Twin Rotating Coils for Cold Magnetic Mcasurements of 15 m Long LHC Dipoles

J. Billan, L. Bothra, M. Buzio, G. D'Angelo, G. Deferne, O. Dunkel, P. Legrand, A. Rijlatt, A. Siemko, P. Sievers, S. Schloss, [. Walckiers
CERN, IAIC Division, 1211 Goneva 23, Switzerlind

Abstract

We describe here a new farmonic coil system tor the field measurenent of the superconducing, twis aperture 1 .HC dipoles and the associated corrector magnets. Besides field measurenents the system can be used as an antenna to localiza the quench origin. The main component is a 16 m long rotatimy shaft, made up of 13 ceramic segnents, each carrying two tangential coils plus a central radial coil, all working in parallel. The segments are connected with flexible Ti-alloy bellows, allowing the piecewise straight shaft to follow the curvature of the dipele while maintainug high torsimat rigidity. At each interconnection the structure is supported by rollers and ball bearings, weessary for the axial moventent for instalation and for the rotation of the cuil during measurement. Two such stafts are simultaneously driven by a twin-rotating unit, thus measuring both apertures of a dipole at the same time. This arrangement allows very short measurement times (typically 10 s) and is essential to perform cold magnetic measurements of all dipoles. The coil surfhee and diruction are calibrated using a refercnee dipule. In this paper we describe the twin rotating cail system and its calibration facility, and we give the typical resolution and accuracy achieved with the first commissioned unit.

I. Introduction

The L.HC quality assurance plan foresces the test of all superconducting magnets at superfluid belium temperature of 1.8 K . At present, up to twelve test stands are foreseen to make cryogenic and guench performance tests as well as magnetic field measurcinets up to the nominat fiekd values on all lattice magnets (about 1200 dipoles and 400 quadrupoles). To accomplish this task within the given time, highly eflicient test equipment and procedures have to be devised. User-friendiness, ruggedness, and reliability are the main ingredients required for such systems to be operated around the clock over several years. Similar tasks, however for about 3 times less magnets, were stucessifully accomplisiod for HERA [I] and RHIC [2], while concoptual ideas and prototypes were developed at SSC [3].
In 1994, duting the initial phase of L-TIC design, automated test equipment for dipoles which at that time had a length of 10 m , was successfully commissioned [4]. It consisted essentially of a single, rotating search coil with a lengh of 750 mm which was driven stepwise by a long and slender ceramic shaft along each of the two apertures of the magnets, However, with a final dipole length of 14.2 m together with the limitation in test duration (below 48 hours per dipole), number of benches, space and budget, the above equipment was no longer acceptainle.
Based on the experience gained previously with long, slenter ceramic structures, an R\&D program was launelied to

[^0]devise and to construct long rotacing coils which, in pairs, mensure simultanconsly the fields over the total length of both dipote apertures, thus reducing the actual measuring time at one fied level to below 10 seconds.

[I. Coll siaft design

During the cold tests the LHC dipoles are equipped with an anticryostat (a warm bore) with a 40 mm inner diameter. This imposes a maximum outer diameter of 36 mon to the rotating coil, to leave ehough clearance for instalation and operation. A single coil shaft, more than 15 m long and with a 36 mm outer diameter is not feasible using present tochnology. Mechanical tolerances, bending stiffoess requirements, equipment handing and, last, cost issues have driven the design of the shaft towards a modular solution. A 16 m shaft is obtained by assembling 13 modules of approximately 1.25 m lenglh each. This covers readily the 15 m length of the LHC Dipole and the adjacent corrector magnets. All modubes are identical and designed to altow interchange of prsition and casy management of spares. The module cross section is shown in Fig. I. Ceramic $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ has been chosen as support material because of the high rigidity and geometric stability, both mandetory for proper calibration of the coil sensitivity. In addition ceramic is non-magnetic and noncondtecting, thus can turn freely in a magnetic ficld without perturbing it. Because of their hardness, ceramic materials are diflicult to machine. This has clriven the design of the support towards a simple geometry, i.e. a hollow cylinder equipped with tangential coils.
Winding of the coil directly on the ceramic support is in principle possible. It is however a cumbersome technique, executed by hand, without guarate of reproducible results. We deemed such a solution not suitable for the production of the large number of modules reguired for the series tests of the LHC dipoles. We have developed in the past a tectunique to wind coils on glass-reinforced cpoxy supports using a dedicated winding machine [5]. This winding process can be extrapolated to the production of soveral tens of units. Each coil can te calibrated individeally and matched to other coils

