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Abstract

We develop an analytical expression for twin nucleation stress in bcc metal and
alloys considering generalized planar fault energy and the dislocations bounding
the twin nucleus. We minimize the total energy to predict the twinning stress
relying only on parameters that are obtained through atomistic calculations,
thus excluding the need for any empirical constants. We validate the present
approach by means of precise measurements of the onset of twinning in bcc
Fe–50at%Cr single crystals showing excellent agreement. The experimental
observations of the three activated slip systems of symmetric configuration in
relation to the twinning mechanism are demonstrated via transmission electron
microscopy techniques along with digital image correlation. We then confirm
the validity of the model for Fe, Fe–25at%Ni and Fe–3at%V alloys compared
with experiments from the literature to show general applicability.

Keywords: bcc, twinning, DIC, molecular dynamics
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1. Introduction

A number of technologically important bcc alloys undergo twinning deformation as
summarized in the review articles [1–3]. Early works proposed the following twin nucleation
mechanisms in bcc metals: (i) the pole mechanism proposed by Cottrell and Bilby [4], (ii) the
slip dislocation interaction mechanism proposed by Priestner and Leslie [5], (iii) the dislocation
core dissociation mechanism suggested by Sleeswyk [6] and Lagerlof [7] and (iv) the edge
dislocation dissociation mechanism proposed by Ogawa [8]. We provide the twinning stress
equations for mechanisms (i), (iii) and (iv) in table 1. We also include the equations for the
(v) internal friction stress model [9] and (vi) the ideal twinning stress model [10] in table 1.
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Table 1. Predicted and experimental twinning stress for bcc Fe based on several twinning
mechanisms. The term τ represents the critical twinning stress, γsf represents the stable
stacking fault energy, γus represents the unstable stacking fault energy, γsf is the stable
stacking fault energy, b is the Burgers vector of the twinning fractional, d is the {1 1 2}
interplanar distance in a bcc crystal, µ is the shear modulus, γTBM is the twin boundary
migration energy and τo is an experimental constant.

Critical twinning stress Predicted (MPa) Experimental (MPa)
Mechanism/model expression bcc Fe bcc Fe

Pole Mechanism τ =
γus

b
7050 170

Dislocation core dissociation τ =
γsf

3b
2500

Edge dislocation dissociation τ = kt

µ

2π(1 − ν)
430

Internal friction stress τ = τo +
1.4γsf

d
7120

Theoretical τ =
πγTBM

b
1530

The pole mechanism (i) estimates the critical twinning stress, τ = γus/b, based on the
unstable stacking fault energy, which tends to be higher than the experimental value. For
example, τ = γus/b results in 7050 MPa (γus = 617 mJ m−2 for Fe [11, 12]) while the
experimental value for Fe is 170 MPa [13, 14].

The dislocation core dissociation (iii) mechanism listed in table 1 relates the critical
twining stress to the stable stacking fault energy,γsf(τ = γsf/3b) Based on this assumption
(γsf = 593 mJ m−2 for Fe [11, 12]), the twinning stress for Sleeswyk’s three-fold mechanism
is estimated to be 2500 MPa for bcc Fe.

The edge dislocation dissociation mechanism (iv) results in an equation of the form
τ = ktµ/2π(1 − ν), where µ is the shear modulus and ν is the Poisson’s ratio of the bcc
crystal. The mechanism is based on the dissociation of a perfect slip dislocation into three
fractional dislocations that rearrange to form a twin, and predicts a twinning stress magnitude
of 430 MPa. The term kt which appears in this formulation denotes the frictional stress to
dislocation glide, and can be fitted only from experiments.

The internal friction stress model (v) considers a twin to nucleate when the applied stress
exceeds a critical value τo representing the Peierls stress. With the values for τo, γsf and d

taken, respectively, as 1400 MPa, 593 mJ m−2 and 1.2 Å in the equation τ = τo + 1.4γsf/d , we
obtain a twinning stress of 7120 MPa for bcc Fe. The parameter d in the above equation is the
{1 1 2} interplanar spacing and γsf is the energy corresponding to the first layer twin stacking
fault (to be shown later).

Finally, the theoretical (ideal) twinning stress (vi) can be calculated from the generalized
plane fault energy (GPFE) curves with respect to the shear displacement and is in the form
τ = πγTBM/b, where γTBM is the difference between the unstable twin fault energy, γut, and
the stable twin stacking fault energy, 2γtsf . However, in the case of pure Fe, this yields to the
theoretical twinning stress of 1530 MPa, which is an order of magnitude higher compared to
the experimental value.

Overall, the difference between the theoretical twinning stress and the experimental one
is substantial, which warrants further investigation into the problem. There are several
requirements for a correct estimation of the twinning stress: the first requirement is the
consideration of the precise energy path traced by the dislocations leading to the twinning
nucleus; the second is the determination of the elastic energy of a multi-layer dislocations
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arrangement. The present model considers the GPFE curve prescribed over the atomic
displacements to create the twin nucleus, and the mutual interaction of the fractional
dislocations and their elastic energies. We therefore construct an overall energy expression
and obtain the twinning stress in bcc metals in excellent agreement with experiments. Since
the parameters are derived from atomistic simulations, empirical constants are not necessary.

In addition to the twin stress modeling, we need to precisely determine experimentally
the twin nucleation stress. Utilizing novel experimental digital image correlation (DIC)
techniques, single-crystal orientations and high-resolution microscopic observations, we
validate the modeling efforts with experiments. We make precise measurements of the onset
of twinning in Fe–50%Cr single crystals using DIC for a number of crystal orientations,
and establish the critical twinning stress. The experimental observations in conjunction with
transmission electron microscopy (TEM) measurements show the activation of a three-fold
symmetric slip system conducive to twinning. The dislocation arrangements with twinning
employed in the present analysis are discussed in the following sections.

