
Twig: Multi-Agent Task Management for

Colocated Latency-Critical Cloud Services

Rajiv Nishtala∗, Vinicius Petrucci†, Paul Carpenter‡, Magnus Själander∗

∗ Norwegian University of Science and Technology, Norway

{rajiv.nishtala, magnus.sjalander}@ntnu.no
‡ Barcelona Supercomputing Center, Spain

paul.carpenter@bsc.es
† Federal University of Bahia, Brazil & University of Pittsburgh, USA

vpetrucci@pitt.edu

Abstract—Many of the important services running on data
centres are latency-critical, time-varying, and demand strict user
satisfaction. Stringent tail-latency targets for colocated services
and increasing system complexity make it challenging to reduce
the power consumption of data centres. Data centres typically
sacrifice server efficiency to maintain tail-latency targets resulting
in an increased total cost of ownership.

This paper introduces Twig, a scalable quality-of-service (QoS)
aware task manager for latency-critical services co-located on
a server system. Twig successfully leverages deep reinforcement
learning to characterise tail latency using hardware performance
counters and to drive energy-efficient task management decisions
in data centres. We evaluate Twig on a typical data centre server
managing four widely used latency-critical services. Our results
show that Twig outperforms prior works in reducing energy
usage by up to 38% while achieving up to 99% QoS guarantee
for latency-critical services.

I. INTRODUCTION

Large-scale online data-intensive services are increasingly

pervasive across data centres and require consistently low

response times to attract and retain users [1, 2]. These

data centres increasingly colocate numerous services on the

same node to improve cost efficiency [3]. Unfortunately, this

causes shared resource contention among co-scheduled cloud

services [4], leading to unpredictable performance degrada-

tion [5]. This is especially problematic for latency-critical (LC)

cloud services as a marginal increase in service delay can

greatly impact the user experience [6]. Ensuring consistent

quality-of-service (QoS) is a challenging problem, especially

in tandem with improved energy efficiency [7].

Managing shared-resource contention is a well-studied but

still an open problem [5, 8–11]. Prior work has addressed this

problem in two ways, by (a) disallowing resource sharing for

LC services in periods of high load to avoid interference [12–

19] or (b) disallowing colocation of services even if they are

unlikely to interfere with each other [20–22]. Blindly applying

either solution preserves the QoS of the LC service but results

in low server-efficiency.

Heuristic-based techniques have been proposed to perform

energy-efficient, task-mapping decisions for different resource

allocations, including number of cores and dynamic voltage

frequency scaling (DVFS) settings [3, 12, 13, 21, 23]. Nev-

ertheless, heuristic parameters are highly specialised for the

specific architecture/service, making these techniques difficult

to adapt and generalise to new platforms. Reinforcement-

learning (RL) techniques have been explored for enhanced

QoS and resource-efficient task management [15] to improve

adaptivity and generalisation. Still, previous techniques fail to

scale on large server systems as they use a table mapping from

specific states to actions, which grows exponentially in space

and complexity.

A desirable solution would be to manage the resource

allocation while being scalable and agnostic to the running ser-

vice. Most processors include hardware-assisted performance

monitoring counters (PMCs) that can be used to track several

types of hardware events, such as instructions retired and cache

misses at multiple levels. Such PMC data can be explored

as general indicators to help understand service character-

istics and to design an agnostic task-management solution.

Nevertheless, it is far from trivial to leverage PMC data in

real systems. Prior work has shown that conventional IPC-

based (instructions per cycle) task-management mechanisms

cannot be used for LC services as there is no clear relationship

between IPC and tail latency [12].

In this paper, we empirically demonstrate that there exists

a complex relationship between certain PMCs and the tail la-

tency of LC services. Based on this insight we introduce Twig,

an action-branching learning agent that is capable of learning

this relationship, resulting in a scalable and energy-efficient

task-management solution for colocated LC services. Twig

assumes no prior knowledge of the service making it a quick

drop-in replacement for existing task-management solutions.

Twig exploits recent ideas in deep Q-learning algorithms and

advances over state-of-the-art by leveraging PMCs instead of

service-centric metrics to allocate resources while significantly

reducing the required memory space.

We present Twig in two variants: Twig-S and Twig-C, which

are targeted toward single and colocated LC services, re-

spectively. Both variants aim at maximising energy efficiency

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.1109/HPCA47549.2020.00023

while meeting the QoS target of the LC service(s). Twig-S is

evaluated against Hipster [15] and Heracles [12], two state-of-

the-art task managers for single services. Twig-S outperforms

Hipster and Heracles in reducing energy usage on average by

11% and 38%, respectively while achieving up to 99.2% QoS

guarantees. Twig-C is evaluated against PARTIES [3], the only

other state-of-the-art task manager for colocated services. The

results show that Twig-C outperforms prior work in reducing

energy usage on average by 28% while achieving up to 98.9%

QoS guarantees.

This paper makes the following main contributions:

1) We demonstrate that there exists a relationship between tail

latency and a set of PMCs that can be explored to build a

service-agnostic cloud task manager (Section II-A).

2) We introduce an extension to an action-branching dueling

Q-network (BDQ) capable of coordinating multiple agents

in a shared environment (Section III-A).

3) We present the design of Twig, an RL-based task-manage-

ment solution that can dynamically coordinate and assign

the best core mapping and DVFS settings for colocated LC

services (Section III-B).

4) We demonstrate Twig’s ability to dynamically adapt to

new cloud services at runtime. Despite changes in the

service and batch-workload mix, Twig delivers up to 99%

QoS guarantee for the allocated LC services. We also

demonstrate that Twig quickly learns to efficiently manage

new LC services without prior knowledge of the service

characteristics or system platform (Section V).

II. MOTIVATION AND BACKGROUND

The problem of determining the best resource allocation

(e.g., core allocation and DVFS setting) for each LC service

over time requires solving two important challenges: (1) How

to best characterise the LC service behaviour with minimal

intervention at development or deployment stage? (2) How

to design a task manager that can best partition the limited

resources given the joint behaviour of multiple LC services

interacting on a shared platform?

To address the first challenge, we propose using PMCs as a

generic, non-invasive and scalable method to characterise the

tail-latency behaviour of LC services running on a particular

platform (Section II-A). Designing an energy-efficient task

manager requires significant amount of exploration in the

resource-allocation configurations, thus simple heuristics may

fail to deliver the best resource-allocation decisions over time.

We address this second challenge by exploring recent advances

in deep reinforcement learning (Section II-B) that can enable

a runtime system to automatically learn how to best allocate

the resources to multiple LC services.

A. Characterising Tail Latency

When designing a task manager, it is important to be able

to precisely and quickly determine a service’s behaviour on a

given server platform. To this end, we perform experiments to

understand if tail latency can be estimated using deep RL as a

function of multiple PMCs and using only IPC (Section III-B1

−4 −2 0 2 4 6 8

Pr❡❞✐❝t✐♦♥ ❡rr♦r ✭✐♥ ♠s✮

0.0

0.2

0.4

0.6

P
r♦
❜❛

❜✐
❧✐t
②
❉
❡♥

s✐
t②

P▼❈s

❖♥❧② ■P❈

M
em

ca
ch

ed

(a) Histogram of tail latency pre-
diction error

✶✲✷ ✷✲✸ ✸✲✹ ✹✲✺ ❃✺

▼❡❛s✉r❡❞ ✾✺✪✲✐❧❡ t❛✐❧ ❧❛t❡♥❝② ✭✐♥ ♠s✮

−4

−2

0

2

4

6

8

P
r❡
❞✐
❝t
✐♦
♥
❡r
r♦
r
✭✐
♥
♠
s✮

(b) Violin plot of tail latency

−2 −1 0 1 2

Pr❡❞✐❝t✐♦♥ ❡rr♦r ✭✐♥ ♠s✮

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
r♦
❜❛

❜✐
❧✐t
②
❉
❡♥

s✐
t②

P▼❈s

❖♥❧② ■P❈

W
eb

-S
ea

rc
h

(c) Histogram of tail latency pre-
diction error

✳✶✲✳✷ ✳✷✲✳✸ ✳✸✲✳✹ ✳✹✲✳✺ > .5

▼❡❛s✉r❡❞ ✾✺✪✲✐❧❡ t❛✐❧ ❧❛t❡♥❝② ✭✐♥ ♠s✮

−2

−1

0

1

2

P
r❡
❞✐
❝t
✐♦
♥
❡r
r♦
r
✭✐
♥
♠
s✮

(d) Violin plot of tail latency

Fig. 1: Exploring the relationship between multiple PMCs and

tail latency for Memcached (top) and Web-Search (bottom).

The left column shows the prediction error as a probability

density function, and the right column shows a violin graph of

the prediction error as a function of the measured tail latency.

elaborates on system monitoring). Figure 1 shows the main

result from our experiments. We ran two well-known cloud

services: Memcached (top, figures (a) and (b)) and Web-Search

(bottom, figures (c) and (d)) with the maximum number of

cores available on the system and at the highest DVFS setting

while varying the incoming load. The figures to the left show

the prediction error as a probability density function and the

figures to the right show a violin plot of the prediction error

as a function of the measured tail latency. Each plot was

generated with 30 000 samples.

We observe (Figure 1a) that the mean error in estimating the

tail latency for Memcached using multiple PMCs is -0.286ms
with a standard deviation of 0.63ms, while when using only

IPC the mean error is 0.45ms with a standard deviation

of 2.13ms. Similarly, Figure 1c shows that the mean error

in estimating the tail latency for Web-Search using multiple

PMCs is -0.132ms with a standard deviation of 0.37ms,
while when using only IPC the mean error is 0.24ms with

a standard deviation of 0.72ms. Note that the probability of

zero prediction error increases by a factor of atleast 1.91×
(3.36× best case) when transitioning to multiple PMCs from

using only IPC as an input variable.

Next, each graph in Figures 1b and 1d is a violin plot

showing the prediction error for a given tail latency range.