Fig. 1. Cross-section of a module showing details of support and coils

Fig. 2. Schemalic ansembly of a modulc showing the main components: (a) ball beang, (b) brona cage with foller, (c) Ti-bellow, (d) tangential coil, (e)

with the same cross section to achieve the highest possible dipole compensation ratio. We have therefore decided to adopt this technique, which involves mounting the single coils onto reference surfaces machined along the outside of the ceratrie pipes and fixed to it with precise dowel pins. Flatnoss and patallelism of this fitting is better than $20 \mu \mathrm{~m}$.
In principle a single coil would be sufficient to perform the mensurement. Two symmetric coils, however, offer several advantages such as availability of a spare, the possibility to verily the measurement accuracy using symmetry propertics, and better rotational incria properties. For the accurate measurement of the higher order hatmonics it is common practice to suppress the contribution of the dipole fied from the signal of the measurement coil. In our case this is done analogically, subtracting from the signol of the tangential coil the one produced by the coil housed in the central hole of the module. The compensation coil is maintained in position by the same centering pins that fix the two tangential coils.
The sensitivity of a tangential coil to a harmonic of order n depends strongly on the opening angle α of the coil. In particular the sensitivity of the coil is zero when the harmonic order is equal to a critical value $n=2 \pi \alpha$. The opening angle is a geomerrical quantity defined by the coil rotation radius and the width of the coil (see again Fig. 1). The coil rotation radius is maximized to increase the sonsilivity to higher order harmonics. In our case this radius is limited to about 17 mm by the space available in the anticryostat. We have then chosen a nominal opening angle of 28.8 degrecs, that corresponds to zero sensitivity to the harmonic of order 12.5 . A dedicated calibration in a reference quadrupole showed that this value is between 12.3 and 12.7. This choice guarantes acceptable sensitivity for harmonics 11 and 13 , and results in a coil width of approximately 8.5 mm , which is within the feasible range for the winding technique indopted. Note that decreasing the coil width to push the critical order towards a higher harmonic would result in a smaller coil, more difficult to manufacture and mount accurately, and with higher errors in the sensitivity to the harmonics.
The lenglh of the coils and the width of the gap necessary to house the junction hetween the modules have been designed to reduce the elfect of the tied periodicity (periodic pattern) induced by the twist of the strands in the superconducting cables [6]. To this purpose, the length of each coil and the sum of the gaps has been chosen equal to an integer multiple of the nominal cable twist pitch. This
guarantes that the effeet of the periodic pattern cancels in the total field integral. Furthermore, the lofigitudinal position of the shaft must be carelinly chosen in order, inter alia, to avoid end elfeets. A number of different, standardized longitudinal positions have been defined athd optimized lor the exigencies of magnotic measurement of the dipole and associated correctors, quench detection and calibration. Morcover, as the coil includes an additional module, in silu cross checks can be made by shifting the axial position of the coil by the length of one unit.

As shown in lig. 2, cach coil module is completed at one end with a ceramic (SiN) flange (h) that houses an integrated coramic ball bearing (a) in a brass cage equipped with beryllium-copper rollers (b). At the other end a small T^{1} bellows is glued on the nodule (c). The titanium bellows has a llange mating with the opposite ceramic support, so that the modules can be mechanically assenbled, The finction of the bellows is to acemmodate the eurvalure of the dipole cold bore (k) (0.4 madad at each juncion) as well as the antictyostat (j) centering erross in verlical and horizontal direction. It guarantees however high torsional rigidity, as required for the measurement of the dipole field direction. In addition, its small size and high clectrical resistivity are such that coldy current effects are negligible.
Once assembled the modules are supported at ench junction by the ceramic ball bearings, either directly through the llange or indirectly through the bellows. The outer raees of the ball bearings sit in bronze cages, fitted with fixed and spring-loaded rollers that allow longitudinal movements along the anti-eryostat as necessary daring installation and removal of the complete shaft. During the rotation of the shaft the outer race of the ball beartings and the bronze cage remain stationary. Hence no perturbation due to induced eddy currents can oceur. The frictional torque for the whole shati is 0.03 Nm , extremely small thanks to the high quality of the ball bearings. This torque sesults in a maximum twist of 0.0026 mad along the shaft.

