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Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics
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While studies of active nematics in two dimensions have shed light on various aspects of the flow regimes

and topology of active matter, three-dimensional properties of topological defects and chaotic flows remain

unexplored. By confining a film of active nematics between two parallel plates, we use continuum simulations

and analytical arguments to demonstrate that the crossover from quasi-two-dimensional (quasi-2D) to three-

dimensional (3D) chaotic flows is controlled by the morphology of the disclination lines. For small plate

separations, the active nematic behaves as a quasi-2D material, with straight topological disclination lines spanning

the height of the channel and exhibiting effectively 2D active turbulence. Upon increasing channel height, we

find a crossover to 3D chaotic flows due to the contortion of disclinations above a critical activity. Above this

critical activity highly contorted disclination lines and disclination loops are formed. We further show that these

contortions are engendered by twist perturbations producing a sharp change in the curvature of disclinations.
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Active matter includes a wide range of biological and

synthetic materials that are driven out of equilibrium by contin-

uous energy injection from their internal elements [1–3]. The

constituent particles are typically elongated, as exemplified

by filamentous microtubule/kinesin bundles [4,5], or motile

bacilliform fluids [6,7]. In dense suspensions, the nematic

nature of the interactions between these particles results in

orientational order, which is continuously disturbed by active

stresses, leading to topological discontinuities.

In two-dimensional active nematics, the discontinuities are

pointlike topological defects. Defects are an unavoidable con-

sequence of broken continuous symmetry [8]. Nematic defects

have been reported in microtubule bundle films [4,5,9,10], in

thin films of actin filaments [11], in sporadically direction-

reversing bacteria and progenitor neural stem cells [7,12], and

even in cell populations that consist of polar-but-elongated

individuals, such as fibroblast cells [13], and layers of epithelial

cells [14]. In vivo experiments have uncovered biological

functionality of nematic defects governing cell death and

extrusion of epithelial cells from monolayers [14], and mound

formation in neural progenitor stem cells [12,15].

The defect dynamics are intrinsically connected to the

chaotic flows in two-dimensional (2D) active fluids in the

nematic phase. In contrast to passive nematic films, topological

defect pairs are continuously created and annihilated [5,9,16–

18]. The capacity of active nematics to maintain and organize

the resulting steady-state defect population has stimulated a

recent surge of interest in defect dynamics in condensed-matter

systems [11,19,20]. In active nematics, the chaotic motion

of the defects drives vortices and jets, generating the disor-

derly flow state of active or mesoscale turbulence [4,21–23].
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Previous theoretical, experimental, and numerical studies have

explored the topology and flow characteristics of 2D mesoscale

turbulence in active nematics [18,24] and the flow features

in three-dimensional (3D) mesocale turbulence [25,26]. In

an infinite 2D system, the ordered nematic state is hydro-

dynamically unstable to any activity. However, in a confined

geometry, the chaotic flows of active nematics can be stabilized

into spatiotemporally ordered flow states and defect trajecto-

ries [5,10,27–29].

While extensive research has been dedicated to under-

standing active nematics and topological defects in such two-

dimensional systems, basic defect properties and flow patterns

are yet to be explored in three dimensions. Indeed, recent

experiments by Wu et al. [30] have demonstrated that three-

dimensional confinement of isotropic active fluids can drive a

transition from turbulent flow to a long-range coherent flow

depending on the channel aspect ratio, showing that higher di-

mensionality can play a significant role in active fluid behavior.

As a step toward characterizing active turbulence in three

dimensions, we numerically study the crossover from 2D to

3D structures in an active system by considering an active

nematic fluid confined between two parallel plates. When the

spacing between the plates is small, we observe a “quasi-2D”

regime where straight lines of topological disclinations span

the system (Fig. 1(a); movie 1 [31]), which behaves as a stack

of identical 2D layers. As the distance between the plates is

increased, there is a crossover to full 3D active turbulence,

which we show is driven by the contortion of the disclinations

(Figs. 1(b) and 1(c); movies 2–3 [31]).

