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IR SCFT. In particular, we propose a conformal field theory description of the spaces of
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1 Introduction

This is a companion paper to [1]. The main subject of this paper are N = 4 SQFT in three

dimensions, equipped with interesting global symmetry groups. Such three-dimensional

SQFTs can appear as boundary degrees of freedom for half-BPS boundary conditions in

N = 4 Super Yang Mills theory [2].

In turns, half-BPS boundary conditions in N = 4 SYM descend, upon compactification

on a Riemann surface C, to branes which play an important role in the gauge theory

interpretation of the Geometric Langlands duality [3–6]. When the original boundary

conditions involve boundary degrees of freedom in the form of 3d N = 4 SQFT, the Chan-

Paton bundles for the corresponding branes arise as spaces of super-symmetric ground

states on C for the corresponding 3d SQFTs [1].

The objective of this paper is to find a characterization of these Chan-Paton bundles

which is flexible enough to overcome a crucial problem: the N = 4 SQFTs we are interested

in often have important low energy symmetry groups which are not fully visible in any

known UV Lagrangian descriptions.

Our strategy is to associate to each N = 4 SQFT a Vertex Operator Algebra whose

conformal blocks on C match the desired Chan-Paton spaces and whose symmetries match

the low energy symmetries of the SQFT.

Some elements of our proposal are somewhat conjectural and the Vertex Operator Al-

gebra which occur in practice in our calculations are rather intricate and non-unitary. The

main focus of this paper is to analyze some important basic examples and to collect evi-

dence that the VOA associated to linear quiver gauge theories of unitary groups have hidden

symmetries which match the known IR symmetry enhancement of the gauge theories.

For the very simplest examples, we will also describe in some detail the interpreta-

tion of conformal blocks as Chan-Paton bundles for branes. The definition of conformal

blocks for the non-unitary VOA which occur in our setup have subtleties which may be

somewhat unfamiliar to physicists (including this author) and may require a somewhat re-

fined mathematical treatment, possibly involving notions in Derived Algebraic Geometry.

This is particularly the case if one wants to map the conformal blocks to objects in the

derived categories of D-module used to describe BAA branes in Geometric Langlands or

of quasi-coherent sheaves used to describe BBB branes.

A full mathematical treatment of these examples goes beyond the scope of this pa-

per, but we will at least attempt to provide physical motivations for these subtleties.

Appendix A describes in some detail some finite-dimensional examples of D-modules as
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Chan-Paton bundles for BAA branes in C
2n defined by simple choices of boundary degrees

of freedom in the UV. These examples capture some of the subtleties which arise in the

construction of conformal blocks.

Finally, we suspect that the VOAs discussed in this paper can actually occur as algebras

of BPS local operators on certain deformed supersymmetric boundary conditions for the 3d

N = 4 gauge theories. This is the case for theories of free hypermultiplets [7, 8] and should

remain true when gauge fields are added to the mix. This would give a direct physical

motivation for the relationship between the space of conformal blocks of the VOAs and the

space of super-symmetric ground states for the corresponding 3d SQFTs.

2 3d N = 4 gauge theories on a Riemann surface

Recall that the three-dimensional N = 4 supersymmetry algebra admits an SU(2)H ×

SU(2)C R-symmetry group. In standard Lagrangian theories the SU(2)H R-symmetry

group acts on the hyper-multiplet scalar fields while SU(2)C acts on the vectormultiplet

scalar fields. Three-dimensional mirror symmetry exchange the SU(2)H,C subgroups.

In order to define a super-symmetric compactification on a Riemann surface, we have

two natural choices: we can twist by the Cartan subgroup of SU(2)H or by the Cartan

subgroup of SU(2)C . We denote the two possibilities as “H-twist” or “C-twist” respectively.

When the 3d theories are used to define enriched Neumann boundary conditions for four-

dimensional SYM, as in [1], these twists can also be denoted respectively as a “BAA twist”

and “BBB twist”, according to the type of branes they give rise to.

2.1 The H-twist

Consider a three-dimensional N = 4 SQFT T with an unbroken SO(2)H Cartan sub-

group of the SO(3)H R-symmetry which rotates the three complex structures on the Higgs

branch. We are mainly interested in renormalizable N = 4 gauge theories, which satisfy

this requirement automatically in the absence of complex FI parameters.