1.1. Dislocation arrangements in twinning

Under an applied stress, twinning in bcc metals occurs when three fractional dislocations
lying on three {1 1 2} planes translate along the most stressed {1 1 2} plane (figure 1). The
⟨1 1 1⟩ core structure has been studied extensively in bcc crystals [15–20] employing different
atomistic methods, and core spreading has been taken into consideration. Of the possible core
structures, the [1 1 1] core of an (a/2)⟨1 1 1⟩ dislocation is considered to dissociate into three
(a/6)⟨1 1 1⟩ fractional dislocations as follows:

a

2
[1 1 1]screw → 3 ×

a

6
[1 1 1].

As Vitek [20] pointed out, unlike the metastable partial dislocations in fcc metals, the
fractional dislocations in bcc are associated with an unstable fault energy. The three fractional
dislocations possess a configuration symmetric to the ⟨1 1 1⟩ screw axis as illustrated in
figure 1(a). The configuration is stable under zero external stress. However, under an
applied stress, the dislocations translate along the most stressed {1 1 2} plane (in twinning
sense) to create a three-layer twin as shown in figures 1(b) and (c). Theoretical calculations
predict the width (w) of the (a/2)⟨1 1 1⟩ dissociated core in bcc crystal to be 1b−2 b, where
b = ((

√
3a)/2). This leads to the calculation of the separation distance (x) between any pair

of fractional dislocations in figure 1(a) to be larger than 2d{1 1 2}, where d{1 1 2} is the {1 1 2}

interplanar distance. Under the applied stress, dislocations A and C separated by a distance
larger than 2d{1 1 2} cannot cross slip on the adjacent {1 1 2} plane parallel to the B plane as
it creates a high-energy fault. Therefore, dislocation A initially glides on its (1 1 2) plane
followed by dislocation C on the (1̄ 1 2) plane. This process is referred to as core width
adjustment [7], and is shown by the arrows in figure 1(a). When the two dislocations A and C

lie on consecutive {1 1 2} planes parallel to the B plane as a result of the glide, they eventually
cross slip to form a stable three-layer fault (twin). Experimental observations in Fe–50at%Cr
single crystals in our present study show the activation of the {1 1 2} slip on the most favorable
slip plane followed by other systems. Twin nucleation can occur after three-fold slip systems
are present at higher stresses.

1.2. Twinning energy landscape (GPFE)

In bcc metals, twins are multi-layer stacking faults created by the passage of bp = (a/6)⟨1 11⟩
dislocations (‘a’ is the bcc lattice constant) on successive {1 1 2} planes [21]. Figure 2
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Figure 1. (a) the dissociated (a/2)[1 1 1̄] dislocation with fractional dislocations on
{1 1 2} planes represented as A, B and C(b) dislocation configuration on the verge of
twinning (rc = 0) (c) three-layer twin nucleus moving on the (2 1̄ 1) plane.

illustrates the sequential process of shearing the consecutive {1 1 2} planes of a bcc crystal to
form a twin. Glide of the first bp = (a/6)⟨1 11⟩ dislocation on the {1 1 2} plane creates a one-
layer stacking fault, and the second and third dislocations on successive {1 1 2} planes create
two- and three-layer stacking faults, respectively. Further glide of the dislocations (beyond the
third layer) on successive {1 1 2} planes represents twin growth. As shown in figure 2, when
the layers F–F of a perfect bcc {1 1 2} stacking sequence are translated through a displacement
of bp = (a/6)⟨1 11⟩ relative to the bottom layers A–E, a one-layer stacking fault is created.
Similarly, a successive translation of layers A–F followed by layers B–F creates two-layer and
three-layer stacking faults, respectively.

The thinnest, stable multilayer stacking fault on the {1 1 2} plane is a three-layer fault,
and can be considered to be the twin nucleus [22, 23]. The increase in additional faults is
considered to be twin growth where fault energies remain unaltered during the process. The
processes of twin nucleation and growth are distinctly governed by different regions of the
GPFE curve [24]. The distinction between these processes is crucial because twin nucleation
requires much higher stress than that for growth. It is worth emphasizing that the energy
values in figure 3 do not depend on the atomic arrangement for a disordered Fe–50at%Cr alloy
(bcc), similar to other bcc alloys considered in the present analysis. This is because MD uses
a representative volume consisting of a large number of atoms (in the thousands), and the
positions of the substitutional atoms do not affect the energy parameters.
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Figure 2. {1 1 2}⟨1 1 1⟩ stacking sequence in a bcc crystal. Atoms on different {1 1 2}
planes are represented by different colors. The arrows indicate the passage of the
dislocation on successive {1 1 2} planes creating one-layer, two-layer and three-layer
stacking faults, and the intermediate structures (Adapted from [24]).