The horizontal bar in the middle shows the median of the

prediction error for that tail latency range. The width of the

violin represents probability density of the error. When using

multiple PMCs, it is clear that within each latency bucket the

median prediction error and the highest probability density is

around zero. However, when using only IPC, the probability

density is spread across the error range indicating that IPC

alone is insufficient to estimate the tail latency.

Hence, feeding PMCs to a learning agent using RL is a

promising approach to design a service-agnostic task manager.

2

B. Reinforcement Learning

Q-learning is the most widely deployed RL algorithm, and

applications based on this technique have recently achieved

spectacular results [24]. A Q-learning agent learns to maximise

its total reward in a dynamic environment [25], which is

modelled as a Markov decision problem (MDP). Given the

current state, s ∈ S imposed by the environment, the learning

agent must choose an action a ∈ A. Given the state s and

action a, the environment then transitions to a new state,

s′ ∈ S according to a probability distribution function,

P : S×A×S → R. The agent also receives a reward according

to the reward function, R : S×A×S → R. This procedure is

iterated for some length of time, during which the agent must

build a policy to maximise the total discounted reward.

A Q-function (Q) is used to learn the transition probabilities,

and can be represented as a table of states and actions, with

each entry Q(s, a) representing the estimated total discounted

reward when starting in state s and taking action a. The goal

of the Q-function is to learn a policy that theoretically selects

the optimal action for each state [26]. The state, which is a

continuous value, is quantised into discrete buckets (b). The

action can be a combination of numerous dimensions (D),

where each action dimension d ∈ D can have a discrete

number of actions (n ∈ N).

Q-learning based agents have been applied for task man-

agement of LC services (as in Hipster [15]) by specifying

the state as the load measured in requests per second (RPS),

and the action as a combination of tunable hardware knobs.

The straightforward way would be to translate this approach

to our problem by quantising each PMC as part of the state,

and action as a combination of tunable parameters. However,

this requires maintaining a 2D-array of states and actions,

with a total of b × DN elements. The total size of the array

grows quickly, leading to a combinatorial explosion, which

considerably increases the learning time.

1) Deep Q-Network: A potential solution to standard

Q-learning would be to replace the 2D-array that stores

the quality of individual state–action pairs with a non-linear

function approximator that approximates the quality of state–

action pairs. This provides two main advantages: (1) it reduces

the memory space for storing the state-action space and (2) it

eliminates the need to explicitly traverse through each state–

action pair to understand the quality of an action in that state.

A well-known non-linear function approximator that can

estimate the Q-function is a deep Q-network (DQN) [24].

In a typical DQN architecture, the final layer is a soft-max

function, which gives a probability distribution, and requires

the network to select a single action, i.e., the action with the

highest Q-value.

A desirable task manager for colocated LC services should

effectively manage several action dimensions (e.g., number

of cores, DVFS settings, etc.), and deploying vanilla DQNs

means that a single instance requires combinations of actions,

leading to an action-space combinatorial explosion.

2) Branching Dueling Q-network: One way to tackle

the combinatorial explosion is by maintaining multiple DQNs,

State ActionsShared
Representation

Advantage
Dimension 1

Advantage
Dimension 2

Q-Value
Dimension 1

Q-Value
Dimension 2

State Value

Argmax

Argmax

Fig. 2: BDQ architecture by Tavakoli et al. [28].

one for each action dimension [27]. However, this results in

a lack of coordination between the different actions since

each action is selected independently without considering the

global outcome of all actions, as demonstrated by Tavakoli et

al. [28]. As a solution, recent works propose action-branching

architectures to overcome the combinatorial state explosion of

a single learning agent.

An action-branching architecture enables each action di-

mension to have a non-uniform number of discrete action

outputs that can be selected. At runtime, when a decision

is requested, the agent will select one action per branch,

while maintaining a shared representation of the state space.

An action branching architecture is based on a branching

dueling Q-network (BDQ) and a Dueling DQN [27]. For more

information, we refer the reader to prior works [27, 28].

BDQ Architecture. Figure 2 shows the BDQ architecture. As

in DQN, the neural network is responsible for estimating the

Q-value, which specifies the total discounted reward obtained

by first selecting a certain action given a certain state. In

the BDQ architecture, the Q-value is split into the advantage

dimension and the state value. The advantage dimension

determines how much better it is to take a certain action

relative to other actions. The state value is independent of

the action, and it represents to what extent the state is a

good one in general. Separating the state value and advantage

dimension enables the agent to determine whether to make an

action or stick with the current action. For example, imagine

driving a car on a straight road. It is only important to change

the direction (action) if there is an obstacle in front of you.

The BDQ architecture includes a shared representation of the

state, the state value, the advantage dimension for each action

(branch), and the combined Q-value dimension resulting in the

actions. The shared state module has a representation of the

input and helps with the coordination among branches. Each

branch represents an action and has a discrete action space,

potentially with different sizes. The state value generated using

the shared representation is fed to each branch to determine

the Q-value, and thus the final action taken by the agent.

III. TWIG

This section introduces Twig, a deep RL-based solution for

task management of colocated LC services. Twig leverages

a novel multi-agent BDQ architecture that takes PMCs as

input to build an function approximator for the tail latency

of running LC services to deliver best mapping decisions.

The design goal of Twig is to maximise the energy efficiency

subject to meeting the QoS target of the LC services.

3

A. Multi-Agent BDQ Architecture

A coordinated management of multiple tunable hardware

knobs for a single LC service can be efficiently done using a

classic BDQ architecture. However, coordinating the resource

management across several LC services requires multiple

agents interacting with each other to solve a single objective

function, i.e., to meet the QoS constraints of all LC services

while minimising the energy usage.

We introduce a novel multi-agent BDQ architecture con-

sisting of state agents that derive a state value for each of the

learning agents. Multiple agents acting simultaneously would

otherwise affect the learning process of each other. For the

example shown in Figure 3, which is capable of managing

two LC services, we include two state agents to obtain the

state values and the shared representation. The state value

of each learning agent is added individually to the advantage

dimension to determine the Q-value dimension for that agent.

The common advantage dimension for each branch across nu-

merous learning agents enables shorter learning periods [27].

The loss is computed as the mean squared error across each

branch per agent. Since all Q-values have to pass through the

advantage dimension during the backpropagation, we rescale

the combined gradient prior to entering the deepest layer in

the advantage dimension by one over the number of learning

agents. Similarly, we rescale the combined gradient for the

shared representation by one over the number of dimensions.

B. The Twig Task Manager

Figure 3 shows a high-level view of Twig. Its three main

components are: (1) System monitor, which is responsible for

gathering PMCs; (2) Learning agent, which is responsible

for learning the best task management decisions based on

available resources; (3) Mapper module, which is responsible

for allocating tasks to cores and setting the DVFS state.

1) System Monitor: The system monitor is responsible

for periodically gathering the PMCs at a per-thread level using

a profiling tool to measure the activity of each LC service.

For each service, we sum the PMCs across all its threads.

To reduce the noise over time, a weighted sum for each

aggregated counter is computed over the last η time steps.

We reduce the number of required PMCs through a system-

atic approach to maximise the correlation with the tail latency,

while minimising redundant counters. We run each LC service

for 1000 s at each DVFS and core combination while gathering

all available PMCs at a fixed sampling interval (1-second).

The Pearson correlation is used to build a correlation matrix

between PMCs and tail latency [29]. Thereafter, the number

of principal components is chosen such that there is at least a

95% co-variance. Finally, principal component analysis [30] is

performed to determine the most vital and distinct PMCs that

capture the tail latency. This is similar to the methodology

of Malik et al. [31]. The selected PMCs are feature scaled

to have values in the range [0, 1]. The data is scaled using

max-value normalisation with non-zero centralisation. Feature

scaling enables the neural network to capture the importance

of each state variable equally.

Mapper moduleHardwareWorkloadsSystem monitor

Shared
Representation

State

State

Advantage
DVFS

Advantage
Core Allocation

Q-Value
DVFS

Q-Value
DVFS

Q-Value
core allocation

Q-Value
core allocation

Actions

State Value

State Value

State
Agent

State
Agent

Learning agent

Fig. 3: Twig runtime with multi-agent BDQ. The individual

agents are represented in green and blue.

Algorithm 1 Twig’s Deep Q-learning

1 Let n = 0
2 Let K be the number of services
3 Let prediction function Q with weights β
4 Let ~s = {s1, . . . , sK} be the observed state for interval tn−1 . . . tn
5 Let ~a = {a1, . . . , aK} be the action (core mapping + DVFS) for interval

tn . . . tn+1

6 repeat
⊲ At time tn, choose action for tn to tn+1

7 With probability ǫ select a random action
8 Else, select ~a = argmax~a′ Q(~s,~a′;β)
9 Sleep until tn+1 ⊲ Run for interval tn to tn+1

10 for k ∈ K do
11 Observe new state sk of each service k
12 Compute the reward rk based on Equation 1.

13 Update weights β by computing the back propagation.
14 n = n+ 1
15 until Terminated

2) Learning Agent: The learning agent, which is based

on the multi-agent BDQ architecture, learns the “optimal”

decisions over time by interacting with the environment using

the exploration–exploitation dilemma [25]. In the exploration–

exploitation dilemma, the agent not only captures the need to

exploit the “optimal” solution found so far but also explores

actions that may or may not be better. The probability to

explore rather than exploit is captured by epsilon (ǫ). While

having a fixed yet small ǫ is the dominant approach in pure

RL settings, it becomes infeasible in large action spaces.

Twig instead uses epsilon annealing, which transitions from

an exploratory policy to an exploitative policy over time for

efficient exploration of the discrete action domain [32]. The

agent’s interactions with the environment at each timestep are

driven by gathering the state variables, generating actions that

are either deterministic or random. The agent then receives

a reward in the following timestep, determins how well the

agent did in the previous timestep.

Twig solves the task management problem by translating

it to a Markov decision problem (MDP) that is then solved

by a multi-agent BDQ. The pseudo-code for the multi-agent

BDQ is shown in Algorithm 1. We instantiate a single multi-

agent BDQ for all LC services executing on the server. Let K

be the total number of agents/services. The algorithm starts

by initialising the prediction (Q) with weights β (line 3).