The SO(2)H symmetry can be used to compactify the theory on a Riemann surface C

while preserving four scalar supercharges. The result is an effective N = 4 supersymmetric

quantum mechanics which we can denote as the H-twist of T . We denote as HH [T,C] the

space of supersymmetric ground states of this quantum mechanics.

Our objective is to justify and test the following conjectures:

• The space HH [T,C] can be identified with the space of conformal blocks on C for a

vertex algebra AH [T ].

• If GH is the group of global symmetries acting on the Higgs branch of T , HH [T,C] can

be promoted to a (twisted) D-module over the space Bun[C,GH ] of GH bundles on

C. The D-module structure is associated to the presence of a GH current subalgebra

in AH [T ].

– 2 –
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• If GC is the group of global symmetries acting on the Coulomb branch of T , HH [T,C]

can be promoted to a sheaf over the space Loc[C,GC ] of (complexified) GC flat

connections on C. The sheaf structure is associated to an outer GC automorphism

of AH [T ] which allows one to couple it to GC flat connection.1

The theory T [G] which appears in the study of S-duality in four-dimensional N = 4 G

gauge theory has GH = G and GC = ∨G, Geometric Langlands dual groups. We expect the

algebra AH [T [G]] to contain a G current algebra and have a ∨G outer automorphism. Cor-

respondingly, the space of ground states HH [T [G], C] should be simultaneously a (twisted)

D-module over Bun[C,G] and a sheaf over Loc[C, ∨G]. The relation between S-duality and

Geometric Langlands duality suggests that HH [T [G], C] should play the role of a “duality

kernel” in the Geometric Langlands program.

We propose an explicit construction of the algebra AH [T ] when T is a gauge theory

with gauge group G and matter hypermultiplets in a symplectic representation M of G:

we define AH [T ] as an (extended) coset model given by the quotient of a theory of free

symplectic bosons valued in M by the G current subalgebra generated by the moment

maps in M .

Concretely, the symplectic bosons vertex algebra Sb[M ] is generated by holomorphic

fields Za of spin 1/2 valued in M , with OPE controlled by the symplectic form ωab on M :

Za(z)Za(w) ∼
ωab
z − w

(2.1)

The vertex algebra contains WZW currents valued in the Lie algebra of G:

JI(z) =: µIG(Z) :≡: Za(z)T
ab
I Zb(z) : (2.2)

where T abI generate the symplectic action of G on M .

The vertex algebra S[M ] decomposes into a direct sum of representations of the Ĝ

current algebra generated by the WZW currents JI(z). In the absence of Abelian factors

in the gauge group, we define the coset vertex algebra AH [T ] as the coefficient of the

vacuum Verma module in the sum:

Sb[M ] = [AH [T ]⊗ V0]⊕ · · · (2.3)

This is what is usually called a coset in the physics literature and denoted as

AH [T ] =
Sb[M ]

Ĝ
(2.4)

In unitary theories, the coset is usually computed by looking at vertex operators in the

original theory with trivial OPE with the WZW currents JI(z). Because the symplectic

1Here we identified the space of complexified GC flat connections with the space of local systems

Loc[C,GC ]. The two spaces are topologically the same but not algebraically. The difference is impor-

tant in the mathematical treatment of the Geometric Langlands program. The conformal blocks for AH [T ]

are ultimately defined as solutions of Ward identities which depend polynomially on the complexified GC

flat connection on C, seen as a holomorphic connection on a bundle. As far as we understand, that means

that the conformal blocks are naturally associated to the space of complexified GC flat connections on C

rather than the space of local systems.
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boson vertex algebra is not unitary, it is possible for the vacuum module to appear a

submodule of a larger indecomposable module and thus our definition of coset turns out

to be a bit more restrictive than that. We will see an explicit example later on.

In the presence of Abelian factors in the gauge group, the vertex algebra AH [T ] will

be graded by characters for the Abelian gauge symmetry. The degree 0 part is defined as

before. The degree p part is defined as the coefficient of a Verma module of momentum p

for the Abelian currents, vacuum for the non-Abelian currents.

Sb[M ] = ⊕p

[
A
(p)
H [T ]⊗ Vp

]
⊕ · · · (2.5)

In order to get a standard (fermionic) VOA, we should restrict the momentum p to values

for which the conformal dimensions of the coset fields are (half) integral. Typically, this

will mean p lies in some full rank sublattice of the charge lattice, as the level of Abelian

WZW currents in the symplectic boson theory will be integral.

