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Twin-field quantum key distribution with fully discrete phase randomization
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2Quantum Engineering Centre for Doctoral Training,
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Twin-field (TF) quantum key distribution (QKD) can overcome fundamental secret-key-rate
bounds on point-to-point QKD links, allowing us to reach longer distances than ever before. Since
its introduction, several TF-QKD variants have been proposed, and some of them have already
been implemented experimentally. Most of them assume that the users can emit weak coherent
pulses with a continuous random phase. In practice, this assumption is often not satisfied, which
could open up security loopholes in their implementations. To close this loophole, we propose and
prove the security of a TF-QKD variant that relies exclusively on discrete phase randomization.
Remarkably, our results show that it can also provide higher secret-key rates than an equivalent
continuous-phase-randomized protocol.

I. INTRODUCTION

Quantum key distribution (QKD) allows two users, Alice and Bob, to generate a shared secret key in the presence
of an eavesdropper, Eve, with unlimited computational power. Despite its great potential, QKD has yet to overcome
important practical problems before it is ready for widespread use. One of the most important challenges is how to
perform QKD at long distances, given that, in optical fibres, the loss increases exponentially with the channel length.
Even with a GHz repetition rate, it would take 300 years to successfully send a single photon over 1000 km of standard
optical fibres [1]. Another crucial issue is to guarantee that a particular implementation of a QKD protocol is secure.
That is, we have to show that QKD implementations satisfy all assumptions made in their corresponding theoretical
security proof, or to devise security proofs that match the realities of QKD experiments. In this work, we address the
latter issue for twin-field QKD (TF-QKD) [2], one of the key candidates for improving key-rate scaling with distance.

Fundamental bounds show that the key rate of repeaterless QKD protocols scales at best linearly with η [3], where η
is the transmittance of the channel connecting Alice and Bob. TF-QKD breaks this limitation, offering a key rate that
scales with

√
η. The key enabling idea behind the operation of TF-QKD is to effectively generate an entangled state

between the two users in the space spanned by vacuum and single-photon states. To do so, we need a repeater node
that performs entanglement swapping, using single-photon interference, as well as phase stability across the channel,
to make sure the generated state is in the desired superposition form. This approach requires only one photon to
survive the path loss over half of the channel, thus the improved scaling with distance. Note that TF-QKD is not
the only protocol that achieves this scaling. Other protocols, inspired by quantum repeater structures, can achieve
the same key-rate scaling by using quantum memories [4, 5] or quantum non-demolition measurements [6]. However,
TF-QKD is, experimentally, in a more advanced state than such alternatives. In fact, certain variants of TF-QKD
have already been implemented [7–10], and a distance record exceeding 500 km has already been achieved [11, 12].
The issue of implementation security is crucially relevant for these experiments.

One of the main constraints on a QKD system is given by the type of optical encoder needed in the implementation
of the protocol. Its corresponding security proof would then need to address such practical constraints. The single-
photon version of TF-QKD has a simple theoretical description [13], but it is difficult to implement in practice.
Thus, a significant research effort has focused on developing practical variants [13–16] in which the users encode weak
coherent pulses (WCPs). These variants differ in their protocol descriptions and/or security proofs, but, so far, all
of them rely on the decoy-state method [17]. That is, they either use decoy states in their key mode [14, 15], i.e., to
generate the key, and/or in their test mode [13, 16], i.e., to estimate Eve’s side information on the key.

Conventional decoy-state techniques require the emission of phase-randomized coherent states (PRCS), and assume
that the users are ideally able to randomize the phase of their pulses continuously and uniformly. This is, however,
difficult to achieve in practice. Experimentally, there are two approaches to randomize the phase of a coherent pulse:
passive and active. Passive randomization consists of turning the laser off and then on again to generate the PRCS.
In addition to the impracticality of this approach in a high-speed QKD system, it is hard to guarantee experimentally
that the generated phase genuinely follows a uniform distribution [18]. In fact, experiments have shown that, in
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practice, there are phase correlations between adjacent pulses [19, 20]. In an active randomization procedure, a
phase modulator is used, in combination with a random number generator. This approach fits the TF-QKD variant
of Refs. [13, 16] very well, since one already needs a phase modulator to produce the phase-locked coherent states
emitted in the key mode. However, it randomizes the phase over a discrete, not continuous, set of values. Thus, none
of these two approaches necessarily satisfy the assumptions of the decoy-state method, which could open security
loopholes in the experimental implementations of TF-QKD.

