
Chapter 9
Twist Deformations of Quantum Integrable
Spin Chains

Petr Kulish

Twist deformations of spacetime lead to deformed field theories with twisted sym-
metries. Twisted symmetries are quantum group symmetries. Most integrable spin
systems have dynamical symmetries related to appropriate quantum groups. We dis-
cuss the changes of the properties of these systems under twist transformations of
quantum groups. A main example is the isotropic Heisenberg spin chain and the
jordanian twist of the universal enveloping algebra of sl(2). It is shown that the
spectrum of the XXX spin chain is preserved under the twist deformation while the
structure of the eigenstates depends on the choice of boundary conditions. Another
example is provided by abelian twists, these give physical deformations of closed
spin chains corresponding to higher rank Lie algebras, e.g., gl(n). The energy spec-
trum of these integrable models is changed and correspondingly their eigenvectors.

9.1 Introduction

One of the cornerstone of the quantum inverse scattering method was the isotropic
Heisenberg spin chain [1] exactly solved by H. Bethe [2]. The development of the
quantum inverse scattering method (QISM) [3–7], as an approach to the construc-
tion and solution of quantum integrable systems, has led to the foundations of the
theory of quantum groups [8–11]. Both in QISM and in quantum groups a funda-
mental, defining object is the R-matrix. V. Drinfel’d introduced an important trans-
formation of quantum groups: a twist of coproduct map. The R-matrix is changed
under Drinfel’d twist transformations. We would like to discuss the corresponding
changes in integrable models taking as examples the isotropic XXX (9.1) and the
anisotropic XXZ spin chains (9.20). These systems are more elementary than the
field theories on noncommutative spaces discussed in the previous chapters. The
aim is to see what kinds of modifications on these physical systems are produced by
twisting their underlying symmetry structures.

Kulish, P.: Twist Deformations of Quantum Integrable Spin Chains. Lect. Notes Phys. 774, 165–188 (2009)
DOI 10.1007/978-3-540-89793-4 9 c© Springer-Verlag Berlin Heidelberg 2009



166 Petr Kulish

To explain magnetic properties of solids in quantum theory a model of interacting
half-integer spins was proposed by W. Heisenberg in 1928 [1]. The hamiltonian of
the isotropic model (XXX spin chain) is given in terms of Pauli sigma matrices
σαk ,α = x,y,z; at each site k = 1,2, . . . ,N of a one-dimensional chain

HXXX =
N

∑
m=1

(
σ x

mσ x
m+1 +σ y

mσ
y
m+1 + (σ z

mσ z
m+1 −1)

)
− h

2

N

∑
m=1

σ z
m. (9.1)

The following periodic (κ = 1) or quasi-periodic (κ �= 1) boundary conditions are
imposed

σ z
N+1 = σ z

1, σ±
N+1 = κ±1σ±

1 , σ± =
1
2
(σ x ± iσ y).

(Often the quasi-periodic boundary conditions are referred to as the twisted ones,
but the word “twist” is reserved in this book for the theory of quantum groups.) The
hamiltonian in (9.1) is an operator in the Hilbert space of spin states

H =
N⊗

m=1

C
2
m ,

which is the tensor product of the two-dimensional Hilbert spaces associated with
each site of the chain m = 1,2, . . . ,N. The explicit form of these sigma matrices
σα ,α = x,y,z,

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
, (9.2)

enables one to write the hamiltonian density for zero magnetic field h = 0 as a
permutation operator Pmm+1 of neighboring spaces C

2
m⊗C

2
m+1: P(v⊗w) = w⊗v,

where v,w ∈ C
2. Indeed

∑
α
σαmσαm+1 = 2Pmm+1 − Imm+1 ; (9.3)

here Imm+1 is the identity matrix. Taking the basis vectors of C
2 as e(+) =

(
1
0

)
,e(−) =(

0
1

)
, so that σ±e(±) = 0, and the basis vectors of C

2 ⊗C
2 as

e(+) ⊗ e(+) =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , e(+) ⊗ e(−) =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ ,

e(−) ⊗ e(+) =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , e(−) ⊗ e(−) =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ , (9.4)
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the permutation (flip) matrix is

P =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ . (9.5)

In terms of the permutation operators Pmm+1 the hamiltonian in (9.1), that from
now on we consider with zero magnetic field h = 0, reads

HXXX = 2
N

∑
m=1

(Pmm+1 − Imm+1) . (9.6)

HXXX is an element of the group algebra C[SN ] of the symmetric group SN (the
group of permutations of N objects). See (7.52) for the definition of group algebra
C[SN ]. One can rewrite this hamiltonian using raising σ+ and lowering σ− matri-
ces,

HXXX = 2
N

∑
m=1

(
σ+

m σ−
m+1 +σ−

m σ+
m+1 +

1
2
(σ z

mσ z
m+1 −1)

)
. (9.7)

Then it is easy to see that the tensor product state

Ω =
N⊗

k=1

e(+)
k =

N⊗

k=1

(
1
0

)

k
(9.8)

is an eigenvector of HXXX with zero eigenvalue Ω ,

HXXX Ω = 0.

This state Ω corresponds to all spins up, and it is called the ferromagnetic state.
The complete spectrum of the energy operator HXXX and its eigenvectors were

found by H. Bethe in 1931 [2]. Due to the obvious rotational invariance HXXX com-
mutes with the generators of rotations (global spin):

[HXXX ,Sα ] = 0, Sα =
1
2

N

∑
k=1

σαk , [Sα ,Sβ ] = iεαβγSγ . (9.9)

Hence, the Hilbert space of states H =
N⊗
1

C
2 can be decomposed into invariant

subspaces with fixed value of the third component Sz:

H =
N⊗
1

C
2 =

N⊕
M=0

H 1
2 N−M. (9.10)

Consider the shift operator U
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U = P1N . . .P13P12 =:
N−1

∏
k=1

P1k+1, Uσαk = σαk+1U . (9.11)

It commutes with the hamiltonian

[HXXX ,U ] = 0 . (9.12)

Then it is easy to see that the one-magnon state

Ψ(z) =
N

∑
k=1

zkσ−
k Ω (9.13)

is a common eigenvector of HXXX and U ,

UΨ(z) = z−1Ψ(z), HXXXΨ(z) = 2(z+ z−1 −2)Ψ(z), (9.14)

provided that the quasimomentum z satisfies the quantization condition

zN = 1, logz = 2πik/N, k = 1,2, . . . ,N −1. (9.15)

The module |z| is equal to 1. Hence the magnon energy is negative, and to find the
ground state with the lowest energy one needs to analyze states with many magnons.

