
Computing and Informatics, Vol. 24, 2005, 249–261

TWINS: SCALABLE 2-HOP STRUCTURED
OVERLAY NETWORK

Jinfeng Hu, Huanan Zhang, Weimin Zheng

Department of Computer Science and Technology

Tsinghua University

Beijing, P. R. China

e-mail: {hujinfeng00, zhanghn03}@mails.tsinghua.edu.cn
zwm-dcs@tsinghua.edu.cn

Manuscript received 2 September 2004; revised 6 April 2005
Communicated by Jǐŕı Šafař́ık

Abstract. In this paper we propose a new structured overlay network, which is
more efficient and scalable than previous ones. We call it Twins, because its routing
table consists of two parts, one containing nodes with common prefix and the other
containing nodes with common suffix. Twins routes messages to their destinations
in just 2 hops even in a very large scale and the overhead is very low. When deployed
in a peer-to-peer system with 5 000 000 nodes, each node receives only 6 messages
per second for routing table maintenance. This cost, as well as routing table size,

varies as a O
(√

N
)

function to the overlay scale, so Twins can also run well in an

even larger environment.

Keywords: Peer-to-peer systems, overlay networks, routing protocol, scalability,
maintenance cost

1 INTRODUCTION

Peer-to-Peer software attracts more and more Internet users in recent years. In
a Peer-to-Peer system, each node is both a server and a client, i.e., it provides
resources (file content, disk space, Internet bandwidth, etc.) to others, and also
obtains desired resources from others. Because of its spirit of equity and autonomy,
more and more users use it as a common tool in their daily life. For example,
the number of concurrent users of Kazaa increases very rapidly and has exceeded



250 J. Hu, H. Zhang, W. Zheng

3 000 000 by far [1]. Furthermore, there is no signal for this trend to cease in the
foreseeable future.

Along with the evolution of Peer-to-Peer systems, more and more algorithms are
proposed to solve the problems in this special environment, which is larger, more
dynamic, and more asynchronous than traditional distributed systems. Structured
overlay is a well-known and important one of them.

Structured overlay is an application-level layer which ensures the communication
of any two nodes in a Peer-to-Peer system. Existing structured overlays can be
classified into two categories: multi-hop overlays and one-hop overlays. The size of
multi-hop overlays’ routing tables is O(logN) (such as Pastry [2], Tapestry [3], and
Chord [4]), where N is the total number of the nodes. With relatively small routing
tables, multi-hop overlays’ maintenance cost to handle the member-change events is
very low. Therefore, they can achieve high scalability. But the price of this approach
is their inefficient message routing that requires O(logN) hops for each message on
average. For example, a typical 16-based Pastry needs about log16 3 000 000 ≈ 5.38
hops for each message routing.

Being very different with multi-hop overlays, one-hop overlay [5] lets every node
keep complete membership information of all the other nodes in the system. It can
accomplish most lookup operations in one hop. However, the one-hop overlay’s rout-
ing table is too large and consumes too much bandwidth for maintenance. Nowadays,
the average lifetime of a node is about one hour [6], that is to say, given a system
of 3 000 000 nodes, every node must receive information of 3 000 000 × 26 000 000
member-changing events per hour. The data structure of a member-changing event
is at least 200 bits, including corresponding node’s nodeId, IP address and port.
Thus the bandwidth cost must be more than 33.3 kbps, which is too heavy a burden
for most modem-linked nodes. So the scalability of the one-hop protocol is very
poor.

It is the shortcoming of these two types of existing overlays that motivates us to
design a new scalable structured overlay Twins, which is both scalable and efficient.
Twins can obtain high routing efficiency (2-hop routing) in a very large scale at
a very low cost (6 messages per second within a 5 000 000-node system).

Routing table of a Twins node consists of two parts, one containing pointers
to all the nodes sharing a p-bit common prefix with the local nodeId and the other
containing pointers to those sharing an s-bit common suffix. Under a simple routing
algorithm it can route a message via just 2 hops with a very high probability. Twins
adopts a report-based routing table maintenance algorithm. When a node joins or
leaves, its state will be multicast to all the nodes that need to know this event. This
method saves the maintenance cost greatly. Experimental results show that when
deployed in a 5 000 000-node system, each Twins node consumes only 6 messages
per second for routing table maintenance. This cost, as well as the routing table
size, varies as a O

(√
N
)

function to the system scale N , which indicates that Twins
can also work well in an even larger environment.