2. The current approach

2.1. Atomistic simulations

In the present work, the GPFE curve for Fe–50at%Cr was determined with the MD technique
employing the embedded atom method (EAM) potential [25]. In order to generate an alloy
model for Fe–50at%Cr, a parallel simulator code was written to create 5040 atoms consisting
of two atom types (NFe = 2520, NCr = 2520). The atom types were assigned randomly in
the simulation box, but following the bcc crystal coordinates so that the two atomic positions
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Figure 3. GPFE for Fe–50%Cr at various normalized shear displacements on successive
{1 1 2} planes calculated in the present study. The normalized displacements and the
stacking fault energies corresponding to twin nucleation and twin growth are shown.
The dashed lines show the sinusoidal fit to the GPFE response obtained from atomistic
calculations.

do not overlap. The box edges were oriented along the [1 1 1], [1 1 2̄] and [1̄ 1 0] directions.
During energy calculations, periodicity was invoked across the box in the [1 1 1] and [1̄ 1 0]
directions. Molecular statics was used to relax the perfect crystal at a temperature of 10 K to
confirm that the crystal was stress free before shearing. To obtain the first layer stacking fault
energy value using LAMMPS [26], we first divided the simulation box into upper and lower
regions in the ⟨1 1 2⟩ direction. We then rigidly displaced all the atoms in the upper region
with respect to the lower region by a displacement of bp. Similarly, to obtain the second-layer
fault energy, a new upper region was defined that consisted of only the atoms above but not
including the already sheared {1 1 2} first layer fault. The new region was then displaced by
2bp. A similar procedure was repeated to obtain the third, fourth and fifth twin layers. The
specifics to carry out these procedures can be found in detail in the LAMMPS manual. We
partially minimized the sheared crystal in the ⟨1 1 2⟩ direction. This is important to maintain
the atoms at their relevant positions, otherwise the atoms move to stable energy positions near
the fault during relaxation. If Es is the energy of the deformed lattice corresponding to a shear
displacement of ux /bp, and Eo is that of the perfect lattice, then the stacking fault energy can
be calculated as [27]

γ =
Es − Eo

A{1 1 2}

,

where A{1 1 2} is the area of the {1 1 2} plane of the simulation box.
It is important to note that 5040 atoms were large enough to obtain the converged GPFE

values. This was verified with independent simulations with number of atoms ranging from
400 to 2 776 586.
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The GPFE curves for other bcc alloys were obtained in a similar manner employing various
potentials [28–30]. The potentials used in the present calculations yield physical properties
[25, 28–31] (such as elastic constants, lattice parameters, cohesive energy, solid solution lattice
parameters, etc), in reasonable agreement with the experimental data [32, 33] or other empirical
methods and DFT calculations [34, 35].

Figure 3 illustrates GPFE for the Fe–50 at%Cr alloy where γ twin
usf is defined as the unstable

stacking fault energy and represents the energy barrier that the (a/6)⟨1 1 1⟩dislocation must
overcome to create the first-layer stacking fault. Similarly, γsf is the stable stacking fault
energy, γut is the unstable twinning fault energy, γTBM is the twin migration energy and 2γtsf is
the stable twin stacking fault energy. It has been observed in our calculation that γut does not
change beyond the third layer. Figure 3 also demonstrates that the sinusoidal series fit (shown
by the dashed curves) can accurately capture the GPFE response. The fitting equations will be
discussed later.

2.2. Experimental procedures and observations

Single crystals of Fe–50at%Cr with loading axes parallel to the [1 1̄ 1], [1 0 1] and [0 1̄ 0]
orientations were used to study the evolution of twinning. The Bridgeman technique was
employed to manufacture the samples in an He atmosphere. The samples of dimensions
4 mm × 4 mm × 10 mm were cut using electro-discharge machining (EDM). Electron back
scattering diffraction (EBSD) was used to determine the normal and transverse orientations of
the samples. The samples were solution annealed at 900 ◦C for 1 h, and water quenched prior
to loading. Displacement and strain-controlled experiments were conducted for compressive
and tensile tests, respectively, using a servo hydraulic load frame at room temperature at a
strain rate of 5 × 10−3 s−1. The DIC technique, combined with scanning electron microscopy
(SEM), was used to study the nucleation of slip and the evolution of twinning at different points
of the loading curve as illustrated in figure 4. Ex situ high-resolution images (0.44 µm/pixel)
were obtained utilizing an optical microscope. The high-resolution DIC strain measurements
elucidated the onset of slip, twin nucleation and twin growth at different points of the loading
curve. For higher-resolution microstructural studies, TEM was employed. For TEM work,
1 mm thick slices were cut parallel to the loading direction of the crystal and then mechanically
ground and polished down to a foil thickness of 100 mm. Large electron-transparent areas
were obtained by conventional twin-jet electropolishing with an electrolyte consisting of
5 pct perchloric acid in methanol. Electropolishing was done at a temperature of −23 ◦C
and a potential of 21 V. Whenever possible, two-beam imaging conditions were employed for
imaging. The burgers vectors were determined using the g · b = 0 invisibility criteria. Also,
the line directions of the dislocations were determined by tilting to different orientations. In
the current paper, we present the extensive TEM and DIC results only for [1 1̄ 1] compressive
loading to identify the activated twinning systems. The experimentally observed twin systems
listed in table 2 for [0 1̄ 0] and [1 0 1] orientations were identified using a similar procedure.

Figure 4 shows the stress–strain response of Fe–50 at.%Cr single crystal subjected to
compression in [1 1̄ 1] orientation. High-resolution DIC measurements reveal slip on the
[1̄ 1̄ 1](2 1̄ 1) system (Schmid Factor(SF) = 0.30) at a critical resolved shear stress (CRSS, τ s)
of 88 MPa (inset marked A). The twin develops on the same system when the strain reaches
1.1% and is characterized by a sudden drop in the load. The nucleation of the twin occurred
at a CRSS (τT) of 202 MPa.

An examination of the TEM images of figures 5(a) and (b) and the optical image of figure 6
for the case of [1 1̄ 1] compressive loading orientation shows evidence of the activated {1 1 2}

slip systems (shown by dashed colored lines) prior to twinning. It is important to note that
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Figure 4. Stress–strain curve for a Fe–50 at.%Cr single crystal under [1 1̄ 1] compressive
loading corresponding to six different tests. The DIC images marked A and B show
the nucleation of (2 1̄ 1)[1̄ 1̄ 1] and (1 2̄ 1)[1 1 1] (SF = 0.30) slip and the onset of
twinning on the same systems, respectively.

