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Recent advances in ultrafast pump-probe spectroscopy provide access to hidden phases of corre-
lated matter, including light-induced superconducting states, but the theoretical understanding of
these nonequilibrium phases remains limited. Here we report how a new type of chiral supercon-
ducting phase can be stabilized in photodoped frustrated Mott insulators. The metastable phase
features a spatially varying order parameter with a 120○ phase twist which breaks both time-reversal
and inversion symmetry. Under an external electric pulse, the 120○ chiral superconducting state can
exhibit a second-order supercurrent perpendicular to the field in addition to a first-order parallel
response, similar to a nonlinear anomalous Hall effect. This phase can be tuned by artificial gauge
fields when the system is dressed by high-frequency periodic driving. The mechanism revealed in
this study applies to Mott insulators on various frustrated lattices and the hidden superconducting
phase can be realized in both cold-atom quantum simulators and correlated solids.

The last decades have witnessed an intensive search
for superconducting states with spontaneously broken
time-reversal and inversion symmetry. Historically the
first proposal involved chemically doped Mott insulating
states of high-Tc copper oxides, although the predicted
properties have not been detected in experiments [1].
Since then the tantalizing chiral superconducting state,
an essential building block for topological quantum com-
puters, has been sought after in various systems, such
as Sr2RuO4 [2], UPt3 [3, 4] and lately also in twisted
bilayer graphene [5]. In the meantime, advances in cold-
atom experiments and ultrafast spectroscopy have en-
abled the exploration of metastable hidden states of cor-
related systems, which are not accessible via a thermal
pathway [6–9]. A remarkable phenomenon is the puta-
tive light-induced superconductivity, which has been ob-
served in the vicinity of Mott insulating phases [10–13].
One promising route to such hidden phases is photodop-
ing, where the laser excitation drastically redistributes
charges by simultaneously creating long-lived particle-
like (doublon) and hole-like (holon) charge carriers [14–
18]. With low enough entropy, the photocarriers may
form a BEC-like superconducting condensate [12] sup-
ported by the doublon-holon exchange mediated by vir-
tual charge recombination processes [19–22]. It is thus
tempting to ask whether a chiral superconducting state
can be realized as a hidden phase in photodoped Mott
insulators.

Here we use state-of-the art numerical simulations to
demonstrate that a chiral superconducting state with a
120○ phase twist can be stabilized by photodoping Mott
insulators on frustrated lattices. The non-equilibrium na-
ture of photodoped quasiparticles endows them with an
exchange term of positive sign, an important ingredient
favoring chiral condensates especially on frustrated lat-
tices [23]. The 120○ order has been discussed in non-
collinear antiferromagnets and Floquet-driven bosonic

systems [24]. Here instead we consider a fermionic con-
densate exhibiting an exotic supercurrent response that
requires no or little Floquet engineering. Remarkably,
the 120○ superconducting phase features a spatially vary-
ing order parameter and persistent currents which change
handedness under the inversion or time-reversal transfor-
mation, even in the absence of an external magnetic field.
The condensate is found to prevail in an extended param-
eter regime, and can be further enhanced by artificial
gauge fields created by periodic driving [25–27]. We con-
firm the existence of this ordered hidden phase on a Bethe
lattice with infinite coordination number using nonequi-
librium dynamical mean-field theory, and on the trian-
gular and Kagome lattices using exact diagonalization.
The exotic order may be realized in fermionic cold-atom
systems and Kagome-lattice correlated materials, such
as herbertsmithite [28], where its stability can be tuned
through Floquet-engineered artificial gauge fields. It may
also be relevant for the light-induced superconducting
state observed in κ–(BEDT–TTF)2Cu[N(CN)2]Br [12].

Doublon-holon condensate on three-colorable
lattices

We consider a half-filled fermionic Hubbard model
under external driving, focusing on the triangular, the
Kagome, and the Bethe lattice, see Fig. 1. All these lat-
tices are 3-colorable (we use the color labels R, G, B) and
consist of connected RGB chains or loops, i.e., triangular
motifs. The Hamiltonian reads

H = −t0 ∑
⟨ij⟩σ

eiϕijc†iσcjσ +U∑
i

ni↑ni↓ + gHdr, (1)

where ciσ is the electron annihilation operator at site i
with spin σ, ⟨ij⟩ denotes nearest-neighbor pairs, and t0
and U > 0 are hopping and interaction parameters. The
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FIG. 1. Doublon-holon condensate on a three-colorable frustrated lattice. The persistent currents are indicated by
black arrows. A high-frequency driving (red wavy line in panel (b)) induces an artificial gauge field coupling to the hopping t0
through the Peierls phase ϕ, resulting in a flux (indicated by a dot and cross) for the triangular and hexagonal motifs in panels
(b) and (c). (a) The doublon-holon exchange interaction mediated by a virtual recombination. The amplitude J⊥ is positive,
in contrast to analogous processes in the equilibrium attractive Hubbard model. It can induce staggered η–pairing on bipartite
lattices and 120○ pairing on three-colorable lattices. (b) The condensate on the triangular lattice. a1,2 are the basis vectors of
the lattice. This panel also shows a constant vector potential along the x–direction. (c) The condensates on the Bethe (left)
and Kagome (right) lattices. One of several possible 120○ condensates (the q = 0 order) is shown for the Kagome lattice. The
magnitude of the flux through the hexagon is twice that of a triangle. (d) The longitudinal (Jx, solid lines) and transverse (Jy,
dashed lines) superconducting current density under the constant vector potential A along the x–direction for the triangular
lattice (with A = 2∣A∣ cos(π/6)), see panel (b). ϕ is given in radians.

Peierls phases ϕij represent an artificial gauge field imple-
mented through a periodic (Floquet) modulation [25, 26].
As will be demonstrated below, the gauge field can be
used to tune the superconducting (SC) condensate’s sta-
bility, but the twisted condensate also exists for ϕ = 0 on
the triangular and Bethe lattices. To realize a long-lived
photodoped state, we assume that a driving term gHdr

with an overall amplitude g generates a nonthermal pop-
ulation of doublons and holons. One example of Hdr is a
resonant optical excitation between the Hubbard bands,
as widely adopted in experiments. Another example is
the coupling of the system to two separate fermion baths
(electrodes), as explained in Methods, and widely used
in theoretical studies to emulate the photoexcitation pro-
tocol.