In this work, we address this security loophole, by proposing and proving the security of a TF-QKD variant that
relies exclusively on discrete phase randomization. Note that the use of discrete randomization has already been
considered in Ref. [18], in the context of a decoy-state BB84 protocol, where it was treated as a source flaw. Its
authors found that, for the decoy-state BB84 protocol, the secret key rate obtainable using discrete randomization is
always strictly worse than using continuous randomization, although the former quickly approaches the latter as the
number of discrete random phases increases. In fact, in that protocol, one can obtain a performance reasonably close
to the continuous case using as few as ten discrete random phases. However, it is not immediately clear whether this
behaviour would hold for the TF-QKD variants in [13–16], given that: (i) their security proofs are quite diverse, and
some of them very different from that of decoy-state BB84; and (ii) in TF-QKD, both users emit quantum states,
and thus the source flaw is present in both users. In fact, recent works have found that the security issue arising from
flawed sources that leak information has a much bigger impact in measurement-device-independent (MDI) QKD [21]
than in BB84 [22]. In principle, the same could be true for other kinds of source imperfections, such as the use of
discrete phase randomization.

The quantum phase of our TF-QKD variant is similar to that of Ref. [13], with the main difference being that we
use discrete, not continuous, phase randomization in test mode. However, unlike in the case of decoy-state BB84 [18],
we find that our key rate does not simply approach that of Ref. [13] as the number of phase slices increases. Instead,
perhaps surprisingly, we can actually obtain higher secret-key rates than Ref. [13], with as few as eight discrete random
phases. The reason is that discrete randomization allows us to postselect the test-mode rounds in which the users’
phase choices exactly matched, i.e., they were exactly the same, or their difference was exactly π. As we will see, this
postselected data allows for a tighter estimation of the phase-error rate. Intuitively, this is because, in TF-QKD, it
is advantageous if the users share the same global phase reference, something that can be equivalently achieved by
postselection.

We note that the concept of phase postselection has appeared in other TF-QKD variants [14, 15, 23], although
in combination with continuous-phase-randomized signals. Refs. [14, 15] postselect the signals with a similar, not
identical, phase. This introduces challenges in the security analysis, and it is not clear if this approach could be
used for the type of TF-QKD variant considered in this work. Ref. [23] assumes that signals with an identical phase
are postselected. While certainly interesting from a theoretical point of view, this protocol is not implementable in
practice, since Alice and Bob will never choose exactly the same phase when using continuous phase randomization.

Similarly to other protocols that rely on discrete randomization [18], we use numerical techniques as part of our
security proof. In particular, inspired by the work of Ref. [24], we use semidefinite programming (SDP) techniques to
estimate the phase-error rate. We note that, in Ref. [24], the authors already apply their generic numerical technique
to prove the security of a TF-QKD protocol with discrete phase randomization. However, in practice, their procedure
can only be applied when just a few discrete random phases are used, since the number of constraints grows very
quickly as the number of phase values increases. Here, we exploit the particularities of our protocol to introduce an
analysis that uses a much smaller number of carefully chosen constraints, and is efficient even with a large number of
discrete phases. This allows us to investigate how the key rate improves when increasing the number of phase values.

II. METHODS

A. Protocol description

Our protocol is very similar to that of Refs. [13, 16]. Alice and Bob send quantum signals to an untrusted middle
node Charlie, who (ideally) interferes them at a balanced 50:50 beamsplitter, performs a photodetection measurement,
and reports the outcome. These signals belong to one of two “modes”, key and test, selected at random. Key-mode
emissions are used to generate the raw key, while test-mode emissions are used to estimate Eve’s side information.
In key mode, the users send phase-locked coherent states

∣

∣±√
µ
〉

. In test mode, the users send phase-randomized
coherent states of different intensities. Unlike in Refs. [13, 16], the phases of the test-mode states are randomized over
a discrete set, rather than a continuous range. The detailed protocol steps are the following:

(1) Preparation

Alice (Bob) randomly choose the transmission mode, key or test, and
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(1.1) If she (he) chooses key mode, she (he) generates a random bit bA (bB), prepares an optical pulse in the
coherent state

∣

∣(−1)bA
√
µ
〉

(
∣

∣(−1)bB
√
µ
〉

), and sends it to Charlie.

(1.2) If she (he) chooses test mode, she (he) selects a random intensity βa (βb) ∈ {β1, . . . , βd−2, µ, βv}, where d
is the number of intensities, µ is the same intensity used in key mode, and βv = 0 is a vacuum intensity.
Then, she (he) selects a random phase θa (θb) = 2πm

M
, where m ∈ {0, 1, 2, . . . ,M −1} and M is the number

of random phases, prepares the state
∣

∣

√
βae

iθa
〉

(
∣

∣

√
βbe

iθb
〉

), and sends it to Charlie.