To simulate the crossover from 2D to 3D active turbulence,

we solve the nematohydrodynamic equations [16,32] of motion

for an active nematic confined between two parallel planar

surfaces separated by a varying distance H . The nematic

order is described by the tensor Q = 3S(nn − I/3)/2, with

director field n and scalar order parameter S , which can vary

from Seq = 1/3 in ordered regions to zero at the core of
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FIG. 1. Snapshots of (a),(d) quasi-2D, (b),(e) transitional, and (c),(f) 3D confined active nematic turbulence. The dynamics change from

a quasi-2D flow with straight disclination lines for the channel height H = 15 (A = 15) in (a) through a transition regime near H = 20

(A = 20) in (b) to 3D flows with strongly contorted disclination lines and disclination loops for the channel height H = 25 (A = 25) in (c).

In the top row [(a)–(c)], the planar colormap illustrates the magnitude of the nematic order S and director field n (solid black lines) in the

vicinity of the lower bounding free-slip wall. Disclination lines are shown as thick lines colored by the characteristic disclination angle α, from

wedge-type disclination segments with α = 0 (green) to twist-type segments with α = π/2 (purple). The bottom row [(d)–(f)] shows a slice of

the velocity fields for the same channel heights. The length of the arrow indicates the local speed, while the colormap shows the cross-channel

component vz.

topological defects. The nematic field evolves according to

Dt Q − S = H/γ [33], which describes the relaxation of the

orientation toward equilibrium at a rate determined by the

rotational viscosity γ = 2.94. The rate of change of Q is

described by the material derivative Dt and S, the corotational

advection of the nematic tensor due to gradients of the velocity

field [32], which includes the alignment parameter λ = 0.3.

The molecular field H includes the Landau–de Gennes free

energy, as well as distortion free energy density terms

f =
A

2
QijQji +

B

3
QikQklQlj +

C

4
(QijQji)

2 + fel,

fel =
L1

2
∂kQij∂kQij +

L2

2
∂kQkj∂iQij +

L3

2
Qki∂kQj l∂iQj l .

The Landau–de Gennes coefficients we use are A = 0, B =
−0.3, and C = 0.3. The tensorial elastic constants Li are

mapped to the Frank elastic constants Ki through the rela-

tions [34]
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Unless otherwise stated, we use the one-constant approxima-

tion for which only L1 is nonzero and all values of Ki = K ,

which is varied in the range [0.01,0.05]. When we later relax

the one-constant approximation, we make the simplifying

choice KSplay = KBend = K in order to vary twist relative to

the other elastic constants.

The velocity field u obeys the incompressible Navier-Stokes

equation Dt u = ∇ · �/ρ, in which the generalized stress �

has viscous (dynamic viscosity η = 2/3), elastic, and active

components [35]. The active stress is described by −ζ Q [36]

such that the divergence of Q drives active forcing. Thus, not

only does contortion of the disclination lines arise from stress,

as is typical in traditional nematics, but also active forcing

arises from contortions through the activity. This work focuses

on extensile active fluids, relevant to microtubule/kinesin

bundles [4,5], for which the activity parameter ζ > 0 and in the

range [0.01,0.05]. The fluid density is taken to be constant with

ρ = 1. This active nematic model has been described in detail

in previous publications [23,28,37,38]. Here, we do not need

additional terms in the active stress that may be relevant when

the confinement size is comparable to the size of the constituent

active particles [39]. We choose simulation parameters in a

range that reproduces flow patterns of 2D microtubule/kinesin

bundles under confinement [40]. The impermeable parallel

surfaces impose strong planar anchoring [41] on the nematic

field and free-slip boundary conditions on the velocity, except

where otherwise stated.

The active nematohydrodynamic equations are solved using

a hybrid lattice Boltzmann and finite difference method [23].

Simulations were performed in a cuboid of volume 100 ×
100 × H . The planar channel geometry, characterized by the

plate separation H , competes with the characteristic length

scale of active turbulence ∼
√

K/ζ [37,42], resulting in the

dimensionless activity number A = H
√

ζ/K .

When the channel height H is sufficiently small compared

to the activity length scale
√

K/ζ , the active turbulence is

quasi-2D. In this limit, both flow and director fields are height

independent, and topological defects form straight disclination

lines normal to the surfaces that directly span the gap with

translational invariance across the channel (Fig. 1(a); movie

1 [31]). When observed from above, the disclination lines

appear as 2D point defects with half-integer charges m =
±1/2. Disclinations are continuously created and annihilated,
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FIG. 2. Comparison of active turbulence properties in 2D and 3D

simulations. Shown here are velocity correlation length ℓv , vorticity

correlation length ℓω, and disclination number density ρN . All values

are normalized by their 2D counterpart. The dashed red line marks

the crossover from quasi-2D to 3D active turbulence.

such that in every plane parallel to the channel walls the defect

dynamics is effectively that of 2D active turbulence [16,17].