Next, we observe the state sk as represented by the PMCs

for each service within the time interval tn−1 to tn, and the

4

initial action ak, i.e., the mapping configuration taken for time

interval tn to tn+1 (lines 4–5). Thereafter, at each time step,

we determine the mapping configuration for each service either

stochastically (line 7) or deterministically (line 8), with the

argmax implemented using the multi-agent BDQ network.1

This configuration is allocated to each service for the time

interval tn to tn+1, after which the next state (sk) is observed

(i.e., the PMCs gathered for the time interval tn to tn+1) and

the reward is computed for each service (lines 11–12). The

loss incurred due to the current prediction is then computed

and the weights of the neural network are updated through

back propagation (line 13).

Reward Function. The Twig reward mechanism determines

the mapping decisions based on PMCs and is invoked period-

ically at each monitoring interval. The reward is computed

per service (rk, k ∈ K) and it aims at minimising the

power consumption subject to meeting the QoS target, and

is expressed as follows:

rk =

{

QoSrew. + θ × Powerrew. QoS ≤ QoStarget

max
(

−QoSφ
rew., ϕ

)

QoS > QoStarget

(1)

QoS Reward. The ratio of the measured QoS to the QoS

target is known as the QoSrew.. If this value is less than or

equal to 1, then the QoS target has been met, and quantifies

how quick the response was. If this value is greater than 1, then

the QoS target has been violated, and therefore we severely

penalise the learning agent. As a precursor to ensure that the

negative reward is bounded, we cap it to a prefixed value (ϕ).

Intuitively, the only reward that the learning agent should

receive is the power reward (if QoS is met) and a large negative

value (if QoS is not met). The part of the reward related

to QoS is a heuristic to encourage the algorithm to choose

configurations that just meet QoS, which are likely to minimise

power consumption (if QoS is met) and tries to reduce the

latency in finding an acceptable solution (if QoS is not met).

Power Reward. With multiple LC services running in the

system, it is essential for Twig to know the power consumed

per service to provide a precise reward for each agent. The

power reward (Powerrew.) is given by the ratio of the max-

imum measured power consumption to the estimated power

consumption of the particular service. A larger value for

this term implies that the service’s power consumption is

lower, and a higher value is added for power savings. The

maximum system power consumption is given by running

a stress microbenchmark that has no memory accesses. The

parameter θ controls the balance between meeting the QoS

and reducing the power consumption.

3) Mapper Module: The mapper module has three key

roles. (1) Receive resource allocation request of each service

from the learning agent. (2) Ensure that services are mapped

to cores and set the DVFS state. The remaining cores, if

any, are set to the lowest DVFS state to conserve power.

(3) Prioritise the order of the cores for each service to improve

cache locality. For example, if two services (sv-1 and sv-2) are

1For ease of reading, we simplify the algorithm, but as in [28], there are
two networks with the same initial weights that are updated periodically.

TABLE I: State variables that are part of the MDP formula-

tion. Each variable is summed across all LC service threads.

Boldfaced counter has the highest importance.

Counter name Range Importance

1. UNHALTED˙CORE˙CYCLES [0, 1] 10
2. INSTRUCTION˙RETIRED [0, 1] 6
3. PERF˙COUNT˙HW˙CPU˙CYCLES [0, 1] 9
4. UNHALTED˙REFERENCE˙CYCLES [0, 1] 11
5. UOPS˙RETIRED [0, 1] 7
6. BRANCH˙INSTRUCTIONS˙RETIRED [0, 1] 3
7. MISPREDICTED˙BRANCH˙RETIRED [0, 1] 8
8. PERF˙COUNT˙HW˙BRANCH˙MISSES [0, 1] 1
9. LLC˙MISSES [0, 1] 2

10. PERF˙COUNT˙HW˙CACHE˙L1D [0, 1] 4
11. PERF˙COUNT˙HW˙CACHE˙L1I [0, 1] 5

running on the same CPU with a total of 16 cores and they

request three cores at 1.6GHz and four cores at 1.8GHz,

respectively. Then, the mapper module allocates cores 0, 2

and 4 for sv-1 and cores 10, 12, 14, and 16 for sv-2.

IV. TWIG IMPLEMENTATION

Twig is implemented in user space, and it only uses hard-

ware support exposed by the Linux kernel. The hardware

dependent components are PMCs measurement and selection,

power and QoS measurements, and the mapper module.

PMCs Measurement and Selection. The PMCs are mea-

sured using the performance monitoring tool perfmon (libpfm

4.10.0) [33]. Table I shows the PMCs [34] that were selected

for the evaluation of Twig by following the process outlined in

Section III-B1. The 4th column shows the importance value of

each counter. The boldfaced value has the highest importance.

We used η = 5 (Section III-B1) as empirically it yielded the

best results. The maximum value for counters 1–5 was ob-

tained by running a CPU-intensive microbenchmark consisting

of several mathematical operations without memory accesses;

counters 6–8 was obtained by running a microbenchmark that

generates numerous branch misses by aggregating elements

from an unsorted vector of data to check if they are greater

than a certain value; counters 9–11 were obtained by running

the stream benchmark [35].

Power Model/Measurements. A straightforward approach

would be to collect the power measurements per core and

aggregate them across the allocated cores [36]. This is not

possible on current architectures as they only provide power

measurements at a per socket level [37]. For this reason, we

build a first-order model to enable each agent to distinguish

the power consumed for the actions it requested. We estimate

the power consumed per service using a simple polynomial

model based on three metrics: load (as a percentage of the

max load), number of cores and DVFS state.

Powerapp = κ× load+ σ × numcores + ω2 ×DV FS (2)

To build the model, we do extensive profiling of two

services at three load levels (20%, 50% and 80% of the

maximum load), core (alternate number of cores) and DVFS

states (alternate DVFS states), and measure the dynamic

power consumed every second for the cores allocated. The

unused cores are disabled using CPU hot-plugging. We define

5

❈❖❘❊

2 4 6 8 10 12 14 16 18
❉❱❋

❙ ✭●
❍③✮

1.2
1.4

1.6
1.8

2.0

▲
❖
❆
❉

30

40

50

60

70

80

90

5.5

6.0

6.5

7.0

P
❆
❆
❊

(a) Xapian
❈❖❘❊

2 4 6 8 10 12 14 16 18 ❉❱❋
❙ ✭●

❍③✮
1.2

1.4
1.6

1.8
2.0

▲
❖
❆
❉

30

40

50

60

70

80

90

3

4

5

P
❆
❆
❊

(b) Masstree

Fig. 4: Percentage Absolute Average Error (PAAE) when

estimating power consumption per service.

dynamic power as the difference between the current power

consumption and power consumption when idle. The obtained

model has a mean squared error of 2.91mW and R2 of 0.92.

The model was built by performing a random grid search with

5-fold cross validation across the possible parameter space to

obtain the model co-efficients [30].

Figure 4 shows the percentage absolute average error

(PAAE) in estimating the power consumed at each load level,

number of cores and DVFS state for Xapian and Masstree

(from Tailbench [38]). As shown, the mean PAAE across

services is 5.46% (7% max). As a first-order approximation,

the error rate is sufficiently low for the learning agent to

understand the cost of requesting for a specified number of

cores at a given DVFS state.

The power model is used only as part of the reward function

during training. The evaluation results in Section V report the

true power consumption measured using the running average

power limit (RAPL) [37] register, accessible via the MSR

register [39]. The RAPL register is polled at the same polling

interval as the LC service.

QoS Measurements. As a proof-of-concept, the tail latency

is measured using a log-file interface from the LC services,

at a fixed polling interval. An alternative to the log-file would

be to gather the end-to-end latency via the network interface

card (NIC), and compute the latency distribution [40]. In a

production system, end-to-end latency can be obtained by

taking advantage of features of advanced NICs and low-latency

networking stacks.

Mapper Module. The services are mapped to cores using the

Linux sched setaffinity system call. We select the userspace

govenor via the acpi-cpufreq module and then control DVFS

according to our mapping algorithm.

Resource Arbitration. Within a multi-agent learning system,

resource request conflicts are inevitable. When the number

of cores requested by both agents exceeds the numbers of

available cores, we determine how many overlapping cores

are requested and select the highest DVFS state among the

requested DVFS states for the overlapping cores. These cores

are timeshared by both the services. The remaining cores are

set to the DVFS state requested by the learning agent. For

example, consider a socket with 10 cores hosting two services

(sv-1 and sv-2), and if sv-1 needs 8 cores at 1.2GHz, and

sv-2 needs 5 cores at 2GHz. Then, we set the first 5 cores to

1.2GHz, and the remaining cores to 2GHz.

Neural Network Parameters. We determine through exper-

imental analysis [41, 42] that the following hyper-parameters

have yielded the best energy efficiency while improving the

QoS guarantee. We use the Adam optimiser [43] with a

learning rate of 0.0025. We set the minibatch size to 64 and the

discount factor to 0.99. The target network was updated every

150 time steps. The epsilon annealing starts at 1 and drops to

0.1 over a period of 10 000 s and drops to 0.01 in 25 000 s.
We used the rectified non-linearity (ReLU) [44] for all hidden

layers and linear activation for output layers. The network

has two hidden layers with 512 and 256 units in the shared

module and a single hidden layer per branch with 128 units.

We add a dropout layer [45] after each fully connected layer

with the probability rate set to 50% (default in tensorflow)

to prevent over-fitting. We used the prioritised experience

replay [46] with a buffer size of 106 and prα=0.6, and linear

annealing of prβ0
=0.4 to 1 over 10−8 steps. For the remainder

of the paper, we refer to the first 10 000 s as the learning

phase. The parameters θ, φ, and ϕ of the reward function

were determined empirically and set to 0.5, 3, and –100,

respectively, which yielded the best energy efficiency while

improving the QoS guarantee. The source code is available

for download under General Public License (GPL) v3 [47].

Transfer Learning. To reduce the learning time for a

different problem in the same domain, we use a state-of-the-

art technique called transfer learning [48]. Transfer learning

works by removing the last layer of a trained network (the

most dominant layer) as it is specialised to a given problem

and then re-initialising the last layer with random weights to

retrain for a short interval. This enables the multi-agent BDQ

to learn new problems quickly.