We will focus on the strong interaction regime with
a weak driving g ≪ t0 ≪ U which is nearly resonant
with the Mott gap. In this regime one generically finds
a stationary nonequilibrium state whose properties are
independent of the details of the driving. The system
is Mott insulating in equilibrium, and the photodoped
carriers have a long lifetime due to the large Mott gap
[29–31]. An effective description of the photodoped state

can be obtained from a 1/U expansion. As g ≪ t0, the
driving term does not affect Heff to leading order, but it
can control the doublon density. Analogous to the doped
Mott insulators at equilibrium, the effective physics of
the photodoped state is well described by a generalized
t-J model [21, 22, 32] Heff =Ht +HJ +Hdh with hopping

Ht = −t0∑⟨ij⟩σ e
iϕij [niσ̄c†iσcjσnjσ̄ + n̄iσ̄c

†
iσcjσn̄jσ̄] + h.c.

and spin exchange HJ = ∑⟨ij⟩ JexSi ⋅ Sj , where Jex =
4t20/U . We have defined n̄iσ̄ = 1 − ni,−σ. The doublon-
holon interaction term reads

Hdh =
J⊥
2
∑
⟨ij⟩

(e2iϕijφ+i φ
−
j + h.c.) + Jz ∑

⟨ij⟩
φziφ

z
j , (2)

where the pairing operators φ+i = (φ−i )† = c†i↑c
†
i↓ and φzi =

(ni−1)/2 span a pseudospin su(2) algebra similar to that
of spin Si. The original model (1) yields J⊥ = −Jz = Jex.
The first term in Eq. (2) originates from a doublon-holon
exchange process, illustrated in Fig. 1(a), which favors a
doublon-holon condensation with ⟨φ+i ⟩ ≠ 0. In solids, the
second term is generically renormalized by the intersite
Coulomb repulsion which suppresses charge segregation.
We will focus in the following on uniform phases with
⟨ni⟩ = 1 (⟨φzi ⟩ = 0).
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FIG. 2. The chiral 120○ condensate on the Bethe lattice. In panels (a,b,c) the system is driven by two fermion baths,
where the “upper” bath injects high-energy electrons to form doublons, while the “lower” bath absorbs low-energy electrons on
singly occupied sites to form holons. Panels (d,e) show real-time simulations with an explicit photo-doping pulse. (a) Spectral
function and occupation at ϕ = 0 for the driven Bethe lattice, with µb = 4.5, Tb = 0.01,Γ = 0.045, U = 8.0 and bandwidth 4 (in
units of t0). The red-shaded area indicates the occupation of the Hubbard bands, while the blue-shaded area indicates the bath
occupation. (b) The nd–ϕ phase diagram for the 120○ condensate sampled by varying the parameters of the fermion baths.
The phase ϕ is in radians and varies from 0 to π/6. W = 2 for the square symbols and W = 2.7 for the triangles. The blue dots
are obtained by fitting the phase boundary. The black diamond is the extrapolated critical nd for Teff = 0 and ϕ = 0. (c) The
persistent current evaluated with Tb = 0.01,W = 2. A weak symmetry-breaking field h = 0.001 is used in the DMFT iterations.
(d) and (e) Transient 120○-ordered states obtained by means of the entropy cooling protocol for the Bethe lattice with U = 9.0
and ϕ = 0 using two ways to break the symmetry by a small pair field (green curves h(t)). v(t) is the oscillating system-bath
coupling which produces the photo-doped state. It is plotted with arbitrary units.

In pump-probe experiments on Mott insulating solids,
a strong pump pulse is often applied for a short dura-
tion to create a quasi-stationary photodoped state, which
can also be described by the above Hamiltonian Heff

with g = 0. In either set-up, the effective theory for the
nonequilibrium state of the Hubbard model is a general-
ized t-J model of nd doublons and holons and ns = 1−2nd
unpaired electrons per site.

In this prethermal phase, the positive exchange am-
plitude J⊥ tends to impose a staggered phase twist for
the doublon-holon condensate (η–pairing) [33], but this
alternating SC order is generically impossible on a frus-
trated non-bipartite lattice. Instead, we consider a 120○

twisted pairing for the three-colorable lattices, defined by
⟨φ+i∈R⟩ = e−i2π/3⟨φ+i∈G⟩ = e−i4π/3⟨φ+i∈B⟩ = φ0, which sponta-
neously breaks time-reversal and inversion symmetry. To
understand the energetics of the condensate, we can ex-

amine the mean-field energy for the order ⟨φ+i ⟩ = φ0e
iq⋅ri

with momentum q, given by ⟨Hdh⟩/Nsite = ∣φ0∣2ε(q) per
site, see Supplemental Note 1. In the following, we re-
strict ourselves to the case ϕij = ϕ along each bond of
an R → G → B cycle. For the triangular lattice, the
above 120○ order is of momentum q = 2π

3
b1 − 2π

3
b2 with

reciprocal lattice vectors b1,b2, and corresponds to one
of the two chiral minima of the energy dispersion. This
minimum can be further stabilized by an artificial Peierls
phase 0 < ϕ < π/3, with ϕ = π/6 realizing the most sta-
ble condensate. The above discussion applies equally to
the opposite chirality with a reversed phase twist. The
Kagome lattice has three sites in a unit cell, giving rise
to three bands in ε(q). For J⊥ > 0 the lowest-lying band
for J⊥ > 0 is flat for ϕ = 0, which implies that no order-
ing pattern is singled out as energetically most favorable.
The artificial gauge field ϕij can however distort the flat
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FIG. 3. Exact diagonalization results for the triangular and Kagome lattices. (a) The pairing structure factor S(120)
of the 120○-twisted condensate versus the doublon number per site nd for the 12-site triangular lattice at Teff = 0. The Peierls
phase ϕ is varied from 0 to π/6. (b) The pairing structure factor of the (q = 0) 120○ order as a function of the doublon density
for the 12-site Kagome lattice. The amplitude A of the dressing field is varied from 0 to 1.4 to produce different ϕ values, as
indicated in the label. Here, an external driving with frequency Ω = 5 is assumed. The dashed line shows the structure factor
for the uniform order. J⊥ = −Jz = 0.5 is assumed and we impose a spatially homogeneous solution.

band and favor a certain 120○ twisted order. As we shall
show later in the paper, the order with q = 0 illustrated
in Fig. 1(c) can be stabilized by an artificial gauge field
generated by circularly polarized light.

It remains to be shown that the 120○ condensate is
stable against quantum fluctuations. We first consider
the maximum photodoping situation (nd = 0.5) where
all sites are either doubly occupied or empty. In this
case Heff = Hdh corresponds to an XXZ model of pseu-
dospin φ. With spatial homogeneity assumed, it is
known that the 120○ condensate is generically stabilized
on the triangular lattice. Furthermore, the 120○ con-
densates constitute the exact ground-state manifold if
Jz = J⊥ cos(2π/3 + ϕ) (Jz = −J⊥/2 for ϕ = 0, which may
be realized with an NN Coulomb repulsion) for both the
triangular and Kagome lattices considered here, see Sup-
plemental Note 1 for a proof following the idea of Ref. 34.
Away from maximum photodoping, the twisted 120○ con-
densate is challenged by the presence of singly occupied
sites, and the additional terms in Heff , such as electron
hopping, while the condensate should survive at least for
1/2 − nd ≪ O(t0/U). We will numerically confirm that
this condensate is in fact stable in an extended param-
eter regime away from the maximum photodoping limit
nd = 1/2.