(2) Detection

An honest Charlie interferes Alice and Bob’s signals at a 50:50 beamsplitter, followed by threshold detectors Dc

and Dd, placed at the output ports corresponding to constructive and destructive interference, respectively. A
round is considered successful if exactly one detector clicks, and unsuccessful otherwise. After the measurement,
Charlie reports whether or not the round was successful, and, if it was, he reports which specific detector clicked.

(3) Sifting

For all successful rounds, Alice and Bob disclose their choices of key mode or test mode, keeping only data from
those in which they have used the same mode. Then,

(3.1) They calculate the gain psucc of their key mode rounds, and generate their sifted keys from the values of
bA and bB corresponding to these rounds. Then, they publicly disclose a small random subset of their
sifted keys. With this information, they estimate the fraction of the sifted key, psame|succ (pdiff|succ), that
originated from emissions in which their phase choices agreed (disagreed). Bob then flips his sifted key bits
corresponding to the rounds in which Dd clicked. Based on that, Alice and Bob estimate the bit error rate
ebit.

(3.2) For all values of β, Alice and Bob calculate the gains {Qβ} of the test mode rounds in which they both
used intensity β and the same phase θa = θb. They also calculate the gains {Q−

β } of the rounds in which
they both used intensity β and opposite phases θa = θb ± π.

(4) Parameter estimation

Alice and Bob use the values of {Qβ} and {Q−
β } to estimate the amount of key information IAE that may have

been leaked to an eavesdropper.

(5) Postprocessing

Alice and Bob perform error correction and privacy amplification to obtain a secret key.

Since this is a discretely-modulated MDI-type protocol, in principle, one could directly use the numerical techniques
of Ref. [24] to prove its security. However, the SDP in Ref. [24] requires one constraint, in the form of an inner product,
for each combination of emitted states. The number of different states in this protocol can make such an approach
infeasible in practice. Namely, since Alice and Bob send [(d− 1)M + 1]

2
different joint states [25], one needs to

solve the dual problem of an SDP with [(d− 1)M + 1]
4

inner-product constraints, plus the constraints related to the
measurement results of the protocol. Thus, even for M = 4 and d = 3, the simplest case considered in the numerical
results of this paper, one needs to solve a SDP with more than 6561 constraints. For M = 12 and d = 3, the
number of constraints grows to more than 390625. This can make the implementation of such techniques infeasible
on conventional computers [26, 27].

In the following, we provide a security analysis that requires to solve the dual problem of two SDPs with only
(d − 1)(d − 2)M + 2d + M − 1 constraints each. That is, for the examples considered above, we have SDPs with 17
and 41 constraints, respectively, which can be quickly solved using any commercial off-the-shelf laptop.

B. Security analysis

In our security analysis, we consider the asymptotic scenario in which the users emit an infinite number of signals.
Also, for simplicity, we assume collective attacks. We note that, in the asymptotic regime, security against collective
attacks implies security against general attacks, thanks to results such as the postselection technique [28].

We consider the virtual protocol in which Alice replaces her key mode emissions by the generation of the state

|ψ〉Aa =
1√
2

(

|0〉A |√µ〉
a

+ |1〉A |−√
µ〉

a

)

, (1)
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where A is a virtual qubit ancilla that she keeps in her lab, and a is the photonic system sent to Charlie; and Bob
replaces them by a similarly defined |ψ〉Bb. We assume that Eve controls not only the quantum channels, but also
the untrusted middle node Charlie, and the announcements he makes. As mentioned in the protocol description,
for each round, Alice and Bob expect to receive two announcements: whether the round was successful, and, if so,
whether Charlie obtained constructive or destructive interference. However, the latter announcement only determines
whether or not Bob flips his sifted key bit, which does not affect Eve’s side information on Alice’s key. Thus, from

a security standpoint, we can describe Eve’s collective attack as a two-outcome general measurement {M̂ab, M̂
f
ab} on

the photonic systems ab, where M̂ab (M̂f
ab) is the Kraus operator corresponding to the announcement of the round as

successful (unsuccessful). Conditioned on a successful announcement, Alice and Bob obtain a state,

|Ψ〉AaBb =
M̂ab |ψ〉Aa |ψ〉Bb√

psucc
, (2)

where psucc =
∥

∥

∥
M̂ab |ψ〉Aa |ψ〉Bb

∥

∥

∥

2

is the probability that Eve announces a key mode round as successful.