V. EVALUATION

Hardware Resources. We perform the evaluation of Twig

on the NTNU EPIC compute cluster [49]. Each node runs

Linux kernel 3.10 and contains two Intel Xeon E5-2695v4

sockets that together comprise 36 cores and dual NVidia Tesla

P100 GPUs. Each core is capable of frequency scaling from

1.20GHz to 2.00GHz with steps of 0.1GHz. The server

contains 128GB of DDR4-2400GHz RAM. Hyperthreading

was disabled as in most production servers.

Benchmarks. We evaluate Twig using four widely deployed

LC services from Tailbench suite [38]. The LC services are

Masstree [50], Xapian [51], Moses [52], and Img-dnn [53]. We

use the default dataset provided by Tailbench. As prescribed by

Tailbench, we use loopback configuration for the experiments.

In this setup, client and servers are launched on different

sockets on the same node. This allows us to accurately

report the request processing times from the server side while

not experiencing unpredictable network interference. Yet, this

methodology captures majority of the overhead introduced by

the network stack [38].

We specify the QoS targets and maximum incoming load

according to the capacity and characteristics of our platform.

We run each service consecutively by increasing the incoming

load step by step until the latency increases exponentially.

6

TABLE II: Services from TailBench [38].

Services Masstree Xapian Moses Img-dnn

Max load (RPS) 2,400 1,000 2,800 1,100
Target QoS (ms) 1.39 3.71 6.04 5.07

We perform this experiment without any external interference

while pinning the server application to all cores on a socket

running at the highest DVFS setting. Table II summarises the

maximum load, and the 99th percentile target latency.

Overhead. The overhead of triggering Twig every second,

as in our experiments, incurs an overhead of <5% in the

worst case, as shown in Table III. The gradient descent

computation (includes I/O) was implemented in Python using

TensorFlow [54]. The computational complexities of changing

cores and DVFS states are in the order of microseconds [12]

and nanoseconds [55], respectively. A large percent of the

core allocation/DVFS overhead is due to the sysfs call. Once

Twig has seen sufficient experiences, we recommend pure

exploitation i.e, dropping gradient descent computation, to

reduce the overhead to under < 1%.

Evaluation Metrics. The metrics for LC services are: QoS

guarantee and QoS tardiness. QoS guarantee is defined as the

percentage of measured QoS samples that met the QoS. QoS

tardiness is defined as the ratio of measured QoS to the QoS

target, and it determines how intense the violation was. A QoS

violation has occurred if the QoS tardiness is above 1.

A. Baseline Comparisons

We compare Twig-S with static baseline and single LC

service task managers: Hipster [15] and Heracles [12]. Simi-

larly, we compare Twig-C with static baseline and multiple LC

service task manager: PARTIES [3]. Each experiment begins

by setting all cores to 2GHz, and then launching the services.

In case of Twig-S, we allocate the client and server on sockets

zero and one, respectively, and refer to this as static baseline.

Similarly, in case of Twig-C, we allocate all clients on one

socket, and all the servers on the other socket. We implemented

PARTIES and Heracles based on available documentation as

they are not available as open source.

Hipster is a hybrid RL algorithm that combines heuristics

with RL to determine mapping decisions based on the current

load of the service. The heuristic explored by Hipster is

a state-machine based algorithm that orders the mapping

configuration (cores and DVFS) in increasing order of power

efficiency [13]. A transition between states occurs when the

tail latency is too close or too far away to/from the target.

The current load is quantised into multiple buckets as part of

the state. The action from the learning agent is a mapping

configuration for the LC service. As recommended by the

authors of Hipster [15], we set Hipster’s bucket size using an

exhaustive sweep, with jumps of 10%, to find the best trade-

off between energy usage and QoS. The other parameters were

set as indicated in the Hipster publication. We therefore set the

learning rate to 0.6, the discount factor to 0.9, the bucket size

to 4% and the learning phase to 7500 seconds.

TABLE III: Overhead of Twig

1 Gradient descent computation on GPU/CPU 25ms/48ms

2
Gather and pre-process PMCs 2ms
PMCs datasize per service 352B/s

3 Core allocation & DVFS change 7ms

Total overhead with GPU/CPU 34ms/57ms

Heracles is a feedback controller that aims to maximise

the system throughput subject to meeting the QoS of the

LC service. Heracles maintains three levels of the feedback

controllers: main, core and memory and power controller. The

main controller is polled every 15 s and allocates all resources

to the LC service for a period of 5min, if the LC service

either violates the tail latency or if the load is higher than

85%. The core and memory controller is polled every 2 s, and

is responsible for allocating cores and memory resources to the

service. If the tail latency equals or exceeds 80% of the QoS

target or if the measured memory bandwidth has increased,

then the LC service is allocated an additional core. Otherwise,

a core is de-allocated from the LC service. In addition to core

allocation, Heracles explores Intel cache allocation technology

(CAT) [56], but we were unable to experiment with this

technology in our production servers. The power controller is

polled every 2 s, and is responsible for decreasing the DVFS

setting when the current power is at 90% of TDP.

PARTIES is a feedback controller that aims to improve the

system throughput, subject to meeting the QoS of LC services.

PARTIES controls one resource at a time periodically (every

2 s) in the following order: core count, Intel CAT (not used in

our experiments), DVFS, and memory allocation. PARTIES’

controller begins by randomly selecting one of the resources

and identifying those services that are closest/furthest to/from

the target. If the tail latency equals or exceeds 95% of the

target, it increases one of the control resources, otherwise it

starts reclaiming resources from the service with the highest

slack. In the reclaiming process, it reduces one resource at a

time ensuring QoS is not violated. If the QoS is violated as

a consequence of reducing that particular resource, it reverts

the adjustment and adjusts another resource next time.

To ensure a fair comparison with the learning algorithms, we

determine the energy usage, QoS guarantee and QoS Tardiness

after the first 10 000 s, allowing Twig and Hipster to gain

sufficient experiences. We summarise the results for Twig-C

and PARTIES over the last 600 s, as PARTIES has a sampling

interval of 2 s. For the remainder of the experiments, we

summarise over the last 300 s.

B. Twig Evaluation

This section evaluates Twig in two variants: Twig-S, when

LC services are running solo and Twig-C, when LC services

are colocated. For Twig-S, we inject each service with either

20% (low), 50% (mid) or 80% (high) of the maximum

load. Similarly, for Twig-C, we run all N-combinations of

services, for a total of NC2 combinations, at low, mid and

high load. Finally, both variants are evaluated with a diurnal

load variations which are common in data centres [57]. The

7

objective of both variants is to maximise the energy efficiency

subject to meeting the QoS target of the LC services.

1) Twig-S: Single LC service: Fixed Load. Figure 5

shows the average QoS guarantee (top) and normalised energy

usage (bottom) for each service over low, mid and high incom-

ing loads with Twig-S, Hipster, Heracles and static mapping.

All results are normalised to static mapping. The graph shows

that all task managers deliver similar QoS guarantee, while

Twig-S reduces energy usage by 11.8% and 38% (on avg.)

across all services than Hipster and Heracles, respectively.

There are a few reasons for this:

• Heracles migrates across cores based on two metrics: tail

latency and memory bandwidth utilisation. In addition, it

only reduces the DVFS state once the power consumption

reaches the TDP. This causes Heracles to allocate more cores

than required despite having a large slack in QoS.

• Heracles allocates all cores to the LC service for a period

of 5min, if it incurs a short-term violation even in periods

of low load and as a result it has high energy usage.

• Twig-S incurs 2.3× fewer migrations compared to Hipster,

as it reduces harmful oscillatory behaviour by understanding

the impact of varying the number of cores and DVFS

settings individually.

To better understand why Twig-S reduces energy usage,

we look at the specific resource allocations for Heracles,

Hipster and Twig-S for Masstree at 50% of the maximum

load in Figure 6. Masstree is extremely sensitive to memory

bandwidth interference, although it does not use much in

itself [3]. Heracles, for instance, oscillates between 12 or 13

cores at 2GHz to increase memory bandwidth and to maintain

the tail latency at 85% of the QoS target. Hipster, on the

other hand, uses just 6 cores at 2GHz for the majority of the

time and has a QoS guarantee of 80.67%. The drop in QoS

guarantee is a result of Hipster not considering detailed service

related features (e.g., in this case, memory bandwidth) as part

of its input state. Twig-S, on the other hand, understands the

tail latency sensitiveness of each service to core and DVFS

changes through multiple PMCs, and allocates mapping deci-

sions to meet the QoS target. The violations observed (< 4%)

0.5

1.0

◗
♦
❙

❣
✉
❛r
❛♥

t❡
❡

❚✇✐❣✲❙ ❍✐♣st❡r ❍❡r❛❝❧❡s ❙t❛t✐❝

✐♠❣❴❞♥♥ ♠❛sstr❡❡ ♠♦s❡s ①❛♣✐❛♥

0.5

1.0

♥
♦r
♠
❛❧
✐s
❡❞

❡♥
❡r
❣
②

Fig. 5: Heracles, Hipster and Static mapping when executing

over a fixed load of 20%, 50% and 80% for Twig-S. The top

and bottom graph show the QoS guarantee and energy usage

normalised, respectively.