Bethe’s proposal was to search for eigenvectors of HXXX in the form of the so-
called (coordinate) Bethe ansatz: a linear combination of products of one-magnon
states

Ψ(z1, . . . ,zM) = ∑
1≤n1<n2<...<nM≤N

∑
π∈SM

A
(
π,{z j}M

1

)
zn1
π(1)z

n1
π(2) . . .z

nM
π(M)

M

∏
j=1

σ−
n j
Ω .

(9.16)
Here z j are the quasimomenta of the M magnons, SM is the symmetric group with
M! elements {π}, and A(π,{z j}M

1 ) are the amplitudes depending on {z j}M
1 and π .

The description of a thermodynamic limit N → ∞ corresponding to an infinite
antiferromagnetic chain was given by L. Hulthen in 1938 [12].

The requirement is that the M magnon vector (9.16) is an eigenvector of HXXX ,
and the spin chain periodicity condition results in the explicit form of the coefficients
A(π;{z j}M

1 ) and the quantization conditions of quasimomenta {z j}M
1 (the so-called

Bethe equations):

zN
j =

M

∏
k �= j

z jzk +1−2z j

2zk − z jzk −1
, j = 1,2, . . . ,M. (9.17)

The corresponding energy is

EM =
M

∑
j=1

2(z j + z j
−1 −2). (9.18)
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The factors on the RHS of (9.17) are scalar two-magnon scattering matrices
S(z j, zk) = S(zk, z j)−1. A detailed deduction of these relations can be found
in monographs (e.g. [13–15]). We will obtain them using the QISM in the next
section.

There is also a different parameterization λ of quasimomenta

z(λ ) =
λ +η/2
λ −η/2

,

which is more convenient for the QISM formalism, where λ is known also as a
spectral parameter. Although by a scaling λ → ηλ the parameter η can be omitted
it is useful to preserve it for the future discussions, e.g., of the quasiclassical limit
η → 0. Usually, one puts η = i to get real-valued λ for |z| = 1. The one-magnon
energy in terms of λ and η = i is E(λ ) = −4/(4λ 2 + 1), and the Bethe equations
(9.17) in terms of λ reads as follows:

(
λ j +η/2
λ j −η/2

)N

=
M

∏
k �= j

λ j −λk +η
λ j −λk −η

. (9.19)

It is instructive to mention two obvious algebras related to the isotropic Heisen-
berg spin chain: the rotational symmetry Lie algebra sl(2) of HXXX (9.6), (9.9), and
the group algebra C[SN ] of the symmetric group SN . We already remarked that the
expression of the hamiltonian density in terms of permutation operators (9.6) shows
that HXXX ∈ C[SN ]. There is also a much bigger dynamical symmetry algebra, the
so-called Yangian Y (sl(2)) [4] which includes all the observables of the model (see
Sect. 9.2).

Similar solution using the coordinate Bethe ansatz was constructed by R. Orbach
in 1958 [16] for the anisotropic Heisenberg spin chain

HXXZ =
N

∑
k=1

(
σ x

kσ
x
k+1 +σ y

kσ
y
k+1 +Δ(σ z

kσ
z
k+1 −1)

)
, (9.20)

where Δ ∈ (−∞,∞) is an anisotropy parameter. The only obvious symmetry of this
spin chain is the U(1) group with the Lie algebra generator Sz (9.9). The space of
states is also decomposed according to the eigenvalues of Sz

H =
N⊕

M=0

H 1
2 N−M. (9.21)

However, under a minor modification of the XXZ model hamiltonian (concerning
an appropriate boundary condition instead of the periodicity one, cf. Sect. 9.2) the
symmetry algebra is “similar” to the sl(2) one; it is the quantum algebra Uq(sl(2))
with three generators [8] (see also Sect. 7.4). As a second algebra of this XXZ model
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one has the Hecke algebra HN(q) instead of C[SN ]. Finally a dynamical symmetry
algebra for this model is the quantum affine algebra Uq(ŝl(2)) [17].

In the next section we solve the XXX and XXZ models by a pure algebraic ap-
proach using the quantum inverse scattering method (QISM). For this reason now
we write down only the spectrum of HXXZ and we consider the corresponding Bethe
equations for the quasimomenta with a different parameterization {μ j}M

1 ,

HXXZΨ({μ j}M
1 ) = EM({μ j}M

1 )Ψ({μ j}M
1 ), (9.22)

EM({μ j}M
1 ) =

M

∑
j=1

Δ 2 −1
Δ − cos2μ j

=
M

∑
j=1

(coshη)2 −1
coshη− cos2μ j

, (9.23)

(
sinh(μ j + 1

2η)
sinh(μ j − 1

2η)

)N

=
M

∏
k �= j

sinh(μ j −μk +η)
sinh(μ j −μk −η)

. (9.24)

We are using the standard parameterization of the anisotropy parameter Δ ,

Δ =
1
2
(q+q−1) = cosh(η), q = exp(η). (9.25)

We finish this introduction by recalling that integrable quantum spin chains are
closely related to exactly solved models of statistical mechanics on square lattice (à
la two-dimensional Ising model) [15]. The trace of the transfer matrix t(λ ), which
is the generating function of the integrals of motion of the spin system, leads to the
partition function Z of the corresponding lattice statistical model. The entries of the
R-matrix, a fundamental object of the QISM, are the Boltzmann weights of the local
configurations [13–15].

9.2 Algebraic Bethe ansatz (QISM)

In this section we review the QISM formalism. We obtain the eigenvectors (9.22),
the eigenvalues (9.23), and the quantization conditions (9.24) of the XXZ model,
and the corresponding ones of the XXX model, via an algebraic approach (algebraic
Bethe ansatz). This algebraic method is analogous to the treatment à la Dirac of the
quantum harmonic oscillator with creation and annihilation operators. We construct
a particular transformation converting the variables σαk into a new set of operators.
More precisely the aim is to transform the original spin 1/2 operators σαk (that are
local operators because they act only on the kth site) to a set of new nonlocal oper-
ators in H with peculiar algebraic properties independent from the number of sites
N. We denote these nonlocal operators by A(λ ),B(λ ),C(λ ),D(λ ). The hamiltonian
HXXX is expressed in terms of these operators, and by acting on the vacuum state Ω
with the creation operators B(λ j) we also construct its eigenstates. A similar scheme
holds also for the XXZ model.



9 Twist Deformations of Quantum Integrable Spin Chains 171

Next we briefly discuss the underlying dynamical symmetry algebras. These are
the Yangian Y (sl(2)) for the XXX model and the quantum affine algebra Uq(ŝl(2))
for the XXZ model. Deformations of the XXX and XXZ models obtained by twist-
ing of these dynamical symmetries are then discussed in Sect. 9.3.