In our virtual protocol, after Eve’s announcements, Alice and Bob perform the joint measurement {Ôsame, Ôdiff},

with Ôsame = |00〉〈00|AB + |11〉〈11|AB and Ôdiff = |01〉〈01|AB + |10〉〈10|AB , on the ancillas corresponding to the
successful rounds, learning whether they used the same or different phases. Note that this is a valid virtual protocol
step, since it commutes with the Z-basis measurement that Alice and Bob would perform to generate their sifted
keys. Depending on the result of their joint measurement, they will obtain one of the two post-measurement states

|Ψsame〉 =
|00〉AB M̂ab

∣

∣

√
µ
〉

a

∣

∣

√
µ
〉

b
+ |11〉AB M̂ab

∣

∣−√
µ
〉

a

∣

∣−√
µ
〉

b

2
√
psucc,same

, (3)

|Ψdiff〉 =
|01〉AB M̂ab

∣

∣

√
µ
〉

a

∣

∣−√
µ
〉

b
+ |10〉AB M̂ab

∣

∣−√
µ
〉

a

∣

∣

√
µ
〉

b

2
√
psucc,diff

, (4)

where psucc,same = psuccpsame|succ (psucc,diff = psuccpdiff|succ) is the probability that Alice and Bob use the same
(different) phases in a key mode round and Eve reports the round as successful. This allows us to define the quantities

eph,same = ‖AB〈++|Ψsame〉‖2 + ‖AB〈−−|Ψsame〉‖2, (5)

eph,diff = ‖AB〈++|Ψdiff〉‖2 + ‖AB〈−−|Ψdiff〉‖2, (6)

where eph,same (eph,diff) is the phase-error rate of the successful key mode rounds in which Alice and Bob used the
same (different) phases. Eve’s side information of the sifted key (per key bit) can now be bounded by

IAE ≤ psame|succh(eph,same) + pdiff|succh(eph,diff), (7)

where h(x) = −x log2 x− (1 − x) log2(1 − x) is the Shannon binary entropy function. The secret key rate that Alice
and Bob can distill is

R ≥ psucc [1 − IAE − fh(ebit)] , (8)

where f is the error correction inefficiency.
The objective of our security analysis is to obtain upper bounds on eph,same and eph,diff , using the the data obtained

in the test rounds. The procedure is very similar for both terms; we will first explain eph,same.

1. Estimation of eph,same

First, we rewrite Eq. (3) as

|Ψsame〉 =
(|++〉 + |−−〉)AB M̂ab |λeven〉ab + (|+−〉 + |−+〉)AB M̂ab |λodd〉ab

2
√
psucc,same

, (9)

with |λeven〉ab and |λodd〉ab being unnormalized states defined as

|λeven〉ab =
1

2
(|√µ〉

a
|√µ〉

b
+ |−√

µ〉
a
|−√

µ〉
b
) =

∑

n∈N0

√

Pn|µ |λn〉ab , (10)

|λodd〉ab =
1

2
(|√µ〉

a
|√µ〉

b
− |−√

µ〉
a
|−√

µ〉
b
) =

∑

n∈N1

√

Pn|µ |λn〉ab , (11)
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where N0 (N1) is the set of non-negative even (odd) numbers, |λn〉ab is the n-photon two-mode Fock state defined by

|λn〉ab =
1√

2nn!
(a† + b†)n |00〉ab , (12)

and

Pn|µ =
e−2µ(2µ)n

n!
, (13)

follows a Poisson distribution of average 2µ. Combining Eq. (5) and Eq. (9), we have that

eph,same =
1

2psucc,same

∥

∥

∥
M̂ab |λeven〉ab

∥

∥

∥

2

. (14)

Finding a way to estimate the quantity in Eq. (14) is critical for our security proof. One possible approach would be
to apply the Cauchy-Schwarz inequality to show that

∥

∥

∥
M̂ab |λeven〉ab

∥

∥

∥

2

≤
[

∑

n∈N0

√

Pn|µYn

]2

, (15)

where Yn =
∥

∥

∥
M̂ab |λn〉ab

∥

∥

∥

2

is the yield probability of the state |λn〉ab. Let us assume that Alice and Bob used

continuous phase-randomization on their test mode emissions, and kept only the data from the events in which they
use the same intensity and the same phase. Then, the resulting post-selected state, given that they both chose
intensity β, can be expressed as

1

2π

∫ 2π

0

dθ
∣

∣

∣

√

βeiθ
〉
∣

∣

∣

√

βeiθ
〉〈

√

βeiθ
∣

∣

∣

〈

√

βeiθ
∣

∣

∣

ab
=

∞
∑

n=0

Pn|β |λn〉〈λn|ab , (16)

where Pn|β follows a Poisson distribution and is given by Eq. (13). Then, one could apply the standard decoy-state
method to estimate the yield probabilities Yn, ∀n ∈ N0, and plug these in Eq. (15) to estimate eph,same in Eq. (14).
Essentially, this is the approach of Ref. [23]. However, note that if Alice and Bob use continuous phase-randomization,
the probability that they select exactly the same phase θ is zero, and the resulting protocol is not implementable in
practice.

