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Twilight zone of protein sequence alignments
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Sequence alignments unambiguously distinguish between
protein pairs of similar and non-similar structure when
the pairwise sequence identity is high ¥40% for long
alignments). The signal gets blurred in the twilight zone of
20-35% sequence identity. Here, more than a million
sequence alignments were analysed between protein pairs
of known structures to re-define a line distinguishing
between true and false positives for low levels of similarity.
Four results stood out. (i) The transition from the safe zone
of sequence alignment into the twilight zone is described by
an explosion of false negatives. More than 95% of all pairs
detected in the twilight zone had different structures. More
precisely, above a cut-off roughly corresponding to 30%
sequence identity, 90% of the pairs were homologous;
below 25% less than 10% were. (i) Whether or not
sequence homology implied structural identity depended
crucially on the alignment length. For example, if 10
residues were similar in an alignment of length 16%60%),
structural similarity could not be inferred. (iii) The ‘more
similar than identical’ rule (discarding all pairs for which
percentage similarity was lower than percentage identity)
reduced false positives significantly. (iv) Using intermediate
sequences for finding links between more distant families
was almost as successful: pairs were predicted to be
homologous when the respective sequence families had
proteins in common. All findings are applicable to auto-
matic database searches.
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pairs appear to have less than 12% pairwise sequence identity
(Rost, 1997). Furthermore, the average sequence identity
between all pairs of similar structures is supposedly 8—-10%,
and the observed distribution (Gaussian peaking around 8%
identity) marks another region, the midnight zone (Rost, 1997).
The midnight zone is populated by protein structure pairs that
may have become similar by convergent or divergent evolution
(Doolittle, 1994; Rost, 1997). Threading algorithms ultimately
aim at revealing homologous pairs from the midnight zone
(Wodak and Rooman, 1993; Bryant and Altschul, 1995; Sippl,
1995; Rost and Sander, 1996; Sippl and Floeckner, 1996;
Fischeret al., 1996; Rost and O’'Donoghue, 1997). Conven-
tional sequence alignment methods become problematic at
much higher values of sequence identity. Methods often fail
to correctly align protein pairs with 20-30% pairwise sequence
identity. Hence, Doolittle (1986) coined the term twilight zone
for sequence alignments in this region. Do the difficulties
of alignment methods in this zone reflect merely technical
difficulties (statistical significance of detection), or is the
twilight zone defined by a particular feature of evolution?

Length-dependent cut-off for significant sequence identity

Pairwise sequence identity (percentage of residues identical
between two proteins) is not sufficient to define the twilight

zone. Instead, analysing the relatively small number of structure
pairs available in 1990, Sander and Schneider (1991) defined
a length-dependent threshold for significant sequence identity.
The threshold curve defined (dubbed HSSP-curve) was roughly
proportional to the inverse square-root of the length for

alignments between 7 and 80 residues, and was clipped to
saturate at 25% sequence identity over more than 80 residues.
In 1990, no pair with more than 30 identical residues of 100

saligned had different structures (Sander and Schneider, 1991).

genome analysis/protein sequence alignment/sequence spé@@s this still true for the five times larger PDB (Bernstein

hopping

Introduction
Protein sequence alignments in twilight zone

et al., 1977) of 19977
Hopping in sequence space
If we could plot the space of protein sequences, would we

observe the protein families as islands? Unfortunately, we
cannot tell. Nevertheless, useful information has been extracted

Protein sequences fold into unique three-dimensional (3Dfrom sequence (Casaet al., 1995) and structure (Maiorov
structures. However, proteins with similar sequences adogind Crippen, 1995) space. In everyday database searches,
similar structures (Zuckerkandl and Pauling, 1965; Doolittle,protein families are widened by exploiting the transitivity of
1981; Doolittle, 1986; Chothia and Lesk, 1986). Indeed, moshomology (Pearson, 1996): (i) a query sequence U is aligned
protein pairs with more than 30 out of 100 identical residuedo a database, say SWISS-PROT (Bairoch and Apweiler, 1997),
were found to be structurally similar (Sander and Schneidefi) all sequences aligned at levels of significant similarity are
1991). This high robustness of structures with respect taised as new seeds;,Uand for each U SWISS-PROT is
residue exchanges explains partly the robustness of organisrasarched again; (iii) this procedure is repeated until no new
with respect to gene-replication errors, and it allows forsequences are found. Sequence space hopping may be used in
the variety in evolution (Zuckerkandl and Pauling, 1965;combination with knowledge from structures to widen families

Zuckerkandl, 1976; Doolittle, 1979, 1986). Structure align

-(Holm and Sander, 1997), or to increase the information

ments have uncovered homologous protein pairs with less tharontained in multiple sequence alignments input to prediction

10% pairwise sequence identity (Valenetal., 1991; Holmes
et al., 1993; Holm and Sander, 1996; Brenraral., 1996;

methods (Rost, 1996, 1997). Recently, the transitivity of protein
families has been exploited successfully to automatically

Hubbardet al., 1997). Indeed, most similar protein structure increase the yield in database searches [Ruben Abagyan
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presented the ‘multi-link recognition’ method 1996 at themented by the two versions of the BLAST series: BLASTP
CASP2 meeting (Abagyan and Batalov, 1997); Patkal. (Altschul et al., 1990; Altschul and Gish, 1996), and PSI-
(1997) presented the ‘intermediate sequence search’ meth®LAST (Altschul et al., 1997). All 792 unique proteins
and Neuwaldet al. (1997) implemented the same conceptwere aligned against all 5646 proteins from the PDB subset.
(Neuwald,et al., 1997)]. Here, | confirm the original findings Alignments shorter than 10 residues were not considered, as
based on a different data set, and analysed in detail how thdentical polypeptides of up 10 residues are known to occur
gain depended on the number of intermediate sequence, amddifferent structure states (Kabsch and Sander, 1984; Cohen
their similarity. et al., 1993). Technical limitations (CPU time) required the

