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Abstract

Purpose: To verify the accuracy of volumetric arc therapy (VMAT) using the RapidArc™ device when switching
patients from one single linear accelerator (linac) to a paired energy and mechanics "twin" linac without
reoptimization of the original treatment plan.

Patients and Methods: Four centers using 8 linacs were involved in this study. Seventy-four patients previously
treated with the 6MV photon RapidArc™ technique were selected for analysis, using 242 measurements. In each
institution, all patients were planned on linac A, and their plans were verified both on linac A and on the twin linac
B. Verifications were done using the amorphous silicium electronic portal imager (EPID) of the linacs and were
analyzed with the EpiQa software (Epidos, Bratislavia, Slovakia). The gamma index formalism was used for validation
with a double threshold of 3 % and 3 mm with a measurement resolution of 0.39 mm/pixel, and a smoothed
resolution of approximately 2.5 mm.

Results: The number of points passing the gamma criteria between the measured and computed doses was
94.79 ± 2.57 % for linac A and 94.61 ± 2.46 % for linac B. Concerning the smoothed measurement analysis,
98.67 ± 1.26 % and 98.59 ± 1.20 % points passing the threshold were obtained for linacs A and B, respectively.
The difference between the 2 dose matrices acquired on the EPID was very small, with 99.92 ± 0.06 % of the
points passing the criteria.

Conclusion: For linacs sharing the same mechanical and energy parameters, this study tends to indicate that patients
may be safely switched from treatment with one linac to treatment with its twin linac using the same VMAT plan.

Background

New radiotherapy techniques aiming at improving target

coverage and protection of organs-at-risk have emerged

in the last decade. Intensity-modulated radiation therapy

(IMRT) improved dosimetric results compared with

3-dimensional conformal radiotherapy (3D-CRT) by

modulating the beam intensity for static gantry angles

[1–4]. After a development phase followed by a validation

process [5, 6], IMRT is now routinely implemented and

available for a growing number of patients. New quality

assurance procedures had to be designed for IMRT as the

complexity of optimization algorithm and technical

delivery were increasing. Software tools were developed

for quality assurance [7–9] and for treatment planning

systems [10, 11]. Guidelines on the technical and clinical

aspects of the validation of IMRT treatments were also

established [4, 12–15].

Volumetric arc therapy (VMAT), commercialized under

the names RapidArc (Varian) or VMAT (Elekta), is a re-

finement of standard IMRT which uses beam modulation

combined with a continuous or discrete arc motion of the

linac gantry around the patient. The resulting treatment

plan is often more complex than that of the standard

IMRT, which raises the question of the feasibility of

switching a patient treated with a VMAT plan computed

for a specific linac to a “twin” linac e.g. in case of repair or

maintenance. While it has been shown possible for 3D-

CRT and standard IMRT, no data is available regarding

this possibility with VMAT. We thus conducted a study in
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order to compare the accuracy of the actual patients’

VMAT plans optimized for a specific linac to the same

plans when radiotherapy is delivered on a “twin” linac.

Patients and methods

IMRT was implemented in four centers between 2001

and 2008, and more than 10 000 patients were treated

using this technique since. Data was collected on the

eight linacs (21 EX and 21 iX, Varian Medical System,

Palo Alto, CA) used to deliver IMRT treatments in

these centers. They were all equipped with 120 leaves

multi-leaf collimators (MLC) adjusted and verified by

the medical physicists so as to be equivalent regarding the

“sliding-window” delivery technique. Between 2008 and

2010, RapidArc options were installed on the linacs and

patients started to be treated with this modality. Otto

et al. [16] showed that the RapidArc combines dose-rate

modulation, gantry-speed modification and leaf position

to create a high-dose modulation during a single or few

rotations around the patient. Commissioning of the 8

linacs was carried out following the manufacturer’s sug-

gestions [17]. Given the higher number of parameters to

verify for the RapidArc technology compared to the static

gantry technique, it was important to know if the patients

could be switched from a linac for which the treatment

plan had been specifically optimized for a “twin” linac. All

linacs were equipped with amorphous silicon aS1000

(Varian) electronic portal imaging devices (EPIDs), which

allow portal-imaging dosimetry for IMRT verification [18].