Moreover, Twins introduces probabilistic message routing into structured over-
lays. How many hops a message passes before reaching its destination is not strictly



Twins 251

determined. This makes sufficient room for scalability design: we can raise the
expectation of hops to keep a low overhead by adjusting the system arguments.

The rest of this paper is organized as follows. Section 2 presents the design of
Twins protocol. Section 3 gives a formalized analysis of the routing performance
and the maintenance cost. Experimental results are reported in Section 4. Section 5
makes final conclusions.

2 THE TWINS PROTOCOL

Like Pastry and Chord, Twins assigns every node an identifier, nodeId, using SHA-1
upon its IP address and port, which is typically 128-bit long. The nodeIds are
ordered and evenly distributed in the 2128-modulo nodeId circle. For a node, say
node M , we call the first p bits of M ’s nodeId the node’s prefix, and the last s bits
the suffix.

2.1 Routing Table

Each Twins node has a routing table consisting of two parts: The first one contains
pointers to all the nodes having the same prefix with the local node, called prefix

set, while the second one contains pointers to those having the same suffix, called
suffix set.

Obviously if two nodes have the same prefix, their prefix set must be also the
same. Thus all the nodes can be divided into 2p groups according to their different
prefixes. We call these groups prefix groups. Nodes in a given prefix group are fully
interconnected1 through their prefix sets. Since nodeIds are distributed evenly in
the nodeId space, each prefix-group will contain about N/2p nodes (N is the total
number of the nodes). The suffix group is defined similarly, i.e., all the nodes are
divided into 2s different suffix groups that do not intersect with one another. There
are about N/2s nodes in each suffix group.

Given a 128-bit nodeId L, we define prefix-groupp(L) = {M |M is a 128-bit
identifier whose first p bits are the same with L’s}, and suffix-groups(L) = {M |M is
a 128-bit identifier whose last s bits are the same with L’s}, p and s are system
parameters.

Figure 1 shows the routing table of a hypothetical node with a 12-bit nodeId
011100101110. In the figure we assume p = 4, s = 4. It can be seen that the
routing table consists of prefix set, which contains pointers to all the nodes whose
nodeId has a common 4-bit prefix with the local node, and suffix set, which contains
pointers to those whose nodeId has a common 4-bit suffix. For all the pointers, we
only show the corresponding nodes’ nodeId, omitting their IP addresses and ports.
Prefixes and suffixes are all shown in boldface. Notice that the prefix and suffix set
may intersect, pointers of node 011101101110 being an example.

1 Full connection means that every node keeps pointers to all the others in a node set.



252 J. Hu, H. Zhang, W. Zheng

Fig. 1. An example of routing table, the local node has a nodeId of 011100101110

2.2 Routing

Every message has a destination key that is also 128-bit long. The first p bits of
the key are also called the message’s p-bit prefix, and all the nodes that have this
prefix are called the message’s prefix-group. A message’s suffix-group is defined
similarly.

With a slight difference with Pastry, the destination node of a message is as
follows: The destination node of a message msg is the node in the msg’s prefix-
group whose nodeId is the closest to msg’s key, numerically.

Notice that all the nodes in a prefix-group are fully interconnected, so the basic
task of message routing is forwarding messages to the corresponding prefix-group.
After that the message will directly reach its destination node in one hop.

When routing a message with key k, a node M (say, its nodeId is M) first
checks whether k and M have the same prefix (i.e., M ∈ prefix − groupp(k)).
If so, M can directly forward it to the destination node, which must be in M ’s
prefix set; otherwise M inspects its suffix set, tries to seek out a node E which
has k’s prefix and forwards the message to E. For example, when the node shown
in Figure 1, namely M , would route a message with key k = 011100000000, ac-
cording to our routing algorithm, M ∈ prefix − groupp(k), M should forward
the message to node 011100100101, which is the closest to k in M ’s prefix set.
In another case where the message key (k) is 001000000000, M will choose node
001011001110 and forward the message to it, because it has the same 4-bit prefix
with k.