Here, | present results of aligning a set of 792 sequencerestriction of the dynamic-programming analysis to the best
unique (no pair in set has more than 25% sequence identity)000 hits for each of the 792 unique proteins. (Note: this
proteins of known structure against PDB. The following restriction applied only to the final displayed alignment. Of
guestions were investigated. Is the number of protein pairs afourse, all possible combinations were explored initially by
non-similar structures proportional to the distance from thehe alignment algorithm.) The resulting final data set comprised
HSSP-curve (eqn 1), or do false positives increase more rapidigbout 1.7 million pairwise alignments. For the comparison
in the twilight zone? Is the curve defined by Sander andetween the dynamic programming and the BLAST methods,
Schneider (1991) still valid? Would using sequence similaritythe data set had to be reduced to all pairs that were aligned
rather than identity improve accuracy (as speculated by Schnéy all methods compared (the problem was that neither
ider and Sander)? Finally, can the accuracy be improved foBLASTP, nor PSI-BLAST could be forced to report absolutely
pair alignments by expert rules? The results verify, partiallywrong, i.e. ALL pairwise alignments).

earlier work based on a 1000-fold larger data set (Sander an§efinjtion of sequence identity and sequence similarity

Schneider, 1991). The novel aspects were (i) a definition of %) Pairwise sequence identity was defined by the percentage

e o Sty (e 2 and  "enement o (ot residues igentcal betucen o algned sequences (e
Y, p spartic matching aspartic counts 1: D —=D1; aspartic on

[,L’ilgséygﬁpaer?ésBL\atgg:Z 1C£;)9”7]?Ean;t‘iglt.l,ngQgt?r?eE;rear?r?ehseals., wer _Iut_am_ic was a no_n-match: D —£ 0). (ii) Pairwise‘sequerjct—:‘_

1998): (i) a large-scale evaluation of exploiting intermediateS'T\;\lgth tv\vNe(\)s g; fl&‘:ﬁcgg Ege pgcsr;éa%e ;r:dre:Sldl;(ret?Cs(l)mnllar

sequences (sequence-space-hopping); (ii) a detailed analy tamic was nov?/ consideredgé match: D =H) Sﬁnilarit

of true and false positives providing estimates for accurac . . ' y

and coverage of database searches; and (iii) a comparison wi ores depend on the particular metric used to capture physico-
! emical properties of amino acids (note: most amino acids

BLAST, one of the most popular methods for rapid database: - L ;
. . re not considered 100% similar to themselves by typical
searches (Altschut al., 1990; Altschul and Gish, 1996). metrices, as such metrices are based on log-odds, e.g. for the

Methods I\/_Icl__ac_hlan metric only F, W, Y and_C _yield 100% self-

] ] similarity). Consequently, levels of similarity are not directly
Data set: 792 sequence-unique protein structures comparable between different metrices. For comparability, |
Protein databases are biased towards particular protein familiegsed the McLachlan metric (Gribskat al., 1987) also used
To reduce this bias, analyses are usually restricted to represeiit- the HSSP database (Schneideral., 1997). In principle,
ative data sets (Hobohmat al., 1992). Here, | chose the there are two ways to convert similarity into percentage values:
maximal set of sequence-unique proteins of known structur€) by normalizing the similarity score by the maximal possible
available in early 1997 (Holm and Sander, 1996). ‘Sequencescore observed in a given metric (percentage residue similarity);
unique’ was defined as ‘no pair in the set falls above theand (ii) by setting an arbitrary threshold of the similarity score
HSSP-curve (egn 1; Sander and Schneider, 1991). As a rulés distinguish similar—not similar and counting the percentage
of-thumb, no pair had more than 25% pairwise sequencef residues that are similar according to this threshold (percent-
identity. Each of these proteins was aligned against the subsage of similar residues). Again, | followed the practice of the
of PDB contained in the early 1997 release of the FSSPHSSP database compiling the percentage residue similarity
database of protein structure alignments (Holm and Sandefnormalized by maximal possible scores). When compiling
1996). This subset amounted in total to about 5646 proteipercentages, the number of identical residues was normalized
chains. Obviously the second step (792 versus 5646) rady the number of residues aligned, gaps were ignored.
introduced bias into the results. However, aligning the 792gandard of truth for structural similarity

Sfﬁgggﬁ“?glﬁt frc))?lﬁr?ostggf”;ﬁfa :Cv‘ial;nﬁflg/g:eV;’g::dsggth;z\éqmilarity between two protein structures is not uniquely
y y g naly Sdefined. Different structure alignment methods yield different
Thus, 792 versus 5646 was the best compromise in reduclné;cores (Alexandroet al., 1992; Holmet al.. 1993; Luoet al

bias and monitoring the biased region. The resulting test se 993: Orenao. 1994 .&:ri e'n and Mafc’Jrov 1’995. Ge'r‘stein
was the largest possible set of proteins for which structura nd L’evitt 199556' Holr"n angpSander 1996: Or’en o e’md Tavior
information was available (and thus false and correct hits gqq- Zu-'Kang 'and Sippl, 1996) ‘Such’differgnces cany be
could b_e automatically d.|st|ngU|shed). substantial, as illustrated by differences between the expert-
Generation of sequence alignments based database of structural alignments SCOP (Muetzéth.,
Protein pairs were aligned by two different program types.1995; Brenneret al., 1996; Hubbardet al., 1997), and the

1) Full dynamic programming as implemented in the Smith—automatically generated databases resigo., ,

(@) Full d i i impl d in the Smith icall d datab CATH (Orestgb., 1993
Waterman (Smith and Waterman, 1981) based method997) and FSSP (Holm and Sander, 1996). In general, FSSP
MaxHom (Schneider, 1994) (McLachlan metric, with min- tends to find more pairs of similar structure than do CATH
imum = —-0.5, maximum= 1.00, and gap oper 3, gap and SCOP. However, this is only a trend. For many examples,
elongation= 0.3); and (ii) quick database searches as impleSCOP finds structural similarity and FSSP does not. Here, |
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Fig. 1. Sketch of sequence-space-hopping. The triangle defines three searc
proteins (A, B and C) having mutually less than 25% sequence identity. The IIOI Ly I15l L IZOI Ly -25- L, .30. Ly 125
circles define the three families (all sequences inside the circle indicated by 106

arbitrary namesiaa_species have more than 25% sequence identity to the
respective search proteins A, B and C). Sequence-space-hopping implies
joining the circles representing the protein families (as shown for proteins A
and B in the striped circles) if they contain identical proteins that are
aligned in the same regiomlf_cvb in the example given).