In this study, we used EPIDs to validate the linac matching

and to investigate the possibility of switching a patient

from one linac to another without the need of re-

optimizing a new VMAT plan. At the time of the study,

the V8 version of ARIA did not allow the RapidArc

portal-dose predictions for comparisons with the image

measured on the AS1000. We then decided to use the

EpiQa software (Epidos, Bratislavia, Slovakia) for data

analysis, based on previous publications [19, 20].

Patients’ selection and study design

Seventy-four patients previously treated with RapidArc for

prostate (n = 10), head and neck (n = 30), pelvis (n = 20) or

miscellaneous (n = 14) cancers in four French oncology

centers (Institut régional du Cancer de Montpellier - ICM,

Montpellier, Institut de Cancérologie de la Loire, Saint

Etienne, and the ORLAM radiotherapy centers of Mâcon

and Villeurbanne) were included in the study between

2008 and 2010, and accounted for 242 measurements.

Consecutive patients were selected in each center,

independently of the quality assurance results of their pre-

treatment plan. Three centers each provided data for 10

prostate or pelvis cases plus for 10 head and neck cancer

patients, whereas the fourth center provided the 14

miscellaneous cancer cases. The dosimetric plans were

computed using Eclipse treatment planning system for a

specific linac (linac A). All the patients’ plans were then

verified through a quality assurance process on linacs A

and B, the latter having been adjusted by the physics team

to be similar during initial commissioning (see “Machine

matching”). Rotational treatment plans optimized for linac

A were delivered using linac A and linac B on a Silicium

detector attached to the gantry. The EPID measured the

collapsed plan dose in a 2-dimensional matrix, which was

then compared to the one computed in Eclipse on a

computer model of the phantom [19, 20]. The gamma

index formalism [21] was used for validation with a

threshold of 3 % and/or 3 mm, and the number of points

reaching these criteria was recorded for comparison. The

region of interest corresponded to the entire field with a

1 cm margin. A global gamma comparison method was

chosen. Since the anisotropic analytical algorithm calcula-

tion grid was 2.5 mm and the measurement resolution

was 0.39 mm/pixel, we adopted a smoothing analysis. A

Gaussian curve was applied to the measurements in order

to decrease the spatial resolution of the matrix to the one

computed in Eclipse, resulting in an acquisition matrix of

approximately 2.5 mm/pixel. A large range of photon

energies (6, 8, 18 and 25 MV) and maximum dose rates

(400 to 600 MU/min) were used to analyze if there was

specific energy or dose rate dependence of the measure-

ments. A comparison between the dose prediction and

dose calculation for linacs A and B was carried out. The

results of the plans irradiated with linacs A and B were

then compared.

Treatment planning

Optimization and calculations were done at center one

(20 patients) using the 8.0.5 version (PRO I) of the

Eclipse treatment planning system (Varian, Palo Alto,

USA), which only allowed a single arc. Results for the 10

prostate and the 10 head and neck cases were obtained

in late 2008 and early 2009. The three other centers

(2 to 4) used the 8.2.23 version of the Eclipse system,

which includes the second version of the progressive reso-

lution optimizer (PRO II) and allows an optimization for

one or two arcs. Prostate treatments were administered

with one arc whereas two arcs were used for other

pathologies.

RapidArc optimization was performed using the new

PRO algorithm that allows iterative changes to the

dynamic delivery variables (i.e. MLC, dose rate and gan-

try angular velocity) via a set of penalty functions. These

iterations were separated into five resolution levels. The

first represented the full arc with 10 control points

(mostly static fields). This number of control points was

then doubled plus one for each successive resolution

level, with the final arc including up to 177 control

points. As each new control point was added, the
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dynamic variables were interpolated from the two neigh-

boring points. The nature of this process meant that the

lower resolution levels were flexible to optimization

objective changes but gave a coarse representation of the

full arc, while the higher levels were less flexible but

gave a much more accurate representation of the full

dynamic arc.

Due to the increased time needed for optimization

using PRO I and PRO II, we adopted a strategy where

the set of constraints for a specific patient was searched

with the dose volume optimizer (DVO). The algorithm,

also used for sliding-window IMRT, is based on fluence

determination and any change in the constraints has a

direct impact on the dose-volume histograms during the

optimization. After a few iterations with the DVO, a per-

sonalized set of constraints for the specific patients was ob-

tained, which was used to facilitate RapidArc optimization.

