :::þ ðb1 þ u1iÞ � PrimeTypei þ :::.
In mixed model parlance, the random effect u1i modifies the
slope (β) of priming.

A number of statistical complications arise with this type
of analysis, and the online Appendix goes into some detail
on how to work around these. However, there are further
reasons why this type of analysis may not be applicable to
most psycholinguistic experiments.

First of all, the exact structure of the random effects is
rarely a psycholinguistic goal in itself. A model with a
random effect on the slope of priming does not give a better
theoretical explanation; it merely adds a device for
capturing unexplained variance. A well-chosen covariate is
often a better option, since it does add theoretical strength
to the model.

Second, extracting three or more random effects from the
data is demanding. Psycholinguistic data tend to have one
observation per participant–item combination, and the
numbers of items and participants tested are sizable, but
not in the hundreds. Both of these factors limit the
“carrying capacity” (Nezlek, 2008) of the data. The two
random effects related to items (u0i and u1i) are most often
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Fig. 8 Plot of observed primed and unprimed reaction times for each
derivational pair, with negative priming (dashed lines) and strong
positive priming (solid lines) highlighted
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correlated, which makes it harder to arrive at estimates for
each of them, necessitating large number of items and
participants.

Third, the extended analysis assumes that the item-
related random effects modifying the intercept and the slope
of priming are independent influences, which may be
correlated. As has been argued by Rouder et al. (2008),
faster items often show less variability and are, therefore,
inherently less sensitive to priming. In a sophisticated
model that creates a connection between an item’s mean
and its standard deviation, these authors were able to show
that there was no need for item- or participant-specific
adjustment to slopes once the correlation between mean and
standard deviation was taken into account.

In sum, there seem to be few compelling reasons to add
random effects that modify slopes. For psycholinguistic
data, models like those presented above already provide a
better description of the data than do classical ANOVA
models, and it may well turn out that the extra complica-
tions caused by adding random effects modifying slope are
rarely necessary in practice. Authors should run the usual
regression diagnostics to determine whether the data were
fitted reasonably well or whether further statistical explora-
tions are necessary.

Discussion

This article has presented a simple framework for address-
ing the issue of random participants and random items in
language experiments. The DJMIXED extension to SPSS
should put this mixed models analysis within the reach of
every psycholinguist. It was argued that the results of mixed
models are easy to interpret, while staying much closer to
the data than do the other approaches that are currently in
common use (min F’, F1/F2, treating items as fixed).

Mixed models should be used only when the data set is
large enough and after outliers and wrongly coded
observations have been removed. Conceptually, a separate
regression line is estimated for each level of participants
and also for each level of items, so an extreme outlier can
have a large influence if the number of observations per
participant or the number of observations per item is low.
As compared with an ANOVA, the restrictions on the data
imposed by mixed modeling are very relaxed, since missing
data and unequal cell sizes are not a problem and
homoscedascity is not an a priori requirement either. Mixed
models require equality of residual variance; that is, the
predictors should capture not only the difference in average
RTs, but also any difference in variability of RTs. For most
data sets, this seems a tenable assumption (but see Rouder
et al., 2008), and there are currently few alternatives for
those cases in which this assumption is mildly violated.

Mixed models are a relatively recent extension to the
statistical canon, and although the pace of development has
slowed down, further improvements to these models and
their evaluation will most certainly be found. However, the
methods of model evaluation that are suggested here (F-
tests and LRT) have shown their merits outside of mixed
modeling, and they are implemented in major statistical
packages such as SPSS and SAS and are generally
recommended in various fields of science.

Like most statistical tests, these tests are not perfect
under all circumstances: Using the LRT to test for the
inclusion of random effects is slightly conservative when
the difference between parameters in the two models is used
as the degrees of freedom (Kreft & De Leeuw, 1998; Stram
& Lee, 1994). The alternative of using a 50/50 chi-squared
mixture was suggested by Stram and Lee and is adopted in
the Appendix to this article and elsewhere (Kreft & De
Leeuw, 1998; Verbeke & Molenberghs, 2001). But
criticisms against this procedure have been leveled
(Baayen, Davidson and Bates 2008; Piñheiro & Bates,
2000, p. 70), suggesting that it may still be slightly
conservative (not rendering enough significant results).
Faraway (2006) suggested using a parametric bootstrap
(cf. Janssen, Bickel & Zúñiga 2006) to correct the p-values
of the LRT when testing for the inclusion of random effects,
and this procedure has the advantage over the solution
suggested by Baayen et al. (2008) of not depending on a
Bayesian framework.