'

chose the FSSP database ‘a standard of truth’: any pair fc
which FSSP listed a significant score [zDAE 4 (Holm and
Sander, 1996)] of structural similarity was considered to be
structurally similar. In order to distinguish between true and
false positives this decision implied that all pairs not listed at
the given cut-off of the FSSP database were structurally nc 10!
similar. However, this brought up the problem of different rrrr T T ey 0 P 5 T '1'0
structure alignment methods. For example SCOP may consid -15 -10 . -5
a pair structurally similar, and FSSP may not. Thus, additionally Distance from HSSP threshold
all pairs We“? excluded from the analysis tha.t were ||s_ted Ir}=ig. 2. Explosion of structurally dissimilar pairs in the twilight zone.
FSSP but with lower z-scores. Even that still left pairs of Nymbers of true (pairs with similar structure) and of false positives (pairs
proteins with clear levels of sequence identity (more tharwith no similar structure) plotted versus the distance to the HSSP-curve
40%) which were not found listed in FSSP. Thus, | had(Sander and Schneidejr, 1991), i.e. the horizontal axes give Fhe distance from
to refine this procedure by semi-automatically checking thé;1e threshold defined in eqn 1 (numbers refer fo the parameteeqn 1).
structural similarity for about 2000 brotein pairs all of which he levels of pairwise sequence identity corresponding to the distance were
Yy i p p . . .shown on top. &) Number of pairs observed at any distance (logarithmic
had levels of above 30% pairwise sequence identity [note thiscale). B) Cumulative number of pairs observed (logarithmic scale). For
number was negligibly small, as only 1% of all pairs wereexample, at a threshold corresponding to about 32% sequence identity for
found above this value (Fig. 2B)!]. The particular way in which long alignments, the numbers of true and false positives were equal (arrow

Af . . . in A); at about 29% even the cumulative numbers of true and false positives
the standard-of-truth was constructed implied that estimates fof . equal (arrow in B). Note: numbers of true negatives and false

true positives might be slightly optimistic, estimates for falsenegatives result from the cumulative sums left of the threshold; percentages
negatives slightly pessimistic. of true and false positives given in Figure 5.

Concept of true and false hits

When Chothia and Lesk (1986) first analysed the relatioreven the entire—alignment is wrong. (However, this extremely
between sequence and structure similarity, they monitored thieritating point was not pursued further in this analysis.)
details of structural differences, and found that the difference$he following cases were distinguished: (i) true positives,
are inversely proportional to the level of sequence identityalignments between proteins of similar structure that fall above
The binary notion of ‘similar structure’ (true or false) used in a given threshold (defined by the sequence alignment method);
this analysis reflected a different focus: the goal was to estimatg) false positives, alignments between proteins of dissimilar
the accuracy in correctly detecting rather than in correctlystructure that fall above a given threshold of the sequence
aligning homologues. Did this imply that correct detection andalignment; (iii) true negatives, alignments between proteins of
correct alignment were not correlated (as often the case fatissimilar structure that fall below a given threshold; and
threading: Bryant and Altschul, 1995; Lemer al., 1995; (iv) false negatives, alignments between proteins of similar
Sippl, 1995; Fischeet al., 1996)? Not necessarily, but the structure that fall below a given threshold. Note that ‘negatives’
fact is that two homologues can be detected although part—and ‘positives’ represent two sides of the same coin: at
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(1991) had discovered the basic functional dependence between
sequence identity and alignment length, they merely had to
fix two free parameters: the factor and the exponent. Both
were chosen to fit the data observed in 1991, in particular to
reach values of 25% around alignment length of 80, and
values of 100% around alignment length of 10. The principle
functional dependence described by eqn 1 also follows
from statistics, as was recently shown in an elegant work
(Alexandrov and Soloveyev, 1998). Lgti = 1,..., 20) be the
probability that amino acid occurs in a protein, andy; the
score for randomly aligning two amino acidandj. The score

S of an entire alignment can then be approximated by:

>

Percentage of identical residues

S=<m>-L

T T T T LI 1
0 50 100 150 200 250 where<m> is the expectation value afy;, andL the alignment
Number of residues aligned length. If the values af; are independent, Gaussian distributed
variables, it follows (after some elementary operations) that
the relation between the standard deviation of the values of
m;j Om ), and the resulting score distributioad is:

100-.}}... L L1 L Lt 0'm=|__0'5-05

In their original article Alexandrov and Soloveyev work
out an appropriate re-scaling of the dynamic programming
alignment. However, this scheme cannot be applied after the
alignment has been completed (as the threshold functions used
in this work), rather it has to be implemented into the
alignment method.

New curve for length-dependent significance of pairwise

sequence identity

| attempted to solve the problems of the original HSSP-curve
(egn 1; Results) by defining the following curve for the
separation of true and false positives (Figure 3, grey line with

ot - :
0 50 100 150 200 450  dotted circles):

Number of residues aligned p'(n = n + 480 L7032 A+ e-L/1000 (2)

Percentage of identical residues

Fig. 3. Pairwise sequence identity versus alignment length. The original Wher? L gave the number of VESidue§ a|i9ned b§tween two
HSSP-curve (Sander and Schneider, 1991) (dotted circles, eqn 1) appearedoroteins; p' the cut-off percentage of identical residues over
to fit the true positives (homologue&) better than the false positiveB)( the L aligned residues; andh described the distance in

In contrast, the new curve proposed here (filled diamonds, egn 2) was mor f : .
conservative in excluding false positives. Note that due to the huge numbeS)(:"rC(:"ntage points from the curve (: 0 plotted in Figure 3)'

of pairs the plots for true (A) and false (B) positives appeared almost The CPnSFfaintS in Viisua”y selectipg the final function were (i)
equally densely populated (Figure 2 revealed the problem of such a scatterto maintain the functional form defined by eqn 1 (and suggested
plot). by the statistics of Alexandrov and Soloveyev, 1998); (ii) to