Table 2. Experimentally observed slip systems and their corresponding SF for a
Fe–50 at.%Cr single crystal subjected to tensile and compressive loading in different
orientations. The activated slip systems possess symmetric configuration which is
consistent with the bcc twinning mechanism proposed in this work.

Loading orientation Activated systems SF Observed twin τT (MPA)

Compression [1 0 1] [1 1 1](2̄ 1 1) 0.24 [1 1 1](1 2̄ 1) 194 ± 8
[1 1 1](1 2̄ 1) 0.47
[1 1 1](1 1 2̄) 0.24

[1 1̄ 1] [1̄ 1̄ 1](2 1̄ 1) 0.30 [1̄ 1̄ 1](2 1̄ 1) 203 ± 13
[1̄ 1̄ 1](1̄ 2 1) 0.15
[1̄ 1̄ 1](1 1 2) 0.15

Tension [0 1̄ 0] [1 1̄ 1](2 1 1̄) 0.24 [1 1̄ 1](1 2 1) 177 ± 13
[1 1̄ 1](1 2 1) 0.47
[1 1̄ 1](1̄ 1 2) 0.24
[1̄ 1 1](1 1̄ 2) 0.24 [1̄ 1 1](1 2 1̄ )

[1̄ 1 1](2 1 1) 0.24
[1̄ 1 1](1 2 1̄ ) 0.47

the TEM images in figure 5 are essentially meant to elucidate the three symmetric {1 1 2}

slip planes activated under different loading orientations (consistent with figure 1(a)), and not
to demonstrate the entire twinning mechanism. It is worth emphasizing that other slip/twin
systems are also activated under these loading orientations; nevertheless, we emphasize only
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Figure 5. (a) TEM image of a Fe–50%Cr single crystal illustrating the activated
{1 1 2}⟨1 1 1⟩ slip systems (shown by dashed colored lines) under [1 1̄ 1] compressive
loading. The image was recorded under multi-beam conditions to bring the dislocations
from different systems into contrast. (b) Twinning is observed on the (2 1̄ 1)[1̄ 1̄ 1]
system corresponding to the highest SF of 0.30 for the same loading orientation.
The inset shows the corresponding diffraction pattern (lower right image), where the
subscripts M and T denote matrix and twin, respectively. The electron beam is parallel
to [1 1 0]M .

those systems belonging to a distinct three-fold symmetric configuration. Twinning is observed
on the [1̄ 1̄ 1](2 1̄ 1) (SF = 0.30) system, which corresponds to the maximum resolved
shear stress system for [1 1̄ 1] compressive loading. In addition to the [1̄ 1̄ 1](2 1̄ 1) system
(SF = 0.30), the low SF [1̄ 1̄ 1](1̄ 2 1) (SF = 0.15) slip system is also observed to activate
during loading.

3. Modeling of the twin nucleation stress

We analyze the elastic interactions of the dislocations forming the twin nucleus at a mesoscale
and incorporate the GPFE obtained at an atomistic level (MD) to predict the twinning stress. We
therefore employ the following findings in our analysis corresponding to two different length
scales: (i) (a/6)⟨1 1 1⟩ fractional dislocations in a bcc lie on the three symmetric {1 1 2}

planes as shown in figure 1(a), (ii) the (a/6)⟨1 1 1⟩ fractional dislocations under external stress
gradually reorient themselves along the most stressed {1 1 2} plane to attain a stable three-layer
stacking fault (twin) as shown by figures 1(b) and (c) and (iii) the (a/6)⟨1 1 1⟩ dislocations
have to overcome an energy barrier to nucleate a twin that is quantitatively represented by the
GPFE. We then develop an analytical expression to determine the twin nucleation stress in bcc
metals. We do so by differentiating the total energy of the dislocations of the twin nucleus
with respect to their positions rA and rB (see figure 1(c)).

Figure 1(b) depicts the arrangement of the (a/6)⟨1 1 1⟩ dislocations on the verge of
twinning. The total energy of the configuration in figure 1(b) can be expressed as the summation
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Figure 6. Micrograph of a Fe–50 at.%Cr single crystal illustrating the activated
{1 1 2}⟨1 1 1⟩ slip systems possessing a three-fold symmetry configuration (shown by
the dashed colored lines) under [1 1̄ 1] compressive loading. Twinning is observed on
the (2 1̄ 1)[1̄ 1̄ 1] system corresponding to the highest SF of 0.30 for the same loading
orientation.

of (i) the energy due to elastic interactions of the dislocations forming the twin nucleus, (ii)
the line energies of all dislocations and (iii) the twinning energy landscape traversed by the
dislocations represented by the area under the GPFE curve (iv) minus the work done by the
resolved shear stress. The total energy can be expressed as

Etotal = Einteraction + Eline − WT + EGPFE. (1)

If we consider the interaction of every (a/6)⟨1 1 1⟩ dislocation with every other dislocation
forming the twin nucleus, then the interaction energy of the configuration in figure 1(b) can be
expressed as

Einteraction = −
G{1 1 2}⟨1 1 1⟩b

2
p

2π

(

ln

[

rB − rA

ro

]

+ ln

[

rB

2ro

]

+ ln

[

rA

ro

])

, (2)

where G{1 1 2}⟨1 1 1⟩ is the shear modulus on the activated {1 1 2} plane, bp is the burgers vector
of the twinning dislocation, rA and rB are the equilibrium positions of the dislocations under
applied stress and ro is the equilibrium position under zero external stress. Since the potentials
in the present study predict the elastic constants in good agreement with the experimental
values, we utilized them further to calculate the shear moduli G{1 1 2}⟨1 1 1⟩ of Fe, Fe–50at%Cr,
Fe–25at%Ni and Fe–3at%V as 40 GPa, 61 GPa, 31 GPa and 57 GPa, respectively.