As opposed to the DVO algorithm, machine parameters

were directly used during optimization with the PRO algo-

rithm. This could have an impact on the final results. In-

deed, the DVO algorithm generates a theoretical fluence

map at the end of its optimization process, which is con-

verted in an actual fluence by a sequencer including both

mechanical and dosimetric linac parameters. The actual

dose distribution was then computed on patient data

using the predicted fluence and this often resulted in dif-

ferences between the dose-volume histograms shown at

the end of the optimization process and those obtained

after the sequencer generated the fluence. With the PRO

algorithm, the dose-volume histogram results at the end

of the optimization process are usually very close to those

obtained after dose calculation. Dose calculation on

Eclipse used the anisotropic analytical algorithm with a

calculation grid of 2.5 mm.

Machine matching

Many parameters were checked to consider that two

linacs are matched together or form a “twin”-pair. The

first concerns relative dosimetric data. Depth dose

curves were identical (we applied a threshold of 0.5 %)

and special attention was given to small fields, especially

when the linacs were used for IMRT treatments. The dose

profiles were also checked to be as similar as possible, and

a focus on larger fields was necessary since tuning the

beam to obtain identical profiles was more difficult for

large fields. Dosimetric parameters were primordial

factors for the matching procedure. Machine calibration

was done in the same conditions and output factors did

not differ by more than 0.5 %. After these goals were

achieved and beam matching was obtained for 3D-CRT,

matching for IMRT also needed a fine MLC tuning and

leaf calibration to obtain equivalent results for both linacs.

Sharing the same MLC leakage transmission, the calibra-

tion of the dosimetric leave gaps was mechanically ad-

justed to obtain less than 0.5 % difference for the same

plan delivered on two different linacs. This method has

Fig. 1 Comparison tests for MLC and EPID calibrations. a Comparison of sliding window tests for verification of the dosimetric leave separation;
(b) picket-fence tests for leave positioning accuracy. The profiles were taken perpendicularly following the cross-hair axes display
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previously been described in the literature [4, 22, 23].

Furthermore, leaf transmission and dosimetric leave gaps

parameters were adjusted in the treatment planning

system to obtain similar measurements for the same

treatment plan, as described by Chauvet et al. [24].

Machine tests and patient quality assurance

Delivery measurements were acquired with the EPID of

the linacs using amorphous silicium (AS1000) and analysed

with the EpiQa software (Epidos, Bratislavia, Slovakia).

This program allows the conversion of a dosimetric image

acquired by an EPID into a dose map and to compare the

dose map with a reference dose distribution. It is possible

to use Epiqa for the verification of static and intensity

modulated fields.

The portal dosimetry image conversion to dose map

was based on the GLAaS algorithm as described by

Nicolini et al. [19].

Technical quality assurance for linacs A and B was

accomplished using the DICOM files provided by Varian

and following the process defined by Ling et al. [17].

The accuracy of the leave movements was tested using

the “sliding-window” and “picket fence” tests on differ-

ent gantry positions [22, 23, 25]. The results obtained

with linacs A and B were used to evaluate the quality of

the matching (Fig. 1). These tests provided a more quali-

tative than quantitative analysis, and were similar to the

Fig. 2 Global comparison of the predicted and effective dose distribution for the twin linacs with (a) and without (b) smoothing
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film dosimetry quality assurance, which has been used

for many years. A garden fence methodology was

followed to check the quality of these results [22].

Specific tests were done using the RapidArc to verify the

dose-rate, the gantry speed and the leaf speed variations

during rotation as to be assured of the consistency of

the two linacs.

Regarding the treatment plans, once the dosimetry

was finished, a quality control plan was realized using

the GlAas algorithm formalism [19], commercially avail-

able in the Epiqa software (Epidos, Bratislava, Slovakia).