9.2.1 QISM for the XXX model

The main object of the transformation from the local operators σk ∈ End(H ) to
the nonlocal ones A(λ ), B(λ ), C(λ ),D(λ ) ∈ End(H ) is an auxiliary operator: the
L-matrix. It is a 2×2 matrix on an auxiliary space. The matrix entries depend on the
local observables σαk at a given site k and on the spectral parameter λ . In the case
of the XXX model the L-matrix is

Lak(λ ) = λ I +
1
2
η∑

α
σα ⊗σαk =

⎛
⎜⎜⎝
λ +η/2 0 0 0

0 λ −η/2 η 0
0 η λ −η/2 0
0 0 0 λ +η/2

⎞
⎟⎟⎠ .

(9.26)
The indices a and k refer to the auxiliary space the matrices σα act and to the
quantum space C

2
k (a factor in the definition of H ). On the other factors of H the

Lak-matrix acts as the identity. The L-operator in (9.26) is written as a 4×4 matrix
in C

2
a⊗C

2
k and one can recognize the local operators σαk as 2×2 blocks of the 4×4

matrix.
Using the L-operator (9.26) a new set of variables (operators in the Hilbert space

H (9.10) depending on the parameter λ ) is introduced by an ordered product of
Lak(λ ) as 2×2 matrices on the auxiliary space C

2
a,

T (λ ) := LaN(λ )LaN−1(λ ) . . .La1(λ ).

This new operator T (λ ) is the QISM monodromy matrix [3–6]. It is a 2×2 matrix
in the auxiliary space Va � C

2. Its entries

T (λ ) =
(

A(λ ) B(λ )
C(λ ) D(λ )

)
(9.27)

are operators in H . They are the new nonlocal variables. The commutation relations
of these new operators A(λ ), . . . ,D(λ ) ∈End(H ) can be obtained from the local
relation for the L-operator at one site (see for example [6]):

R12(λ −μ)L1k(λ )L2k(μ) = L2k(μ)L1k(λ )R12(λ −μ), (9.28)

where the R-matrix is found from the previous equation to be

R(λ ) = λ I +ηP . (9.29)
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The R-matrix in (9.29) acts on the tensor product of two auxiliary spaces C
2
1 ⊗C

2
2.

Equation (9.28) involves operators on C
2
1 ⊗C

2
2 ⊗C

2
k , where C

2
k is the space of spin

quantum states at site k. The operators R and Lak are understood to act in C
2
1 ⊗C

2
2 ⊗

C
2
k via the embeddings

R12(λ −μ) = R(λ −μ)⊗1 , L2k(μ) = 1⊗Lak(μ) ,

and similarly L1k(λ ) acts as Lak(λ ) on C
2
1⊗C

2
k and as the identity on the remaining

factor C
2
2,L1k(λ ) = P12L2k(λ )P12.

Taking into account (9.5) one can see that the R-matrix (9.29) coincides with the
L-matrix (9.26) up to a shift of the spectral parameter

R(λ ) = L(λ +
η
2

). (9.30)

Then by trivially shifting the spectral parameters λ and μ in (9.28) we obtain the
Yang–Baxter equation (YBE) [3]

R12(λ −μ)R13(λ )R23(μ) = R23(μ)R13(λ )R12(λ −μ) . (9.31)

This matrix equation is written in the auxiliary space End(C2
1⊗C

2
2⊗C

2
3), and R12 :=

R ⊗ I, R23 := I ⊗ R, R13 := P12R23P12. The solution (9.29) is called the Yang
R-matrix and there is an obvious extension of it to higher dimensional spaces C

n ⊗
C

n as the n2 ×n2 matrix R(λ ) = λ I +ηP which also satisfies the YBE (9.31).

The commutation relation for the L-matrix (9.28) induces the commutation rela-
tions for the monodromy matrix T (λ ). These latter have the same form [3–7]

R12(λ −μ)T1(λ )T2(μ) = T2(μ)T1(λ )R12(λ −μ), (9.32)

where a convenient notation for tensor products is used T1(λ ) := T (λ )⊗ I, T2(μ) =
I⊗T (μ) [3, 4], see also (7.19) and (7.20). One can extract 16 commutation relations
for the entries of T (λ ) (see e.g. [13]). We will use only few of them (the entries 13,
34, and 14) to algebraically construct the eigenvectors of the hamiltonian HXXX :

A(λ )B(μ) = f (λ −μ)B(μ)A(λ )+g(λ −μ)B(λ )A(μ), (9.33)

D(λ )B(μ) = f (μ−λ )B(μ)D(λ )+g(μ−λ )B(λ )D(μ), (9.34)

B(λ )B(μ) = B(μ)B(λ ), (9.35)

where f (λ − μ) = (λ − μ −η)/(λ − μ), g(λ − μ) = η/(λ − μ). Multiplying the
RTT-relation (9.32) by R−1

12 (λ − μ) and taking the trace over two auxiliary spaces
one gets the commutativity property of the transfer matrix t(λ ),

t(λ ) := trT (λ ) = A(λ )+D(λ ), t(λ )t(μ) = t(μ)t(λ ). (9.36)
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The transfer matrix t(λ ) is a generating function of integrals of motion. Due to the
regularity property of the Yang R-matrix

R(λ ;η)
∣∣
λ=0 = ηP (9.37)

(that in terms of the L-matrix reads L(λ )
∣∣
λ=η/2 = ηP, where P is the permutation

operator (cf. (9.5))) we have that t(λ )
∣∣
λ=η/2 is proportional to the shift operator U

(9.12). Using the obvious property d
dλ L(λ ) = I it can then further be shown that the

logarithmic derivative of t(λ ) at the point λ = η/2 yields the hamiltonian,

HXXX � d
dλ

log t(λ )
∣∣
λ=η/2, (9.38)

where � stands for equality up to a proportionality factor and a constant additive
term (proportional to N). The transfer matrix t(λ ) is the generating function of the
mutually commuting integrals of motions In = dn

dλ n log t(λ )
∣∣
λ=η/2. These integrals

are local densities (a natural and desirable physical property) in the sense that In is
a sum of operators each of which acts nontrivially at no more than n+1 neighboring
sites of the lattice.