Here, we use the same test-mode phase-postselection idea as in Ref. [23], but we employ discrete phase randomiza-
tion, which results in a protocol that is actually implementable. In this case, Eq. (16) becomes

ρβ =
1

M

M−1
∑

m=0

∣

∣

∣

√

βe
2iπm

M

〉
∣

∣

∣

√

βe
2iπm

M

〉〈

√

βe
2iπm

M

∣

∣

∣

〈

√

βe
2iπm

M

∣

∣

∣

ab
=

M−1
∑

n=0

P β
nmodM

∣

∣

∣
λβnmodM

〉〈

λβnmodM

∣

∣

∣

ab
, (17)

where ρβ is the post-selected state when Alice and Bob both used intensity β and the same phase [18]. In Eq. (17),
we have that

∣

∣

∣
λβnmodM

〉

ab
=

∞
∑

l=0

√

PMl+n|β

P β
nmodM

|λMl+n〉ab , (18)

P β
nmodM =

∞
∑

l=0

PMl+n|β . (19)

and Pn|β is given by Eq. (13). Note that for the vacuum intensity βv, we have

ρβv
=

∣

∣

∣
λβv

0modM

〉〈

λβv

0modM

∣

∣

∣

ab
= |λ0〉〈λ0|ab . (20)

Unlike the states |λn〉 in Eq. (16), the states
∣

∣

∣
λβnmodM

〉

in Eq. (17) have a slight dependence on the intensity β.

Thus, their yield probabilities,

Y β
nmodM =

∥

∥

∥
M̂ab

∣

∣

∣
λβnmodM

〉

ab

∥

∥

∥

2

, (21)
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are not necessarily equal for two different intensities β1 and β2, which prevents us from applying the standard decoy-
state method. Instead, we use a similar idea as in Ref. [24], defining the Gram matrix G of the set of Eve’s post-
measurement states, and constructing a semidefinite program in which the objective function and all the constraints

are linear functions of entries of G. In our case, we define G as the Gram matrix of the vector set
{

M̂ab

∣

∣

∣
λβnmodM

〉}

,

∀β ∈ T and n ∈ {0, 1, ...,M − 1}, where T is the set of all test-mode intensities, except vacuum. The entries of G are
Gij = 〈i|j〉, where |i〉 denotes the i-th element of the vector set.

Our objective function is Eq. (14), which we can write as

eph,same =
1

2psucc,same

〈λeven|M̂†
abM̂ab|λeven〉 . (22)

By re-expressing |λeven〉 and |λodd〉 in Eqs. (10) and (11) as

|λeven〉ab =

M−1
∑

n=0
n∈N0

√

Pµ
nmodM |λµnmodM 〉

ab
,

|λodd〉ab =
M−1
∑

n=0
n∈N1

√

Pµ
nmodM |λµnmodM 〉

ab
,

(23)

it becomes clear that the right-hand side of Eq. (22) is a linear function of elements of G.
Our constraints are the following:

• Taking the norm squared of both sides of Eq. (3), and solving for psucc,same, we obtain

psucc,same =
1

2
〈λeven|M̂†M̂ |λeven〉 +

1

2
〈λodd|M̂†M̂ |λodd〉 . (24)

• From Eq. (17), we have that

Qβ =

M−1
∑

n=0

P β
nmodMY

β
nmodM , (25)

where Qβ is the measured gain of the state ρβ . Note that Y β
nmodM is a (diagonal) element of G, thus Eq. (25)

is a linear function of elements of G.

• Using the trace distance inequality [18], we obtain

Y β1

nmodM − Y β2

nmodM ≤
√

1 − F β1,β2

n , (26)

where

F β1,β2

n =
∣

∣

∣

〈

λβ1

nmodM

∣

∣

∣
λβ2

nmodM

〉

ab

∣

∣

∣

2

=

[ ∞
∑

l=0

√

PMl+n|β1

P β1

nmodM

√

PMl+n|β2

P β2

nmodM

]2

. (27)

• Our next constraint is based on the inequality

Y β1

nmodM ≤ 1 − Y β2

nmodM + 2

√

F β1,β2

n (1 − F β1,β2

n )(1 − Y β2

nmodM )Y β2

nmodM + F β1,β2

n (2Y β2

nmodM − 1), (28)

which holds when Y β2

nmodM ≤ F β1,β2

n [29]. This bound is tighter than the trace distance inequality in Eq. (26),

but cannot be directly added to the SDP, since it is a non-linear function of Y β2

nmodM , an element of G. The
only exception is the case n = 0 and β2 = βv, since from Eq. (20), we have that