In any case, we expect the coset algebra to contain WZW currents : µGF
(Z) : valued in

the Lie algebra of the Higgs branch flavor symmetry GF . Furthermore, the p grading of the

algebra gives the expected action of the Abelian subgroup of GC which is visible in the UV

description of N = 4 gauge theories: each U(1) factor in G contributes a U(1) factor to GC .

In many cases, the GC global symmetry of N = 4 gauge theories is enhanced in the IR

to a larger non-Abelian symmetry. A crucial check of our conjecture will be the existence

of a corresponding enhancement of the global symmetry of AH [T ].

In many important situations, where the level of the Ĝ current algebra is sufficiently

negative and integral, we have found that a certain operation of BRST reduction provides

similar results as the coset operation and may even be better motivated conceptually. It

will allow us to make contact with the work of [9, 10] and borrow very useful results about

hidden symmetries of certain VOAs.

2.2 The C-twist

Mirror symmetry exchanges the role of SO(3)H and SO(3)C , the R-symmetry which rotates

the three complex structures on the Coulomb branch. A twisted compactification of T

on C which employs the Cartan subgroup SO(2)C of SO(3)C gives an effective N = 4

supersymmetric quantum mechanics which we can denote as the C-twist of T . We denote

as HC [T,C] the space of supersymmetric ground states of this quantum mechanics.

The following statements should hold true:

• The space HC [T,C] can be identified with the space of conformal blocks on C for a

vertex algebra AC [T ].

• If GC is the group of global symmetries acting on the Higgs branch of T , HC [T,C] can

be promoted to a (twisted) D-module over the space Bun[C,GC ] of GC bundles on

C. The D-module structure is associated to the presence of a GC current subalgebra

in AC [T ].

• If GH is the group of global symmetries acting on the Coulomb branch of T , HC [T,C]

can be promoted to a sheaf over the space Loc[C,GH ] of (complexified) GH connec-

tions on C. The sheaf structure is associated to outer GH automorphism of AC [T ]

which allows one to couple it to GH flat connections.
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For theories of free hypermultiplets, we have a simple prescription for AC [T ] as an algebra

Fc[M ] of fermionic currents, described by an OPE

ja(z)jb(w) ∼
ωab

(z − w)2
(2.6)

We do not have a prescription for computing AC [T ] for general gauge theories. An

obvious strategy, when possible, is to look for a mirror gauge theory description T ! of T

and compute AH [T
!] instead.

2.3 Sheafs and D-modules from tt∗ geometry

Here we would like to briefly explain the reason for the appearance of Bun[C,GH ] and

Loc[C,GC ] in our story. We refer the reader to [1] for a more detailed discussion.

The four supercharges we consider can be better understood by referring to the mirror

Rozansky-Witten (mRW) twist of the 3d theory, which is a topological twist in three di-

mensions. In our twisted compactification on C, the mRW supercharge can be decomposed

into two parts with opposite SO(2)H charge:

QmRW = QH + Q̄H (2.7)

It belong to a general family of nilpotent supercharges

QζH = QH + ζQ̄H (2.8)

The existence of this family of supercharges in an N = 4 supersymmetric quantum me-

chanics constrains how the space of ground states is fibered over certain parameter spaces

of supersymmetric deformations of quantum mechanics. These constraints on the Berry

connection were first discussed in the study of the tt∗ geometry of (2, 2) two-dimensional

sigma models [11].

The specific form of the Berry connection constraints depends on the specific form

of the super-multiplet to which the deformation of the supercharges and Hamiltonian

belongs [12]. The supermultiplet may include several deformations and/or protected

operators.

In general, the Berry connection constraints can be expressed in terms of a “Lax

connection”, a family of differential operators Dζ on the parameter space which depends

holomorphically and linearly in ζ and commute with each other at any given value of

ζ. Depending on the specific deformation super-multiplet, the differential operators can

take different forms. They are always built from the Berry connections associated to

deformations in the supermultiplet and from the expectation values of protected operators

in the same supermultiplet.