We have seen that the hamiltonian can be written in terms of the A(λ ) and D(λ )
operators. On the other hand the operators B(λ ), for different values of λ , gener-
ate the eigenvectors of the hamiltonian. They act on the vacuum state (the highest
weight vector) Ω defined in (9.8):

Ω =
N⊗
1

e(+)
m , σ z

me(±)
m = ±e(±)

m , σ+
m e(+)

m = 0, σ−
m e(+)

m = e(−)
m ,

as creation operators for magnons. In order to show that they are creation operators
we first observe that

C(λ )Ω = 0, A(λ )Ω = aN(λ )Ω , D(λ )Ω = dN(λ )Ω ,

where aN(λ ) = (λ + η
2 )N , dN(λ ) = (λ − η

2 )N . This follows from the upper trian-
gular form of the L-matrix on Ω and by recalling the expression of the monodromy
matrix T (λ ) in terms of the L(λ ) matrices. Next, from the quadratic relation (9.33)
for A(λ ) and B(μ), we have

A(λ )
M

∏
j=1

B(μ j) =
M

∏
j=1

f (λ −μ j)B(μ j)A(λ )

+
M

∑
k=1

g(λ −μk)B(λ )
M

∏
j �=k

f (μk −μ j)B(μ j)A(μk), (9.39)

and a similar relation for D(λ ) and the product of B(μ j). The sum of these relations
acting on the vacuum Ω gives the eigenvector (9.16) of the transfer matrix t(λ )
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Ψ({μ j}M
1 ) =

M

∏
j=1

B(μ j)Ω ,

t(λ )
M

∏
j=1

B(μ j)Ω = Λ(λ |{μk}M
1 )

M

∏
j=1

B(μ j)Ω , (9.40)

under the condition that the parameters μk satisfy the Bethe equations (k = 1, . . . ,M)

aN(μk)
dN(μk)

=
M

∏
j �=k

f (μ j −μk)
f (μk −μ j)

. (9.41)

This condition yields the vanishing of “unwanted terms” containing the opera-
tor B(λ ) and the operators A(μk),D(μ j) that as a result of the commutation rela-
tions (9.39) have arguments different from μ j and λ , respectively.

The eigenvalue of the transfer matrix t(λ ) is

Λ(λ |{μk}M
1 ) = aN(λ )

M

∏
j=1

f (λ −μ j)+dN(λ )
M

∏
j=1

f (μ j −λ ).

This construction of the eigenvectors of quantum integrable models was coined as
the algebraic Bethe ansatz [3].

We conclude by observing that the eigenstates Ψ =
M
∏
j=1

B(μ j)Ω , M ≤ [N/2]

(where [N/2] stands for integer part of N/2) are highest weight vectors for the global

symmetry algebra sl(2) with generators Sα = 1
2

N
∑

n=1
σαn (cf. (9.9)),

S+Ψ(μ1, . . . ,μM) = 0 , SzΨ(μ1, . . . ,μM) =
(

N
2
−M

)
Ψ(μ1, . . . ,μM) . (9.42)

The proof is purely algebraic and follows from the RTT-relation and the asymptotic
behaviors of the monodromy matrix and of the R-matrix [18],

T (λ ) = λNI +ηλN−1∑
α
σαa ⊗Sα +O(λN−2), (9.43)

R12(λ −μ) � I +
η
2λ

(
∑
α
σα1 ⊗σα2 + I

)
+O

(
1
λ 2

)
. (9.44)

Indeed, substituting these two asymptotics into the RTT-relation one gets
[((

1+
η
2λ

)
I +

η
λ ∑α

σα1 ⊗
(

1
2
σα2 ⊗1+1⊗Sα

))
,T2(μ)

]
= 0,

or
1
2

[σα ,T (μ)] = [T (μ),Sα ] ,
1
2

[σα ,T (μ)]xy = [T (μ)xy,S
α ] .
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The LHS is the commutator of 2×2 matrices while the RHS is the 2×2 matrix of
the commutators of the entries of T (μ) with the global spin generators, e.g.,

[Sz,B(μ)] = −B(μ),
[
S+,B(μ)

]
=

1
2

(A(μ)−D(μ)) .

These relations and (9.33) and (9.34) permit to prove the property (9.42) provided
the Bethe equations (9.41) are valid.

9.2.1.1 The Yangian Y (sl(2))

Consider the entries of the 2 × 2 monodromy matrix T (λ ) as abstract operators
obeying the RTT-relation, divide them by λ−N , and let N be arbitrarily big. We

denote by T (λ ) this series of 2×2 matrices, with coefficients t(n)
i j as abstract gen-

erators

T (λ )i j =
∞

∑
n=0

t(n)
i j

1
λ n , t(0)

i j = δi j. (9.45)

The RT T -relation (9.32) for T (λ ) defines an infinite-dimensional Hopf algebra, the
Yangian Y (gl(2)). One can define a q-determinant of the matrix T (λ ), it is central
in Y (gl(2)) and setting it to 1 gives the Yangian Y (sl(2)). The Yangian’s coproduct

Δ : Y (sl(2)) → Y (sl(2))⊗Y (sl(2)) on the generators t(n)
i j can be written in a

compact matrix form [19, 20]

Δ(T (λ )i j) =∑
k

T (λ )ik ⊗T (λ )k j. (9.46)

According to (9.43) the first nontrivial term t(1)
i j /λ yields generators of the Lie

algebra sl(2) and their coproduct is primitive

Δ(Sα) = Sα ⊗1+1⊗Sα .

Hence, the universal enveloping algebra U (sl(2)) is a Hopf subalgebra of the Yan-
gian U (sl(2)) ⊂ Y (sl(2)). This embedding permits to use twist elements found
in U (sl(2))⊗2 to perform twisting also of the Yangian (see below and [21]). The
Yangian Y (g) of a Lie algebra g is a deformation of the Lie algebra of polynomial
maps C→ g (or the current algebra g[t]), it can also be considered as a “degenerate”
version of the quantum affine algebra Uq(ĝ), this is a deformation of the central

extension L̂(g) of the loop algebra L(g) (the current algebra g[t, t−1]) [9, 20].

9.2.1.2 Higher spins and generalizations

One can take as L-operator the expression similar to (9.26) with an arbitrary repre-
sentation sαk of spin s (s = 1,3/2, . . .) instead of σαk [7]
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Lak(λ ) = λ I +
1
2
η∑

α
σαa ⊗ sαk . (9.47)

The main QISM relation (9.28) will be still valid with the same 4 × 4 R-matrix
(9.29). This gives us a generalization of the spin 1/2 XXX model to higher spins,
i.e., the isotropic spin s model XXXs [7].

More generally we can consider a solution R(λ ;η) of the YBE (9.31) which
has the regularity property R(λ ;η)

∣∣
λ=λ0

= ηP for some value λ = λ0 (cf. (9.37))
and construct a corresponding quantum integrable system. As before we define the
monodromy matrix T (λ ) as an ordered product of R-matrices (that are related to
L-matrices via a formula similar to (9.30)), then the first logarithmic derivative of
t(λ ) gives the hamiltonian H of a spin model

H � d
dλ

log t(λ )
∣∣
R(λ )=R(λ0) , (9.48)

where, similarly to (9.6),

H �
N

∑
n=1

Řnn+1 (9.49)

and

Řnn+1 = Pnn+1
d

dλ
R(λ )nn+1

∣∣
λ=λ0

. (9.50)

Higher logarithmic derivatives of t(λ ) give mutually commuting integral of mo-
tions.