A dose distribution on a virtual water phantom at the

depth of the maximum of the depth dose curve and a

distance of 100 cm to the source was calculated in

Eclipse. This verification plan, using the original parame-

ters (MLC and dose rate) was “collapsed” on an infini-

tesimal gantry rotation, generating a dose distribution of

the whole arc on a single plane, perpendicular to the

beam central axis. This dose distribution, calculated with

a resolution of 2.5 mm/pixel, was exported and

compared with the data acquired on the EPID (AS1000,

Varian Medical System, Palo Alto, CA, USA) during the

delivery of the real patients’ plan using the Epiqa

software. The GlAas algorithm was configured to con-

vert the images acquired without any build-up on the

EPID cassette into a dose at the depth of the maximum

of the depth dose curve (e.g. 1.4 cm for X6). The meas-

urement consisted of an acquisition of the real treatment

plan during the RapidArc delivery using the integrated

mode of the EPID. The detector was positioned at the

isocenter distance without any patient, phantom or

couch inside the beam. [20] Spatial resolution was an

important factor for the evaluation of the results. As the

detector provided a resolution of 0.39 mm/pixel, lower

than the 2.5 mm/pixel grid calculation in Eclipse, we

performed a second analysis using a Gaussian smoothing

method of 2 mm provided by the Epiqa software, in

order to have a comparison with similar spatial reso-

lution. Our tolerance level for acceptance of a treatment

plan was a 3 %-3 mm gamma index threshold with an

acceptance value of 95 % of the point passing these

criteria. For cases below the 95 % acceptance level, quali-

tative analysis could still lead to a quality assurance

validation. Using this data, we first compared linacs A

and B of each center calculating the difference between

dose-calculation and dose-measurement for the same

Fig. 3 Comparison of the predicted and effective dose distribution for the twin linacs by center. The X- and Y-axes represent the gamma index
result for a 3 %-3 mm analysis for linacs A and B, respectively, for a) center 1, b) center 2, c) center 3 and d) center 4
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treatment plan. Second, we compared the treatment

delivery using the measurements made with linac A

to those made with linac B. This evaluation excluded

all treatment planning system algorithm configura-

tions and was purely an indicator of the linac beam,

MLC and EPID parameters calibrations.

Results

Analysis of the “sliding window” and the “picket fence”

tests were made qualitatively by looking at the curve

correspondence on portal measurements. It showed a

good agreement between linacs A and B (Fig. 1). We took

a series of mechanical and imaging tests of the MLC using

the same DICOM file on the twin linacs, showing

equivalent results. First, the sliding window IMRT files

were used to measure absolute dose with an ionisation

chamber in a PMMA phantom to ensure proper calibra-

tion of the leaves on each MLC. Results were within 1%.

We then performed portal IMRT tests (e.g. chair, step

wedges or pyramid) and the difference for a gamma 3 %-

3 mm between the 2 linacs was less than 1 %. The specific

RapidArc quality assurance test results were concordant

with those described by Jorgensen et al. [26].

Concerning the patients treatment plans, the comparison

between measured and computed dose showed 94.79 ±

2.57 % of points passing the gamma criteria for linac A and

94.61 ± 2.46 % for linac B (Fig. 2a). For the smooth analysis,

we reached 98.67 ± 1.26 % and 98.59 ± 1.20 % for linacs A

Fig. 4 Over-modulation on measurement before smoothing. Profiles were taken perpendicularly following the cross-hair axes display
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and B, respectively (Fig. 2b). Regarding the ten head and

neck patients, the results were 94.03 ± 2.08 % and 94.20 ±

2.10 % with a measurement grid of 0.39 mm for linacs A

and B, respectively. Once again, a smoothed analysis im-

proved the results: 98.51 ± 1.39 % (A) and 98.59 ± 1.12 %

(B) of points passing a gamma ≤1 for 3 % or 3 mm.