The original work on tt∗ geometry involved supermultiplets which contain a complex

deformation parameter and an extra chiral operator, such that the differential operators

Dζ are the Lax connection for a Hitchin system on the parameter space:

Dζ
u = Du +

Φu
ζ

Dζ
ū = Dū + ζΦ̄ū (2.9)

– 5 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
1

where u is a complex structure deformation, Du the associated Berry connection on the

space of ground states and Φu the expectation value between ground states of the chiral

operator associated to the u deformation. We denote these deformation parameters as

“BAA-type” deformations as the data can be employed to define BAA branes in 2d (4, 4)

sigma models.

Another important possibility are Cauchy-Riemann equations for tri-holomorphic bun-

dles on hyper-Kähler parameter spaces. For example, for an R4 parameter space they would

look like

Dζ
u = Du +

Dv̄

ζ
Dζ
ū = Dū − ζDv (2.10)

When the theory has several supermultiplets of deformations, the Dζ operators all com-

mute with each other at fixed ζ. We denote these deformation parameters as “BBB-type”

deformations as the data can be employed to define BBB branes in 2d (4, 4) sigma models.

There are two natural way to deform our compactification of T on C, by coupling to

background connections for GH or GC on C. We can identify supersymmetric deformations

by looking at the BPS equations for these background fields.

There are no constraints on GH connections, but the dependence on the holomorphic

part of the connection is Q-exact. The topological theory is thus coupled only to a GH
bundle and we get a Bun[C,GH ] factor in the parameter space. This type of deformation

is analogous to the complex structure deformations in the original tt∗ work. The corre-

sponding chiral operator is one of the moment map operators on the Higgs branch of the

3d theory. The BAA-type structure associated to GH connections is thus a connection

on the sheaf of ground states on Bun[C,GH ] together with a Higgs field, the expectation

value of the moment map operator, which thogether satisfy the higher-dimensional version

of Hitchin equations on Bun[C,GH ].

For generic ζ, and in particular for ζ = 1, the Lax connection for such Hitchin system

is a flat connection on Bun[C,GH ]. It equips the cohomology of QζH with the structure of

a D-module on Bun[C,GH ]. More precisely, we expect that one should be able to identify

the output of the supersymmetric quantum mechanics with an object in some appropriate

derived category of D-modules on Bun[C,GH ].

The second possibility is a bit more intricate. The BPS equations require us to turn on

both a GC connection AC and a background complex adjoint scalar ΦC in the GC twisted

vectormultiplet (i.e. a complex FI parameter). The twist by SO(2)H makes the complex

FI parameters ΦC of T into one forms on C, valued in the Lie algebra of GC . A pair

(AC ,ΦC) of background GC connection AC and scalar ΦC preserves QζH if the auxiliary

Lax connection

Dζ
z = Dz[AC ] +

ΦC,z
ζ

Dζ
z̄ = Dz̄[AC ] + ζΦC,z̄ (2.11)

is flat for all ζ. It preserves all four scalar supercharges if (AC ,ΦC) is a solution of GC
Hitchin’s equations on C.

Thus this factor of the parameter space is the Hitchin moduli space M[GC , C]. The

corresponding BBB-type structure is a tri-holomorphic sheaf on M[GC , C]: the sheaf of

– 6 –
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ground states for the N = 4 quantum mechanics has a Berry connection which is holo-

morphic in all complex structures of M[GC , C]. The choice of ζ is a choice of complex

structure on M[GC , C].

For generic ζ, and in particular for ζ = 1, we can identify the parameter space with

Loc[C,GC ]. For any given ζ, it gives the cohomology of QζH the structure of an holomorphic

sheaf on M[GC , C] in complex structure ζ. More precisely, we expect that one should be

able to identify the output of the supersymmetric quantum mechanics with an object in

some appropriate derived category of sheaves on Loc[C,GC ].

As the Lax connections on the two factors of the parameter space commute, the sheaf

structure on Loc[C,GC ] and the D-module structure on Bun[C,GH ] are compatible, i.e.

the flat connection on Bun[C,GH ] with parameter ζ commutes with the anti-holomorphic

derivatives in complex structure ζ for the sheaf on Loc[C,GC ].

The BAA and BBB structures on the supersymmetric ground states can be encoded

as BBB and BAA branes on M[GC , C] and M[GH , C] respectively. Physically, this arises

from the promotion of a three-dimensional N = 4 SQFT to a half-BPS interface for four-

dimensional GH and GC N = 4 gauge theories: compactification on a Riemann surface

C reduces the four-dimensional gauge theories to M[GC , C] and M[GH , C] sigma-models

and the 3d interface to a BPS interface between the two sigma models, which is of BBB

type on one side and BAA on the other side.