Optical response of the 120○ chiral condensate

The twisted 120○ condensate embodies a spatially vary-
ing phase twist and thus carries a persistent current
even in the absence of an external field. With an ex-
ternal vector potential Aij along bond ⟨ij⟩, the doublon-
holon current contribution along the cycle R → G → B
is J dhij (Aij) = δHdh/δAij ≈ 2J dh0 sin(2π/3 + 2ϕ + 2Aij)
on the mean-field level, where J dh0 = −2eJ1∣φ0∣2 with

the elementary charge e. A persistent current J dhij (0) =
2J dh0 sin(2π/3 + 2ϕ) flows even when Aij = 0, see arrows
in Fig. 1. Indeed, the phase-twisted condensate can be
viewed as a frustrated array of Josephson junctions [35].

As usual, a macroscopic superconducting current
emerges when the condensate undergoes a uniform elec-
tric pulseE(t), which generates a vector potentialA(t) =
− ∫

t
dsE(s). However, the breaking of the time-reversal

and inversion symmetries allows for a nonlinear and
anisotropic supercurrent response, of the general form
J a =DabAb +T abcAbAc +⋯ with indices a, b, c = x/y and
Einstein convention. This is in contrast to conventional
superconductors, where the fully symmetric tensor T abc

vanishes due to unbroken inversion or time-reversal sym-
metries, which imply J(−A) = −J(A), and where the
London equation J ∝A usually holds.

In particular, the chiral condensate allows for a non-
linear transverse current response perpendicular to A,
which constitutes a characteristic signature of the sym-
metry breaking. For the triangular lattice in Fig. 1(b),
the three-fold dihedral symmetry (D3) imposes T xyy =
T xxx = 0, but allows for nonzero entries obeying T xxy =
−T yyy. The value of T xxy is determined by evaluating the
gauge-invariant supercurrent density J a = 1

S
⟨ δHdh
δAa

⟩ with
a = x, y and the total area S. At the mean-field level, one

obtains Dab = φ2
0

Su.c.

∂2ε(q+A)
∂Aa∂Ab

and T abc = φ2
0

2Su.c.

∂3ε(q+A)
∂Aa∂Ab∂Ac

,
with the unit-cell area Su.c., see Supplemental Note
2. Here we consider A along the x–direction. The
second-order response emerges due to the trigonal warp-
ing ∂3ε/∂kx∂kx∂ky of the energy dispersion near the con-
densation minimum.

The current density is illustrated in Fig. 1(d) and de-
pends strongly on the artificial gauge field ϕ. In par-
ticular, the transverse current vanishes for ϕ = π/6. The
nonlinear and anisotropic response is phenomenologically
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similar to the second-order anomalous Hall effect [36, 37]
with inversion symmetry breaking, but in contrast to
these works, it appears in the context of a SC response
and requires the breaking of time-reversal symmetry. It
is intriguing to note that if one applies a continuous-
wave sinusoidal driving along x (Ex(t) = E0 sin(ωt)), the
transverse current oscillates at frequency 2ω. This Hall-
like response and second-harmonic generation could serve
as a smoking gun of the chiral order and can be tested
with a four-point measurement.

Numerical determination of the phase diagram

In the remainder of the article, we will explore the
phase diagram of the chiral condensate on three differ-
ent frustrated lattices: the Bethe, the triangular, and
the Kagome lattices. To provide a concrete example of
the 120○ twisted order, we first consider a numerically
solvable model in the thermodynamic limit, the driven
Hubbard model on the Bethe lattice with hopping t0/

√
z

where the coordination number is taken to z →∞. In this
case, t0 is taken as the unit of energy. While this lattice
has no loops, the driven system can support the twisted
condensate and, most importantly, can be solved using
nonequilibrium dynamical mean-field theory (DMFT) in
the strong interaction regime [38, 39]. We drive the sys-
tem by coupling it to two fermion baths with a semiel-
liptic density of states with temperature Tb and different
chemical potentials ±µb. As discussed above, the details
of the driving do not matter as long as g ≪ t0. The
baths can be exactly integrated out and incorporated into
the DMFT iterations through a hybridization density of
states D±(ε) = Γ

√
1 − (ε ±U/2)2/W 2 with Γ = g2/W and

half-bandwidth W . The parameters ±µb and Tb are var-
ied to control the doublon and holon distribution in the
Hubbard system [40].

We show the spectral function A = − 1
π

ImGr and the

occupation A< = 1
2π

ImG< for a typical driven state in
Fig. 2(a). The external driving creates two separate
Fermi surfaces in the lower and upper Hubbard bands
around ω = ±µb, indicating the presence of excess dou-
blons and holons. The two Fermi energies correspond
to the energy cost or gain associated with the replace-
ment of a doublon or holon by an unpaired electron.
Even though the system is highly excited, the Fermi
edges can be rather sharp, with low effective temper-
atures Teff defined by fitting the distribution function
f(ω) = A<(ω)/A(ω) separately near the two Fermi lev-
els. This confirms that the system can be described by a
constrained quasi-equilibrium with excess doublons and
holons of density nd and temperature Teff , as already
shown in previous works [21, 22, 40]. The order param-
eter φ = ⟨φ+⟩ is sampled for various bath parameters,
which allows to generate the phase diagram for the 120○

condensate shown in Fig. 2(b). The system exhibits a

transition to the 120○-ordered phase beyond a critical
double occupancy ncd, indicated by blue dots (see Sup-
plemental Note 3), and is enhanced as ϕ increases. A
persistent current J flows along R → G→ B, whose mag-
nitude is plotted in panel (c). In experiments, carefully
designed protocols can minimze the entropy production
and thus achieve low effective temperatures [41]. In our
calculations, we can tune the effective temperature of the
doublons and holons by changing bath parameters, and
then extrapolate the phase boundary to Teff = 0. This
procedure yields the upper bound of the critical doublon
number ncd ≈ 0.4 at ϕ = 0 (black diamond in (b)).