) hit the 100% mark at alignments that are too short to reveal
any threshold extracted from the sequence alignmmerthe  anything about structural similarity= 11 residues); (i) to
following equations hold (for cumulative numbers): saturate at levels around 20% sequence identity (reached for

false negatives- true positives= all pairs of similar structure !€ngth= 300); and (iv) to roughly reflect the observed gradient.
Saturation for long alignments was realized by the functional

true negativest false positives= all pairs of form of the exponent (note: the term e/ resulted in an
dissimilar structure. exponential decay). This ‘saturation’ constraint also afflicted
Distance to HSSP threshold the particular value of the factor (0.32 rather than about 0.5
The HSSP-curve was originally defined by (Sander and®S suggested by the distribution of the data, Figure 4).
Schneider, 1991): New curve for length-dependent significance of pairwise
p'(n) = n + {290.15 L0562 for L < 80 sequence similarity
25 , doeL = 80 1) The original HSSP-curve was derived for sequence identity,

) ) not for sequence similarity (Sander and Schneider, 1991). The
where L gave the number of residues aligned between tWqynctional dependence between similarity and length appeared
proteins;p' the cut-off percentage of identical residues OVercomparable to the one between identity and length (Results).
the L aligned residues; anah described the distance in This prompted a similar definition for the separation between
percentage points from the curve € 0 corresponds to the e and false positives based on similarity:
original HSSP-curven = 5 to the official HSSP database

releases; curve plotted in Figure 3). Once Schneider and Sander pS(n = n + 420 .|-0.335 - (1+ e+2009 (3)
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adi L1 4 oI TSR The family alignments were taken from the HSSP database
(Schneideet al., 1997) with a cut-off at: HSSP-curve 10%

(n = 10 in egn 1), i.e. for alignments longer than 80 residues,
35% pairwise sequence identity was required. All protein pairs
(A,B) in the twilight zone were investigated for whit¢h(A,B)

was larger than zero. Note, the concept of sequence-space-
hopping explored here is being used in everyday sequence
analysis. The novel idea introduced by others (Abagyan and
Batalov, 1997; Neuwaldt al., 1997; Parket al., 1997) was
NOT to use sequence-space-hopping, but to use it for reducing
false positives in large-scale sequence analysis. Here, | simply
applied this concept was applied to the large data set explored,
and investigated its usefulness in dependence on various
parameters.

More-similar-than-identical rule

A simple rule-of-thumb was explored: accept hits only if the

level of sequence similarity was higher than the level of

sequence identity. This rule may appear to be non-selective in

that similarity would always be larger than identity; however,

{0 S NSOV S S S SV S S for the given definition of similarity (using the McLachlan
metric), this was not the case.

>

Percentage residue similarity

o04+—r——T—tr—rrr—trrrtTrr T

0 50 100 150 200 250

Number of residues aligned

Results
Number of false positives exploded in twilight zone

In contrast to 1990, when Sander and Schneider (1991)
compiled their data, now protein pairs of dissimilar structure
were detected above the 30% cut-off (Figure 2A). And these
were not exceptions: at a level of 32% (HSSP-cutver%,
i.e.n = 7 in egn 1), the number of false positives already
equalled that of homologues. For the original HSSP-curve the
number of false positives was 20-fold higher than the number
3 ! : . of true pairs. The transition from 20 to 30% sequence identity
Ot ———t1 gt was highly non-linear for true, and false positives (logarithmic
0 50 100 150 200 250 scales in Figure 2): the number of true pairs rose by a factor
Number of residues aligned of 5, that of false pairs by a factor of 200 (Figure 2B). Thus,
i o o ) below the region of significant pairwise sequence identity
Fig. 4. Pairwise sequence similarity versus alignment lengif).orrectl . i
de%ected structuralqhomologueﬁ)(fZlIse positivgs. Open ci?zll)eg originél (>34%) the p(’p“'?‘t"?” of false positives exploded. However,
HSSP-curve (Sander and Schneider, 1991) (eqn 1): filled triangles, new ~ also the vast majority of homologues had less than 30%
curve proposed here (eqn 3). sequence identity.

Functional shape of original HSSP-curve adequate

where L gave the number of residues aligned between twdlhe functional shape of the original HSSP-curve proved to be
proteins; pS defined cut-off for the percentage of residue basically correct (Figure 3, grey line with triangles). However,
similarity over thelL aligned residues; and described the the larger data set analysed here revealed several problems in
distance in percentage points from the curme=( O plotted  detail (Figure 3B). (i) A threshold of 25% was not reasonable
in Figure 4). for an alignment length below 150-200 residues. (ii) Above
Sequence-space-hopping an alignment length of about 100 residues, the derivative of
: : .. the curve separating true and false positives should be lower

Suppose proteingy and By were less than 25% identical;
iy A's uen by A A) G .l protes n' 1% 2001 RO 3, | L S0 e b

; yaa . 0 ' gously (egn 2; Figure 3, grey line with dotted circles). The particular
Lﬁfg% de'; rglc;lreenth?/ﬁ 7{%%/08|1t masn\?veﬁltt)zotlrlgg tﬁgtat? odtr? ?N er efun(:tional form guaranteed an approximate saturation for long
aigned to the same sequences 1. that for soaralj: A ~  wiciE U (% OO0 HEer i was acceptable as
5|Jm lv extending both fémiligA andB tg becompepag A 00% identity for fragments of 10-11 residues doesimply

Pl 9 10 P structural similarity (Cerpat al., 1996; Minor and Kim, 1996;

An, Bog, By,..., By} (Figure 1). Technically, | described this o
situation by compiling a simple matrid(A,B) that contained Ml,:)nOZ anc_i Serrano, 1996). The new curve saturated around
ﬁO/o for alignments over more than 250 residues.