Twins 253

route(msg, k) // when a node N routes a message msg with key k

if N ∈ prefix− groupp(k) {
forward msg to its destination node;

} else {
for every node E in N ’s suffix set do {
if E ∈ prefix− groupp(k) {
forward msg to E;
return;

}
}
select a random node R from N ’s prefix set;

forward msg to E;
}

Fig. 2. Pseudo code of Twins’ routing algorithm

If there is no node in M ’s suffix set that has the same prefix with k, M will
forward the message to a random node selected from its prefix set whose nodeId has
a different suffix. Pseudo code of the routing algorithm is shown in Figure 2.

2.3 Maintenance

Like the one-hop overlay, Twins introduces a report-based multicast mechanism to
maintain routing table. Note that prefix-groups are independent to one another,
and so do suffix-groups. It is allowed to just consider the maintenance of the prefix
sets of the nodes within one prefix-group.

2.3.1 Node Joining

When a new node X joins the system, it firstly contacts an existing node B, which
is called X’s bootstrap node. After receiving X’s join request, B selects two nodes
in its routing table, say P and S, which are in X’s prefix group and suffix group,
respectively. Then X can establish its routing table by getting its prefix set from P ,
and suffix set from S. After that X multicasts its joining event around all the nodes
in its prefix-group and suffix-group.

2.3.2 Node Leaving

All the nodes in a group can be seen as a circle in the nodeId order. It is demanded
that every node probes its right neighbor in the circle periodically. If a node does not
respond for several times, it will be considered as a dead one, and its leaving event
will be multicast around the group. Figure 3 illustrates the maintenance mechanism
within a hypothetical prefix/suffix-group.



254 J. Hu, H. Zhang, W. Zheng

Fig. 3. This is a hypothetical prefix-group. All the nodes in this group are organized as
a circle in the nodeId order. Every node probes its right neighbor periodically. We
can see that if there is a node (seeing the hollow node in this figure) that does not
respond the probing for several times, it will be considered as a dead one. After
a node finds its right neighbor’s death, it will broadcast the event around the group
and turn its probe to the next right neighbor in the circle.

2.3.3 Multicast

Note that all the nodes within a group are fully connected. The multicast proto-
col can be designed in many ways. Here we adopt a simple tree-based multicast,
illustrated in Figure 4, as Twins’ basic design.

Fig. 4. An instance of the tree-based multicast

When a node M initiates a multicast process, it sends the message to a node
before it (say G) and another behind it (say T ). Then, similarly, G and T each
send the message to two nodes, one ahead and the other behind. This procedure
continues. At each step, every node should ensure that once it sends the message to
another node, there is no other node between them which has already received the
message.

If more efficient multicast is desired, the multicast tree can be modified to be
l-based, where l can be an arbitrary value larger than 2. If more reliable multicast
is desired, response-redirect mechanism can be deployed, which will increase the
maintenance cost.

In this multicast approach, except the changing node’s nodeId, IP address and
port, an event message (e.g., the message from T to Q in Figure 4) must also
include the nodeId of the first node before the receiver that has already received



Twins 255

the message (namely M), as well as the nodeId of the first such node behind it
(namely T ). Adding the UDP header (64 bits) and the IP header (160 bits), an
event message will not exceed 500 bits.

Assuming that the average lifetime of the nodes is 1 hour, which is accor-
dant with the measurement result from [6], all the items in the routing table have
to be refreshed in a period of 1 hour. It means that for a Twins system that
comprises 5 000 000 nodes, if p and s are both set 10, every prefix/suffix-group
will contain about 5 000 000/210 = 4 883 nodes and every node will receive about
(4 883 + 4 883) · 2 = 19 532 event messages per hour (namely 5.43 messages per
second). Plus probes and responses, a node will send no more than 6 messages per
second totally, i.e., the bandwidth cost is lower than 6 · 500 = 3000 bps. So Twins
is a very lightweight protocol.

3 PERFORMANCE EVALUATION

In this section, we give a formalized evaluation of Twins protocol and describe how
to determine the length of prefix and suffix in a given system environment, and then
estimate routing table size and maintenance cost.

Assuming that in a Twins overlay network of N nodes every node has a prefix
with p bits and a suffix with s bits, then there are 2p prefix-groups and 2s suffix-
groups totally. On average, each prefix-group contains P = N/2p nodes and each
suffix-group contains S = N/2s nodes.