Y βv

0modM = Y0 = Qβv
, (29)
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and Qβv
, the gain of the vacuum intensity, is directly measurable from the protocol. Thus, substituting n = 0,

β1 = β, β2 = βv and Y βv

0modM = Qβv
in Eq. (28), we have the inequality

Y β
0modM ≤ 1 −Qβv

+ 2

√

F β,βv

0 (1 − F β,βv

0 )(1 −Qβv
)Qβv

+ F β,βv

0 (2Qβv
− 1), (30)

which is a linear function of Y β
0modM . Equation (30) holds when Qβv

≤ F β,βv

0 , which should always happen in

practice, since Qβv
≈ 0 and F β,βv

0 ≈ 1.

• For our final constraints, we use the fact that Y β
nmodM ≤ 1, ∀n, β. To reduce the number of constraints, we only

include the case β = µ.

Combining everything, we have that our upper-bound on eph,same is the solution of the following SDP:

max
G

1

2psucc,same

〈λeven|M̂†M̂ |λeven〉 s.t.

psucc,same =
1

2
〈λeven|M̂†M̂ |λeven〉 +

1

2
〈λodd|M̂†M̂ |λodd〉 ;

Qβ =

M−1
∑

n=0

P β
nmodMY

β
nmodM , ∀β ∈ T ;

Y µ
nmodM ≤ 1, ∀n ∈ {0, ...,M − 1};

Y β1

nmodM − Y β2

nmodM ≤
√

1 − F β1,β2

n , ∀β1, β2 ∈ T , n ∈ {0, ...,M − 1};

Y β
0modM ≤ 1 −Qβv

+ 2

√

F β,βv

0 (1 − F β,βv

0 )(1 −Qβv
)Qβv

+ F β,βv

0 (2Qβv
− 1), ∀β ∈ T ;

(31)

where T = {β1, . . . , βd−2, µ} is the set of all test-mode intensities, except vacuum.

2. Estimation of eph,diff

The procedure to estimate eph,diff is very similar to that of eph,same. In this case, we rewrite Eq. (4) as

|Ψdiff〉 =
(|++〉 − |−−〉)AB M̂ab |λ−even〉ab + (|−+〉 − |+−〉)AB M̂ab

∣

∣λ−odd
〉

ab

2
√
psucc,diff

, (32)

where |λ−even〉ab and
∣

∣λ−odd
〉

ab
are unnormalized states defined as

∣

∣λ−even
〉

ab
=

1

2
(|√µ〉

a
|−√

µ〉
b

+ |−√
µ〉

a
|√µ〉

b
) =

∑

n+m∈N0

cncm |n〉a |m〉b =
∑

n∈N0

√

Pn|µ
∣

∣λ−n
〉

ab
, (33)

∣

∣λ−odd
〉

ab
=

1

2
(|√µ〉

a
|−√

µ〉
b
− |−√

µ〉
a
|√µ〉

b
) =

∑

n+m∈N1

cncm |n〉a |m〉b =
∑

n∈N1

√

Pn|µ
∣

∣λ−n
〉

ab
, (34)

|λ−n 〉ab is the n-photon two-mode Fock state defined by

∣

∣λ−n
〉

ab
=

1√
2nn!

(a† − b†)n |00〉ab , (35)

and Pn|µ is given by Eq. (13). In this case, the state after post-selecting the test mode emissions in which Alice and
Bob both used intensity β and opposite phases θa = θb ± π = θ is

ρ−β =
1

M

M−1
∑

m=0

∣

∣

∣

√

βe
2iπm

M

〉
∣

∣

∣
−
√

βe
2iπm

M

〉〈

√

βe
2iπm

M

∣

∣

∣

〈

−
√

βe
2iπm

M

∣

∣

∣

ab
=

M−1
∑

n=0

P β
nmodM

∣

∣

∣
λβ,−nmodM

〉〈

λβ,−nmodM

∣

∣

∣

ab
, (36)

where

∣

∣

∣
λβ,−nmodM

〉

ab
=

∞
∑

l=0

√

PMl+n|β

P β
nmodM

∣

∣λ−Ml+n

〉

ab
, (37)
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Pn|β is given by Eq. (13), and P β
nmodM is given by Eq. (19).