The above results for the Bethe lattice confirm the
existence of the 120○ SC condensate in a wide param-
eter range, which extends to ϕ = 0 and at least down
to nd ≈ 0.4, and also the validity of the effective the-
ory (2) at finite U . It remains to be investigated if
this intriguing state can be realized on an ultrafast
timescale. To address this question, we consider a real-
time entropy-cooling protocol [41, 42], which allows to
generate cold photodoped states. Here, the system is
coupled to two narrow bands with width W = 0.1 cen-
tered at ω = ±6.0 and identical chemical potentials µb = 0,
while the system-bath coupling v(t) oscillates fast to ex-
cite photocarriers, see Methods. As shown in Fig. 2(d),
a nonzero 120○ SC order parameter quickly emerges at
ϕ = 0 under the driving v(t), in the presence of a small
symmetry-breaking field h = 0.001 coupling to φ+i . In the
case of transition metal compounds, our unit of time is
of the order of femtoseconds. Within the time range ac-
cessible in our numerical simulations, the order appears
to decay very slowly after the driving is switched off. In
addition, we have also simulated a system perturbed by
a short pulse of the symmetry-breaking field h(t), see
Fig. 2(e). In this case, the 120○ order continues to grow
after the pulse, which strongly suggests a spontaneous
symmetry breaking.

We now use exact diagonalization to directly treat
the generalized t-J model (2) on a triangular lattice,
to address the existence of the condensate in 2D sys-
tems at Teff = 0. We study an Nsite = 12 cluster with
periodic boundary conditions, and calculate the pair-
ing structure factor at the 120○ point, namely S(120) =
∑ij θiθ∗j ⟨φ+i φ−j ⟩/Nsite with θi∈R = ei2π/3θi∈G = ei4π/3θi∈B =
1 corresponding to the “color”. S(120) quantifies the
total 120○ order. The result is shown in Fig. 3(a), and
suggests the stability of the 120○ condensate away from
nd = 1/2 down to ϕ = 0, in line with the observation
for the Bethe lattice from DMFT. The critical doublon
number is ncd(ϕ = 0) ∼ 0.37.

Realization on the Kagome lattice

Finally, we comment on how to realize the 120○ SC
order on the Kagome lattice. The generalized t-J model
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in the maximum photodoping limit (nd = 0.5) is equiv-
alent to an XXZ spin model, which exhibits a com-
plex phase diagram on the Kagome lattice. As discussed
above, the key task is to induce an artificial gauge field
which favors a specific 120○ ordering pattern, for ex-
ample the q = 0 three-coloring of the lattice shown in
Fig. 1(c). In the case of solid-state systems, we con-
sider applying a strong laser with circular polarization,
similar to the setup in Ref. [27], with a vector potential
A(t) = A0(cos(Ωt),− sin(Ωt)). The field couples through
a time-dependent Peierls phase exp(i(ri − rj) ⋅A(t)) to
the bond ⟨ij⟩. In the high-frequency limit (Ω ≫ t0, off-
resonant with U), the hopping parameters are renormal-
ized, leading to a complex nearest-neighbor (NN) hop-
ping tR = ∣tR∣eiϕ(A). This renormalized hopping appears
to favor the q = 0 condensate shown in Fig. 1(c). The
next-nearest neighbor hopping which is also created and
would favor a uniform order is usually very small, see the
Supplemental Note 4.

We study the resulting effective model on a 12-site clus-
ter with exact diagonalization, defining A = A0a/2 with
lattice constant a. The results are shown in Fig. 3(b),
and clearly indicate the appearance of the (q = 0) 120○

SC condensate for ϕ(A) ≳ 0.067 and nd ≳ 0.3. The depen-
dence of S(120) on nd is qualitatively similar for both the
triangular and Kagome lattices above the transition. In
contrast, the uniform order (indicated by the dashed line)
is always suppressed. It is worth noting that other orders,
such as an

√
3 ×

√
3 type 120○ order cannot be studied

with the small cluster shown in Fig. 1. The two orders
share the identical mean-field energy at ϕ = 0. However,
a nonzero ∣ϕ∣ < π/3 stabilizes the q = 0 order considered
here, see Supplemental Note 4. The

√
3 ×

√
3 type order

can however be stabilized with a different gauge field, see
Supplemental Note 4. Finally we note that other terms,
which are generated by the Floquet driving but ignored
here, can alter the phase diagram at the quantitative
level.

Conclusion

Our work established a new type of chiral superconduc-
tivity in photodoped Mott insulators, which breaks the
time-reversal and inversion symmetries through a spa-
tially twisted order parameter, namely the 120○ conden-
sate. This condensate originates from a positive doublon-
holon exchange amplitude J⊥ > 0, which is intrinsically
related to the nonequilibrium nature of the photodoped
states and contrasts with the negative exchange in equi-
librium BEC-like pairing induced by charge attraction
[43]. The exchange processes furthermore generate a
doublon-holon interaction (the Jz term), which favors
charge segregation. This effect is ignored here, since it
should be suppressed by the inter-site Coulomb repulsion
in solids. Also, if the ordered phase is created by an ul-

trafast uniform excitation, we can assume that the state
remains homogeneous on the femtoseconds timescale. In
the presence of a light-induced artificial gauge field, the
order can be further enhanced and even stabilized on
the Kagome lattice. The persistent loop current and the
nonlinear transverse superconducting current are char-
acteristic signatures of the chiral 120○ condensate and
allow to realize a second harmonic generation. The phe-
nomenology contrasts with the conventional description
of the SC electromagnetic response based on the linear
London equation j ∝A, where even-order responses are
excluded by time-reversal and inversion symmetry.

In experiments, the photodoped state can be realized
by applying femtosecond laser pulses to condensed mat-
ter systems [7], or via the tilting of optical lattices [44].
When low entropies are maintained, both protocols allow
to create long-lived photodoped doublons and holons in
the presence of a large Mott gap [29–31], which quickly
relax to a prethermal regime characterized by the gener-
alized t-J physics. Since the condensate exists down to
ϕ = 0, it can be relevant to the photodoped SC states in
correlated materials of triangular lattice geometry, such
as κ–(BEDT–TTF)2Cu[N(CN)2]Br [12]. Finally, doped
Mott insulators have a very rich phase diagram, and
the competition between the chiral condensate and other
long-lived and hidden phases, especially away from max-
imum photodoping, is an interesting topic for further in-
vestigations.
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Methods

Nonequilibrium dynamical mean-field theory
solution. We solve the driven Hubbard model on the
Bethe lattice with infinite coordination number using
nonequilibrium dynamical mean-field theory [39]. The
model can be exactly mapped to the Anderson model
when the hopping is rescaled with t0/

√
z and z →∞ and

solvable through dynamical mean-field theory, and thus
provides a concrete solvable model to establish the 120○

order. This rescaling leads to a noninteracting band-
width 4t0. The exchange interaction for each bond is
given by Jex = 4t20/zU , while the total (mean-field) en-
ergy contribution scales with z times this value, 4t20/U .
This infinite-coordinational model captures local corre-
lation effects and, in particular, the interplay between
hopping and exchange interactions, while it completely
neglects nonlocal correlations as well as the effects of elec-
trons hopping around loops, present in lower dimensional
systems.