In particular, the sheaf of ground states for the T [G] theory gives a BPS interface

between the M[G,C] and M[G∨, C] sigma models which should implement the mirror

symmetry relation between the two sigma models, i.e. the Geometric Langlands duality.

We refer to [1] for more details and for a description of the geometric structures which

emerge at ζ = 0.

2.4 From hypermultiplets to symplectic bosons and fermionic currents

In the absence of gauge fields, there is a simple way to understand the algebras AH [M ]

and AC [M ] we associate to hypermultiplets valued in M .

2.4.1 H-twist

As standard hypermultiplet scalars transform in a doublet of SO(3)H , the H-twist makes

them into spinors on C. The hypermultiplet fermions are already spinors on C to start with.

The three-dimensional action can be recast as a supersymmetric quantum mechanics

akin to a Landau-Ginzburg theory with a Kähler target manifold [13]. The target of

the quantum mechanics is the space of sections Z of the bundle K1/2 ⊗M on C. The

superpotential is the symplectic boson action:

W =

∫

C
〈Z,Dz̄Z〉 (2.12)

where 〈·, ·〉 is the symplectic pairing onM andDz̄ the anti-holomorphic covariant derivative

associated to the bundle.

Notice that if we pick a global symmetry group GH acting simplectically on the hyper-

multiplets, we can take M to be a non-trivial GH bundle rather than the constant bundle.

– 7 –
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Thus Bun[C,GH ] is a parameter space of complex structure/superpotential deformations

for the LG quantum mechanics. The variation of W along Bun[C,GH ], which is the inte-

gral over C of the moment map µ(Z) contracted with the variation of the anti-holomorphic

connection,

δW =

∫

C
µ(Z) · δAGH

z̄ (2.13)

gives a local operator in the quantum mechanics which combines with the Berry connection

to give the tt∗ structure mentioned above.

The space of ground states of an N = 4 Landau-Ginzburg quantum mechanics with

finite-dimensional target space U is the cohomology of U relative to the locus where

ReW ≪ 0, i.e. the space of integration cycles for forms which behave as eW . This co-

homology has an integral basis and it is a locally constant sheaf on the space of complex

structure/superpotential deformations for the quantum mechanics: the parallel transport

is defined by continuous deformations of the integration contours.

This structure can be recast as a D-module: the D-module associated to the Picard-

Fuchs equations satisfied by integrals of the form

∮

γ
ωeW (2.14)

where ω lies in an appropriate dW -deformation of De Rham cohomology. See appendix A

for several examples.

The finite-dimensional model suggests that the space HH [M,C] should coincide with

the space of conformal blocks for a theory of chiral symplectic bosons, defined by the path

integral ∫
DZe

∫
C〈Z,Dz̄Z〉 (2.15)

with a (twisted) D-module action given by the WZW current subalgebra defined by the

moment maps

JGH
=: µ(Z) : (2.16)

This path integral gives a free vertex algebra Sb[M ] with OPE

Za(z)Zb(w) ∼
ωab
z − w

(2.17)

where ω is the symplectic form on M . A simple way to understand why symplectic bosons

can be coupled to a gauge bundle is to observe that this OPE is invariant under holomorphic

gauge transformations of the Za(z).

There is an alternative perspective which supports this proposal: the theory of free

hypermultiplets admits a boundary condition which preserves a (0, 4) two-dimensional

subalgebra of the supersymmetry algebra. A mRW twist of the theory is known to lead

to a theory of holomorphic symplectic bosons on the boundary [7, 8]. This construction

thus gives a map from the space of conformal blocks for symplectic bosons to the space of

states of mRW-twisted free hypermultiplets.
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The conformal blocks for symplectic bosons on a Riemann surface C in the absence

of a background gauge bundle depend on a choice of spin structure K1/2. In the presence

of a background gauge bundle E, Za transforms as a section of the associated bundle

EM ⊗K1/2.2

As long as EM ⊗K1/2 has no global sections, so that the symplectic boson has no zero-

modes on C, the path integral (2.15) has an obvious meaning and gives a single conformal

block, i.e. a unique solution of the Ward identities for correlation functions of the Za. The

partition function is the inverse of the square root of the determinant of the ∂̄ operator

on EM ⊗ K1/2. As one approaches the locus where EM ⊗ K1/2 has global sections, the

partition function will diverge.