✵ ✷ ✹ ✻ ✽ ✶✵ ✶✷ ✶✹ ✶✻

❈♦r❡s

✷✳✵✵
✶✳✾✵
✶✳✽✵
✶✳✼✵
✶✳✻✵
✶✳✺✵
✶✳✹✵
✶✳✸✵
✶✳✷✵

❉
❱
❋
❙
✭●

❍
③✮

0.0 0.5 1.0 1.5

◗♦❙ t❛r❞✐♥❡ss

0

50

❈
♦✉

♥t

❍❡r❛❝❧❡s

20

40

60

80

100

✵ ✷ ✹ ✻ ✽ ✶✵ ✶✷ ✶✹ ✶✻

❈♦r❡s

✷✳✵✵
✶✳✾✵
✶✳✽✵
✶✳✼✵
✶✳✻✵
✶✳✺✵
✶✳✹✵
✶✳✸✵
✶✳✷✵❉

❱
❋
❙
✭●

❍
③✮

0.0 0.5 1.0 1.5

◗♦❙ t❛r❞✐♥❡ss

0

20

❈
♦✉

♥t

❍✐♣st❡r

30

60

90

120

150

✵ ✷ ✹ ✻ ✽ ✶✵ ✶✷ ✶✹ ✶✻

❈♦r❡s

✷✳✵✵
✶✳✾✵
✶✳✽✵
✶✳✼✵
✶✳✻✵
✶✳✺✵
✶✳✹✵
✶✳✸✵
✶✳✷✵

❉
❱
❋
❙
✭●

❍
③✮

0.0 0.5 1.0 1.5

◗♦❙ t❛r❞✐♥❡ss

0

20

❈
♦✉

♥t

❚✇✐❣✲❙

40

80

120

160

200

Fig. 6: Core mapping decisions (left) and histogram of QoS

tardiness (right) with Heracles (top), Hipster (middle) and

Twig-S (bottom) for masstree at 50% of maximum load. The

colourmap represents the time distribution of core allocation

over a period of 300 seconds.

are a result of the random exploration, which diminishes over

time (see Section III-B2).

Learning Time Complexity. Figure 7 shows the QoS guar-

antee over time for Masstree with Hipster and Twig-S. For

Twig-S, we anneal the epsilon to 0.1 in 5000 s and for Hipster,

the learning phase ends at 5000 s. Each data point in the graph

refers to a period of 500 s. As can be seen, Hipster has a better

QoS guarantee than Twig-S for the first 5000 s. This is because

Hipster has the prior understanding of the power efficiency for

each possible action dimension combination, which becomes

infeasible in large scale servers as it requires extensive and

exhaustive prior knowledge. As a result, to improve the QoS

guarantee and reduce energy usage, Hipster needs to explore

each action multiple times to improve its confidence in that

action. Contrary to Hipster, Twig-S does not require any prior

knowledge of the server system and learns the impact of each

action dimension individually, thereby, delivering an improved

QoS guarantee (more than 80%), faster than Hipster.

Memory Complexity Impact. Scaling a task manager to

handle several actions requires frugal memory usage. In this

context, we demonstrate the memory usage of Hipster and

Twig-S for a server with three action dimensions (D = 3) and

each dimension containing 30 discrete actions (N = 30, e.g.,

30 DVFS settings, 30 cores, and 30 different cache allocation

schemes). For Hipster, the state metric, RPS, is quantised into

buckets of 4% resulting in 25 buckets (b). This results in a total

of 25 × 330 array entries with a memory usage in the order

of TBs. For Twig-S, 11 state variables are used. When using

Twig-S, there is a fixed memory complexity for understanding

the raw state space and, thereafter, increases linearly with

the number of dimensions in each action. With three action

dimensions and the number of actions per dimension set to

30, the memory complexity is under 5MB. Despite Twig-S

8

0 5 10 15

★ t✐♠❡ st❡♣s

40

60

80

100

◗
♦
❙
❣
✉
❛
r❛
♥
t❡
❡

❍✐♣st❡r ❚✇✐❣✲❙

Fig. 7: Learning time com-

plexity for Hipster and Twig-S.

Each data point represents the

average over 500 s.

80

100

Moses
NoTransfer

Transfer 0

2000

80

100

Q
o
S
G
u
ar
a
n
te
e

Img dnn

0

500

C
o
u
n
t

0 10 20 30 40 50

time steps

80

100

Xapian

0.0 0.5 1.0 1.5 2.0

QoS Tardiness

0

2000

Fig. 8: Comparing performance of Twig-S with and

without Transfer learning.

80

90

100

◗
♦
❙
❣
✉
❛r
❛♥
t❡
❡

❳❛♣✐❛♥ ✲ ✺✵✪ ♠❛① ❧♦❛❞✳

90

95

100

◗
♦
❙
❣
✉
❛r
❛♥
t❡
❡

▼❛sstr❡❡ ✲ ✷✵✪ ♠❛① ❧♦❛❞

0 10 20 30 40 50

★ t✐♠❡ st❡♣s

11

12

13

❊
♥
❡r
❣
②
✭❦
❏✮ ◆♦❚r❛♥s❢❡r ❚r❛♥s❢❡r

Fig. 9: Comparing performance of Twig-C

with and without Transfer learning.

reducing the memory complexity significantly compared to

Hipster, note that Twig-S delivers high QoS guarantees and

minimises energy usage. This is because, Twig-S uses a func-

tion approximator to generalise the state-action importance

instead of traversing through each state-action pair.

Transfer Learning. We use transfer learning with Twig-S

to reduce the learning time for new, incoming services. To

demonstrate the effectiveness of transfer learning, we learn the

weights of the neural network with Masstree for 10 000 s, and

then transfer them in consecutive experiments to Moses, img-

dnn and Xapian. Each service is run at 50% of the max. load.

Figure 8 compares QoS guarantee (left), and QoS tardiness

for each service with and without transfer learning. Each data

point in the graph refers to a period of 300 s. This graph shows

two key points: (a) transfer learning reduces the learning time

by 33.33% in contrast to learning from scratch while delivering

high QoS guarantees. (b) transfer learning delivers similar

QoS tardiness as learning from scratch, demonstrating that the

configurations chosen aim to minimise the energy usage.

Varying Load. Figure 10 compares the performance of

Twig-S, Heracles and Hipster when varying the load for img-

dnn. When varying the load, we use a step-wise monotonic

function, where the average load for the service is constant

across two load changes, which can occur every 200 s, based

on the change factor (set to 20%). The load starts at a

minimum, and varies by multiplying with the change factor

until it reaches a max. load; thereafter, the load is multiplied

by the reciprocal of the change factor until it reaches the min.

load. We report the results after the first 10 000 s.

From Figure 10, it is clear that Hipster fails to allocate the

best mapping decisions at high load, and the reason for this is

trivial. Hipster starts with a heuristic, and then transitions to

RL approach after the learning period has ended. The learning

period is set to 10 000 s (see Section V-A). Hipster uses the

heuristic to determine the “optimal” mapping decisions for

each load level. Given that there are 180 mapping decision (18

cores, and 10 DVFS states), Hipsters’ heuristic spends signif-

icant time jumping between mapping decisions to determine

“optimal” decision at each load-level. The transitions between

mapping decisions does not have an effect on the QoS at low

loads as there are few queued requests, and therefore this may

impact the runtime overhead and not the QoS. Heracles, on

the other hand, maintains 100% QoS guarantee by varying the

core configuration with a fixed DVFS state but suffers from

2.3× higher migrations and 18% higher energy usage relative

to Twig-S. Looking at Twig-S, it adjusts the number of cores

and DVFS periodically to meet the QoS just about while have

a QoS guarantee of 99.1%.

Hipster fails with varying loads because it uses a heuristic

that is not able to adapt quickly enough to the incoming load.

2) Twig-C: Colocated LC services: Fixed Load. Fig-

ure 13 shows colocation of two LC service mixes with Twig-

C, PARTIES and static. Within each graph, the top graph

represents the QoS guarantee, and the bottom graph represents

the energy usage normalised to static mapping. The x-axis

refers to the load level normalised to the maximum load each

service can operate at while meeting the QoS. The last bar

refers to the average QoS guarantee and energy usage across

all load combinations. Each bar in the graph refers to a task

manager at a specific load level. In general, each service alone

can meet the QoS at the highest load, but when colocated

with another service it runs at a fraction of its maximum load

(typically around 60%). To determine the maximum load each

service can operate at when colocated with another service,

we do an offline sweep of all service combinations in steps of

10% load increments. Our results show that Twig-C reduces

energy usage over PARTIES by 28% on average. There are a

few reasons for this:

• PARTIES does not deallocate resources from the service that

is far away from the target until the workloads’ closer to

the target have met the QoS. Twig-C handles both services

simultaneously.

• PARTIES ping-pongs across mapping decision as it does

not anticipate if a service might violate the QoS, Twig-

C is able to do this by understanding the pressure on

individual computational components in relationship to the

other service and thus having a stable mapping decision.

• PARTIES adjusts a single resource at a time, and has no

collective module to understand the resource modification

change on the other resources or services. Twig-C on the

other hand, maintains a coordinated shared representation

across services to deliver consistently high QoS while re-

ducing energy usage.

We use the mapping distribution for pairs of services

to understand why Twig-C reduces the energy usage. The

colocation of Masstree and Moses is a particularly interesting

9

0.25

0.50

0.75

◆
♦r
♠
❛❧
✐s
❡❞

❧♦
❛❞

0

1

2

◗
♦
❙

❚
❛r
❞
✐♥
❡s
s ❍✐♣st❡r

❍❡r❛❝❧❡s

❚✇✐❣✲❙

0

4

8

12

16

❈
♦r
❡s

0 250 500 750 1000 1250 1500 1750

❚✐♠❡ ✭s✮

1.2

1.4

1.6

1.8

2.0

2.2

❉
❱
❋
❙
✭●
❍
③✮

Fig. 10: Resource allocation with Twig-S, Hipster and Heracles

with varying load for img-dnn.

0.5

1.0

◆
♦r
♠
❛❧
✐s
❡❞

❧♦
❛❞

0

1

2

◗
♦
❙

❚
❛r
❞
✐♥
❡s
s

▼♦s❡s ▼❛sstr❡❡

0

4

8

12

16

❈
♦r
❡s

0 100 200 300 400 500

❚✐♠❡ ✭s✮

1.2

1.4

1.6

1.8

2.0

2.2

❉
❱
❋
❙
✭●
❍
③✮

Fig. 11: Resource allocation with Twig-C when varying the load

for Moses while Masstree has fixed load (20%).