3.1 Routing Performance

For a certain node M , it has a suffix set with 2s routing table entries. M wishes that
these entries could distribute over all the prefix-groups. But unfortunately it is not
always the reality: there must be some prefix-groups to which there are no routing
table entries in M ’s suffix set belongs. We note the number of such prefix-groups
for the given node M as L. The expected value of L can be calculated as follows:

E(L) =
P−1
∑

k=0

k ×

(

2k

k

)(

S − 1
2k − k − 1

)

(

2k + S − 1
2k − 1

) .

For a given message key, we call the probability that there is at least one routing
table entry in M ’s suffix set which has the same prefix with the key as hit ratio.
Obviously, the hit ratio can be defined as hr = 1− E(L)

P
. Consequently, hr is related

to the ratio of the size of suffix set (S) to the number of prefix-groups(2p); we define
R = S/2p, and then we can see that when 2p is larger than 50, choosing R as 4.7
will ensure a hit ratio more than 0.99. Therefore, in common cases we demand that
R > R0 = 4.7. That is to say, N/(2s · 2p) > R0, namely



256 J. Hu, H. Zhang, W. Zheng

s+ p ≤ log2 (N/R) . (1)

Next we estimate the maintenance cost. Probing cost is a fixed small value, so for
simplicity we ignore it. The substantial cost is for maintaining the prefix set and the
suffix set, with size of P + S. Assuming that nodes’ average lifetime is LF seconds,
each node triggers two events in a period of LF seconds on average. So every node
receives 2 · (P + S) events during every LF second. If redundancy of the multicast
algorithm we adopt is f , then the number of messages a node receives per second is

m = (P + S)× 2× f/LF =
(

N

2p
+

N

2s

)

× 2f
/

LF .

When p = s, m reaches its minimum value:

m0 =
2N

2
1

2
(p+s)

× 2f =
4N · f
2s · LF . (2)

Considering both (1) and (2), we should set s = p =
⌊

log
2
(N/R)
2

⌋

to ensure a 2-hop
routing with a probability larger than 0.99 at a minimal maintenance cost. We can
get the following results under this setting:

a) Routing table size Rsize satisfies

2
√
N ·R ≤ Rsize < 4

√
N · R. (3)

b) Maintenance cost m0 satisfies

√
N · R× 4f

LF
≤ m0 <

√
N ·R× 8f

LF
. (4)

Fig. 5. Prefix/suffix length vs. N

Figures 5, 6 and 7 show the variation of s, Rsize and m0 as functions of N , using
f = 1 and LF = 3 600.



Twins 257

Fig. 6. Routing table size vs. N

Fig. 7. Message count vs. N

3.2 Scalability

Inequations (3) and (4) show that a Twins node has a routing table containing

O
(√

N
)

entries and consumes O
(√

N
)

bandwidth for maintenance. This means
a good scalability property of Twins overlay network. In addition, when the main-
tenance cost is not acceptable by the nodes, Twins can tradeoff routing hops for
bandwidth consumption like other overlay protocols. To illustrate it, we put Twins
into a stricter environment where N = 10 000 000, f = 2 and LF = 2 400. From
inequation (4) we know that if keeping 2-hop routing, a node should receive at least
22 messages per second. Twins can reduce this cost by decreasing R, which will
raise s and p, decrease S, and then reduce hr. Expected value of hop counts can be
calculated as:

E(hops) =
∞
∑

i=2

i · (1− hr)i−2hr = 1 +
1

hr
.

When hr drops to 0.25, average hop counts only rise to 5.

4 SIMULATION AND EXPERIMENTAL RESULT

In this section, we present experiment results obtained with a simulation of Twins
protocol. The simulator was implemented on ONSP [7], an overlay network simu-
lation platform based on parallel discrete event-driven mechanism which integrates



258 J. Hu, H. Zhang, W. Zheng

the Transit-Stub model of the Internet generated by the GT-ITM [8] tool. To make
Peer-to-Peer protocol simulation on ONSP, a user may only focus on the proto-
col details, without consideration of the Internet simulation and the parallel task
management.

Our experiments are performed on a 16-server cluster that is connected by 2Gbps
Myrinet. Each server has four 700MHz Xeon CPUs and 1GB memories, running
an operating system of Linux Redhat 7.3.

Both the distributions of node bandwidth and node lifetime are accordant with
the measurement result of Gnutella [6]. The average lifetime of a node over the trace
was about 2.3 hours.

All the results are shown in Figures 8, 9, and 10.