For the XXX and XXZ models, with chains carrying an arbitrary representation
of spin s (s = 1,3/2, . . .), the constant Řnn+1 matrix (9.50) (that is proportional to the
permutation matrix Pnn+1 in the XXX model) satisfies the YBE in the braid group
form

Ř12Ř23Ř12 = Ř23Ř12Ř23 . (9.51)

9.2.2 Anisotropic XXZ spin chain

The QISM approach to the XXZ model is almost identical to the one discussed for
the XXX model. This is so because the corresponding L-matrices and the R-matrices
have the same structure and satisfy the same fundamental relations (9.28) and (9.31).
We explicitly have

LXXZ(λ ) =

(
sinh(λ +ησαk /2) sinh(η) σ−

k

sinh(η) σ+
k sinh(λ −ησαk /2)

)
, (9.52)
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R(λ ) =

⎛
⎜⎜⎝

a(λ ) 0 0 0
0 b(λ ) c(λ ) 0
0 c(λ ) b(λ ) 0
0 0 0 a(λ )

⎞
⎟⎟⎠ , (9.53)

where the entries of the R-matrix are

a(λ ) = sinh(λ +η), b(λ ) = sinh(λ ), c(λ ) = sinh(η).

The hamiltonian of the XXZ model is given in (9.20). As in the XXX model the
ferromagnetic state Ω is the highest eigenstate of HXXZ , and the L-operator (9.52)
and the monodromy matrix T (λ ) onΩ have an upper triangular structure. Hence the
eigenstates, the Bethe equations (9.24), and the energy spectrum are produced by the
same algebraic procedure (algebraic Bethe ansatz) that consists of creating magnon
states by applying to Ω products of the mutually commuting operators B(μ j).

From the quantum group point of view it is more convenient to consider a non-
symmetric R-matrix instead of (9.53),

R(λ ) =

⎛
⎜⎜⎝

a(λ ) 0 0 0
0 b(λ ) c+(λ ) 0
0 c−(λ ) b(λ ) 0
0 0 0 a(λ )

⎞
⎟⎟⎠ , c±(λ ) = exp(±λ ) sinhη . (9.54)

It is useful to prove directly that due to the commutativity of the R-matrix (9.53) with
the primitive coproduct of the Cartan generator h = σ z, [R(λ ), h⊗ 1 + 1⊗ h] = 0,
the transformed R-matrix

exp(xλ h1)R12 exp(−xλ h1)

(where h1 = h⊗1, h2 = 1⊗h) satisfies the YBE (9.31). To obtain (9.54) set x = 1
2 .

The R-matrices (9.53) and (9.54) give the same XXZ model with periodic bound-
ary conditions, but, as we now explain, it is the R-matrix (9.54) that is relevant for
the XXZ model with open boundary conditions and that is directly related to the
quantum algebras Uq(sl(2)) ⊂ Uq(ŝl(2)). This relation is given via a linear combi-
nation of constant R-matrices

R(λ ;q) = exp(λ )R(+)(q)− exp(−λ )R(−)(q), q = exp η ,

where R(−)(q) = (R(+)
21 (q))−1 := P (R(+)

12 )−1P . The constant R-matrix

R(+)(q) =

⎛
⎜⎜⎝

q 0 0 0
0 1 ω 0
0 0 1 0
0 0 0 q

⎞
⎟⎟⎠ , ω = q− 1

q
= 2sinhη (9.55)
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enters the RLL relations defining Uq(sl(2)), they are given in (7.63) and (7.64).
These relations can be used to prove the RLL relations (9.28) for the L- and
R-matrices with spectral parameter (9.52) and (9.53).

By multiplying the R(+)-matrix by the permutation P one gets the matrices

Řk(q) ≡ Řk k+1(q) := PR(+)
k k+1(q) , k = 1,2, . . . ,N −1 . (9.56)

They satisfy the braid group relation (9.51) and additionally the quadratic relation
[20]

Řk(q)2 =
(

q− 1
q

)
Řk(q)+ I. (9.57)

The N − 1 elements Řk(q) that satisfy (9.51) and (9.57) are the generators of the
Hecke algebra HN(q).

According to the theory of quantum groups the Hecke algebra HN(q) with gener-
ators Řk(q) (9.56) is the centralizer of the diagonal action of Uq(sl(2)) in the space
⊗N

1 C
2,

[Řk(q),ΔN(X)] = 0, X ∈ Uq(sl(2)) ,

where ΔN(X) is understood in the representation space ⊗N
1 C

2, and the diagonal
action is given by the N-fold coproduct map1 ΔN : Uq(sl(2)) → Uq(sl(2))⊗N ,

ΔN := (Δ ⊗ id ⊗ id ⊗ . . . id)(Δ ⊗ id ⊗ . . . id) . . .(Δ ⊗ id)Δ . (9.58)

Let us now consider the hamiltonian of the XXZ model with open boundary
conditions

HXXZ =
N−1

∑
k=1

(
σ x

kσ
x
k+1 +σ y

kσ
y
k+1 + coshη (σ z

kσ
z
k+1 −1)

)
+ sinh η (σ z

1 −σ z
N).

(9.59)
This open spin chain hamiltonian is explicitly Uq(sl(2)) invariant because its den-
sity is a cross Casimir of Uq(sl(2)),

c⊗2 (q) = 2(σ+
k σ

−
k+1 +σ−

k σ
+
k+1)+ cosh η σ z

kσ
z
k+1 + sinh η (σ z

k −σ z
k+1).

This expression, in accordance with (9.49), essentially coincides with the Hecke
algebra generator Řk(q) (9.56).

Finally we comment on the difference between open and closed (periodic)
boundary conditions for the XXX and XXZ models. In the XXX model the dif-
ference between open and closed boundary conditions is given by the element
ŘXXX

N1 (q) = PN1 = P1N , that belongs to the symmetry group SN , so that also HXXX

with periodic boundary conditions is an element of the group algebra C[SN ], and we

1 The map ΔN is the composition of N − 1 coproduct maps. For example, for N = 3 we have
Δ 3 = (Δ ⊗ id)Δ . Coassociativity of Δ (cf. (9.79)) then implies that Δ 3 = (id ⊗Δ)Δ ; similarly ΔN

is independent from the position of Δ in the tensor products (9.58).
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have Y (sl(2)) dynamical symmetry. The situation is different in the XXZ model.
Indeed in this case the hamiltonian with periodic boundary condition has together
with Řkk+1(q) the summand ŘN1(q). This latter addend does not belong to the Hecke
algebra. This explains why the open spin chain hamiltonian (9.59) is Uq(sl(2)) in-
variant while the closed spin chain hamiltonian with periodic boundary condition
(9.20) is not.

9.3 Twists and QISM

In this section we consider what kind of changes can be induced in integrable spin
chains using twist transformations of the related quantum groups.