The lattice problem is exactly mapped to three single-
impurity Anderson models on the Keldysh contour, de-
fined by the action (spin index neglected for simplicity of
notation)

SX,imp = ∫ dtc†X(t)(i∂t − hloc)cX(t)

− ∫ dtdt′c†X(t)[∆X(t − t′) +∑
`

D`(t − t′)]cX(t′),

(3)

where X = R,G,B and ∆X(t, t′) is the total bath hy-
bridization function. For an R site, half of its neighbors
are G sites and the other half are B, and similarly for
the other two sites. The local Hamiltonian hloc includes
the Hubbard interaction and the pair seed term. The
self-consistency relation, which is given below, yields ∆
from the local Green’s function Gloc(t, t′) = Gimp(t, t′).
D± is the bath hybridization. The steady-state problem
is solved with a frequency-domain strong-coupling impu-
rity solver, whose implementation is detailed in Ref. [40].

In the nonquilibrium steady-state setup, the driv-
ing term reads gHdr = g√

L
∑iσα(c

†
iσdiασ + h.c.) +

∑iασ εαd
†
iασdiασ with bath operators diασ and α = (`, ξ)

containing a bath label ` = ± and the energy level la-
bel ξ. L represents the bath size and is of length di-
mension. Three impurity problems labelled by R,G,B
are solved with the non-crossing approximation (NCA)
[45, 46]. In DMFT, the impurity hybridization function
is determined by ∆R(t, t′) = t20τz(eiτzϕGB(t, t′)e−iτzϕ +
e−iτzϕGG(t, t′)eiτzϕ)τz/2, and analogously for ∆G/B ,
maintaining a bandwidth of 4t0. The Pauli-matrix τz ap-
pears because of the Nambu formalism [21]. In practice,

we apply a seed term h∑i θic
†
i↑c

†
i↓ + h.c. with h = 0.001

to break the symmetry, where θi = 1, ei2π/3, ei4π/3 for the
R,G,B site, respectively. The doublon number (per site)

https://doi.org/10.1002/adma.201603345
https://link.aps.org/doi/10.1103/RevModPhys.68.13
https://link.aps.org/doi/10.1103/RevModPhys.68.13
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https://doi.org/10.1038/s41467-019-13557-9
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is calculated as nd = ⟨n↑n↓⟩.
The real-time dynamics in Fig. 2(d,e) is obtained using

the entropy-cooling protocol [41, 42]. To be concrete, the
Hubbard system is coupled to two narrow bands at each
site, which have a semielliptic DoS of half-bandwidth 0.1
and are located at the energies ω± = ±6. The upper (ω+)
band is empty while the lower band (ω−) is full, as the
chemical potential is set to µb = 0. We drive the coupling
constant g = v(t) with a pulse as given below, induc-
ing a resonant charge transfer between the empty (full)
core level and the lower (upper) Hubbard band, respec-
tively. The key idea is to adjust the frequency in time,
so as to match the first Floquet sideband of the narrow
band with the effective Fermi level for the doublons or
holons (roughly speaking one wants ω+ − Ω(t) ∼ µ+(t),
where µ+ is the Fermi level in the upper Hubbard band,
and similarly for the lower Hubbard band). See Ref. 42
for more details. Specifically, the pulse is given by

v(t) = sin[Ω(t)t]
(1+e(t−t1−T )γoff )(1+e−(t−t1)γon) for t > 0 and zero

otherwise, where Ω(t) = Ωi + (Ωf − Ωi) sin(πt/400) and
t1 = 4, T = 100, γon = 1, γoff = 1/4,Ωi = 7.25,Ωf = 12.5.
The frequency Ω(t) is varied to fill the upper Hubbard
band to its top, and to empty the lower Hubbard band to
its bottom. The parameters are empirically optimized to
minimize Teff in the final state and generate a long-lived
order.

Within DMFT, the current flowing through site R can
be calculated by

J = −1

2
Re τxGR(t, t′) ∗ [t20τz(eiτzϕGB(t, t′)e−iτzϕ

− e−iτzϕGG(t, t′)eiτzϕ)τz/2], (4)

and similarly for the other sites. Here, the symbol ∗
represents a convolution on the Keldysh contour.

Exact diagonalization studies. We solve the gen-
eralized t-J model on the triangular and Kagome lattices
with the artificial gauge field ϕ. Three-site terms are ig-
nored, since they play a similar role as the electron hop-
ping, assisting doublon/holon delocalization, but have a
much lower strength Jex ≪ t0. Three conserved quan-

tites, the number of up and down spins and the doublon
number nd, are imposed to satisfy n↑ = n↓ = nd. For the
triangular lattice, a 12-site cluster, as shown in Fig. 1(b),
is solved with the Lanczos algorithm. We define a1 (a2)
as in Fig. 1(b), and the torus is spanned by 2a1 + 2a2

and 2a1 − 4a2. The green sites at the left and right
bottom corners are not in the cluster, but are identi-
fied with sites in the cluster using the periodic boundary
conditions. The pairing correlation is averaged over sites,
using translational invariance and the structure factor is
summed over chiralities (replacing θi → θi + θ∗i ).

In the case of the Kagome lattice, a 12-site clus-
ter, as shown in Fig. 1(c), is solved with the same
method. The uppermost green sites and the rightmost
red sites are identified with the lowermost and left-
most sites using periodic boundary conditions, respec-
tively. We consider off-resonant polarized light in the
long-wavelength limit. The hopping term along bond ⟨ij⟩
is then dressed with the Peierls phase exp(irij ⋅A(t)) =
exp[i(AijeiΩt +A∗ije−iΩt)], where rij = ri − rj and Aij =
A0ae

iθij /2 for the bond with lattice constant a which is
parallel to (cos θij , sin θij).