The energy contribution due to the GPFE curve in figure 3 can be divided into two parts:
(i) the energy required to create a stable stacking fault, γsf , and (ii) the energy required to
nucleate a twin. The energy due to the GPFE curve can expressed as

EGPFE = Esf + Etwin. (3)

Equation (3) reveals that different regions of the GPFE curve are associated with slip and
twinning processes. The rationale behind the decomposition is that slip and twinning are
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competitive mechanisms [3, 24], and Esf does not contribute to twin nucleation. In order to
elucidate their role quantitatively, we express γGPFE using sine analytical functions as follows:

γsf(λ(x)) = γ twin
us sin[0.3πλ] for 0 ! λ < 1.5 λ(x) =

ux

bp
,

γsf(λ(x)) =
1

2
(γ twin

us + γsf) +

(

γ twin
us −

γ twin
us + γsf

2

)

sin[2π(λ(x)) − 1.25]) for

1.5 ! λ(x) < 2,

γtwin(λ(x)) =
1

2
(γut + γsf) +

(

γut −
γut + γsf

2

)

sin[2π(λ(x) − 1.21)]) for 2! λ(x) < 2.5,

γtwin(λ(x)) =
1

2
(γut + 2γsf) +

1

2
(γut − 2γtsf) sin[2π(λ(x) − 1.22)]) for 2.5 ! λ(x) < N.

In the above equations, λ is the normalized shear displacement of the two halves of
the crystal due to the passage of the dislocation bp = a/6⟨1 1 1⟩. We express the energy
contributions Esf and Etwin of the GPFE curve as follows:

Esf =

∫ rA

0
γsf dx, (4)

Etwin =

∫ rA

0
γGPFE dx−

∫ rA

0
γsf dx. (5)

In the above expressions, Esf is the area under the γsf curve and represents the energy required
by the (a/6)⟨1 1 1⟩dislocation to overcome the unstable stacking fault energy barrier γut to
create a stable stacking fault. Similarly, Etwin is the area under the γtwin curve and represents
the energy required by the (a/6)⟨1 1 1⟩dislocation to overcome the twin nucleation barrier γut

in order to create multi-layer stable stacking faults (twin). The energy contribution due to the
twin nucleation barrier γut can be interpreted as the sum of the twin boundary formation energy
and twin boundary migration energy as follows [10]:

γut = 2γtsf + γTBM. (6)

The justification behind the above expression is that in order to extend the boundary of a stable
stacking fault by one layer, the (a/6)⟨1 1 1⟩ dislocation has to overcome the energy barrier
represented byγTBM. The newly formed layer will have a stacking fault energy equal to 2γtsf .
This implies that once a twin is nucleated, the stable energy corresponding to the three-layer
fault (twin) is 2γtsf . This stable energy value 2γtsf does not change when new faults are created
by the passage of additional fractional dislocations on the parallel {1 1 2} planes consecutive
to an already existing fault.

The applied resolved shear stress τRSS helps to overcome the twinning energy barrier. The
work done in moving dislocation A from its equilibrium position ro to the final position rA and
dislocation B from 2ro to rB on the verge of twinning (rc = 0) in figure 7 is given by

Wτ =
1

2
τRSSb(rA − ro) sin[2α] −

1

2
τRSSb(rB − 2ro) sin[2α], (7)

where α is the angle between the stress axis and normal to the twin plane.
The interaction energy between dislocations as a function of the separation distance (R)

can be expressed as the increase in the energy of the system when the dislocations are brought
together from some arbitrary value Ra to a final separation distance R [36]. At zero external
stress, the dislocations A, B and C in figure 7 are initially separated by a distance ro [6]. Under
external stress, the separation distance between fractional dislocations A and B is rB − rA, and
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Figure 7. Positions of the dislocations A and B under zero external shear stress and
with an applied shear stress. The separation distance between the dislocations A and B

is d on the verge of twinning(rc = 0).

that of A and C is rA with the partial dislocation C being located at rc = 0. Following Hirth
and Lothe [36], the total energy of the partial dislocations in figure 7 can be written as

Etotal = −
Gb2

2π

(

ln

[

rB − rA

ro

]

+ ln

[

rB

ro

]

+ ln

[

rA

ro

])

+ nαGb2 − τRSSb(rA − ro)

−τRSSb(rB − 2ro) +

(∫ rA

0
γGPFE dx −

∫ rA

0
γsf dx

)

, (8)

where nαGb2
p is the total line energy of the n dislocations (n = 3 in the present analysis). The

value of α is taken to be 0.5 [37]. The details of each of the energy terms in equation (8) can
be found elsewhere [27, 38–41]. We minimized the total energy expression by differentiating
it with respect to rA and rB (refer to appendix A1 for the calculations) to numerically solve for
the positions of dislocations A and B on the verge of twinning. Having determined positions
rA and rB , we calculated the separation distance d between the dislocations and derived an
analytical expression for critical twin nucleation stress τcritical as follows:

τcritical =
1

b

{

γ
′

twin −
Gb2

2π

(

3 − 2
√

3

(
√

3 − 1)d

)}

. (9)