The flow fields reflect this quasi-2D behavior for sufficiently

small channel heights, showing 2D active turbulence in xy

planes parallel to the wall but translationally invariant across

the channel (Fig. 1(d); movie 4 [31]). The turbulent flow

dynamics are quantified through the velocity and vorticity cor-

relation lengths, as well as the number density of disclinations

(Fig. 2). The velocity and vorticity length scales are calculated

from the the velocity-velocity correlation function Cvv(r) =
〈u(r,t) · u(0,t)〉/〈u(0,t)2〉 and vorticity-vorticity correlation

function Cωω(r) = 〈ω(r,t) · ω(0,t)〉/〈ω(0,t)2〉, respectively.

Our measurements in the observed quasi-2D turbulence reveal

that the correlation lengths and number density of defects are

all consistent with 2D behavior up to a given channel height.

However, at a critical activity number, all three characteriza-

tions of the flow deviate from their 2D values.

Although the active turbulence can be described as effec-

tively two dimensional in this limit, indications of the 3D nature

of the film remain apparent in the pair-production process.

In quasi-2D active turbulence pair production of effective 2D

±1/2 defects occurs when a 3D disclination loop forms in the

center of the channel (movie 7 [31]). The small ring inflates

until it makes contact with the bounding planar surfaces, at

which point it then splits into two straight disclination lines that

bridge the gap and appear as the pair of ±1/2 defects in the xy

plane [Fig. 1(a)]. Apparent pair production is a rapid process

(∼10 simulation time steps) and pair-annihilation events of

oppositely charged apparent defects occur analogously with

two disclination lines merging into a ring, or as horseshoe-

shaped arches when the annihilating disclination lines make

contact at one surface but not the other (movie 7 [31]).

As the channel height is increased, the system crosses over

from quasi-2D to fully 3D active turbulence. At the onset of the

3D behavior, the disclination lines begin to contort (Fig. 1(b);

movie 2 [31]) and the translational invariance of the velocity

profile across the channel is lost (Fig. 1(e); movie 5 [31]).

Contortion typically occurs near the center of the channel,

while the disclination lines are essentially 2D defects normal to

the boundary near the walls [Figs. 1(b) and 1(c)]. When the line

contortion occurs, the projected positions of the disclination

points at the top and bottom walls are separated by a nonzero

in-plane distance σ (Fig. 3(a), inset). Plotting the ensemble
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FIG. 3. (a) The average projected distance 〈σ 〉 between the ends

of the disclinations for free-slip walls as a function of activity number

A. Insets: Schematic representation of σ . (b) Mean curvature 〈κ〉 as

a function of A.

average of this distance 〈σ 〉 against the dimensionless activity

number A shows a sharp crossover at a critical activity number

[Fig. 3(a)], after which the average separation rises continu-

ously from zero as the disclination lines contort. Because this

active system is intrinsically out of equilibrium, one must be

mindful not to think of this transformation of the flow dynamics

in terms of a phase transition under equilibrium conditions but

rather a dynamic crossover.

For simulations with no-slip boundary conditions (Fig. 4),

the transition in the separation of the projected positions of the

disclination lines is seen to be sharper but the critical activity is

unchanged. This suggests that the nature of the instability that

drives the transition from 2D to 3D turbulence is independent

of the surface friction and that the breaking of translational

symmetry across the channel gap by the no-slip condition

causes the transition to rise more abruptly. Likewise the nature

of the crossover appears to be unaltered when the simulations

do not impose any specific anchoring for the director at

the boundaries but rather have free anchoring (Fig. 4). It
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FIG. 4. The average projected distance 〈σ 〉 between the ends

of the disclinations as a function of activity number A for various

boundary conditions. Walls with free-slip–strong-anchoring (yellow

symbols) and free-slip–free-anchoring (purple) are indistinguishable,

but no-slip–strong-anchoring (blue) rises more rapidly. Three channel

heights are used (H = 10: circles; 15: squares; 20: diamonds).
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was previously shown that the extensile activity generates an

effective planar active anchoring [43].