the number of overlapping proteins (i.e. those contained both™ " T T
in family A and B) between all proteins in the test set (792 Defining a curve for pairwise sequence similarity

chains) and all proteins in the search set (5646 chains). F&€ompiling sequence identity neglects the physico-chemical
example,H(A,B) = 5 implied that test proteiA and search nature of amino acids. Any multiple sequence alignment
proteinB had five identical proteins in their family alignments. illustrates that, for example, the feature hydrophobicity is more
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true positives false positives
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Cumulative number of protein pairs
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Percentage ofcumulative fakenegatives

Percentage of cunulative true pesitives

o P e 0
-10 -5 (] 5 10 -10 -5 0 5 10
Distancefromthreshold Distance fromthreshold
—— original HSSP-curve ~ ——f— new curve: —— rule of thumb:
sequence identity similarity > identity

---—--- trivial approach:
identity independent ~ ——©—— new curve:

of alignment length sequence similarity

Fig. 5. Accuracy and sensitivity for detecting homologues in the twilight zone. How to choose the cut-off line for automatic database searches? The graphs
A-D illustrate the pros and cons of particular choices. Given are the cumulative numbers of correctly detected homologues (trueA)ositidesf, false

positives B), as well as, the cumulative percentages of all correctly detected homologues (true paSjtivaes] of all homologues that were missed (false
negativesD) in dependence of the cut-off distance from the thresholds defined in eqn 1-3 (param@teesholds: (1) HSSP-curve (egn 1), (2) new curve

for sequence identity (eqn 2), (3) new curve for sequence similarity, (4) subset of proteins for which similarity is larger than identity (grdy: lfaksén

negatives for this subset), (5) simple cut-off according to sequence identity disregarding alignment length (as often used in practice).tdloferweun

positives for the simple sequence identity cut-off (no alignment length) did not even fall into the interval displayed.

conserved than is the residue type. For the million proteircut-off according to mere sequence identity (ignoring alignment
pairs investigated here, this was reflected in a shift of thdength), accuracy dropped below 10% at levels of 30% sequence
scatter plot towards lower percentages (Figure 4). In particulaidentity (Figure 5C). Thus, detection accuracy rose almost
for longer alignments false positives fall below 15% pairwise10-fold by the new curves.

sequence similarity. This prompted the introduction of amproving detection accuracy by expert rule

threshold specifically for sequence similarity (eqn 3 inE . T
o . h . xperts often apply rules-of-thumb to visually distinguish true
Methods; Figure 4, grey line with dotted circles). The curve i false positives. However, many of such simple rules

surpassed 100% for alignments shorter than 12 residues al ?J ; A ) .

” a peared not valid for automatic implementation. In particular,
0,

saturated at about 10% for alignments over more than 50 e distributions of the number and length of insertions did

residues. not, on average, differ between false and true positives (data
Better detection of homologues in twilight zone by new not shown). Detection accuracy improved marginally by apply-
curves ing the following rules: (i) compile the distance for the
The new curves for length-dependent cut-offs in sequencsimilarity scoren® (eqn 3), and the identity scor@ (eqn 2),
identity (egn 2) and similarity (eqn 3) resulted in clearly lower average over both ff + n']/2), and accept pairs when this
false positive rates (higher accuracy) than the original HSSPaverage is above some threshaold(ii) take pairs whenever
curve (Figure 5B and C). This was paid for by a lower numbereither identity or similarity surpassed the respective threshold
of true positives detected (lower coverage; Figure 5A). At the(eithernSU n' > n); (iii) take pairs if both values where above

n = 0 (eqn 1-3), the old curve yielded about twofold more a given cut-off 65U n' > n). In contrast, detection accuracy
true positives, but more than 20-fold more false positivesncreased significantly by applying the ‘more-similar-than-
compared to the new curves for identity and similarity. Furtheridentical’ rule: accept hits found in a database search only if
more, at any level of true positives detected, the number gbercentage similarity is larger than percentage identity. This
false positives was smaller for the new curves (eqn 2-3) thanonstraint resulted in~98% detection accuracy at= 0 cut-

for the original HSSP-curve (egn 1; Figure 7). When applying eoff levels (eqn 2-3), while 2—4-fold less true positives were
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Percentage sequence identity/similarity

Accuracy versus coverage for BLAST and full dynamic

A 10015--:------20--”-'---25 30'- programming
] W F The balance between accuracy (percentage of true pairs)
] L and coverage (percentage of all true pairs) enables choosing
. / : automatic thresholds according to a particular purpose of a
3 /‘/A/ / / - database search. It also permits comparing different methods
¥ (the higher the values, the better). (i) As expected, the
commonly used simple level of sequence identity (disregarding

alignment length) proved, again, an extremely bad choice.
(i) Surprisingly, the fast database searching method BLAST
performed relatively well in comparison to the full dynamic
programming (Figure 7A). (iii) Both BLASTP version 2
and PSI-BLAST were almost as good as the full dynamic

—@—old: H(i,j>1
r"‘! —@—ide: H(i,j)=1
—@——ide: H(i,j)25
—a—ide: H(i,j)z10

Cumulative percentage of true pairs

10 5 0 s programming with the previously defined HSSP-threshold
B Distance from threshold (Sander and Schneider, 1991). (iv) Best performance was
L 200 - =8 10* . achieved by the new threshold for similarity (eqn 3). (v) How-
5 e o ?:L“l‘l’(fp‘i‘;“) E710' 5  ever, the raw alignment score performed almost as well.
2 150 ‘%-o—o—o\ e wE610t 8 (vi) BLASTP (Altschulet al., 1990) performed rather similarly
E oo o0 Es .+ = o the more elaborate and more recent PSI-BLAST (Altschul
i ] £, 8 et al., 1997) (and for ‘high’ accuracy even slightly better,
Pl = S R A N 4% 2 Figure 7A inset; note: given that standard parameters were
g ] 3100 2 chosen, this was not surprising). The corresponding thresholds
2 50 et WO et WO O £210* 5 were given in Figure 5B for the dynamic programming, and
é; ] e IN 110 “g in Figure 7B for the PSI-BLAST probabilities.
5 03— © Many false negatives at reasonable cut-off values