✵ ✷ ✹ ✻ ✽ ✶✵ ✶✷ ✶✹ ✶✻

❈♦r❡s

✷✳✵✵
✶✳✾✵
✶✳✽✵
✶✳✼✵
✶✳✻✵
✶✳✺✵
✶✳✹✵
✶✳✸✵
✶✳✷✵

❉
❱
❋
❙
✭●

❍
③✮

♠❛sstr❡❡

✵ ✷ ✹ ✻ ✽ ✶✵ ✶✷ ✶✹ ✶✻

❈♦r❡s

♠♦s❡s

5

10

15

20

25

30

8

16

24

32

P❆❘❚■❊❙

✵ ✷ ✹ ✻ ✽ ✶✵ ✶✷ ✶✹ ✶✻

❈♦r❡s

✷✳✵✵
✶✳✾✵
✶✳✽✵
✶✳✼✵
✶✳✻✵
✶✳✺✵
✶✳✹✵
✶✳✸✵
✶✳✷✵

❉
❱
❋
❙
✭●

❍
③✮

♠❛sstr❡❡

✵ ✷ ✹ ✻ ✽ ✶✵ ✶✷ ✶✹ ✶✻

❈♦r❡s

♠♦s❡s

20

40

60

80

100

30

60

90

120

150

❚✇✐❣✲❈

Fig. 12: Core mapping decisions with PARTIES and Twig-C for masstree and moses running at 20% and 80% of the max.

load respectively. The colourmap represents the core allocation distribution over a period of 600 s.

combination. Figure 12 shows the mapping distribution for

PARTIES (the first two columns from left) and Twig-C.

Moses has a high demand for cache capacity and memory

bandwidth [38], while Masstree is extremely sensitive to

memory bandwidth interference. As can be seen in the graph,

to maintain QoS, PARTIES makes minor changes to mapping

decisions continuously based on how close it is from the

target. Twig-C, on the other hand, uses numerous performance

metrics to improve stability in mapping decisions. Consistently

using fewer resources to meet the QoS, directly translates to

more energy savings and more resources for other services.

Transfer Learning. We demonstrate the effectiveness of

transfer learning with Twig-C by first learning with Moses

and Masstree, and then swapping Moses with Xapian after

the first 10 000 s. Moses and Xapian operate at 50% of the

max. load, while Masstree operates at 20%. Figure 9 compares

QoS guarantee (top two plots) and energy usage when running

Xapian and Masstree with and without transfer learning. Each

data point in the graph refers to a period of 300 s. This graph

shows two key points: (a) With no transfer learning, Twig-

C has a low QoS guarantee and high energy usage initially

and this improves over time, as the learning agent transitions

from an explorative to an exploitative policy. (b) With transfer

learning, the learning agent adapts to service changes in under

10 time steps to deliver high QoS guarantees and low energy

usage, which is similar to learning from scratch.

Varying Load. Figure 11 compares the behaviour of Twig-

C with dynamic load variations.2 Specifically, we vary the

2Inclusion of PARTIES renders plot illegible.

load of Moses from 20% to 100% gradually, and set the

load of Masstree. As can be seen, Twig-C directly jumps

to the appropriate core configuration for the specified load

that satisfies the QoS. In addition to switching to the desired

number of cores, it explores finer DVFS adaptions are they

are cheaper relative to core migrations. PARTIES, on the other

hand, migrates across numerous combination of cores before

selecting the desired mapping decision that satisfies the QoS.

These gradual migrations negatively effect the QoS especially

when there is a load spike.

VI. RELATED WORK

The dominant approach in major data centres is to allo-

cate tasks to cores by first allocating the tasks to the least-

loaded physical nodes, and then using a single-node resource

manager to allocate these tasks to cores. Past work in this

area falls in two categories. First, prior work [40, 58? –68]

propose fine-grained resource partitioning solutions that aim at

eliminating interference among LC and batch services. These

techniques require extensive microarchitectural feature tuning

prior to deployment in production clusters. Secondly, prior

work [9, 14, 16, 21, 69, 70] detect interference among colo-

cated services and adjust resource allocation dynamically or

disallow colocation of LC services. While this approach works

well to maintain QoS, it is imperative to both increase system

throughput and improve energy efficiency to increase revenue.

As systems increase in complexity (hardware and services),

observability (more PMCs), and controllability (DVFS settings

and core counts), it gets increasingly more expensive and error-

prone to develop custom heuristics [12, 13, 71]. In comparison

10

0.0

0.5

1.0

1.5

2.0

◗
♦
❙
●
✉
❛r
❛♥
t❡
❡

✵
✳✾
✹

✵
✳✾
✹

✶
✳✵

✵
✳✾
✸

✵
✳✾
✺

✶
✳✵

✵
✳✽
✾

✵
✳✾ ✶
✳✵

✵
✳✽
✺

✵
✳✾
✷

✵
✳✾
✾

✵
✳✾
✶

✵
✳✾

✵
✳✾
✾

✵
✳✾
✼

✵
✳✽
✾

✵
✳✾
✾

✵
✳✽
✽

✵
✳✽
✾

✵
✳✾
✽

✵
✳✽
✷

✵
✳✽
✽

✵
✳✾
✹

✵
✳✾

✵
✳✾
✶

✵
✳✾
✾

✶
✳✵

✵
✳✼
✾

✶
✳✵

✵
✳✾
✽

✵
✳✽
✷

✵
✳✾
✾

✵
✳✾
✽

✵
✳✽
✻

✵
✳✶
✶ ✵
✳✾
✾

✵
✳✼
✷ ✶
✳✵

✶
✳✵

✵
✳✼
✼ ✶
✳✵

✵
✳✼
✽

✵
✳✼
✹

✵
✳✶
✺ ✵
✳✾
✽

✵
✳✻
✼ ✵
✳✾
✾

✵
✳✾
✹

✵
✳✻
✾ ✶
✳✵

✵
✳✾
✻

✵
✳✼
✻

✵
✳✼
✽

♠❛sstr❡❡ ♠♦s❡s

✵

✵✳✺

✶

◆
♦r
♠
❛❧
✐s
❡❞

❡♥
❡r
❣
②
✉
s❛
❣
❡

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

▲♦✇✲▲♦✇▲♦✇✲▼✐❞▲♦✇✲❍✐❣❤▼✐❞✲▲♦✇▼✐❞✲▼✐❞▼✐❞✲❍✐❣❤❍✐❣❤✲▲♦✇❍✐❣❤✲▼✐❞ ❆✈❣✳
(a) Masstree-Moses

0.0

0.5

1.0

1.5

2.0

✵
✳✾
✸

✵
✳✾
✸

✵
✳✾
✾

✵
✳✾
✹

✵
✳✾
✻

✶
✳✵

✵
✳✾
✹

✵
✳✾
✸

✶
✳✵

✵
✳✾

✵
✳✾
✶

✶
✳✵

✵
✳✾
✸

✵
✳✽
✻

✵
✳✾
✽

✵
✳✾
✺

✵
✳✽
✻

✶
✳✵

✵
✳✼
✼

✵
✳✽
✾

✵
✳✾
✽

✵
✳✼
✺

✵
✳✾
✶

✵
✳✾
✻

✵
✳✽
✾

✵
✳✾
✶

✵
✳✾
✾

✵
✳✾
✽

✶
✳✵ ✶
✳✵

✵
✳✾
✾

✶
✳✵ ✶
✳✵

✵
✳✾
✽

✶
✳✵ ✶
✳✵

✵
✳✾
✾

✵
✳✾
✾

✶
✳✵

✵
✳✾
✾

✶
✳✵ ✶
✳✵

✵
✳✾
✽

✶
✳✵ ✶
✳✵

✵
✳✾
✾

✵
✳✼
✾ ✶
✳✵

✵
✳✾
✾

✵
✳✽ ✶
✳✵

✵
✳✾
✾

✵
✳✾
✺

✶
✳✵

♠❛sstr❡❡ ①❛♣✐❛♥

✵

✵✳✺

✶

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

▲♦✇✲▲♦✇ ▲♦✇✲▼✐❞▲♦✇✲❍✐❣❤▼✐❞✲▲♦✇ ▼✐❞✲▼✐❞▼✐❞✲❍✐❣❤❍✐❣❤✲▲♦✇❍✐❣❤✲▼✐❞ ❆✈❣✳
(b) Masstree-Xapian

0.0

0.5

1.0

1.5

2.0

◗
♦
❙
●
✉
❛r
❛♥
t❡
❡

✵
✳✾
✼

✵
✳✽ ✶
✳✵

✵
✳✾
✻

✵
✳✾
✼

✶
✳✵

✵
✳✾
✼

✵
✳✾
✻

✵
✳✾
✾

✵
✳✾
✾

✵
✳✾
✾

✶
✳✵

✵
✳✾
✾

✶
✳✵

✶
✳✵

✵
✳✾
✽

✵
✳✾
✷

✵
✳✾
✾

✵
✳✾
✼

✶
✳✵

✶
✳✵

✵
✳✾
✼

✵
✳✾
✻

✶
✳✵

✵
✳✾
✼

✵
✳✾
✺

✶
✳✵

✶
✳✵

✵
✳✽
✶ ✶
✳✵

✶
✳✵

✶
✳✵

✶
✳✵

✵
✳✾
✾

✵
✳✽
✷

✵
✳✾
✾

✵
✳✾
✾

✶
✳✵

✶
✳✵

✶
✳✵

✵
✳✽
✸

✶
✳✵

✵
✳✾
✾

✵
✳✼
✻

✵
✳✾
✽

✶
✳✵

✵
✳✼
✽

✶
✳✵

✶
✳✵

✶
✳✵

✶
✳✵

✵
✳✾
✾

✵
✳✽
✽

✶
✳✵

①❛♣✐❛♥ ♠♦s❡s

✵

✵✳✺

✶

◆
♦r
♠
❛❧
✐s
❡❞

❡♥
❡r
❣
②
✉
s❛
❣
❡

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

▲♦✇✲▲♦✇▲♦✇✲▼✐❞▲♦✇✲❍✐❣❤▼✐❞✲▲♦✇▼✐❞✲▼✐❞▼✐❞✲❍✐❣❤❍✐❣❤✲▲♦✇❍✐❣❤✲▼✐❞ ❆✈❣✳
(c) Xapian-Moses