We see that twists naturally arise when considering scaling limits, for example,
the XXX and XXZ models can be related by two inequivalent elementary scaling
transformations, and we propose a treatment of the relations obtained via the second
scaling limit in terms of a corresponding twist. This leads to the example of the so-
called jordanian twist.

In Sect. 9.3.2 on the other hand we consider an abelian twist and study the
changes in the hamiltonian of the XXZ model with periodic boundary conditions
under this twist transformation.

Section 9.3.3 first details the relation between quantum groups and integrable
systems. We then see how, in the case of open spin chains, the twisting of a quantum
group leads to the corresponding twisting of the integrable system. Contrary to the
case of closed spin chains considered in Sects. 9.3.1 and 9.3.2, the original open
spin chain hamiltonian H and the twisted ones H(t) can be easily compared, they
are related by a similarity transformation.

In Sect. 9.3.4 we consider another example of twist (coboundary twist) this is
in general a trivial twist. Under scaling transformations these coboundary twist can
however become nontrivial, this is yet another way to obtain (extended) jordanian
twists and their related integrable systems.

Scaling limit XXZ → XXX . It is easy to get the isotropic XXX spin chain from the
anisotropic XXZ one via a scaling limit ε → 0 of parameters

λ → ελ , η → εη , q → 1+ εη , sinh(λ −η) → ε(λ −η), coshη → 1+
1
2
ε2η2.

(9.60)
The hamiltonians (9.20), eigenvectors, and Bethe equations (9.24) are clearly con-
nected in this limit ε → 0, as well as R-matrices (9.53) and (9.29),

RXXZ(ελ ;εη) → ε(λ I +ηP) = εRXXX (λ ;η), (9.61)

and the algebraic Bethe ansatz.
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Scaling limit XXZ → XXXξ . A nontrivial scaling limit (contraction) of the XXZ
model is obtained by applying additionally a similarity transformation with the ma-
trix M(ξ ) = exp(ξσ+) ∈ Mat(C2)

M(ξ ) =
(

1 ξ
0 1

)
(9.62)

to the main objects of the QISM. The YBE is obviously invariant with respect to
the factorized similarity transformations of its solution R → AdM⊗2R [7]. Then the
scaling limit (9.60) with a singular behavior of the parameter ξ with respect to ε:
ξ → ξ/ε yields a deformed XXX spin chain. One obtains the closed spin chain
hamiltonian

AdM(ξ/ε)⊗NHXXZ → HXXXξ := HXXX +
N

∑
n=1

(
ξ 2σ+

n σ+
n+1 +ξ (σ+

n −σ+
n+1)

)
.

(9.63)
It is a hamiltonian of a deformed XXX model with ξ as the deformation parameter
[21]. The similarity transformation does not change the spectrum of HXXZ . Thus
in this limit one produces the standard spectrum of the XXX model, although the
hamiltonian is now non-hermitian and it depends on ξ . This change of hermitic-
ity comes from the triangularity of the matrix M. In the scaling limit we get ad-
ditional degeneracy of the spectrum, and some jordanian cells appear. Here is a
two-dimensional example of this phenomenon (ξ → ξ/(x2 − x1), x2 → x1)

AdM(ξ ) ·
(

x1 0
0 x2

)
=
(

x1 ξ (x2 − x1)
0 x2

)
−→

(x2 → x1)

(
x1 ξ
0 x1

)
.

The eigenvector
(

1
0

)
survives, while the second eigenvector becomes an adjoint

eigenvector.
After this transformation the limiting R-matrix and L-operators, similarly to the

hamiltonian (9.63), have also extra terms

AdM(ξ/ε)⊗2RXXZ(ελ ;εη) → λR(ξ )+ηP, (9.64)

(AdMa(ξ )⊗AdMk(ξ ))L(XXZ)
ak (λ ) → L(XXX)

ak (λ ;ξ ), (9.65)

where

R(ξ ) = I +ξ
(
σ+ ⊗σ z −σ z ⊗σ+ +ξσ+ ⊗σ+) (9.66)

= exp(ξσ+ ⊗σ z)exp(−ξσ z ⊗σ+)

and

L(XXX)
ak (λ ;ξ ) = λ I +

η
2 ∑α

(σαa ⊗σαk ) (9.67)

+ξ (λ −η/2)
(
σ+

a ⊗σ z
k −σ z

a ⊗σ+
k +ξσ+

a ⊗σ+
k

)
.
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9.3.1 Jordanian twist

The constant R(ξ )-matrix satisfies the YBE without spectral parameter. It is a
triangular R-matrix: R12(ξ )R21(ξ ) = 1. It is an image of a universal R-matrix
R = F21F

−1
12 obtained by means of a jordanian twist of the universal enveloping

algebra U (sl(2)):

F ( j) = exp

(
1
2

h⊗ ln(1+2ξX+)
)

, w := ln(1+2ξX+), (9.68)

where h, X± are the generators of the Lie algebra sl(2): [h,X±] =±2X±, [X+,X−] =
h. Let us write down for completeness the twisted coproduct maps for the genera-
tors:

Δt(h) := F ( j)Δ(h)(F ( j))−1 = h⊗ e−w +1⊗h,

Δt(X+) = X+ ⊗1+1⊗X+ +2ξX+ ⊗X+ = X+ ⊗ ew +1⊗X+,

Δt(w) = w⊗1+1⊗w,

Δt(X−) = X−⊗ e−w +1⊗X− +ξh⊗he−w +ξ
(

h− 1
2

h2
)
⊗ (e−w − e−2w).

Introducing the new combination X̃− = X− − 1
2ξh2 one obtains a quasiprimitive

coproduct also for X̃−

Δt(X̃−) = X̃−⊗ e−w +1⊗ X̃−.

In the spin 1/2 representation we have F( j) = exp(ξσ z ⊗ σ+) and R12(ξ ) =
exp(ξσ+ ⊗σ z)exp(−ξσ z ⊗σ+).

The scaling limit procedure XXZ → XXXξ does not lead to fully solve the XXXξ
model because in this limit many eigenstates of the XXZ model become singular

(e.g., Ω− = ⊗ke(−)
k ). New ones have therefore to be found. The study of this closed

spin chain quantum integrable system via its R-matrix (9.64) is nontrivial because
the form of (9.64) is more complicated than that of (9.61). In particular the commu-
tation relations among the operators A(λ ), . . . ,D(λ ) are more involved. Although
the monodromy matrix T (λ ) still has an upper triangular structure when acting on

the ferromagnetic state Ω = ⊗N
1 e(+)

k (9.8), and therefore the operator B(λ ) is still a
creation operator, the algebraic Bethe ansatz is quite elaborated.