The number of false negatives is often of interest, i.e. the
number of proteins that belong to a structure family but were
Fig. 6. Improving accuracy by sequence-space-hopping. Distances were ~ NOt dEtECted_ above a given cut-off. For the _data sets used here,
compiled according to the old curve (egn 1, ‘old’), and to the new curve forthe cumulative percentage of false negatives was extremely
identity (eqn 2, ‘ide’). Corresponding levels of sequence identity shown on high for all reasonable cut-off levels (Figure 5D). The vast

top. The cumulative percentages of true positives detected at a given cut-o Py . ] . R
distance were compiled for three different hopping strategies: hits were anajomy of all pairs of proteins with similar structure populate

Distancefrom threshold

accepted if, at least, one (H(A,B} 1), five (H(A,B) = 5) or 10 (H(A,B) = the midnight zone below 10% sequence identity (Rost, 1997).
10) proteins were common between two protein families (Methods). Thus, the extremely high false negative rates proved that
(A) Cumulative percentage of true positives (false positive$00 — true); methods aligning two proteins merely based on the pairwise

(B) cumulative number of true positives. The comparison of the true levels of sequence homology clearly fail to find the gold mine

positives reached by intermediate sequences and all true positives (grey Iinef datab h d that oid | that failed t

in B, note: same as in Figure 2) showed that: (i) less than 1/1000 of the tru® a_a as_e searches (an at o _er analyses that failed 1o

positives were reached by intermediate sequences; (ii) the number of pairs describe this effect were based on biased data sets).

reached by intermediate sequences did not explode in the twilight zone ;

(scale on the left covers two orders of magnitude, that on the right only ThreShOI d.S fOI’ pradlca]_ use . .

one). Numbers for true and false negatives would not make sense for this For simplicity the functions (eqn 1-3) were explicitly provided

analysis: as we don't know all proteins, we cannot conclude that two in tables (Rost, 1998). At levels af = 0 (egn 1-3) the

families are unrelated only because we don't find a link between them. cumulative number of true positives were (Figure 5); HSSP-
curve (eqgn 1), 12%; new identity curve (egn 2), 56%; new
similarity curve (egn 3), 73%. In order to achieve levels of

99% correct hitan percentage points have to be added to the

found at this level (Figure SA and C). Hence, applied as & ryes, wheren was HSSP-curven = 8; new identity curve,
conservative cut-off in automatic database searches, this rulg — 5. new similarity curve,m = 12. For comparison,

proved rather powerful. applying the ‘more-similar-than-identical’ rule yielded levels
Improving detection accuracy by sequence-space-hopping above 99% down ton = —1.

Hopping in sequence space proved successful in discardin )

false positives. Already the minimal constraint to accept a paif-onclusions

if at least one protein was common between the two sequendgapid transition from trivial to needle-in-haystack problem
families yielded levels of around 80% accuracy even downrhe twilight zone of sequence pair alignments (20-35%
to cut-off levels corresponding to 20% sequence identitypairwise sequence identity) was characterized by two non-
(Figure 6A, compared with<20% accuracy for the normal |inear transitions. (i) The number of homologues (true positives)
thresholds Figure 5C). Accuracy increased further when morgpse by a factor of about eight (Figure 2A). | obtained a
proteins were required to be common to both familiessimilar result from analysing the first four entire genomes
(Figure 6A). However, sequence space hopping was possibl®ost, 1997) which indicated that this result was general, rather
for only relatively few protein pairs (Figure 6B). Furthermore, than database dependent. (i) The number of false positives
the improvement in accuracy was less clear using sequencesse by a factor of 5000 (Figure 2B). Hence, separating true
space-hopping than by applying the ‘more-similar-than-identand false positives switched from a trivial task (above 35%)
ical’ rule (Figure 5). to the problem of finding needles in a haystack (20-30%).
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—0— Asimilurity == blast2 it is obvious that we expect to find more pairs for lower levels
—A—Aidartity  —@—psi-blst of sequence identity based on mere statistics, the particular
o moke s Gideatity transition in the twilight zone seems not to be evident. However,
{ this analysis did not provide answers to whether or not the
A 100 b observed explosion may reflect structural (Chung and Subbiah,
; 1996) and/or functional constraints.

Poor distinction between true and false positives by
sequence identity, alone

Even journals such as Cell, or EMBO provide an ample source
for the following fallacy: ‘these two fragments of 16 residues
adopt similar structures as they have more than 10 similar
residues’. Thus, one of the most important messages of this
analysis might be the repetition of a point made by others
(Sander and Schneider, 1991): high levels of sequence similar-
ity or identity donot ascertain structural similarity (Figure 5).
Instead, the levels of significant sequence identity and similarity
depend on the alignment length (Figures 3 and 4), or the

80

60

Coverag

40

20

1 e T NS

10 0 3°A 0 60 respective raw score of the alignment methods.
B ’ Better distinction by new curves for sequence identity and
10° 5 100 similarity
. 10 :\\ o 3} The length-dependent cut-off for significant sequence identity
R /V/v"T { C 2 pioneered by Sander and Schneider (1991) needed refinement
E 10* o0 3 in several ways to account for the findings from a 1000-fold
E | E——W Eo5 larger data set: (i) shift towards higher values for shorter
20y AN %0 2 alignments; (ii) saturation for alignments longer than 150
2 L / RV - & residues; (iii) definition of new curve for levels of sequence
—A—tne g 0o TEg b similarity. These tasks were solved by introducing threshold
_-v——falg 10‘ 1 T TTI T TTTI TTTTIN T T T 1T IIIIIIII— 0 Curves for Signiﬁcant Sequence identity (eqn 2)’ and for
L T T " P TR significant sequence similarity (eqn 3). The precise definition
T coverage Probability score of PSI-BLAST of the two thresholds was entirely empirical. However, the

Fig. 7. Accuracy versus coverage for various methods and thresholds essential functional dependency of the curves was kept similar
Accuracy was defined as the cumulative percentage of true positives (actua0 what would be eXpeCted from pure S_tatlstlcal considerations.
true/all actual), coverage as the percentage of true positives that were Ithough not true for.a”' pr.oblems (N|E|$EE' al., 1996), on
detected at a given threshold (actual true/all trua). Thresholds and average, sequence similarity was marginally more successful
methods showedbidentity, new threshold for length-dependent sequence  than identity in distinguishing true and false positives. The
identity (eqn 2);Asimilarity, new threshold for length-dependent sequence new curves improved accuracy at a given coverage (Figure 5
similarity (egn 3);HSSP-curve, curve proposed by Sander and Schneider - . . . .