0.0

0.5

1.0

1.5

2.0

✵
✳✽
✻

✵
✳✾
✾

✶
✳✵

✵
✳✾
✻

✵
✳✾
✶

✶
✳✵

✵
✳✾
✻

✵
✳✾
✾

✶
✳✵

✵
✳✻
✽

✵
✳✾
✾

✶
✳✵

✵
✳✽
✽

✵
✳✾
✾

✶
✳✵

✵
✳✽
✼

✵
✳✽
✾

✵
✳✾
✾

✵
✳✽

✵
✳✾
✹

✵
✳✾
✼

✵
✳✼
✷

✵
✳✾
✸

✵
✳✾
✼

✵
✳✽
✹

✵
✳✾
✺

✵
✳✾
✾

✶
✳✵ ✶
✳✵

✶
✳✵

✵
✳✾

✵
✳✽
✾

✶
✳✵

✵
✳✽
✷

✵
✳✼
✽

✵
✳✽

✶
✳✵

✶
✳✵

✶
✳✵

✵
✳✾
✷

✶
✳✵

✵
✳✾
✽

✵
✳✼
✻

✵
✳✼
✷

✵
✳✽
✺

✶
✳✵ ✶
✳✵

✶
✳✵

✵
✳✾
✻ ✶
✳✵

✵
✳✾
✾

✵
✳✾
✷

✵
✳✾
✷

✵
✳✾
✺

♠❛sstr❡❡ ✐♠❣❴❞♥♥

✵

✵✳✺

✶

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

▲♦✇✲▲♦✇ ▲♦✇✲▼✐❞▲♦✇✲❍✐❣❤▼✐❞✲▲♦✇ ▼✐❞✲▼✐❞▼✐❞✲❍✐❣❤❍✐❣❤✲▲♦✇❍✐❣❤✲▼✐❞ ❆✈❣✳
(d) Masstree-Img-dnn

0.0

0.5

1.0

1.5

2.0

◗
♦
❙
●
✉
❛r
❛♥
t❡
❡

✵
✳✾
✷

✵
✳✾
✾

✶
✳✵

✵
✳✾
✽

✵
✳✾
✽

✶
✳✵

✵
✳✾
✾

✵
✳✾
✽

✶
✳✵

✵
✳✾
✼

✶
✳✵

✶
✳✵

✵
✳✾
✾

✶
✳✵

✶
✳✵

✵
✳✾
✽

✵
✳✾
✾

✶
✳✵

✵
✳✾
✽

✶
✳✵

✵
✳✾
✾

✵
✳✾
✾

✶
✳✵

✶
✳✵

✵
✳✾
✽

✵
✳✾
✾

✶
✳✵

✶
✳✵ ✶
✳✵

✶
✳✵

✵
✳✾
✼

✵
✳✽
✸

✶
✳✵

✵
✳✽
✻

✵
✳✼

✵
✳✽
✺

✶
✳✵

✶
✳✵

✶
✳✵

✵
✳✾
✼

✵
✳✽
✻

✶
✳✵

✵
✳✽
✺

✵
✳✼
✶

✵
✳✽
✺

✶
✳✵

✶
✳✵

✶
✳✵

✵
✳✾
✾

✵
✳✽
✽

✶
✳✵

✵
✳✾
✺

✵
✳✽
✼

✵
✳✾
✻

①❛♣✐❛♥ ✐♠❣❴❞♥♥

✵

✵✳✺

✶

◆
♦r
♠
❛❧
✐s
❡❞

❡♥
❡r
❣
②
✉
s❛
❣
❡

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

▲♦✇✲▲♦✇▲♦✇✲▼✐❞▲♦✇✲❍✐❣❤▼✐❞✲▲♦✇▼✐❞✲▼✐❞▼✐❞✲❍✐❣❤❍✐❣❤✲▲♦✇❍✐❣❤✲▼✐❞ ❆✈❣✳
(e) Xapian-Img-dnn

0.0

0.5

1.0

1.5

2.0

✶
✳✵

✶
✳✵

✶
✳✵

✶
✳✵

✵
✳✼
✼

✵
✳✽
✹

✶
✳✵

✶
✳✵

✵
✳✾
✾

✵
✳✾
✾

✶
✳✵

✶
✳✵

✶
✳✵

✵
✳✽
✸

✶
✳✵

✶
✳✵

✵
✳✽

✵
✳✾
✸

✵
✳✾
✽

✵
✳✾
✶

✵
✳✾

✵
✳✼
✸

✵
✳✼
✸

✵
✳✽
✶

✵
✳✾
✻

✵
✳✽
✽

✵
✳✾
✸

✵
✳✾
✹

✶
✳✵

✶
✳✵

✵
✳✾
✹

✵
✳✾ ✶
✳✵

✵
✳✽
✺

✵
✳✽
✷

✵
✳✽
✹

✵
✳✾
✸

✶
✳✵

✶
✳✵

✵
✳✼
✷

✵
✳✼
✾ ✶
✳✵

✵
✳✻
✹

✵
✳✽
✷

✵
✳✻
✾

✵
✳✹
✹

✵
✳✼
✺

✵
✳✾
✾

✵
✳✹
✼

✵
✳✸
✺

✵
✳✺
✾

✵
✳✼
✹

✵
✳✽

✵
✳✽
✾

♠♦s❡s ✐♠❣❴❞♥♥

✵

✵✳✺

✶

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

❚
✇
✐❣
✲❈

P
❛r
t✐
❡s

❙
t❛
t✐
❝

▲♦✇✲▲♦✇ ▲♦✇✲▼✐❞▲♦✇✲❍✐❣❤▼✐❞✲▲♦✇ ▼✐❞✲▼✐❞▼✐❞✲❍✐❣❤❍✐❣❤✲▲♦✇❍✐❣❤✲▼✐❞ ❆✈❣✳
(f) Moses-Img-dnn

Fig. 13: Comparing the performance of Twig-C, PARTIES and Static mapping with a fixed load of 20% (low), 50% (mid) and

80% (high). Top and bottom graph show the QoS guarantee and energy usage normalised, respectively.

with Hipster [15, 72], Twig’s use of a NN approximator for

the state-space mapping means that: (1) Twig learns faster as

it uses a NN instead of a Q-table, (2) Twig eliminates the

need to explicitly traverse the state-action pairs to understand

the quality of an action, (3) Twig reduces the memory usage

by not storing the state-action space as a Q-table, (4) Twig

understands the environment’s state using a set of PMCs rather

than a single metric, and (5) Twig can use transfer learning to

quickly learn how to manage new services. Moreover, unlike

other state-of-the-art approaches [12, 13, 40, 58], Twig’s use

of PMCs avoids the need for service-specific instrumentation.

VII. CONCLUSION

We propose Twig, a task-management solution based on

deep reinforcement learning for energy-efficient resource man-

agement of colocated latency-critical services. Twig requires

no service or system-specific information, and instead uses

generic performance monitoring counters (PMCs) to manage

the resource allocation.We demonstrate that Twig performs

well across services and dynamically adapts the system by

learning from the PMCs to improve the mapping of services

to cores and adjust DVFS settings. Our results show that Twig

reduces energy usage by up to 38% while achieving up to 99%

QoS guarantees for latency-critical services.

ACKNOWLEDGEMENT

This work was funded by the European Union under grant

agreement No 754337 (EuroEXA), the Brazilian federal gov-

ernment under CNPq grant (Process no 430188/2018-8), and

the Swedish Research Council under grant 2015-05159. The

experiments were conducted on the NTNU EPIC computing

infrastructure and support by NTNU’s HPC group.

11

REFERENCES

[1] J. Mars and L. Tang, “Whare-map: Heterogeneity in “homo-
geneous” warehouse-scale computers,” in Proc. of the 40th
Annual International Symposium on Computer Architecture,
ISCA ’13, ACM, 2013.

[2] L. A. Barroso and U. Hoelzle, The Datacenter As a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
Morgan and Claypool Publishers, 1st ed., 2009.

[3] S. Chen, C. Delimitrou, and J. F. Martinez, “PARTIES: QoS-
Aware Resource Partitioning for Multiple Interactive Services,”
in Proc. of the 24th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), April 2019.

[4] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
shared resource contention in multicore processors via schedul-
ing,” SIGPLAN Not., vol. 45, Mar. 2010.

[5] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova,
“A case for numa-aware contention management on multicore
systems,” in Proc. of the 2011 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’11, 2011.

[6] S. Eric and B. Jake, “The User and Business Impact of Server
Delays, Additional Bytes, and HTTP Chunking in Web Search,”
Velocity, 2009.

[7] Y. Ding, N. Mishra, and H. Hoffmann, “Generative and multi-
phase learning for computer systems optimization,” in Proc. of
the 46th International Symposium on Computer Architecture,
ISCA ’19, ACM, 2019.

[8] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali, “A
case for NUMA-aware contention management on multicore
systems,” in Proc. of the International Conference on Parallel
Architectural and Compilation Techniques, ACM Press, 2010.

[9] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interfer-
ence for datacenter applications,” in 2013 IEEE International
Symposium on Workload Characterization (IISWC), Sep. 2013.

[10] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated manage-
ment of multiple interacting resources in chip multiprocessors:
A machine learning approach,” in Proc. of the 41st Annual
IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 41, IEEE Computer Society, 2008.

[11] V. Ishakian, R. Sweha, J. Londoño, and A. Bestavros, “Colo-
cation as a service: Strategic and operational services for
cloud colocation,” 2010 9th IEEE International Symposium on
Network Computing and Applications, 2010.

[12] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource efficiency at
scale,” in Proc. of the 42nd Annual International Symposium
on Computer Architecture, ISCA ’15, ACM, 2015.

[13] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mossé,
J. Mars, and L. Tang, “Octopus-man: Qos-driven task manage-
ment for heterogeneous multicores in warehouse-scale comput-
ers,” in 21st IEEE International Symposium on High Perfor-
mance Computer Architecture, HPCA 2015.

[14] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux,” ACM
SIGARCH Computer Architecture News, 2013.