In order to pass the signals from all coils in a modular manner we have fitted each modate will 39 twisted pairs guided inside the ceramic pipe aside the central coil (sec Figs. 1 and 2) and equipped with miero-comnectors (i) at both ends of cach modute. This system allows interchanging of modules without need for recabling the complete shaft. The main disadvantage is that the signals from modules at the far end of the shaft are connected to the acquisition system
through all other jutermediate modutes. This leads to an inercased number of interconnections.
The link from the rear of the coil to the oulside rotating unit (sec later) located at a distance of 1.4 m , is made by an intereonnection ceramic pipe fitted with the necessary cables and plugs. In addition the end of this interconnection pipe is equipped with a reference surlace that provides the angular fiducial for all colls.

III. Rotating Unit

The two coil shafts are driven by a Twin Rolating Unit (TRU) shown in Fig. 3. Each unit includes a stepping motor with $7: 1$ reduction gearbox, necessary to achieve the nominal rotation speed of 1 Hz with variations smaller than 3%, The power driver for the stepping motor is on-board and shielded from the signal cables, so that the coil signal is not affected by high-frequency noise. The operation of the unit is remotely controlled by the acquisition soltware.
Downstream of the motor a torque meter, an elastic coupling and a linear potentiometer (screw-driven by the shaft and monitoring its angular position) are provided to increase the safety of the mechanism.
The angular position of the shaft is given by an angular encoder with 4096 counts per revolution pltis a "7ero" pulse on a separate channel. The encoder housing is rigidly connected to an electronic inclinometer, giving an absolute reference for the orientation of the encoder "zero". The reading of the inclinometer is used to establish the relation between the field direction, measured in the reference frame determined by the "zero" pulse of the encoder, and gravity direction.
A precision coupling is used to connect the coil reproducibly to the rotating shalt. Furthermore the TRU side of the shaft is provided with a reference surface, approximately adigned with the reference surface on the coil slatt. The relative angle between the two reference surfaces is verified every time that the shaft and the TRU are assembled.
For the connection of the signal cables we have rejected the possibility of sliding connectors on the basis of excessive size

Fig. 3. Twin rotating tinit, competed to a Is in coil shaft.
and cost for the very large number of contatets required (78 for each shaft). The coil cables conerging from a shaft are connected to a that cable in the TRU that is wound up it a spiral around the rotation axis and temminates in a fixed connector. This contiguration allows a maximum of three complete revolutions of the shaff. Each measurement cycle consists of three turns in altemating dipection, during which the flat cable winds and unwinds. The central turn in each direction is used to measure while the other two turns serve to accelerate and decelerate smoothly. The final measutement results are obtained from the average of the forward and backward revolutions. As can be seen in Fig. 3, each rotation unit can be manually displaced axially by the length of one coil module, providing a very efficient meins of cross calibration.

IV. ACQUISITION SYSTEM

The voltage signals from the rolating coils are first preamplified and then read-out simultancously by a battery of 52 digital integrators. The integrators are triggered in two groups by the angular encoders connected to the two shalis. The integrated voltage signals delivered by the integrators are equal to the flux changes through each measuring coil for all angular steps, and rotation velocity variations turing these measurements are compensated up to the first order. A realtime processor contigures the integrators and reads the integrated voltages. Overall control of the power supply, of the precision current reading, of the motor rotating the shaft and of the integrators is achicved using JabVIEW software running on a SUN Ultra- 2 workstation.

V. System calibration

We have adopted a sophisticated calibration procedure to achieve the required precision in the measurement of dipole strength and direction. This is mainly required in order to compensate for the angular tolerances inberent in the assembly of the coil segment (see results in the next section), as well as to monitor the geometrical stability of the coils over several years.
The shaft calibration is carried out on an auxiliary bench, provided with a water-cooled 0.5 T reference dipole with a length of approximately 1.5 m , well above the length of a single coil module. The reference dipole is mounted on a motorized vehicle that can scan the whole length of the shaft under calibration. This magnet has been NMR-mapped and is fitted with a fixed reference NMR probe, used to scale the whole field depending on the exact current applied. For the field dircetion we use as fiducials two reference surfaces machined on the magnet poles. The angle between the dipole field and reference surfaces was measured independently with an AC search coil method. The tilt of the magnet on the calibration bench is constantly monitored with two inclinometers mounted on the reference surfaces.
Each coil of the shaft is used in turn to measure the reference ficld and its direction. Relating the measured field
strenglt to the NMR map it is possible to calculate the eflective coil strlace. Similarly, the measural field direction is related to the information on the real lield inclimation, the iaclination of the encoder on the 'I'RU and the relative tilt berween the reference surfices on the TRU and on the shaft to calculate the twist between the shati reference surface and the coil under calibration. This calibration leads to an estimated relative accuracy of 10^{-4} on the dipole strength, and 0.2 mad on the dipote ditection.