(1991; eqn 1)%identity, threshold given by sequence identity alone, i.e., and 7). Additionally, this analysis supplied detailed levels for
disregarding alignment lengthlignment score, score used for the dynamic ~ €Xxpected accuracy and coverage for the curves defined, as
programming optimization MaxHonblast2, BLASTP version 2 (Altschul well as for standard BLAST searches (Figures 5 and 7).
and Gish, 1996)psi-blast, BLASTP version 3 (Altschugt al., 1997), run Such estimates may have implications for automatic database

with standard parameters. The values for the BLAST methods were based ; ;
on the probability scores reported by these algorithms. The BLAST method?eamhes' They also shed light on the comparison between

did not report all pairwise alignments, thus the data set had to be reduced S€gquUence alignments and threading techniques that both only
the subset for which aligned pairs were reported by all three methods make use of pair comparisons (rather than using family specific
(MaxHom, BLASTP2, BLASTP3). Note that whereas the curves for the  profiles): already at levels of 25% sequence identity, pair
BLAST methods, as well as for identity and similarity are likely to hold up, gjignments detect only 10-30% true positives. This is below
in general, the curve for the alignment score is valid for the particular he | | of wh hreadi hni hi inthe i |
implementation of the dynamic programming in MaxHom, and for the the level of what threading techniques achieve in the interva
particular choice of parameters (Method$)) Detail of the relation 0-25% sequence identity (Sippl, 1995; Fischer and Eisenberg,

between the BLAST probability (here for psi-blast), and the cumulative 1996; Russelkt al., 1996; Rostet al., 1997).

number of true/false hits, as well as percentage accuracy and coverage. . L. . .
Improved accuracy by ‘more-similar-than-identical’ rule and

sequence space hopping

The explosion of false positives shed light on the shape oThe number of false positives was significantly reduced by
sequence space. From 100-35% sequence identity, any residwe techniques (only the first of which was novel to this
exchange resulting in a stable structure maintains structurevork). (i) The ‘more-similar-than-identical’ rule: 95% of all
From 28-35% sequence identity, most residue exchangeqmirs for which percentage similarity was larger than percentage
maintain structure. From 20-28% sequence identity, thédentity had similar structures. Thus, this constraint clearly
absolute majority of residue exchanges forming stable struamproved detection accuracy. The cost was low coverage: for
tures populate different protein families. Is the explosiononly 10% of the structurally similar pairs the percentage
caused by features of structure space? If one generates protsimilarity was larger than percentage identity. This might be
sequences at random (or randomly superposes non-relatedplained by the fact that half of the protein, on average,
proteins), the counts for most of the region above 10%embedded in loop regions, may tolerate residue exchanges that
sequence identity are negligible (Rost, 1997). Thus, althoughbo not conserve physico-chemical properties (and thus decrease
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the overall average more than the few to-be-conserved-regioi®997). However, in detail the numbers differed between the
increase it). (i) The usage of ‘multi-links’ (Abagyan and recent analyses. Obviously, the absolute values depended
Batalov, 1997), ‘intermediate sequences’ (Petlal., 1997), crucially on the particular choice of the data set. Abagyan and
‘transitivity’ (Neuwald et al., 1997), or ‘sequence space Batalov (1997) analysed various substitution metrices on a
hopping’: most protein pairs that contained a similar subset oflata set comparable to the one used in this analysis. They
identical proteins in their respective sequence families wereoncluded that raw alignment scores provide better separations
found to have similar structures even at low levels of sequencbetween true and false positives than do length-dependent
homology. Obviously, the validity of transitivity (detection cut-offs for sequence identity and similarity. The difference
accuracy) between protein families (Figure 1) depended obetween their result, and the one shown here may result from
the distance between the families (Figure 6). Interestingly, théhe fact that Abagyan and Batalov (1997) used the optimal
improvement of accuracy hardly depended on the number afhoice of all parameters for comparing the raw alignment
proteins required to be common to two families. This suggestedcore to sequence identity and similarity. Brenner and co-
that although the vast majority of protein pairs with 25% workers have analysed the accuracy and coverage for various
sequence identity had dissimilar structures, the ‘islands’ popustatistical scores (Brenneral., 1998). They used a completely
lated by structure families were well separated. Unfortunatelygifferent data set than | did. An approximate comparison of
for the data set explored here, the yield of this analysis wathe two analyses was possible by the reference point of
found to be very low: on average only one in 1000 pairs wasimple identity (ignoring alignment length). It seems that the
reached via intermediate sequences (Figure 6). Furthermorperformance for the best separation method they find (new
sequence-space-hopping resulted in clearly lower coverageASTA) was comparable to the improved, simple thresholds
accuracy ratios than did the application of the ‘more-similar-defined here (eqn 2-3). Here, the BLAST probability was

than-identical’ rule (Figures 5 and 6). four_lc_i to be_ a relativel_y good way to separate true and false
Beginning of the 90's: over-estimation of sequence alignment p05|t|V(_as (Figure 7A): it was only slightly inferior to th_e raw
methods dynamic programming alignment score, results for which hold

: . _up exclusively for the particular choice of parameters and the
Until 1996, very few people had taken up the laborious articular alignment algorithm used.