Fig. 8. Hit ratio vs. number of prefix-groups. R is the ratio of the suffix set size (S) to the
number of prefix-groups (2p). It shows that when 2p exceeds 50, hit ratio is almost a
constant.

Figure 8 depicts relationship between the hit ratio and the number of prefix-
groups. We can see that when the number of prefix-groups exceeds 100, the hit
ratio is almost unrelated to it and is only determined by R, that is, the ratio of the
suffix set size to the number of prefix-groups. To make it more illustrative, we fix
the number of prefixes at 1 024 and depict the relationship of the hit ratio and R in
Figure 9. When R is larger than 4.7, the hit ratio is very near to 1.0.

Figure 10 shows the routing efficiency (hop count) and the bandwidth cost (mes-
sage count) of Twins. We can see that when the system scale is very large (compris-
ing 10 million nodes), Twins can reduce R to save the bandwidth cost, with a price
of more hops for message routing. When R drops to 0.5, the hop TRIAL RESTRIC-
TION count only rises to 3.53 while the message count drops to 8.14 from 32.6 where
R is larger than 3.0.



Twins 259

Fig. 9. Hit ratio vs. R. R is the ratio of the suffix set size to the number of prefix-groups.
Here the number of prefix-groups is fixed as 1 024.

Fig. 10. Message count and hop count in relation to the argument R, where N =
10 000 000, f = 2 and LF = 2 400

5 CONCLUSION

In fact, all the structured overlays compromise tradeoff between routing table size
and routing hops. We believe that the latter is the most important factor for a peer-
to-peer system, because it directly impacts the routing efficiency. Therefore, as long
as the maintenance cost can be afforded, we should improve the routing efficiency at
the best effort. Twins is a new structured overlay that can route message in 2 hops
in very high probability and can extend to a very large scale even in a system with
high member-changing frequency. The main feature of Twins is the design of its
routing table, which consists of two symmetric parts that ensure 2-hop routing at
a very low cost. Our future works will focus on the great heterogeneity of nodes



260 J. Hu, H. Zhang, W. Zheng

in the real peer-to-peer systems, i.e., upgrading Twins protocol to a heterogeneous
one.

REFERENCES

[1] Kazaa. http://www.kazaa.com. November 2003.

[2] Rowstron, A.—Druschel, P.: Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems. Middleware 2001, November 2001.

[3] Zhao, B.—Kubiatowicz, J.—Joseph, A.: Tapestry: An Infrastructure for Fault-
Tolerant Wide-Area Location and Routing. Technical Report UCB/CSD-01-1141,
U.C. Berkeley, April 2001.

[4] Stoica, I.—Morris, R.—Karger, D.—Kaashoek, M.F.—Balakrish-

nan, H.: Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications.
SIGCOMM 2001, August 2001.

[5] Gupta, A.—Liskov, B.—Rodrigues, R.: One Hop Lookups for Peer-to-Peer
Overlays. HOTOS IX., May 2003.

[6] Saroiu, S.—Gummadi, P.K.—Gribble, S.D.: A Measurement Study of Peer-
to-Peer File Sharing Systems. MMCN ’02, January 2002.

[7] Wu, Y.—Li, M.—Zheng, W.: ONSP: Parallel Overlay Network Simulation Plat-
form. The 2004 International Conference on Parallel and Distributed Processing Tech-
niques and Applications. PDPTA’04, June 2004.

[8] Calvert, K. L.—Doar, M.B.—Zegura, E.W.: Modeling Internet Topology. In
IEEE Communications, 1997.

Jinfeng Hu received his Ph.D. and B. Sc. degrees at the De-
partment of Computing Science and Technology, Tsinghua Uni-
versity, P.R. China in 2005 and 2000, respectively. His research
interests include large-scale distributed computing, global sto-
rage system, peer-to-peer computing, etc.

Huanan Zhang is a graduate student at the Department of
Computing Science and Technology, Tsinghua University,
P.R. China, where he received his B. Sc. degree in 2003. His
research interests include peer-to-peer computing, overlay net-
works, information plane, etc.



Twins 261

Weimin Zheng is a professor at the Department of Comput-

ing Science and Technology, Tsinghua University, P.R. China
where he received his M. Sc. degree in 1982, and his BS degree
at the Department of Automation, Tsinghua University in 1970.
His research interests include distributed computing, cluster sys-
tem, Grid computing, peer-to-peer computing, parallel compil-
ing, parallel program debugging, etc.