For the prostate cancer patients, for whom the modu-

lation was much simpler, the results were 99.00 ± 0.48 %

for linac A, and 97.98 ± 0.59 % for linac B without

smoothing even for the plans optimized using the PRO

version (center 1). The results using the smoothing

method were 99.77 ± 0.31 % and 99.84 ± 0.16 % for the

linacs A and B, respectively. For patients with pelvic

cancer, results were 94.13 ± 2.44 % and 98.26 ± 1.19 %

for linac A, and 93.99 ± 231 % and 98.12 ± 1.23 % for

linac B, before and after smoothing, respectively. For

centers 2, 3 and 4, the quality assurance results on linac

A compared to those on linac B were good with a max-

imum difference of 1.9 % in the values obtained (Fig. 3b,

c, and d). For center 1, the maximal difference was 6.4 %

for a head and neck treatment delivered with a single

arc. This difference can be explained by the specificity of

verification using collapsed plans on 2D views and

because of an over modulation measured by the portal

imager (peaks on the blue line on Fig. 4), especially for

this complex case with a high modulation level. Adding

a second arc decreased the modulation level by arc, and

consequently allowed an improved result.

All plans but one passed the criteria of 3 % - 3 mm for

95 % of the points analyzed with the smooth evaluation

for the twin machines in the four institutes (Fig. 2b).

Regarding the dose distribution comparison test for

the same treatment plans acquired on different portal

devices, the differences between linacs A and B were

very small, 99.92 ± 0.06 % of points passing the criteria

(Fig. 5a). In this analysis, raw data with a 0.39 mm/pixel

resolution was used. This test is the most robust to com-

pare two matched linacs and showed excellent results

for all the participating centers (Fig. 5b).

Discussion

IMRT has the ability to deliver highly conformal dose

distributions to complex targets. In both static and rota-

tional IMRT, many parameters such as the leaf position,

dose rate and gantry speed have to be accurately

controlled by the treatment planning system in order to

achieve such coverage. Consequently, IMRT quality

assurance procedures have to be specifically developed,

using ionisation chambers, films or a 2D array [12, 27].

Although VMAT represents an evolution of IMRT, the

quality assurance process remains similar. Films and 2D

arrays are mostly used to compare the predicted and

measured doses, with results reaching the acceptation

criteria usually admitted [28–31]. More recently, the

use of EPIDs has made the quality assurance easier to

set up by taking out the need to use phantoms [32]. This

methodology, concerning IMRT quality assurance, was

adopted by many institutions [20, 32–35] Validation of

RapidArc treatments with EPIDs on 3 different matched

beam using Varian linacs was previously described by

Fredh et al. [36]. The effect of the gantry movement was

not found to significantly affect the results leading to the

use of EPIDs as a detector even in the rotational mode.

The results were quite similar even after segmenting

the 360° arc into multiple sub-arcs of 6° and 12° to

“collapse” the irradiation into a 2D measurement [20].

The consistency and reproducibility of VMAT plan

delivery were shown with 3 different quality assurance

systems by Chandraraj et al. [37].

Our study focused on the capacity of twin linacs to

deliver the same dose distribution from the same VMAT

Fig. 5 Comparison of the dose measurements between the twin
machines: global (a) and per center (b) results. Each dot on a ray
represents a value for patient measurement. The percentages of
points passing a gamma index of 3 %-3 mm are represented by the
different circle levels
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plan. The algorithm version of the optimiser was not in-

cluded in this comparison; only dosimetric and mechanical

tunings of the linacs were compared. Our results showed

good and equivalent results for all the centers, allowing the

possibility for a patient to be switched from one linac to

another without the need of repositioning a new plan,

provided that the beams and MLC are perfectly matched.

The percentage of points passing the gamma criteria

of 3 %-3 mm were similar to other studies using EPID

or films for quality assurance [38, 39], even if another

study has reported better results [40]. The value of the

gamma index highly depends on the spatial resolution

used for the analysis. Most of the publications showing

overall gamma values better than 99 % have used 2D

matrixes with a spatial resolution ranging from 5 to

10 mm, whereas EPIDs have a sub-millimeter resolution

of 0.39 mm/pixel. We performed a smoothed analysis to

render the resolution closer to a calculated planar dose.

Doing so, the results of the gamma index were signifi-

cantly improved. Another method could have been to

increase the spatial resolution of the calculation grid in

Eclipse to the lowest value proposed of 1 mm, but the

commercial hardware actually available could not carry

out this calculation on a real patient volume.

Conclusion

This study carried out on 8 linacs in 4 centers and for

different cancer types tends to indicate that it is possible

to treat a patient with the same VMAT plan on twin

linacs, provided that the linacs are perfectly matched.
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