γ
′

twin in equation (9) is obtained by the differentiation of Etwin in equation (5) with respect to
the position rA and can be written as

γ
′

twin =

(

γut −
γut + γsf

2

)

sin 2π [2.5 − 1.21] +
1

4
(2γut − 2γtsf) sin 2π [N − 1.22], (10)

where N corresponds to the number of layers of the twin nucleus (N = 3 in the present
analysis). Expressions (9) and (10) reveal that the critical stress required for twinning in
bcc metals depends on the fault energies γsf , γut, 2γtsf , the shear modulus G{1 1 2}⟨1 1 1⟩and
the distance d between dislocations A and B on the verge of twinning, i.e. τcrtical =

τ (γsf , γut, 2γsf , G, d). These parameters can be obtained by means of atomistic calculations,
thus eliminating the need for any empirical constants in our analysis. It is important to note
that the twinning stress expression (9) does not incorporate the strain rate dependence.
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Figure 8. Predicted and experimental [9, 30–32, 38] (including present results on
Fe–50 at.%Cr) twinning stresses for Fe and Fe-based bcc alloys. The results for
Fe–50 at.%Cr is an average of 19 tests. The magnitude of the twinning stresses predicted
using our analysis is in close agreement to the experimentally measured values. Dashed
lines are shown to aid the eye.

4. Results and discussion

Figure 8 represents the predicted and experimental [3, 9, 13, 14, 42] twinning stresses for a
number of Fe-based bcc alloys. We compare our results with the experimental data showing
excellent agreement. We observe the trend of the magnitude of twinning stresses for FeCr
alloys using our analysis and experiments, and we conclude that an increase in the chromium
content increases the twinning stress. The increase in twinning stress can be attributed to an
elevated γTBM for alloys with relatively higher chromium content. In particular, the present
modeling explicitly illustrates the dependence of the twinning stress on the important GPFE
parameters (γsf , γut, 2γtsf), which, in fact, could not be captured by other twinning mechanisms,
including Sleeswyk [6]. Evidently, figure 9 shows that the nucleation stresses are higher for
alloys with higher γTBM to first approximation; however, the critical twinning stress depends
on several other parameters as well, represented by equations (9) and (10). Table 3 shows
the predicted stacking fault energies for Fe and Fe-based alloys where the fault energies are
higher for Fe–50at%Cr compared to Fe obtained through the same FeCr potential. In the
present work, we mentioned that γut is the sum of the twin boundary formation energy 2γtsf

and twin boundary migration energy γTBM. In order to create a new layer of the stacking fault,
the (a/6)⟨1 1 1⟩ dislocation has to overcome the energy barrier represented by γTBM. With
an increase in γTBM, the stress required to create the additional fault increases. Therefore,
the higher twin nucleation stress in Fe–50at%Cr compared to pure Fe can be attributed to the
increased γTBM of Fe–50at%Cr. The increase in γTBM may be the result of a local distortion
in the arrangement of atoms when substitutional Cr atoms are introduced in the crystal [35].
Atomistic simulations and experimental observations have also been shown to increase the
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Figure 9. The dependence of the twinning stress on γTBM for Fe and Fe-based bcc
alloys based on the present analysis. Experimentally measured twinning stresses are
also presented. Dashed lines are shown to aid the eye.

Table 3. Predicted fault energies of a twin boundary using EAM potential for different
metals. The units of fault energies are in mJ m−2.

Metals γ twin
us γsf γut 2γtsf γTBM

Fe (bcc) 617 593 628 588 40
Fe–50 at.%Cr 752 695 759 717 42
Fe–25 at.%Ni 525 464 549 454 95
Fe–3 at.%V 615 546 596 557 39

resistance of the dislocation glide through the crystal with an increase in the Cr content [35].
This contributes to a higher twin nucleation stress in such alloys.

To make our analysis more realistic, we focus on predicting the twin nucleation stress
in pure Fe and an FeCr alloy with a relatively high Cr content (50%) where the propensity
of twinning is higher. Twins have also been observed experimentally in FeCr alloys with
lower concentration of chromium (1%–3%) [43]; however, atomistic observations of low
Cr content (11% and 20%) FeCr alloys [35] have shown that slip on the {1 1 0} planes is
primarily the favored deformation mechanism, and it is possible that twins may not be observed
in such alloys (except at low temperatures). Throughout this work, we carefully selected
the Fe–50at%Cr single-crystal orientations in order to activate multiple twin systems. The
experimental observations show that twinning is of paramount importance in the mechanical
behavior of Fe–50at%Cr alloys at room temperature since twins nucleate in the early stages of
deformation. For example, in [0 1̄ 0] tensile orientation, twins nucleate in the ‘elastic’ region
of the stress–strain curve, and for [1 1̄ 1] and [1 0 1] compressive orientations, twins nucleate
approximately below 2% of the total deformation.
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Table 4. Comparison of twinning stresses obtained through different methods. Present
model yields twinning stresses very close to the experimental values.

Metals τ
exp
critical τ ideal

critical τ current
critical

(bcc) (MPa) (Experimental) (MPa) (Theory) (MPa) (Present model)

Fe 170a 1530b 190
Fe–50 at.%Cr 203 ± 13 1600b 218
Fe–25 at.%Ni 398c 3580b 377
Fe–3 at.%V 90d 1490b 109

a Harding et al [13, 14].
b Approximate calculations based on Ogata et al [10].
c Nilles and Owen [9].
d Suzuki et al [48].