Similarly as in the previous subsection, we re-express |λ−even〉 and
∣

∣λ−odd
〉

as

∣

∣λ−even
〉

ab
=

M−1
∑

n=0
n∈N0

√

Pµ
nmodM

∣

∣λµ,−nmodM

〉

ab
,

∣

∣λ−odd
〉

ab
=

M−1
∑

n=0
n∈N1

√

Pµ
nmodM

∣

∣λµ,−nmodM

〉

ab
,

(38)

and define

Y β,−
nmodM =

∥

∥

∥
M̂ab

∣

∣

∣
λβ,−nmodM

〉

ab

∥

∥

∥

2

. (39)

This time, we define G as the Gram matrix of the vector set
{

M̂ab

∣

∣

∣
λβ,−nmodM

〉}

, and follow a similar procedure as in

the last subsection to construct the objective function and the constraints. In the end, we have that our upper-bound
on eph,diff is the solution of the following SDP:

max
G

1

2psucc,diff

〈

λ−even
∣

∣M̂†M̂
∣

∣λ−even
〉

s.t.

psucc,diff =
1

2

〈

λ−even
∣

∣M̂†M̂
∣

∣λ−even
〉

+
1

2

〈

λ−odd
∣

∣M̂†M̂
∣

∣λ−odd
〉

;

Q−
β =

M−1
∑

n=0

P β
nmodMY

β,−
nmodM , ∀β ∈ T ;

Y µ,−
nmodM ≤ 1, ∀n ∈ {0, ...,M − 1};

Y β1,−
nmodM − Y β2,−

nmodM ≤
√

1 − F β1,β2

n , ∀β1, β2 ∈ T , n ∈ {0, ...,M − 1};

Y β,−
0modM ≤ 1 −Q−

βv
+ 2

√

F β,βv

0 (1 − F β,βv

0 )(1 −Q−
βv

)Q−
βv

+ F β,βv

0 (2Q−
βv

− 1), ∀β ∈ T ;

(40)

where F β1,β2

n is given by Eq. (27) and T = {β1, . . . , βd−2, µ} is the set of all test-mode intensities, except vacuum.

III. NUMERICAL RESULTS

Here, we simulate the secret key rate obtainable as a function of the overall Alice-Bob loss, which includes the
inefficiency of Charlie’s detectors, for different values of M , the number of random phases. For the sake of our
numerical simulations, we assume that there is no eavesdropper, and we only model the imperfections in the system
to simulate the values one may obtain in a real experiment. We assume a misalignment error rate of 2%, matching
the results of a recent experiment [7], and a dark count probability of 10−8 per pulse. In all curves, we assume that
Alice and Bob use three different test-mode intensities {β1, µ, βv}, where βv = 0 is a vacuum intensity and µ is the
same intensity used in key mode. We optimize over the value of µ and β1, with the condition that µ, β1 ≥ 10−4. This
condition is motivated by the fact that it is experimentally difficult to produce a laser pulse with a very small, but
fixed, intensity.

In our channel model, we make the additional assumption that, when Charlie obtains a click on both detectors,
he announces the round as successful, and randomly chooses which detector he reports as having clicked. While this
is a slight deviation from the protocol described in Section II A, it greatly simplifies all gain and yield formulas, at
the cost of introducing some additional errors. In the low-loss regime, when double clicks are relatively common, this
assumption slightly lowers the key rate obtainable. At medium to high losses, when the probability of a double click
is almost zero, the effect vanishes. Under this assumption, we have that

Qβ = Q−
β = (1 − d)(1 − e−2

√
ηβ + 2de−2

√
ηβ), (41)

where d is the dark count probability of each detector, and η is the overall Alice-Bob loss. Moreover, psucc = Qµ, and
psame|succ = pdiff|succ = 1/2, due to the symmetry of the setup. The bit error rate of the sifted key is given by

ebit =
(1 − d)emis − (emis − d)e−2

√
ηµ

psucc
, (42)
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where emis is the misalignment error probability. To obtain a reliable upper bound on eph,same and eph,diff , we need
to substitute the above values in Eq. (31) and Eq. (40), and numerically solve the dual problem of each SDP [24, 30].
Note that, due to the symmetry assumed in our channel model, the SDPs in Eq. (31) and Eq. (40) end up being
identical; in our simulations, we only solve their dual problem once, since its solution provides an upper-bound on
both eph,same and eph,diff . To solve this SDP dual problem, we have written a MATLAB program that uses the CVX
toolbox [31], which we run on a commercial laptop.