In a component of the space of bundles where the symplectic bosons have generically

no zeromodes, a naive description of the space of conformal blocks is a rank 1 D-module

with a regular singularity at the locus where EM ⊗K1/2 has global sections. The finite-

dimensional examples in appendix A make it clear that this description is incomplete and

additional conformal blocks are hidden at special loci in the space of bundles. Such hidden

conformal blocks are even more important in components of the space of bundles where

zeromodes exist generically.

These additional conformal blocks are important in matching and improving the clas-

sical description [1] of the BAA brane as a complex Lagrangian submanifold of the space

of Higgs bundles (E,ϕ): the Lagrangian has a component wrapping the ϕ = 0 locus and

extra components which sit on the co-normal bundle to the locus where EM ⊗ K1/2 has

global sections.

A general description of the space of conformal blocks is that of a complex of D-

modules, with a differential which imposes the Ward identities on correlation functions.

This is described in appendix A. We expect that this complex can be systematically sim-

plified, at least locally on the space of bundles, but we leave that to future work and focus

on concrete examples.

2.4.2 C-twist

The RW twist of a theory of free hypermultiplets (i.e. the mRW twist of a theory of

free twisted hypermultiplets) leaves the hypermultiplet scalars unaffected, but changes the

quantum numbers of the fermions: part of the fermions become spin-zero superpartners

of the bosonic scalar fields and the other half become one-forms. The spin zero fields are

rather boring, but the fermionic one forms have an interesting Chern-Simons action built

from the symplectic pairing on M . It is natural to expect that the space of ground states

on C will be the space of conformal blocks of fermionic WZW currents Fc[M ] valued in

M , with OPE

ja(z)jb(w) ∼
ωab

(z − w)2
(2.18)

2Rather than considering this as a choice of a bundle E and spin structure K1/2 it is more natural to

take EM ⊗ K1/2 to be some sort of generalized SpinC structure and the space of conformal blocks as a

D-module over the moduli space of such structures.
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Notice that if we pick a global symmetry group GC acting symplectically on the hyper-

multiplets, this system has no GC-valued WZW subalgebra: we can couple the system to a

flat GC connection, but there is no holomorphic current to encode the infinitesimal changes

in the connection. The conformal blocks form a sheaf over Loc[C,GC ], as expected.

A simple way to understand this fact is to observe that the OPE (2.18) is not invariant

under holomorphic gauge transformations, because of the double pole. It can be made

invariant by adding a dependence on an holomorphic GC connection Aab on C

ja(z)jb(w) ∼
ωab

(z − w)2
+

Aab(w)

z − w
(2.19)

which combined with the bundle data into a holomorphic description of a GC local system,

i.e. a bundle equipped with a holomorphic connection on the Riemann surface C.

The spin zero fields in the hypermultiplets are expected to be completely trivial as

long as the GC local system has no scalar global sections [1]. If scalar global sections exist,

the system becomes more complicated, in a manner we now describe. Notice that if the 3d

theory is coupled to four-dimensional gauge theory, the vevs for the spin zero fields in the

hypermultiplets trigger vevs for the four-dimensional scalar fields which are not included

in the picture of a sigma model on the Hitchin moduli space.

The calculations in [1] predict that the sheaf of supersymmetric ground states should

arise from the quantization of a phase space given by the de Rahm cohomology of forms

on C valued in M . This is known to coincide with the sheaf of (derived) conformal blocks

for fermionic currents valued in M [14].

In order to understand the relationship, we can pick a polarization in the phase space

which splits into (∗, 0) forms and (∗, 1) forms and build a Fock space out of Ω∗,0. The Fock

space can be identified with a collection of potential correlation functions

〈ja1(z1) · · · jan(zn)φb1(w1) · · ·φbm(wm)〉 (2.20)

and the BRST differential takes the schematic form

Q〈· · · 〉 =

∫
dzdz̄〈

(
∂̄ja(z)− ωab∂

δ

δjb(z)

)
δ

δφa(z)
· · · 〉+

+

∫
dzdz̄〈

(
ja(z)ω

ab∂̄φb(z) + ∂φb(z)
δ

δjb(z)

)
· · · 〉 (2.21)