In addition to the projected distance between the discli-

nation ends, measurements of the ensemble average of the

mean curvature of the disclination lines also show a sharp

transition at the critical activity number [Fig. 3(b)]. This

suggests that at the critical activity number, energy injected

into the system around disclinations can overcome the elastic

energy of the disclination line and therefore a finite curvature

develops along the disclination. At this point, the cross-

channel translational symmetry of the flow ceases and 3D

active turbulence emerges. Interestingly, both the normalized

projected distance and curvature measurements for various

channel heights collapse when plotted against the activity

number, indicating that a constant critical dimensionless ac-

tivity number Acr = [H
√

ζ/K]cr characterizes the threshold

between already established quasi-2D turbulence, with bend-

splay deformations alongside in-plane flows, and fully 3D

active dynamics.

In what specific manner does this disclination distortion

occur? In 2D films, the deformation of the director field around

point defects is set by the splay and bend elastic constants

(here assumed to be equal). However, in 3D, twist distortions

become possible. Therefore to investigate the role of twist

in the microstructure of the disclination lines, we locally

classify the disclination type along each singularity’s length.

The characteristic disclination angle α is calculated [44]. This

differentiates between pure wedge-type disclinations (α = 0),

which involve only bend-splay distortions, and pure twist-type

disclinations (α = π/2) [45,46]. The variation of α along the

disclinations is shown in Fig. 1 and movies 1–3 [31].

Below the critical activity number, the angle averaged over

the contour length of all disclination lines 〈α〉 is close to zero

[Fig. 5(a)], verifying that in the quasi-2D limit the disclination

lines are wedge type with bend-splay distortions confined to

xy planes. Beyond the critical activity number, however, the

curves increasingly transform into twist-type disclinations.

The average profile of the disclination angle α at each height

through the channel shows a signature of nearly pure wedge

type at the walls and commonly twist type in the central

region (Fig. 5(a), inset; movie 2 [31]). As the activity number

is increased, the segment of twist-type disclination near the

centerline broadens.

To provide additional evidence of the role of twist, we

calculate the system-wide mean twist deformation [47]

〈T 〉 =

〈

1

S2

(

ǫiklQij

∂Qlj

∂xk

)2
〉

.

The mean twist becomes nonzero at the transition [Fig. 5(b)],

where we find that twist is predominantly localized around

disclination lines. However, deep in the fully 3D active tur-

bulence regime, the twist deformation increases with activity

number throughout the whole domain.

To further check the role of twist in the contortion of discli-

nations and the subsequent crossover to 3D active turbulence,

we suppress the transition by increasing the resistance of the

active nematics to twist deformations. To this end, we relax

the one-constant approximation for the orientational elasticity

and progressively increase the twist coefficient KTwist, while

FIG. 5. Contortion of disclinations are highly correlated to twist

deformations. (a) Characteristic defect angle α as a function of

activity number A. Insets: Profile along the defects across the channel

for A = 20. (b) Global mean twist deformation. (c) Increasing

the twist elastic constant suppresses the contortion of defect lines.

Here, the activity number A is defined using the bend-splay Frank

coefficient K .

keeping the bend-splay constants equal to K . By increasing

the twist elastic constant, the contortion of the disclinations

is hampered; consequently, the crossover to 3D is retarded

[Fig. 5(c)].

These results suggest that the onset of 3D active nematic tur-

bulence arises from the competition of energies. It is expected

that a disclination line maintains its straight configuration when

the twist elastic energy dominates, but contorts when the active

energy injection overcomes the elastic energy barrier.