In Fig. 1, we see that the protocol can overcome the repeaterless bound [3] with as few as four random phases. For
the ideal case of M → ∞, we use Eq. (15), assuming that Alice and Bob are somehow able to estimate the exact
values of Yn, ∀n, using the data collected in test mode. These values are given by Y0 = 2d(1 − d) and, for n > 0,

Yn = (1 − d)(1 − (1 −√
η)2 + 2d(1 −√

η)n). (43)

As explained in the discussion following Eq. (15), the case of M → ∞ is not actually implementable in practice, but
it provides an upper-bound on the secret key rate obtainable for finite values of M . Notably, Fig. 1 shows that one
can get very close to this ideal scenario with only M = 12 random phases.
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Overall Alice-Bob loss (dB)
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This work, M = 4

This work, M = 6

This work, M = 8

This work, M = 12

Ideal case, M → ∞
Repeaterless bound [3]

Figure 1. Secret key rate for our discrete-phase-randomized protocol at different values of M , in comparison to fundamental
bound for repeaterless QKD systems − log2(1− η), where η is the overall Alice-Bob transmissivity.

In Fig. 2, we compare the results of our protocol with those of Ref. [13], one of the best performing TF-QKD
variants, in both the asymptotic [32] and finite-key [33] regimes. The comparison is interesting because the quantum
phase of Ref. [13] is almost identical to ours, the only difference being their use of continuous phase randomization in
test mode. Thus, Fig. 2 directly compares the performance of the discrete and continuous randomization approaches.
Remarkably, we obtain higher secret-key rates using discrete phase randomization, as long as one uses eight random
phases or more. This may sound surprising at first instance, but it is justified by the fact that, for the same value of
µ, we can obtain a tighter estimation of the phase-error rate in the discrete-phase version, thanks to the test-mode
phase postselection. This can be seen in Fig. 3(a), where we compare the upper-bound on the phase-error rate of the
two protocols for a fixed value µ = 0.06. In a practical setting, one would optimize over the value of µ, in which case
the two protocols result in similar bounds for the phase-error rate, see Fig. 3(b). But, this will be achieved at a higher
value of µ for our protocol, see Fig. 3(c), which results in a higher gain, see Fig. 3(d), and hence a higher secret-key
rate.

IV. CONCLUSION AND DISCUSSION

Most previous variants of TF-QKD have relied on the emission of weak laser pulses with a continuous random
phase, which is difficult to achieve and certify in practice. Here, we have proposed a practical TF-QKD variant that
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Figure 2. Comparison between the results of this work and those of Ref. [13], which uses continuous phase randomization in its
test-mode emissions. For simplicity, to compute the results in [13], we assume that Alice and Bob’s test-mode rounds provide
perfect estimates of the yield probabilities Ynm for n + m ≤ 4, while the rest are upper-bounded by one. This is an ideal
scenario and, as shown in [13], the results will be slightly worse once one considers the imperfect estimates that result from the
use of a finite set of decoy states, as we do for the results in this work.

uses discrete phase randomization instead. Its security proof relies on post-selecting the test-mode rounds in which
the users’ phase values exactly matched, which is not practically possible with a continuous randomization approach.
Consequently, our discretely-randomized protocol can actually result in higher key rates than an equivalent protocol
based on continuous randomization. This is interesting, given that discrete randomization is usually considered to be
a source flaw. In fact, previous analyses of decoy-state QKD with discrete randomization [18] obtained strictly worse
results than their continuous counterparts. Our security proof relies on a customised version of numerical techniques for
MDI-QKD protocols based on semidefinite programming, which has a substantially reduced complexity as compared
with the generic approach.

There are several ways by which we can improve our analysis to account for additional imperfections in a real
implementation. For instance, in our analysis, we assume that the users can modulate the phase of their pulses
precisely. It would be interesting to find out how they key-rate bounds change when the phase modulator, while fully
characterized, is imperfect. Also, we have considered the asymptotic regime in which Alice and Bob run the protocol
for infinitely many rounds. It remains an open question whether discrete randomization could still offer an advantage
in a finite-key setting. Since state-of-the-art numerical finite-key proofs can only prove security tightly against a
restricted class of eavesdropping attacks [34, 35], important developments are needed before we can rigorously answer
this question.

We note that, shortly after the first version of this manuscript was uploaded to the arXiv, Zhang et al uploaded
another manuscript [36] proposing an alternative TF-QKD protocol with discrete phase randomization. The main
difference seems to be that in our protocol, only two phases are encoded in key mode, while in their proposal, M
phases are encoded in the key mode, i.e. as many as in the test mode. This symmetry simplifies the phase-error rate
formula. However, while the secret key rate of our protocol increases with M , theirs approaches zero as M grows,
due to the sifting factor.
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Figure 3. Comparison between the value of some terms in our analysis, for the ideal case M → ∞, and the analysis in Ref. [13].
(a) Upper-bound on the phase-error rate, assuming a fixed value µ = 0.06. (b) Upper-bound on the phase-error rate, for the
value of µ that optimizes the key rate in each analysis. (c) Value of µ that optimizes the key rate in each analysis. (d) Key
mode gain for the value of µ that optimizes the key rate in each analysis.
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