Deformations of integrable spin systems related to higher rank Lie algebras, e.g.,
gl(n) or Lie superalgebras gl(m|n), can be similarly obtained using extended jorda-
nian twists [22, 23]. In particular, a generalization of the isotropic XXX model to
the case of gl(n) is given by the hamiltonian

Hgl(n) =
N

∑
m=1

Pmm+1 =
N

∑
m=1

n

∑
i, j=1

e(m)
i j ⊗ e(m+1)

j i , (9.69)
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where Pmm+1 is the permutation operator of C
n
m ⊗C

n
m+1 while e(m)

i j are the basic

matrices on C
n
m (with matrix entries (e(m)

i j )
kl

= δikδ jl). An extended jordanian twist,
e.g., for n = 3, is [22]

F
( jext ) = exp(2ξE12 ⊗E23 exp(−w13))exp

(
1
2

h⊗ ln(1+2ξE13)
)

, (9.70)

w13 = ln(1+2ξE13)),

where h,Ei j are the generators of sl(3), [h,Ei j] = (δ1i +δ3 j)Ei j , [E13,E31] = h.

9.3.2 Abelian twist

One can add more parameters to the R-matrix of the XXZ model (9.54) using an
abelian twist related to the quantum algebra Uq(sl(2)) ⊂ Uq(ŝl(2)). The generator
h of Uq(sl(2)) still has the primitive coproduct:

Δ(h) = h⊗1+1⊗h := h1 +h2 ∈ Uq(sl(2))⊗2.

Extending this quantum algebra by a central element κ which has also the primitive
coproduct Δ(κ) = κ1 +κ2, a twist with the carrier space in abelian Lie subalgebra
C[κ, h] ⊂ Uq(gl(2)) can be constructed (i.e., an abelian twist)

F (ab) = exp(θ(κ⊗h−h⊗κ)) . (9.71)

The transformation of the universal R-matrix is

R(t) = F21RF −1
12 = F −1

12 RF −1
12 , (9.72)

the last equality is due to the property F21 = F −1
1 2 valid for the twist (9.71). Spin

1
2 representations with fixed central elements κ = 1

4 for both representation spaces
C

2 ⊗C
2 yield

R(t)
12 (λ ) = exp

(
θ
4

(σ z
1 −σ z

2)
)

R12(λ )exp

(
θ
4

(σ z
1 −σ z

2)
)

. (9.73)

One explicitly obtains

R(t)(λ ) =

⎛
⎜⎜⎝

a(λ ) 0 0 0
0 b+(λ ) c+(λ ) 0
0 c−(λ ) b−(λ ) 0
0 0 0 a(λ )

⎞
⎟⎟⎠ ,

b±(λ ) = p±1sinh(λ ), p = exp(θ) ,

c±(λ ) = exp(±λ ) sinhη .

(9.74)
The matrix structure of the R(t)-matrix is the same as that of (9.54), just the diagonal
elements are different. Similarly the L-operator has the same matrix structure. Hence
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the algebraic Bethe ansatz is also the same. However, since different functions enter
relations (9.33) and (9.34), the result is a change of the Bethe equations (9.24) that
now read (

1
p

sinh(μ j + 1
2η)

sinh(μ j − 1
2η)

)N

=
M

∏
k �= j

sinh(μ j −μk +η)
sinh(μ j −μk −η)

. (9.75)

Also the hamiltonian depends on the twist parameter p = exp(θ),

HXXZp = 2
N

∑
k=1

((
pσ+

k σ
−
k+1 +

1
p
σ−

k σ
+
k+1

)
+

1
2

coshη(σ z
kσ

z
k+1 −1)

)
. (9.76)

This is the hamiltonian of the closed XXZp spin chain, and it is hermitian for |p|= 1.
References on this model studied as spin chain and as 2d classical statistical system
(6 vertex model) can be found in [24].

The method of constructing new quantum integrable systems via an abelian twist
is quite general. There are quantum integrable spin chains corresponding to higher
rank (r > 1) Lie algebras, e.g., gl(n), or Lie superalgebras, e.g., gl(m|n). Then one
has an r-dimensional abelian Lie subalgebra, with generators {h j}r

1, and one can
construct an abelian twist with more parameters to deform the spin model [25]

F (ab) = exp
(
∑θ i jhi ⊗h j

)
. (9.77)

This twist element is similar to the one used to construct the θ -deformed Poincaré
algebra (see [26] and previous chapters).

9.3.3 Generalities on twist transformations

The algebraic structure underlying the main operators entering the QISM: the R-
matrix, the L-operator, and the monodromy matrix T (λ ), is that of a quantum group.
In quantum groups a key role is played by the universal R-matrix R and by the co-
product map Δ . By representing the universal R-matrix and by using the coproduct
map Δ one obtains the R-, L-, and T - operators. By twisting the quantum group
coproduct map Δ one obtains a new (twisted) quantum group and can consider the
corresponding changes of the R-matrix, the L-operator, and the monodromy matrix
T (λ ) that in turn define a new integrable system.

Given a quasitriangular Hopf algebra U (m,Δ ,S,R) with product m, coproduct
Δ , and antipode S, and a twist F ∈ U ⊗U , the corresponding twisted quasitrian-
gular Hopf algebra has a transformed coproduct map Δt , for all a ∈ U ,

Δt(a) = FΔ(a)F−1 (9.78)

(cf. Chap. 8.2.1). Coassociativity of this deformed coproduct, i.e.,

(Δt ⊗ id)Δt = (id ⊗Δt)Δt (9.79)
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is implied by the Drinfel’d twist equation

F12(Δ ⊗ id)F = F23(id ⊗Δ)F . (9.80)

The corresponding twist-transformed universal R-matrix is

R(t) = F21RF−1. (9.81)

Defining Δ op (and similarly Δ op
t ) by Δ op

12 (a) = Δ21(a) for all a ∈U , we have, again
for all a ∈ U , Δ op

t (a) = F21Δ op(a)F−1
21 , and

F21RΔ(a)F−1 = F21Δ op(a)RF−1.

These two last relations imply the intertwining relation (for all a ∈ U )

R(t)Δt(a) = Δ op
t (a)R(t).

In order to obtain the R-, L-, and T - operators from the universal R-matrix and
the coproduct Δ we consider the universal L-matrix. It is an image of the universal
R-matrix in a representation ρ corresponding to an auxiliary space Va

L = (ρ⊗ id)R, or L (t) = (ρ⊗ id)F21RF−1.