Note that the relative angle between the reference surfaces on the shaft and on the TRU may in prinepple change from the calibration bench to the test bench, and has therefore to be taken into account.

VI. Measurement resulis

A. Field nteasurements

We have used the long coils during tests of the first two 15 m long, MBP1A1 and MBP2N 1 prototype dipoles. Herc we report as an example results from the measurements performer on MB1 2 N (. The first tesult of interest is the field integral and the effective magnetic length, defined as the ratio between integrated field and the field mensured in the center of the magnet. As previously mentioned, the coils do not cover the full length of the magnel because of the gap between modules, For the calculation of the field integrats we have therefore corrected for the "missing" length assuming

Fig. 4. Result of Field direction measurement in the MBP2N] dipote protorype. The measured dara (aght axis) tiave been correcter using the calibration curve obtained in the reference betheh, othaning the real fietd ange alter calibration (left axis).

Fig. S. Result of hamonic nomarements in the MBP2NI dipole prowype. Note the scaling factors applied for order higher than b?

Fig. 6. Average reproducibility (random ermo af elipote fich, field direction and main hamonics.
that the field in a gap is the average of the values measured by the two neightoring coils. In the case of the gap between a coil covering a magnet end and a coil inside the straight part, the "missing" field has been assumed equal to the one mensured by the coil in the magnet. The resulting field integrals measured at the nominal operating curremt of $11.75 \mathrm{kA}(8.3 \mathrm{~T})$ are 119.46 Tm (in aperture 1) and 119.53 Tm (in aperture 2). From these integrals, and the value of the tield measured in the center of the magnet we have then computed the magnetic length. The computed magnetic lengths of the two apertures are 14.407 m (aperture 1) and 14.413 m (aperture 2), with a relative difference $0)^{-} 6 \times 10^{-4}$.
The dipole field direction along both magnel apertures cam be seen in Fig. 4. We report there the measured values and the values after the correction established in the calibration bench (see previous section)'. Comparing the two curves we see that the shafts have a twist in the range of 70 and 120 mrad. This twist is due to the assembly tolerances and is correeled by the calibration below the mrad level, where the leatures of the magner becone visible. Both apertures have a very good straightness, with a twist from comection end to the non-connection end of less than 1 made The large twist at -7.5 m is probably due to a systematic end effect at the magnet conncetion end.
For harmonic measurements we use an analog compensation of the dipole component. The typical compensation ratio obtained on the various coil modules are in the range of 350 to 1000 . In Figg. 5 we report the multipoles measured in the two apertures of MBP2NI at intermediate current $(9 \mathrm{kA})$, where the field quality is dominated by the superconducting coil geometry. Their value is given relative to the dipole field and scaled by a factor 10^{4} (i.e. in wits). Each bar in the graph corresponds 10 one coil, and the two apertures are ploted side by side. Note that for this measurement the acquisition of all coils in one aperture was performed simultaneously, requiring aboul 10 s . Looking at the resilts we see that the allowed multipoles of order higher than 7 have an appreciable strength. They are a chatacteristic of the coil geonetry and we expect them to be constant along

[^1]

Fig. 7. Magnetic axis coordinate in the reference trame of the ronting coils, as computed using the measumed harmonics of order 10 and It.
the magne longth and equal in both apertures, as indeed is found experimentally. It should be noled that, in spite of the fact that the tangential coils have zoro senstivity at harmonic order 12.5, the measured values of b_{13} and b_{15} are largely constant, as expected, and in reasonable agreement with the value computed for the 6-btock coil geometry ($\mathrm{b}_{13}=0,08$ units (9) $17 \mathrm{~mm}, \mathrm{~b}_{15}=0.03$ units $@ 17 \mathrm{~mm}$).