task of objective large-scale analyses of protein sequenc%
comparisons. Partially, because automatic structure comparisdiresholds in practice

methods are fairly recent. The few earlier workers (SandeThe advantages of the length-dependent levels of identity and
and Schneider, 1991; Vogt al., 1995; Gotoh, 1996) based similarity (eqn 2-3) over other thresholds (Abagyan and
their work on data sets of about 1000 pairs of protein structur@atalov, 1997; Alexandrov and Soloveyev, 1998) was that
alignments. Gotoh (1996) and Vogital. (1995) used the same these thresholds, in principle, are applicable to any alignment,
set (Pascarella and Argos, 1992) for testing different alignmendnd may relate more explicitly to structure. Identity and
methods, and a variety of substitution metrices. They focusegimilarity can be compiled easily without having to re-do the
on monitoring the detailed accuracy in terms of number ofentire database search. In practice, this does not always hold
residues correctly aligned. Due to the_ ;mall data set ebgit up: (i) different parameters (e.g. the way in which gaps are
(1995) found about 98% true positives at 30% sequencgreated) may result in different alignments; and (ii) the similar-
identity (ignoring alignment length), and 50% true positivesity values compiled hold for the choice of a particular metric
at 20% sequence identity. For the 1000-fold larger datghere McLachlan). Additionally, the thresholds introduced here
set used here the corresponding values were quite differeffovide independent evidence for the separation, and permitted

(ignoring alignment length): 11% true positives at 30%the application of the successful ‘more-similar-than-identical’
sequence identity, and 5% true positives at 20% identityyyle.
However, even the more conservative analysis introducin .
the importance of alignment length for levels of signiﬁcant%\’“I the analysis hold up for the next 500 structures?
sequence identity (Sander and Schneider, 1991) still overfhe results given here based on the largest possible data
estimated the possible levels of sequence identity betwee$et for which structural alignments provided a well-defined
proteins of dissimilar structure. distinction between true and false. One conclusion was that
End of the 90's: database searches do not reach the seven years ago (Sander and Schneider, 1991) the database
gold mine, yet was too small to capture the details. Will this also be true in

' . . L . 0057 Answers have to remain speculative. (i) Although the
The thresholds for sequence identity and similarity defineqysiahase used in 1990 was 1000-fold smaller than the one
here, as well as those established by others (Abagyan angeq here, some principle findings were verified. (i) Assuming
Batalov, 1997; Brennegt al., 1998) complemented the levels {hat there are only 1000 folds in nature (Chothia, 1992), and
for ‘significance’ provided by BLAST (Altschul and Gish, {nat these correspond to about 10 000 families, then even the
1996), FASTA (Pearson, 1996) or other statistical 'ana]yseﬁ,nl catalogue of all protein sequences would yield a data set
(Bryant and Altschul, 1995) by addressing the question *howsggengially only 30 times larger than the one used here (note:

significant is the significance of the respective alignmentne gata set used corresponded to about 300 different folds
method?’. Based on quite different data sets the princip ligned against about 1000 families).

messages were similar: (i) most proteins of similar structure .

were not found by pairwise sequence comparisons at reasonaljtéther more accurate, or more sensitive?

cut-off thresholds; (ii) raw scores from dynamic programmingAn accurate and sensitive distinction between true and false
methods were comparable to the original length-dependemtositives is important for automatic database searches. The
cut-off thresholds for sequence identity (Sander and Schneidemew curves introduced here (eqn 2-3) proved slightly more
1991); (iii) dynamic programming was only slightly superior sensitive (higher coverage) and more accurate than the previ-
to BLAST searches (Altschul and Gish, 1996; Altsceubl.,  ously proposed curve (Sander and Schneider, 1991). The
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accuracy increased significantly by applying the ‘more-similar-Gotoh,0. (1996). Mol. Biol., 264, 823-838.

I . ) H ribskov,M., McLachlan,M. and Eisenberg,D. (198#oc. Natl Acad. Sci.
than-identical’ rule, and by sequence space hopping. Howevef USA 84, 43555358,

_accuracy was gained at the ex_pense (_)f covera_\ge. WhiC_h is n?OI':f\::Bbohm,U., Scharf,M., Schneider,R. and Sander,C. (1$982)ein i., 1,

important? Clearly, the evolutionary information contained in  409-417.

multiple alignments is the single most important contributionHolm,L., Ouzounis,C., Sander,C., Tuparev,G. and Vriend,G. (1898fin

to improving protein structure prediction in the 90’s (Rost and oﬂ"Ll’aﬁzgé;rl]gZ?'c (1998)ucleic Acids Res, 25, 231-234

Sander, 1996; Rost and O'Donoghue, 1997). Is the gain bﬂmml. and Sander,C. (199 Proteins, 28, 72-82.

increased diversity more important than the loss of accuraclioimes k.C., Sander,C. and Valencia,A. (1998FB, 3, 53-59.

when using alignments for structure prediction? The answerubbard, T.J.P., Murzin,A.G., Brenner,S.E. and Chothia,C. (198X)eic

depends on the particular prediction goal. For example, for Acids Res, 25, 236-239. ]

secondary structure prediction diversity is more important tharff@esch.W. and Sander,C. (198joc. Natl Acad. &ci. USA, 81, 1075-1078.
-off at 25% versus that at 30%), whereas fOLemer,C.M.—R., Rooman,M.J. and Wodak,S.J. (199&)eins, 23, 337-355.

accuracy_ ((_:Ut on a 0 e 0), WHETE Luo,Y,, Lai.L., XuX. and Tang,Y. (1993protein Engng, 6, 373-376.

the prediction of solvent accessibility the opposite is truemaiorov,V.N. and Crippen,G.M. (199Froteins, 22, 273-283.

(unpublished). Furthermore, as databases grow coverage matnor,D.L.J. and Kim,P.S. (199@)ature, 380, 730-734.

be less important than accuracy. Irrespective of individuaMufioz,V. and Serrano,L. (1996jolding Des, 1, R71-R77.

preferences, the sharper the knife cutting between true a urzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1993Yl0l. Biol.,

o ) . 247, 536-540.
fa'_se po_smves, the better. ThIS_ analysis has_. sharpened th@uwald AF, Liu,J.S., Lipman,D.J. and Lawrence,C.E. (19@&jeic Acids
knife a little, and added new optional tools to it. Res,, 25, 1665-1677.
Nielsen,H., Engelbrecht,J., von Heijne,G. and Brunak,S. (199@kins, 24,
165-177.
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