We note that there is no evidence of σ phase (spinodal decomposition product) based
on extensive TEM analysis (see figure 5). In the present work, the high temperature was
selected in the cubic-α (bcc) region with subsequent quenching, and the room temperature
microstructure is the α phase in its entirety. The formation of the σ phase requires incubation
time in the σ region of the phase diagram [44–47]. Therefore, our theoretical analysis has
been applied to the alloys where the predicted twinning stress is physically consistent with the
microstructure. It is worth pointing out that in the case of aging, the Fe–50%Cr alloys undergo
spinodal decomposition [45–47] consisting of Fe-(α1) and Cr-(α2) rich phases, and twins have
been observed in such alloys. The twins are believed to originate and reduce the increased
lattice friction associated with the α2 phase [44], which may eventually cause the α1 phase to
deform by twinning as well. No aging is undertaken in this study, and hence no compositional
gradients are developed.

Twinning is observed to be the only mode of deformation in Fe–25 at.%Ni massive
martensite at low temperatures and is confined to the {1 1 2} planes, similar to most bcc
metals [9]. Nilles and Owen adopted the bcc pole mechanism [4] to model the twinning stress
in Fe–25 at.%Ni. Accordingly, the authors were able to forward a number of experimentally
observed results such as the weak dependence of the twinning stress on the temperature and
the effects of the grain size on the twinning stress. The experimentally reported twinning
stress by Nilles and Owen for Fe–25 at.%Ni is close to the twinning stress predicted by the
present theory, as illustrated in table 4. Similarly, the works of Suzuki and Tanino [48] on bcc
Fe–3 at.%V reported the activation of the twins with the highest SF under compression. The
twins were observed to nucleate approximately at 90 MPa, whereby the growth was assumed to
occur through the bcc pole mechanism. With our present analysis, the twinning stress for Fe–
3 at.%V is predicted to be 109 MPa, thus reflecting a close agreement with the experimentally
observed value.

The twinnability approach has been forwarded for fcc metals [49] and extended to bcc
metals [50]. This approach is useful in explaining the competition between slip and twinning,
and the favorability of one over the other. The present analysis can also be used to study the
competition between twinning and slip by emphasizing the role of the energy parameters γ twin

us
and γTBM. The present calculations (refer to appendix A2) show that twinning is preferred to
slip as a deformation mechanism in alloys documented in the present study.

In the present approach, we established an important relation to determine the critical
twinning stress in bcc metals. The analysis reveals that the twinning stress at a continuum
level can be accurately determined with the combined knowledge of the dislocation interactions
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Figure 10. Generalized stacking fault energy (GSFE) of pure bcc Fe obtained through
Mendelev et al [23] potential and DFT [41]. The energy profile calculated using the
empirical potential is consistent with the one obtained through first principles DFT. The
GSFE is calculated by displacing one half of the crystal with respect to the other half
by a displacement of (a/2)⟨111⟩ on {1 1 2} plane.

at a mesoscale level and the energy landscape associated with the glide of the dislocations at
an atomic level. The knowledge of the energy landscape for deformation twinning, which is
quantitatively represented by the GPFE, essentially captures the twin nucleation process in bcc
metals. The heterogeneous twin nucleation mechanism incorporated with the energy traversed
by the dislocations during twin nucleation process predicts the magnitude of the twinning stress
in close agreement with the experimentally measured values.

Figure 10 shows the stacking fault energy values for pure bcc Fe obtained through the
Mendelev et al (2003) potential compared to Density functional theory (DFT) [51]. The
potentials in the present study extensively utilize results from ab initio calculations and
experiments for fitting the properties of alloys [25, 28–31]. The accuracy of these potentials
for reproducing the thermodynamic properties of the alloys (including properties of the liquid
phase and the melting point, defect energies, the interaction energy with the substitutional
atoms, etc) is extremely good compared to DFT calculations [25, 28–31]. This further supports
that the stacking fault energy values that we predicted for the alloys would be close to the true
stacking fault energy values. The ultimate agreement between theory and experiment (within
10%) for twinning stress confirms their validity.

5. Conclusion

The present analysis reveals that twin nucleation stress in bcc metals depends on the important
GPFE parameters γsf , γut, 2γtsf . We emphasized the importance of GPFE in the present
work because it represents the energy barrier that the fractional dislocations must overcome
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to nucleate a twin. To first approximation, we observe that the twin nucleation stresses
are higher for alloys with higher γTBM. We note that the overall variation of the GPFE
curve with atomic position affects the twinning stress, and thus we validated the need to
incorporate the positions of the fractional dislocations in the twinning stress expression. Using
elasticity theory, we calculated the interaction energy of the fractional dislocations forming
the twin nucleus. GPFE was incorporated into the bcc twinning mechanism to develop an
analytical expression to predict the magnitude of the twin nucleation stress, and in the form
τcritical = τ (γsf , γut, 2γtsf , G, d). The parameters such as shear modulus (G), the separation
distance of the fractional dislocations d(= rB − rA) and GPFE parameters can all be obtained
through atomistic methods, thus excluding the need for any empirical constants. The accuracy
of the present analysis was verified by comparing the results to the experimental observations
in bcc Fe and Fe-based alloys unveiling excellent agreement.
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Appendix A1

The total energy of the dislocations forming the twin nucleus in figure 1(b) can be written as

Etotal = −
Gb2

2π

(

ln

[

rB − rA

ro

]

+ ln

[

rB

2ro

]

+ ln

[

rA

ro

])

+ nαGb2 − τRSSb(rA − ro)

−τRSSb(rB − 2ro) +

(∫ rA

0
γGPFE dx −

∫ rA

0
γsf dx

)

, (11)

where the parameters have been previously defined. We minimize the total energy
expression (11) with respect to the positions of the dislocations rA and rB on the verge of
twinning, and we obtain the following expressions:

∂Etotal

∂rA

= 0 (12)

∂Etotal

∂rB

= 0. (13)

Solving equation (12),

−
Gb2

2π

(

1

rA

−
[

1

rB − rA

])

− τRSSb + γ
′

twin = 0. (14)

Equilibrium on dislocation C requires

Gb2

2π

(

1

rB

+
1

rA

)

− τRSSb + γ
′

twin = 0, (15)

where

γ
′

twin =

(

γut −
γut + γssf

2

)

sin 2π [2.5 − 1.21] +
1

4
(2γut − 2γtsf) sin 2π [N − 1.22]. (16)

For the dislocation configuration in figure 1(b), the position rB of dislocation B is calculated
from equation (15) under zero external stress (rB = 2rA) as follows:

rB =
3Gb2

2πγ
′

twin

. (17)
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However, under an applied stress, the dislocation A in figure 1(b) starts to move. Equating
equations (14) and (15), we calculate the ratio of the separation distance rA/rB on the verge
of twinning (rc = 0), and obtain the following:

k =
√

3 − 1, where k =
rA

rB

. (18)

Equation (18) suggests that the third layer (dislocation C) nucleates when the ratio of the
distances of dislocations A and B (rA/rB) is 0.732 which is consistent with Sleeswyk’s (1963)
calculation as well. We can rewrite equation (14) by substituting k from equation (18) to obtain
the following expression for the critical twinning stress:

τcritical =
1

b

{

γ
′

twin −
Gb2

2π

(

3 − 2
√

3

(
√

3 − 1)d

)}

, (19)

where

d = rB − rA. (20)

d is the separation distance of the (a/6)⟨1 1 1⟩ dislocations on the verge of twinning, i.e. when
dislocation C just starts to move forming a three-layer fault (twin).

Calculations for Fe–50Cr

G{1 1 2}⟨1 1 1⟩ = 61 GPa.

The position rB of dislocation B is calculated from equations (16)–(17) as

rB = 207 Å.

From equation (18): rA = 0.732 rB = 151 Å

d = rB − rA = 56 Å.

Substituting into equation (19), we obtain

τcritical = 218 (MPa).

The calculated critical stress for twinning in Fe–50%Cr is in excellent agreement with the
experimental value. Our calculations show that the energy contribution to the total twinning
stress of 218 MPa in Fe–50 at%Cr is predominantly governed by GPFE. In order to nucleate a
twin in Fe–50 at%Cr, 65% of the total stress (approximately 143 MPa) is invested in overcoming
γ

′
alone in equation (19). Similar calculations are employed to predict the twinning stresses

for the rest of the bcc metals and alloys presented in this work.

Appendix A2

The twinnability approach has been forwarded for fcc metals [49] and extended to bcc
metals [50]. The approach is useful in explaining the competition between slip and twinning,
and the favorability of one over the other. Figure A2.1 shows GPFE and GSFE (Generalized
Stacking Fault Energy) for Fe–50 at.%Cr. GSFE is calculated by displacing one-half of
the crystal with respect to the other half by a displacement of (a/2)⟨1 1 1⟩ on the {1 1 2}

plane, and thus represents the energy barrier (γus) required to nucleate a full (a/2)⟨1 1 1⟩
slip dislocation. Li et al [50] have calculated the ratio of γTBM to )γus for a number of bcc
metals, and depending on the ratio, the authors have shown that twinning is favorable for
metals if the ratio is less than one. The reason behind the argument is that twinning requires
the emission of subsequent bp = (a/6)⟨1 1 1⟩ fractional dislocations on consecutive {1 1 2}

planes. An analysis of figure A2.1 shows that once a dislocation bp = (a/6)⟨1 1 1⟩ is formed,
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Figure A2.1. The GPFE and the GSFE obtained for Fe–50%Cr at various normalized
shear displacements. The normalized displacements and the stacking fault energies
corresponding to slip and twin nucleation are shown. The GPFE represents the energy
barrier to nucleate a twin while the GSFE represents the energy barrier to nucleate a
slip.

Table A2.1. Energy values corresponding to the GSFE and GPFE for a number of bcc
alloys. γus represents the energy barrier to nucleate a slip while γ twin

us represents the
energy barrier to nucleate the first layer stacking fault in the twin. The units of the fault
energies are in mJ m−2.

Metals γ
slip
us γ twin

us )γus = γ
slip
us − )γ twin

us γTBM
γTBM
)γus

Fe 752 617 135 40 0.30
Fe–50%Cr 1060 752 308 42 0.14
Fe–25%Ni 709 525 184 95 0.51
Fe–3%V 741 615 131 39 0.29

the competition between emitting a second fractional dislocation or continuing for a full slip
dislocation (a/2)⟨1 1 1⟩ depends on the energy barrier to emit an (a/3)⟨1 1 1⟩ dislocation on the
same {1 1 2} plane (represented by γus) or the energy to emit a subsequent bp = (a/6)⟨1 1 1⟩
dislocations (represented by γTBM) on consecutive {1 1 2} planes. In figure 20, it can be seen
that the magnitude of γTBM is much lower than )γus for Fe–50%Cr, yielding the ratio of γTBM

to )γus to be less than 1 (0.14). Hence, it is easier to emit subsequent (a/6)⟨1 1 1⟩ dislocations
on {1 1 2} planes to form a twin than to form a full slip dislocation in Fe–50%Cr. Likewise, as
presented in table A2.1, an analysis of these energy parameters for all the metals documented in
the present study show that the ratio of γTBM to )γusis less than 1, which shows the favorability
of twinning over slip.
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