Fig. 6 shows the typical reproducibility achicved, obtained as the standard deviation over several (20) consecutive measurements. The random error on the dipole is about 4×10^{-5} [T], the angle is constant within 0.01 mrad and the harmonics are affected by a random error below 0.01 units. The random crror peaks between harmonic 12 and 13 , where the coil sensitivity goes to zero.
The harmonics in Fig. 5 are reported in the reference frame of the rotating coils, essentially determined by the position of the anticryostat. This is suspended inside the cold bore and not necessarily aligned with the geometric axis of the dipole, Indeed the results show large skew, high-order non-allowed harmonics. The location of the magnetic axis relative to the coil center has been computed using the measured harmonics of order 10 and 11 , assuming that the value of the harmonic of order 10 is entircly due to feed-down from the order 11. In Fig. 7 we show the coordinates of the magnetic axis in the reference frame of the rotating coil. The systematic vertical offset found can be explained by the weight of the coil, displacing the anti-cryostat downwards on its flexible supperts. Horizontal displacements, on the other hand, fit well with expected mechanical toterances.
Finally, it is found that for the aligntnent of the magnet in the ring the magnetic axis should be transferred to the magnet fiducial reference frame. This operation would require knowledge of the lateral position of each coil, which is impossible to get with a solid shafi. Therefore a travelling probe, described elsewhere in this conference [7], has been designed and implemented for this purpose.

B. Quench location

As we have anticipated, the shafts can be used to localize the origin of a quench and follow its propagation [8]. Fig. 8 shows as an example the typical signals that are obtained duting the intiation (precursor) and early development of a quench. Thanks to a good compensation among coils it is possible to clearly distinguish the signal features associated

Fig. 8. Quench location signals from coils on the shaft (vertical axis in [V]) ws, fime (horizontal axis in [s]).
with the current redistribution in the cable during a quench, Furthermore the signal level is well above the baekground noise.
The use of the same equipment for magnetic measurement and quench location is mandatory to increase testing efficiency. Thanks to the satisfactory performanee oblained the long siatts will be the onfy additional diagnostic needed for quench studies during series tests.

VII. Conclusions

The initial experience with the long coil shalts and the rotation units show that they can meet the tough requirements for the series measurements of LHC dipoles in terms of both precision and reliability. The possibility to measure simultaneously a whole magnet, and their use for other measurements such as quench location, has provided the major productivity boost that was necessary to attack serics measurements of the L.HC dipoles.
The system is still being improved, e,g, in the areas of vibration control and mechanical stability of the shaft in torsion. Much effort is being devoted to the debugging and fine-tuning of the related software tools.

Relerrences

[1] R Meinke, "Methods for produclion meawnements of superconductitg magnets", Intemal Report DESY HERA 90-06, April 1990.
[2] P. Watuderer, "Magnet meisurements for scries production", CERN Repor 98-05, pp. 273-286, 1998.
[3] M.I. Green, "Preliminary study of an integral harmonic analysis magnetic field measmement system for long SSC maghers, Proc. of 1991 Patt. Ace. Cont. San Francisco, 1991.
[4] J. Billan, J. Buckley, R. Saban, P. Sicvers, L, Walckters, "Design and test of the benches for the magnetic measurement of the LHC Dipoles", ILEE Trats Mag., vol. 30, pp. 2658-2661, 1994.
[5] S. Bidon, J. Biltan, F. Fischer, C. Sanz, "New techmique of tabrication of search coil for magnetic field measument by hamonic analyais', CERN Intemal Note AT-MA 95-1 17, 1995.
[6] L. Walckiers, at al., "Towards series memsuments of the LHC superconducting dipole magnets", Proce of 1997 Patt. Acc. Coni, Vancouver, pp. 3377-3379, 1997.
[7] L Botura et al., "A mole for wann magnetic and oplical measmemenis of LHC dipoles", $16^{\text {di }}$ Inlemational Conference on Magne Technology (MT16), Ponte Vedra Beach, FL, USA, 26 Sept- 2 Oct 1999.
[8] A. Siemko et al., "Quench location in the supercondecting model magne:s for the LHC by means of piek-1p coils", WEE Trens. App! Sur, vol. S(2) pp. 1028-J031. 1995.

[^0]: Received Seplember 27, 1909.

[^1]: ${ }^{1}$ Since the caliteation lacilities are still beting commissioned, at he tirne of writing only the relative angle in cach aperture is available