The lth Fourier component of the Hamiltonian reads

Hl = δl0∑
i

Uini↑ni↓ − i∣l∣t0 ∑
⟨ij⟩σ

eilθijJ∣l∣(A)c†iσcjσ, (5)

where A = A0a/2 the Jl are Bessel functions of the first
kind. In the high-frequency limit, one can obtain the
effective Hamiltonian with a 1/Ω expansion,

H0 +∑
l>0

[Hl,H−l]/lΩ

=∑
i

Uini↑ni↓ − tR ∑
⟨ij⟩σ

c†iσcjσ − tNNN ∑
⟪ijk⟫σ

c†iσckσ . (6)

The complex NN hopping and purely imaginary next NN
hopping read

tR = t0J0(A) − it20∑
l

(−)lJl(A)2 sin(2lπ/3)/lΩ,

tNNN = −it20∑
l

(−)lJl(A)2 sin(lπ/3)/lΩ. (7)

We include both hoppings in the simulation.
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Supplementary Materials

120○ twisted superconducting order at maximum photodoping

At maximum photodoping nd = 1/2, the effective Hamiltonian for the half-filled Hubbard model is given by the
XXZ model

Heff = J⊥
2
∑
⟨ij⟩

(e2iϕijφ+i φ
−
j + h.c.) + Jz ∑

⟨ij⟩
φziφ

z
j , (8)

where ϕRG = −ϕGR = (cyclic) = ϕ for uniform phases ⟨φzi ⟩ = 0. We will investigate the condensate with “momentum”
q, namely ⟨φ+i ⟩ = φ0e

iq⋅ri . On the triangular lattice, the energy per site is given by φ2
0ε(q), where the dispersion ε(q)

reads

ε(q) = J⊥[cos(q1 + 2ϕ) + cos(q2 − 2ϕ) + cos(q2 − q1 + 2ϕ)]. (9)

The q1,2 are the reciprocal coordinates, defined as q = q1b1 + q2b2, with reciprocal basis vectors b1 = (2/
√

3,0),b2 =
(−1/

√
3,1). The energy dispersion ε(q) has two minima at q = ±[(−2π/3)b1 + 2π/3b2)], for ϕ = 0, corresponding

to two different chiral 120○ condensates. As ϕ becomes nonzero, one of the two chiral states becomes the unique
minimum in the energy landscape, with a reduced energy in the range ∣ϕ∣ < π/3. The situation for ϕ > 0 is illustrated
in the left panels of Fig. 4, where the minimum at (2π/3)b1 + (−2π/3)b2 is stabilized.

In the case of the Kagome lattice, the energy dispersion splits into three bands because of the three atoms in a unit
cell. A flat band emerges as the lowest-lying one at ϕ = 0, and thus no particular order is favored. The actual ground
state is selected by quantum fluctuations. However, if we impose the ϕij pattern shown in Fig. 1(c), the q = 0 order
is stabilized as ϕ increases.

Exactly solvable point

For triangular and Kagome lattices, the Hamiltonian Heff can be decomposed as Heff = ∑∆ h(∆), i.e., into a
sum of triangular motifs ∆. In the following, we will prove that the 120○ condensate is the exact ground state for
Jz = J⊥ cos(2π/3 + ϕ) and 0 < ϕ < π/3, following the argument of Changlani et al. [34]. For simplicity, we use
pseudospin ∣↑⟩ and ∣↓⟩ to denote doublon and holon states, respectively.

More percisely, we will prove that the coherent state of hard-core doublons

∣Ψ⟩ = exp(∑
i

θ∗i φ
+
i ) ∣0⟩ (10)

is a ground state of the Hamiltonian if Jz = J⊥ cos(2π/3 + ϕ). Here the sum is over all sites i, and the “color” θi is
defined as in the main text. This state is essentially a tensor-product state ⊗i ∣Ci⟩ with Ci = R,G,B at each site i,
defined as ∣R⟩ = 1√

2
(∣↑⟩ + ∣↓⟩), ∣G⟩ = 1√

2
(∣↑⟩ + ω ∣↓⟩), ∣B⟩ = 1√

2
(∣↑⟩ + ω2 ∣↓⟩) with ω = ei2π/3.

The Hilbert space of each motif is spanned by eight orthogonal states, including the fully polarized ∣3/2⟩ =
∣↑↑↑⟩ , ∣−3/2⟩ = ∣↓↓↓⟩ and two sets of chiral states defined by

∣+1/2⟩L = ∣↓↑↑⟩ + ω ∣↑↓↑⟩ + ω2 ∣↑↑↓⟩ ,
∣−1/2⟩L = ∣↑↓↓⟩ + ω2 ∣↓↑↓⟩ + ω ∣↓↓↑⟩ ,
∣+1/2⟩R = ∣↓↑↑⟩ + ω2 ∣↑↓↑⟩ + ω ∣↑↑↓⟩ ,
∣−1/2⟩R = ∣↑↓↓⟩ + ω ∣↓↑↓⟩ + ω2 ∣↓↓↑⟩ ,

(11)

and two nonchiral states

∣+1/2⟩0 =
1√
3
(∣↓↑↑⟩ + ∣↑↓↑⟩ + ∣↑↑↓⟩)

∣−1/2⟩0 =
1√
3
(∣↑↓↓⟩ + ∣↓↑↓⟩ + ∣↓↓↑⟩).

(12)



11

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

q
y

qx

-2

-1

 0

 1

 2

 3

Triangular lattice

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

q
y

qx

-3

-2

-1

Kagome lattice

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

q
y

qx

-3

-2

-1

 0

 1

 2

 3

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

q
y

qx

-3

-2

-1

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

q
y

qx

-3

-2

-1

 0

 1

 2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

q
y

qx

-5

-4

-3

-2

-1

FIG. 4. The energy dispersion ε(q) for orders with momentum q on the triangular and the Kagome lattices with ϕ = 0, π/20, π/6
in the first, second, and third row, respectively. Note that the qx,y axes are the cartesian coordinates in the reciprocal space and

have units of 2π/
√

3a. The left panels show the energy dispersion for the triangular lattice. The top panel shows two minima
at q = ±[(2π/3)b1 + (−2π/3)b2], which are degenerate for ϕ = 0 and marked by a black pentagon and diamond, respectively.
One minimum, q = (2π/3)b1 + (−2π/3)b2 (diamond), is selectively stabilized for 0 < ϕ < π/3. For ϕ = π/6 the stabilization is
optimal, and the dispersion becomes nearly isotropic around the minimum, leading to the absence of leading-order trigonal
warping and thus to the vanishing of the second-order supercurrent response. The right panels show the lowest-lying band of
the Kagome lattice. For ϕ = 0 the band is flat, while ϕ > 0 stabilizes the q = 0 mode.