LRT tests for the inclusion of fixed effects are also widely
used (Kreft & De Leeuw, 1998; Raudenbush & Bryk, 2002;
Verbeke & Molenberghs, 2001), but some have argued that
this test may be too liberal (allowing too many significant
results) for tests on certain data sets (Baayen et al., 2008;
Piñheiro & Bates, 2000, p. 88). The example given by
Piñheiro and Bates cautions the reader not to test for the
inclusion of fixed effects with a very large number of levels,
as compared with the total number of observations. It is
shown that the LRT can be too liberal when testing for the
inclusion of a factor with 15 levels in a data set with only 60
observations. In practical psycholinguistic applications, the
number of levels of a fixed factor hardly ever exceeds five,
so if the general recommendations for sizable numbers of
participants and items—and, therefore, observations—are
followed, this criticism should not overly concern us.
Raudenbush and Bryk evaluated the merits of the LRT, as
compared with a multiple comparison procedure similar to
the contrasts discussed above, and concluded that the LRT is
a valid procedure that will produce results nearly identical to
those of multiple comparison (Raudenbush & Bryk,
2002, p. 61), while the LRT is much easier to implement.
When models for the inclusion of a fixed effect are
compared, the multiple comparison tests are similar to the
F-test that was used here in conjunction with the LRT.
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SPSS and SAS report z-tests on individual model βs,
which should not be used for drawing conclusions about
the importance of predictors. The z tests can be very
conservative, and Raudenbush and Bryk (2002) suggested
using a t-distribution instead. The issue was side-stepped
here by using F-tests (technically, Type 3 F-tests) of fixed
effects instead. In this article, values of β were reported in
tables to offer the reader an insight into the direction and
magnitude of the effect, but the p-values listed are derived
from the F-tests on the fixed effects in the analysis. The
advantage of the omnibus F-tests is that they are available
in SPSS and in SAS and that they are similar in
interpretation to the normal ANOVA tests. The F-tests also
produce one significance value for factors with more than
two levels, whereas multiple significances result if the z-
tests are followed (one z-test is presented for each β). This
technique is followed by almost every text on HLM and
mixed modeling (Faraway, 2006; Hox, 1995; Kreft & De
Leeuw, 1998; Raudenbush & Bryk, 2002; Singer, 1998;
Snijders & Bosker, 1999; Verbeke & Molenberghs, 2001).

F-tests (including Type 3 F-tests) for normal ANOVAs
and mixed-models alike have been criticized by Venables
(1998). To evaluate the significance of fixed effects, it has
been suggested to askew F-tests (Baayen, 2008; Bates,
2006, 2008) and use MCMC (Monte Carlo Markov chains),
a simulation technique based on Bayesian principles to
approximate the significance of each fixed effect on an
analysis-by-analysis basis. This technique has certain
theoretical advantages for data with smaller numbers of
cases, but it is not implemented in SPSS or SAS. It also
requires one to work within a Bayesian inference frame-
work, which has various advantages and disadvantages that
fall outside of the scope of this article. In a discussion of
which test to use, Faraway (2006, 2009) recommended the
combined use of the F-test and the LRT.

Of course, statistics is a scientific discipline just like
psycholinguistics, and dissenting opinions, alternative
approaches. and progressing insights are par for the course.
Mixed models, and hierarchical linear models as their special
case, are a mature technique, and they have been implemented
in the major statistical packages since 1996 (SAS), 2000 (R),
and 2002 (SPSS). Straightforward and relatively uncompli-
cated applications of mixed models, such as advocated in this
article, are used in biology (O’Connor, Bruno, Gaines,
Halpern, Lester, Kinlan & Weiss 2007), educational research
(Raudenbush & Bryk, 2002), social psychology and person-
ality research (Nezlek, 2008), signal detection theory
(Rouder & Lu, 2005), and many other fields. Mixed models
are easy to construct in SPSS and SAS, and the mixed model
results are straightforward to understand when the focus
remains on the fixed effects. It is time for psycholinguistics
to leave the realm of F1/F2 testing and move to mixed
modeling as a standard means of assessing significance.
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