[15] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “Hip-
ster: Hybrid task manager for latency-critical cloud workloads,”
in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Feb 2017.

[16] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes, “CPI 2,” in Proc. of the 8th ACM European
Conference on Computer Systems - EuroSys ’13, ACM Press.

[17] C. Delimitrou and C. Kozyrakis, “QoS-Aware Scheduling in
Heterogeneous Datacenters with Paragon,” ACM Trans. Com-
put. Syst., vol. 31, Dec. 2013.

[18] C. Delimitrou and C. Kozyrakis, “Hcloud: Resource-efficient
provisioning in shared cloud systems,” SIGPLAN Not., vol. 51,
Mar. 2016.

[19] A. Margaritov, S. Gupta, R. Gonzalez-Alberquilla, and B. Grot,
“Stretch: Balancing QoS and Throughput for Colocated Server
Workloads on SMT Cores,” in IEEE International Symposium
on High Performance Computer Architecture (HPCA) 2019.

[20] S. Blagodurov, D. Gmach, M. Arlitt, Y. Chen, C. Hyser, and
A. Fedorova, “Maximizing server utilization while meeting
critical slas via weight-based collocation management,” in 2013
IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), May 2013.

[21] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient
and qos-aware cluster management,” in Proc. of the 19th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14.

[22] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-Clouds: Manag-
ing Performance Interference Effects for QoS-Aware Clouds,”
in Proc. of the 5th European conference on Computer systems
- EuroSys ’10, ACM Press, 4 2010.

[23] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “KPart: A Hybrid Cache Partitioning-Sharing
Technique for Commodity Multicores,” in Proc. of the Inter-
national Symposium High-Performance Computer Architecture,
Feb 2018.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013.

[25] Suton. R.S and A. Barto, Reinforcement Learning: An Intro-
duction. Cambridge, MA: MIT Press, 1998.

[26] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber, “PyBrain,” Journal of Ma-
chine Learning Research, vol. 11, 2010.

[27] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling net-
work architectures for deep reinforcement learning,” CoRR,
vol. abs/1511.06581, 2015.

[28] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branch-
ing architectures for deep reinforcement learning,” CoRR,
vol. abs/1711.08946, 2017.

[29] N. J. Cox, “Speaking stata: Correlation with confidence, or
fisher’s z revisited,” Stata Journal, vol. 8, no. 3, 2008.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, 2011.

[31] M. Malik, H. Ghasemzadeh, T. Mohsenin, R. Cammarota,
L. Zhao, A. Sasan, H. Homayoun, and S. Rafatirad, “Ecost:
Energy-efficient co-locating and self-tuning mapreduce applica-
tions,” in Proc. of the 48th International Conference on Parallel
Processing, ICPP 2019, pp. 7:1–7:11, ACM, 2019.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,”
Nature, vol. 518, 2 2015.

[33] S. Eranian, “Perfmon2: improving performance monitoring on
linux,” July 2019.

[34] Intel, “Intel 64 and IA-32 Architectures Software Developer’s
Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C,
3D, and 4,” January 2019.

[35] J. D. McCalpin, “Memory bandwidth and machine balance in
current high performance computers,” IEEE Computer Soci-
ety Technical Committee on Computer Architecture (TCCA)
Newsletter, Dec. 1995.

[36] A. Guliani and M. M. Swift, “Per-Application Power Delivery,”
in Proc. of the 14th EuroSys Conference, EuroSys, ACM, 2019.

[37] S. Pandruvada, “Running Average Power Limit (RAPL).” https:

12

https://01.org/rapl-power-meter

//01.org/rapl-power-meter, July 2019.
[38] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite

and evaluation methodology for latency-critical applications,”
in 2016 IEEE International Symposium on Workload Charac-
terization (IISWC), Sep. 2016.

[39] LLNL, “MSR Safe.” github.com/LLNL/msr-safe, July 2019.
[40] C. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. F.

Wenisch, J. Mars, L. Tang, and R. G. Dreslinski, “Adrenaline:
Pinpointing and reining in tail queries with quick voltage
boosting,” in Proc. of the International Symposium High-
Performance Computer Architecture, 2015.

[41] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Proc. of the 24th Interna-
tional Conference on Neural Information Processing Systems,
NIPS’11, Curran Associates Inc., 2011.

[42] “HyperOpt.” hyperopt.github.io/hyperopt/, July 2019.
[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” CoRR, vol. abs/1412.6980, 2014.
[44] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier

neural networks,” in Proc. of the Fourteenth International
Conference on Artificial Intelligence and Statistics, vol. 15 of
Proc. of Machine Learning Research, PMLR, 2011.

[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Re-
search, vol. 15, 2014.

[46] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” CoRR, vol. abs/1511.05952, 2015.

[47] R. Nishtala. github.com/nishtala/TwigHPCA2020.git, Decem-
ber 2019.

[48] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How trans-
ferable are features in deep neural networks?,” in Advances in
Neural Information Processing Systems, 2014.

[49] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC:
An Energy-Efficient, High-Performance GPGPU Computing
Research Infrastructure,” 2019.

[50] “Memcached.” https://memcached.org/, July 2019.
[51] “Xapian.” github.com/xapian/xapian, July 2019.
[52] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,

N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer,
O. Bojar, A. Constantin, and E. Herbst, “Moses: Open source
toolkit for statistical machine translation,” in Proc. of the
45th Annual Meeting of the ACL on Interactive Poster and
Demonstration Sessions, ACL ’07, 2007.

[53] “A deep network handwriting classifier.” github.com/xingdi-
ericyuan/multi-layer-convnet, July 2019.

[54] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015.

[55] H. Kasture and D. Sanchez, “Ubik: efficient cache sharing
with strict qos for latency-critical workloads,” ACM SIGARCH
Computer Architecture News, vol. 42, 4 2014.

[56] Nguyen, Khang T, “Software Enabling for Cache Allocation
Technology in the Intel Xeon Processor E5 v4 Family.”
software.intel.com/en-us/articles/software-enabling-for-cache-
allocation-technology, January 2019.

[57] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and
T. F. Wenisch, “Power management of online data-intensive
services,” in Proc. of the International Symposium on Computer
Architecture, vol. 39, ACM Press, 6 2011.

[58] C. Hsu, Q. Deng, J. Mars, and L. Tang, “Smoothoperator:

Reducing power fragmentation and improving power utilization
in large-scale datacenters,” in Proc. of the Twenty-Third Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2018.

[59] B. Vamanan, H. B. Sohail, J. Hasan, and T. N. Vijaykumar,
“TimeTrader: Exploiting Latency Tail to Save Datacenter En-
ergy for Online Search,” in Proc. of the ACM/IEEE Interna-
tional Symposium on Microarchitecture, 2015.

[60] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis, “Towards energy proportionality for large-scale
latency-critical workloads,” ACM SIGARCH Computer Archi-
tecture News, vol. 42, 10 2014.

[61] P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, and
S. Rao, “Medea: Scheduling of long running applications in
shared production clusters,” in Proc. of the 13th EuroSys
Conference, EuroSys ’18, ACM, 2018.

[62] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bian-
chini, “DeepDive: transparently identifying and managing per-
formance interference in virtualized environments,” 6 2013.

[63] F. Romero and C. Delimitrou, “Mage: Online and interference-
aware scheduling for multi-scale heterogeneous systems,” in
Proc. of the International Conference on Parallel Architectural
and Compilation Techniques, ACM, 2018.

[64] D. Wong and M. Annavaram, “KnightShift: Scaling the Energy
Proportionality Wall through Server-Level Heterogeneity,” in
Proc. of the ACM/IEEE International Symposium on Microar-
chitecture, IEEE, 2012.

[65] H. Zhu and M. Erez, “Dirigent: Enforcing qos for latency-
critical tasks on shared multicore systems,” SIGOPS Oper. Syst.
Rev., vol. 50, Mar. 2016.

[66] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and
K. Asanovic, “A hardware evaluation of cache partitioning
to improve utilization and energy-efficiency while preserving
responsiveness,” in Proc. of the International Symposium on
Computer Architecture, ISCA ’13, ACM, 2013.

[67] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez,
“Rubik: Fast analytical power management for latency-critical
systems,” in Proc. of the ACM/IEEE International Symposium
on Microarchitecture, ACM, 2015.

[68] H. Zhu, D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
M. Erez, “Kelp: Qos for accelerated machine learning systems,”
in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 172–184, Feb 2019.

[69] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations,” in Proc. of the
ACM/IEEE International Symposium on Microarchitecture,
ACM Press, 2011.

[70] C. Delimitrou and C. Kozyrakis, “Bolt: I know what you did
last summer..in the cloud,” SIGARCH Comput. Archit. News,
Apr. 2017.

[71] R. Nishtala, D. Mossé, and V. Petrucci, “Energy-aware thread
co-location in heterogeneous multicore processors,” in Proc.
of the Eleventh ACM International Conference on Embedded
Software, EMSOFT ’13, IEEE Press, 2013.

[72] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “The
hipster approach for improving cloud system efficiency,” ACM
Trans. Comput. Syst., vol. 35, Dec. 2017.

13

https://01.org/rapl-power-meter
github.com/LLNL/msr-safe
hyperopt.github.io/hyperopt/
github.com/nishtala/TwigHPCA2020.git
https://memcached.org/
github.com/xapian/xapian
github.com/xingdi-ericyuan/multi-layer-convnet
github.com/xingdi-ericyuan/multi-layer-convnet
software.intel.com/en-us/articles/software-enabling-for-cache-allocation-technology
software.intel.com/en-us/articles/software-enabling-for-cache-allocation-technology

	Introduction
	Motivation and Background
	Characterising Tail Latency
	Reinforcement Learning
	Deep Q-Network
	Branching Dueling Q-network

	Twig
	Multi-Agent BDQ Architecture
	The Twig Task Manager
	System Monitor
	Learning Agent
	Mapper Module

	Twig Implementation
	Evaluation
	Baseline Comparisons
	Twig Evaluation
	Twig-S: Single LC service
	Twig-C: Colocated LC services

	Related work
	Conclusion