The above states are labelled by the total z-pseudospin φz (number of doublons) and the momentum ±2π/3,0 asso-
ciated with the three-fold rotational symmetry. It is crucial to note that ∣±⟩L are degenerate and ∣±⟩R are degenerate
due to the symmetry under a combined reflection and a particle-hole transformation (the exchange of ∣↑⟩ and ∣↓⟩).
Indeed, the above six states are all eigenstates of the Hamiltonian with eigenvalues λ 3

2 ,0
= λ− 3

2 ,0
= 3Jz/4, λ 1

2 ,L
= λ− 1

2 ,L
=

−Jz/4 + J⊥ cos(2π/3 + 2ϕ), λ 1
2 ,R

= λ− 1
2 ,L

= −Jz/4 + J⊥ cos(2π/3 − 2ϕ) and λ 1
2 ,0

= λ− 1
2 ,0

= −Jz/4 + J⊥ cos(2ϕ), where we

have labelled the eigenvalues by λφztot,c with chirality c = R,L,0. We can verify this by explicit calculations. For ∣±⟩L
one has

h(∆) ∣+1/2⟩L = e−i2ϕ ∣↑↓↑⟩ + ei2ϕ ∣↑↑↓⟩ + e−i2ϕω ∣↑↑↓⟩ + ei2ϕω ∣↓↑↑⟩ + e−i2ϕω2 ∣↓↑↑⟩ + ei2ϕω2 ∣↑↓↑⟩
= λ 1

2 ,L
∣+1/2⟩L

h(∆) ∣−1/2⟩L = ei2ϕ ∣↓↑↓⟩ + e−i2ϕ ∣↓↓↑⟩ + ei2ϕω2 ∣↓↓↑⟩ + e−i2ϕω2 ∣↑↓↓⟩ + ei2ϕω ∣↑↓↓⟩ + e−i2ϕω ∣↓↑↓⟩
= λ− 1

2 ,L
∣−1/2⟩L ,

(13)

which are similar for the chiral pairs. The single-motif Hamiltonian h(∆) can then be recast into the following form,

H =∑
∆

h(∆) = λ 1
2 ,0
∑
∆

P0(∆) + λ 1
2 ,R
∑
∆

PR(∆) + λ 1
2 ,L
∑
∆

PL(∆) + λ 3
2
∑
∆

P3/2(∆), (14)

where P0,R,L,3/2 projects the states to the nonchiral, R, L, and fully polarized subspaces for a triangle ∆, respectively.
When Jz = J⊥ cos(2π/3 + 2ϕ), the fully polarized states and one set of chiral states ∣+1/2⟩L and ∣−1/2⟩L are degenerate
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as λ 1
2 ,L

= λ 3
2
. For 0 < ϕ < π/3, the states of the opposite chirality and the nonchiral states lie higher in the energy

spectrum of h(∆).
A key observation is that, for a single triangular motif, the three-coloring state reads

∣R⟩ ∣G⟩ ∣B⟩ = 1

23/2 [∣+3/2⟩ + ∣−3/2⟩ + (∣↑↓↓⟩ + ω2 ∣↓↑↓⟩ + ω ∣↓↓↑⟩) + (∣↓↑↑⟩ + ω ∣↑↓↑⟩ + ω2 ∣↑↑↓⟩)]

= 1

23/2 [∣3/2⟩ + ∣−3/2⟩ + ∣+1/2⟩L + ∣−1/2⟩L], (15)

which only contains fully polarized states and ∣±1/2⟩L. As a result, at Jz = J⊥ cos(2π/3 + 2ϕ), the coherent state ∣Ψ⟩
consistently zeros out PR and P0, and must be a ground state with energy 3JzN∆/4, where N∆ is the number of
triangular motifs.

This three-coloring state is an exact ground state for all φz sectors, thus equally favoring the 120○ condensate
and charge segregation (uniform φz). For the triangular lattice, when ∣Jz ∣ < ∣J⊥ cos(2π/3 + 2ϕ)∣ one can argue that
the 120○ order is favored. This parameter regime is probably most realistic in experiments due to the intersite
Coulomb repulsion. We note that a relatively strong nearest-neighbor Coulomb repulsion V ∑⟨ij⟩ ninj can change Jz
to Jz = V − 4t20/(U − V ) > 0, favoring charge-density-wave order, which is frustrated on the lattices considered here.

The stability against deviations from maximum photodoping (nd = 1/2) has been numerically studied in the main
text. At ϕ = π/6, since the order commutes with the electron-hopping operator, one expects an extended range of
stable 120○ condensate, at least when the energy scale of the hopping nst0 is not much stronger than the exchange
energy Jex ∼ 4t20/U , namely ns = 1 − 2nd ≲ 4t0/U .

Superconducting optical response

The doublon-holon condensate generally coexists with unpaired electrons, resulting in a gapless state with a large
metallic conductivity and negative AC conductivity [47]. The superconducting current response, however, comes from
the doublon-holon contribution, which can be expressed as J dhij = δHdh[A]/δAij = i2J⊥(e2i(ϕij+Aij)φ+i φ

−
j − h.c.).

For the triangular lattice, we now calculate the currents in the topmost triangular motif shown in Fig. 1(b). We
assume that an electric pulse E(t) is applied up to time tf and ϕij = ϕ for a B → G → R chain. When t > tf ,

a constant vector potential A = − ∫
tf E(s)ds has been generated and couples to the doublon-holon condensate.

Assuming A = (Ax,Ay), we calculate Aij = A ⋅ (ri − rj) for the three bonds ⟨ij⟩ in the topmost triangular motif in
Fig. 1(b),

ARG = 1

2
Ay −

√
3

2
Ax,

AGB = 1

2
Ay +

√
3

2
Ax,

ABR = −Ay,

(16)

where the lattice constant is set to unity. The three currents then read Jij = J dh(Aij) for bond index RG, GB, and
BR.

In general, we can express the current density as J a =DabAb+T abcAbAc for a, b, c = x/y. The form of the coefficient
tensors D and T is constrained by symmetry arguments. First of all, any rotational symmetry Cn with n ≥ 3 requires
Dab ∝ δab, since its faithful 2D representations are irreducible. Moreover, the 120○ condensate is invariant under
reflection with respect to the y axis, resulting in T xyy = T xxx = T yxy = 0. The invariance under the three-fold rotation
further imposes −T yyy = T yxx = T xxy.

We now concentrate on the bulk response of the triangular lattice. Note that the gauge-invariant current density
generally reads J = δH/δA. On the mean-field level, the expectation value of the Hamiltonian per unit cell can be
written as

⟨H⟩
NsiteSu.c.

= ε(q0 +A)
Su.c.