The director configuration around a disclination line in the

quasi-2D limit is n = [cos(θ/2),sin(θ/2),0] [48], where the

factor +1/2 is the topological charge of the disclination, and θ

is the polar angle in the xy plane in the reference frame of the

disclination. Adding a small twist perturbation q per unit length

along the initially straight line increases both the active energy

that is dissipated in the system EAct and the elastic deformation

energy ETwist, which resists additional twist deformations. At

the onset of the crossover from 2D to 3D behavior, the director

field at height z can be represented as

n =
[

cos

(

θ + qz

2

)

, sin

(

θ + qz

2

)

,0

]

. (1)

This twist creates a restoring elastic energy

ETwist =
∫

V

KTwist

2
[n · ∇ × n]2dV =

πKTwistR
2q2H

8
, (2)
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FIG. 6. (a) Schematic of a twisted disclination line. The solid line

is the initial straight line and the dashed line represents the contorted

disclination after time τ . (b) Top view of the bottom disclination

segment at height z = 0 (red) and the top disclination segment at

height z (blue). The different segments of the disclination line move

with a self-propulsion speed v over a time interval τ (along the dashed

line) at an angle qz to the x axis.

where we have integrated over the cylindrical volume V that

is deformed by the presence of the disclination. This extends

radially from the defect core to a range R, which is set by the

average distance between disclinations [18].

Due to the twist perturbation, different segments of the

disclination move in different directions as a result of their

self-propulsion (Fig. 6). The relative displacement of a segment

at height z with respect to the bottom of the disclination is thus

set by the amount of twist at height z and, for small twist q ≪ 1,

can be expressed as

�r =

⎡

⎣

vτ [1 − cos (qz)]

vτ sin (qz)

0

⎤

⎦ ≈

⎡

⎣

vτq2z2/2

vτqz

0

⎤

⎦. (3)

The magnitude of the displacement vτ is proportional

to the disclination’s self-propulsion speed v ∼ ζR/η [49]

and the elastic relaxation time of the director field τ ∼
H 2γ /K [42]. Therefore, vτ ∼ RA2γ /η, where γ /η is the

ratio of the rotational viscosity of the nematic to the dynamic

viscosity. In these simulations γ /η ≈ 9/2. The distortion

[Eq. (3)] causes the polar angle in the xy plane to be θ =
tan−1 [(y − �ry)/(x − �rx)].

By integrating the active force density −ζ∇ · Q over a

cylinder of radius R around a disclination with orientation

θ , using Eq. (1), the active force per unit length is found to

be FAct ≈ πζR[(−1 + q2z2/2)x̂ + qz ŷ]/2, where x̂ is taken

to lie in the direction of motion of the bottom point of the

disclination line at z = 0 and ŷ is orthogonally in plane

(see Fig. 6). We assume that the interaction range is much

greater than the defect core and so neglect any contribution

from the defect core. When the twist perturbation is zero,

we recover the known active force around a 2D point defect

that results in self-motility of the +1/2 defects [49]. Thus,

the first term in the x̂ component of FAct corresponds to the

normal 2D deformation of the director field around a +1/2

disclination and the additional terms are due to the twist-

induced deformations. Defining the active energy as the active

force times the displacement and integrating over V along the

disclination, we find the active energy dissipated within the

FIG. 7. The average projected distance 〈σ 〉 between the ends of

the disclinations as a function of modified activity number A′ for

varying twist KTwist and bend-splay K elastic constants.

fluid to be

EAct =
∫

V

FAct · �rdV ∼
π

6
ζRvτq2H 3. (4)

When the active energy overcomes the restoring elastic

deformation energy, twist perturbations grow and the system

will not return to a quasi-2D state. Considering these energies

leads to a modified activity number

A′ = H

(

ζ
√

KKTwist

)1/2

(5)

that reduces to A = H
√

ζ/K in a one-constant approximation

KTwist = K . At the crossover, the two competing energies must

be comparable and we find

A′
cr ∼

(

η

γ

)1/4

. (6)

Indeed, measuring the average projection distance 〈σ 〉 as a

function of this modified activity number for varying the twist

and bend-splay elastic constants, we find that the data collapse

on a single curve (Fig. 7). This shows, in agreement with the

theory, that the dimensionless activity number is the control

parameter for the transition. Furthermore, it illustrates how the

crossover to 3D active turbulence is induced by the competition

between distorting active energy injection and the restoring

twist elastic energy of the disclination.

Our results uncover a new physical mechanism in active ne-

matics, showing that the crossover from quasi-2D to confined

3D active nematic turbulence is governed by the contortion of

disclination lines above an activity threshold. The role of twist

is specific to active 3D systems and thus our results suggest that

future 3D active materials will exhibit rich physical dynamics

not previously seen in either passive 3D nematics or 2D active

monolayers.
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