This seems a reasonable definition for a space of (derived) conformal blocks for the

fermionic currents. The Q cohomology in cohomological degree 0 consists of correlation

functions for the ja currents satisfying the Ward identities of fermionic currents

〈

(
∂̄ja(z)− ωab∂

δ

δjb(z)

)
· · · 〉 = 0 (2.22)

If there are no zeromodes for the scalars, we expect this to exhaust the cohomology.
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2.5 Coset versus BRST reduction

The vertex algebra of symplectic bosons is a crucial ingredient of another construction

which associates vertex algebras to gauge theories with eight supercharges: the construc-

tion of vertex algebras for N = 2 four-dimensional SCFTs [9, 10]. The requirement of con-

formal symmetry in four dimensions imposes strong constraints on the gauge theory matter

content: the level of the Ĝ current algebra in Sb[M ] should be twice the critical level.

At this particular value of the level, it is possible to pair up the S[M ] algebra with

a system of b, c ghosts valued in the gauge Lie algebra and write down a BRST operator

of the schematic form QBRST = cJ + bcc. The BRST cohomology produces the vertex

algebras for the N = 2 four-dimensional gauge theory.

It is quite obvious that if we build a 3d theory T with the same matter content and

gauge group as a 4d SCFT, operators in our coset will belong also to the QBRST cohomology.

Moreover, the central charge of the resulting VOAs also coincide: the central charge for the

ghosts precisely cancels the central charge of the WZW currents at twice the critical level:

k dimG

k + h

∣∣∣∣
k=−2h

+ (−2)× dimG = 0 (2.23)

Inspection of examples will strongly suggest that AH [T ] coincides in this situation with the

4d chiral algebra. We conjecture

AH [T ] =
Sb[M ]

Ĝ−2h

= {Sb[M ]× (b, c), QBRST} (2.24)

Assuming that this correspondence holds will be rather useful later in the paper: the 4d

chiral algebra of theories of class S has unexpected symmetries which are thus inherited by

our coset and which will be instrumental in demonstrating the Coulomb branch symmetry

enhancements for unitary quiver gauge theories.

If the matter content of the three-dimensional theory is beyond the amount allowed

in four-dimensions, so that the level of the WZW currents is more negative than twice the

critical level, by an integral amount −n, we can still add a standard Ĝn WZW model to

the symplectic bosons and then apply the BRST reduction.

Again, the resulting VOA seems closely related to the one obtained by a direct coset of

the symplectic bosons. For example, the central charge of the Ĝn WZW model combines

with the central charge of the ghosts to cancel the central charge of the Ĝ WZW currents

in the symplectic boson theory:

k dimG

k + h

∣∣∣∣
k=−2h−n

+
k dimG

k + h
|k=n + (−2)× dimG = 0 (2.25)

Again, we expect this BRST construction to give an alternative definition of AH [T ]. We

conjecture

AH [T ] =
Sb[M ]

Ĝ−2h−n

=
{
Sb[M ]× Ĝn × (b, c), QBRST

}
(2.26)
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3 Free hypermultiplets

We will discuss now some examples of VOA associated to free hypermultiplets in various

representations.

3.1 H-twist of a single hypermultiplet

The vertex algebra Sb[C2] of a single symplectic boson has two bosonic generators, X(z)

and Y (z), with OPE

X(z)Y (w) ∼
1

z − w
(3.1)

and conformal dimension 1/2. Several of the features we discuss below can be found

discussed at length in [15].

The stress tensor can be written as

T =
1

2
X∂Y −

1

2
Y ∂X (3.2)

and gives a central charge of cXY = −1.3

The basic vacuum module of the symplectic boson VOA is generated by half-integral

modes in the expansion

X(z) =

∞∑

n=−∞

Xn− 1
2

zn
Y (z) =

∞∑

n=−∞

Yn− 1
2

zn
(3.5)

with [Xn− 1
2
, Ym− 1

2
] = δn+m,1. The module is generated from the identity by the action of

the negative modes in the expansion.

The vacuum module belongs to the sector with Neveu-Schwarz boundary conditions

for X and Y . The sector with Ramond boundary conditions is somewhat more subtle,

because of the existence of zeromodes which satisfy an Heisenberg algebra:

X(z) =

∞∑

n=−∞

Xn

zn+
1
2

Y (z) =

∞∑

n=−∞

Yn

zn+
1
2

(3.6)

with [Xn, Ym] = δn+m,0 and in particular [X0, Y0] = 1. Useful Ramond modules can be

induced from any modules for the Heisenberg algebra of zeromodes.