= J⊥φ
2
0

Su.c.
[cos(2π/3 + 2ϕ + 2ARG) + cos(2π/3 + 2ϕ + 2AGB) + cos(2π/3 + 2ϕ + 2ABR)], (17)

where q0 = (2π/3,−2π/3) and the area of the unit cell is Su.c. =
√

3/2. The energy stationarity guarantees that the
net current density ∝ ∂ε/∂A vanishes. The linear response is then determined by the concavity Dab ∝ ∂2ε/∂Aa∂Ab
and the second-order response can be attributed to the trigonal warping T abc ∝ ∂3ε/∂Aa∂Ab∂Ac.
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To obtain some physical insights, we calculate explicitly the current density,

Jx =
∂ε(A)
∂Ax

1

Su.c.
= JGB −JRG,

Jy =
∂ε(A)
∂Ay

1

Su.c.
= (JRG +JGB − 2JBR)/

√
3.

(18)

These results can also be obtained by calculating the charge passing through a line perpendicular to the x- and
y-directions per unit time and length. By expanding the above formula to second order, we obtain

Jx ≈
∂J dh

∂A
∣
A=0

√
3Ax +

∂2J dh

∂A2
∣
A=0

√
3

2
AxAy,

Jy ≈
∂J dh

∂A
∣
A=0

√
3Ay +

∂2J dh

∂A2
∣
A=0

√
3

4
(A2

x −A2
y).

(19)

When Ay = 0, one can see that Jx ∝ Ax while Jy does not vanish but is proportional to A2
x. This gives rise to a

second-order transverse current when A = (Ax,0). The D and T tensors are

Dxx =Dyy = 2
√

3Jdh0 cos(2π/3 + 2ϕ),

T yxx = −T yyy = T xxy = −
√

3

2
Jdh0 sin(2π/3 + 2ϕ),

(20)

from which one sees that the T tensor vanishes for ϕ = π/6. The vanishing of the second-order response can be
intuitively seen from Fig. 4, where the energy dispersion near the minimum becomes nearly isotropic which forbids a
nonzero third-order derivative.

For the q = 0 order on the Kagome lattice, the pulse-induced supercurrent can become unbalanced and result in
charge redistribution and thus an oscillation in the order parameter. For example, assuming Ay = 0,Ax ≠ 0, the Blue

site of the bottom left triangular motif in Fig. 7(a) has two incoming currents J dh(−
√

3Ax/2) + J dh(
√

3Ax/2) and

two outgoing J dh(0) +J dh(0), differing by ∂2J
∂A2 3A2

x/4. Hence, an oscillation in the order parameter and the current

is expected to be induced in this system. The
√

3 ×
√

3 order, however, features a similar current response to the
triangular lattice.

Phase boundary and the critical doublon number for the Bethe lattice

In this section, we show the fitting of the phase boundary and the effective temperature. The left panel of Fig. 5
plots the order parameter as a function of nd, which is varied by changing the bath chemical potential µb. The
data are fitted by dashed lines near the phase transition, and the critical doublon densities ncd are estimated as the
vanishing points of the dashed lines. The transition is not sharply defined because of the weak symmetry-breaking
field h = 0.001 introduced in the DMFT iterations. For W = 2, the effective temperature in the steady-state setup
dramatically shoots up for nd ≳ 0.43, resulting in a strongly suppressed order parameter, and the phase boundary
cannot be precisely determined in the above way. In this regime, both the external fermion baths and the upper/lower
Hubbard bands of the system become close to full or empty, leading to a bottleneck for the thermalization and energy
dissipation. This bottleneck can be partially overcome by using W = 2.7. However, the intraband thermalization is
generically reduced for a nearly full/empty band.

We have also varied Tb to obtain stationary states with different Teff , yielding a function ncd(ϕ,Teff). The Teff

generally varies along each curve for fixed ϕ, and as a conservative estimate, we have used the lowest value for
ϕ > 0.09 for all data points (see the horizontal line in the right panel of Fig. 5). This is a crude approximation which
tends to underestimate Teff , and it thus guarantees that we get an lower bound for the order paramter at a given Teff .
The function ncd(ϕ) is determined in the same way for each data set with different Tb. We have not fitted the ncd for
ϕ = 0 and ϕ = 0.09, since the order parameters are substantially smaller in these two cases and the fit becomes less
robust.

To estimate the critical doublon density at Teff = 0 and ϕ = 0, we first fit the curves ncd(ϕ,Teff) for each Tb (with the
estimated Teff) and extrapolate to obtain an estimate of ncd(0, Teff), see the left panel of Fig. 6. The ncd data points
for varying ϕ and Tb = 0.01 have been shown in Fig. 2, and we can see that the fitted ncd(0) is consistent with the data
for ϕ = 0 and W = 2.7. We then extrapolate the function ncd(0, Teff) to Teff = 0, as shown in the right panel of Fig. 6.
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The driven Hubbard model on the Kagome lattice

Floquet driving with a circularly polarized light creates a complex phase for the hopping parameter tR up to the
lowest order in a 1/Ω expansion. In fact, it adds to the original t0 a purely imaginary term at the order t20 (see
Methods). The resulting doublon-holon exchange term is of order t2R/U ∼ t20/U +O(t30/U). Other terms generated by
the light are of higher orders, including a purely imaginary next NN hopping at the order of t20, and thus an exchange
term of O(t40/U). Therefore, we believe the main effect is from the renormalization of tR. We also note that some
Floquet-generated terms, such as the chiral spin interaction proportional to Si ⋅ (Sj ×Sk) [27] can nevertheless alter
the phase diagram of the system at the quantitative level.

In this section, we compare the mean-field energy of the uniform, the q = 0 and the
√

3 ×
√

3 phases under various
driving amplitudes A, see Fig. 7. Specifically, we assume φ0 = 1/2 and evaluate the doublon-holon interaction term
with a mean-field decoupling ⟨φ+i φ−i ⟩ → φ2

0θiθ
∗
j , where θi is defined as in the pairing structure factor. It suffices to

calculate and compare the mean-field energy for a single hexagon. The driving-induced NN and NNN hoppings are
shown in Fig. 8(a) and the corresponding mean-field energies are shown in panel (b). The q = 0 120○ order has the
lowest energy among the three orders, consistent with the ED results shown in the main text.
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(a) (b)

FIG. 7. Hubbard model on the Kagome lattice engineered by circularly polarized laser driving. The NN hopping is renormalized.
The induced (second-order in t0) next NN hopping is shown for one (light-brown) hexagon. (a) When the NN hopping tR has
a phase close to π/6, it favors the q = 0 order. (b) The next-nearest neighbor hopping favors identical order parameters on sites

connected by the NNN bond, possibly favoring the uniform order or the
√

3 ×
√

3 order shown here.
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∣φ∣ = 0.5 assumed. The parameters are U/t0 = 8,Ω/t0 = 5. The q = 0 mode generally has the lower energy than the
√

3 ×
√

3
state. In the strong driving limit, the phase of tR approaches π/2, and the uniform order becomes significantly enhanced.
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