The L-matrix of the previous sections is then obtained by representing L on the
vector space Vk. The monodromy matrix T of a chain with N sites

TN = LaNLaN−1 . . .La1

can be obtained by the action of the N-fold coproduct ΔN : U → U ⊗N as defined
in (9.58). In fact taking into account the factorization property of the universal R-
matrix [9],

(id ⊗Δ)R = R13R12,

we have
(id ⊗Δ 3)R := (id ⊗Δ ⊗ id)(id ⊗Δ)R = R14R13R12 ,

hence,

TN = (ρ⊗ id)ΔNR = (ρ⊗ id)RaNRaN−1 · · ·Ra1 ∈ End(Va)⊗U ⊗N , (9.82)

TN = (id ⊗ρ⊗N)TN . (9.83)

Now we consider twist transformations of the monodromy matrix. From (9.82)
we see that it is obtained by twisting the universal R-matrix and the N-fold coprod-
uct ΔN . From the definition of twisted coproduct we have the relation for 3-fold
coproducts, for all a ∈ U ,
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Δ 3
t (a) = (Δt ⊗ id)Δt(a) = F12F(12)3Δ 3(a)F−1

(12)3F
−1
12 ,

here F(12)3 = (Δ ⊗ id)F . The N-fold coproduct ΔN : U → U ⊗N is also similarly
transformed by the twist

ΔN
t = F (N)ΔN(F (N))−1, (9.84)

where
F (N) := F12F(12)3 · · ·F(12...N−1)N ,

and F(123)4 = (Δ 3 ⊗ id)F , and similarly for all other factors up to F(12...N−1)N =
(ΔN ⊗ id)F .2

It is instructive to prove that the relation Ř(t) = FŘF−1, defining the twist-
transformed Ř-matrix (cf. (9.81) and (9.50)), in U ⊗N reads

Ř
(t)
nn+1 = Fnn+1Řnn+1(Fnn+1)−1 = F (N)Řnn+1(F (N))−1 . (9.85)

The last equality shows that the operator Fnn+1 that defines the similarity transfor-
mation Řnn+1 → Fnn+1Řnn+1(Fnn+1)

−1, and that is local because it depends on
the sites n and n+1, can be replaced by the operator F (N) that is global because it
is independent from the positions n and n+1.

Equality (9.85) allows to compare the hamiltonian H(t) of an open spin chain
described by a twisted quantum group to the untwisted one H. Recalling (9.48) we
see that

H(t) =
N−1

∑
n=1

Ř(t)
nn+1 = F(N)

(
N−1

∑
n=1

Řnn+1

)
(F(N))−1 = F(N) H (F(N))−1 , (9.86)

where H(t),Fnn+1, and Řnn+1 are written in a representation. Contrary to the closed
spin chains of Sects. 9.3.1 and 9.3.2, we see that the open spin chain hamiltonian
H(t) has the same spectrum as H and that its eigenvectors are transformed via F(N).

9.3.4 Coboundary twists and the jordanian deformation

Coboundary twists are twists constructed with any invertible element u of a Hopf
algebra U :

F (cob) = (u⊗u)Δ(u−1).

The Hopf algebra constructed with a coboundary twist has the coproduct Δ̃ =
F (cob)Δ(F (cob))−1 and is isomorphic (as a Hopf algebra) to the original one. They
are in fact related by the similarity transformation ϕu : U → U , a → uau−1,

2 Due to the Drinfel’d twist equation (9.80), the N-fold twist F (N) admits similar and equivalent
factorizations with a different order of the N −2 coproduct maps acting on different factors of F .
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Δ̃ ◦ϕu = (ϕu ⊗ϕu)◦Δ .

The universal R-matrix of U (if U is quasitriangular) is transformed with this twist
just by the similarity transformation

R → Ad(u⊗u)R.

We now exploit the very definition of coboundary twist and concoct a coboundary
twist of the Hopf algebra Uq(sl(2)) given by an element u(q, t) ∈ Uq(sl(2)) (where
t is a parameter that we later relate to ξ ), such that

F (cob)(q, t) = (u⊗u)Δ(u−1) ∈ Uq(sl(2))⊗Uq(sl(2))

is nonsingular in the limit q→ 1, while the corresponding element u(q, t) is singular.
This coboundary twist in the q → 1 limit is no more a coboundary and leads to the
jordanian twist F ( j). Hence, instead of performing a singular contraction of the
XXZ model, one can apply the appropriate twist transformation to the whole QISM
machinery of the XXZ model and then consider the limit q → 1. An element u(q, t)
with these properties is [27]

u(q, t) = expq2

(
t

1−q2 X+
)

, (9.87)

where

expq(x) :=
∞

∑
n=1

xn

(n)q!
= exp

(
∞

∑
n=1

(1−q)n−1 xn

n(n)q

)
, (expq(x))

−1 = expq−1(−x),

(9.88)
and (n)q := (1−qn)/(1−q), (n)q! := (1)q(2)q · · ·(n)q.

Since the generator X+ of the quantum algebra Uq(sl(2)) has the following co-
product

Δ(X+) = X+ ⊗1+K−2 ⊗X+,

then the coboundary twist element is

F (cob)(q) = (u(q)⊗u(q))Δ(u(q)−1) (9.89)

= expq2

(
t

1−q2 X+
)
⊗ expq2

(
t

1−q2 X+
)

expq−2

(
− t

1−q2 (X+ ⊗1+K−2 ⊗X+)
)

.

We now use a functional equation for the q-exponential of a sum of noncommuting
arguments. Provided that yx = qxy we have

expq(x+ y) = expq(x)expq(y).
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Recalling the Uq(sl(2)) commutation relations K−2X+ = q−2X+K−2 (cf. (7.39)
and (7.40)) we can then factorize the third q-exponential in (9.89). Then the expres-
sion for F (cob)(q) simplifies to

F (cob)(q) = expq2

(
t

1−q2 1⊗X+
)

expq−2

(
− t

1−q2 (K−2 ⊗X+)
)

.

Using the representation of the q-exponential as standard exponential of the
q-dilogarithm (9.88), the realization K2 = qh, and commutativity of the elements
1⊗X+, K−2 ⊗X+, one can show that there are no singular terms in F (cob)(q) in
the limit q → 1. The explicit expression is

lim
q→1

F (cob)(q) = exp

(
∞

∑
n=1

−1
2

h⊗ (tX+)n

n

)
= exp

(
1
2

h⊗ ln(1− tX+)
)

,

which gives for t = −2ξ the jordanian twist F ( j) (9.68).

9.4 Conclusions

By transforming a given quantum group with a twist we obtain a new quantum
group with universal R-matrix changed according to F21RF−1. As a result there is
a corresponding change in the integrable model associated with the initial quantum
group and its representations. It was demonstrated that depending on the properties
of the twist the energy spectrum for closed spin chains can be preserved (XXXξ
model (9.63)) or changed (asymmetric XXZp model (9.76)). In both these cases the
structure of the eigenstates is also twist dependent. On the other hand, for an open
spin chain the twisting procedure simply generates a similarity transformation of
the hamiltonian and its eigenstates.

Finally all the new quantum integrable systems obtained by twisting a given
quantum integrable system share the same amount of symmetry as the initial one
because the amount of symmetry in a group or in a twisted deformation of the group
is the same.
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