Obvious choices are modules generated from vectors |R,±〉 which are annihilated either

by X0 or Y0 and all positive modes. A less obvious choice is a module generated by vectors

|R, λ+ n〉 annihilated by positive modes, with n an integer and 0 < λ < 1 and

Y0|R, λ+ n〉 = |R, λ+ n+ 1〉 X0|R, λ+ n〉 = (n+ λ)|R, λ+ n− 1〉 (3.7)

As our focus in this paper is on Riemann surfaces with no punctures, vertex operators for

general modules of the symplectic boson algebra will play a limited role.

3We can check that this is the correct stress tensor

T (z)X(w) ∼
1

2

X(w)

(z − w)2
+

∂X(w)

z − w
T (z)Y (w) ∼

1

2

Y (w)

(z − w)2
+

∂Y (w)

z − w
(3.3)

and compute the central charge

T (z)T (w) ∼ −
1

2

1

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
. (3.4)

– 12 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
1

As the symplectic boson CFT can be described by a free chiral action
∫
C X∂̄Y , we

expect that as long as the action has no zeromodes the space of conformal blocks will be

one-dimensional, generated by the Gaussian path integral with that action. In particular,

the partition function should be just the inverse of the determinant of the ∂̄ operator

acting on sections of K
1
2 . If we do not couple the symplectic boson to a background gauge

bundle, we need to select an even spin structure K
1
2 in order to avoid zeromodes. It is

more natural, though, to couple the system to background gauge fields. We will come back

to that momentarily.

This expectation can be verified by directly solving on the Riemann surface C the Ward

identities of the symplectic boson VOA or by assembling the conformal block by sewing up

punctured spheres. The Ward identities express the correlation functions of X and Y fields

in terms of the Green’s function for the ∂̄ operator. Concretely, 〈X(z)Y (w)〉C
〈1〉C

is the unique

meromorphic section of K
1
2 with a single pole of residue 1 at w. The overall normalization

is determined by computing from the Green’s function the stress tensor one-point function
〈T (z)〉C
〈1〉C

and thus the dependence on the complex structure of C.

Similarly, the Ward identities allow one to reduce any sphere three-point function

of vacuum descendants to the sphere partition function. Conformal blocks on a generic

Riemann surface equipped with an even spin structure can be computed, say, by sewing

together pairs of punctures from a sphere with 2g NS punctures by inserting complete sets

of descendants of the identity, possibly with a twist acting as −1 on X and Y in order to

select a specific spin structure. It is also possible to reproduce the answers by sewing along

Ramond sector channels, but there are important subtleties associated to the zeromodes.

If we consider odd spin structures, instead, we cannot define a partition function unless

we remove the zeromodes. It is possible to remove the zeromodes without locally interfering

with the Ward identities, but the global behaviour of correlation functions is spoiled by

logarithmic monodromies. The situation is improved by introducing a U(1) gauge bundle.

We will do that now.

3.2 Current subalgebras: U(1)−1

The symplectic boson theory has an obvious U(1)−1 WZW current

J = XY (3.8)

rotating X and Y with charge ±1. This allows one to couple the symplectic boson to a

U(1) bundle L on the Riemann surface.

Concretely, this statement is related to the observation that the OPE of symplectic

bosons is well-behaved under holomorphic gauge transformations: as the OPE has a single

pole, the replacement X(z) → g(z)X(z) and Y (z) → g(z)−1Y (z) does not change the

singular part of the OPE, and shifts J by the expected g−1∂g determined by the anomaly.

Notice that it is natural to think about the L ⊗ K
1
2 bundle as a SpinC structure

on the Riemann surface, rather than choosing a spin structure and then a line bundle.

Correspondingly, the conformal blocks are best defined over the moduli space of SpinC

structures on the Riemann surface.
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If we take the line bundle to have degree 0, the path integral produces a partition

function

ZC,L =
1

det ∂̄
L⊗K

1
2

(3.9)

which has a pole along the Θ-divisor in the space of line bundles, where zeromodes appear.

In the first approximation, we can envision the conformal blocks in degree 0 as a one-

dimensional line bundle on the space of U(1) bundles Bun0(U(1), C) equipped with the

structure of a (twisted) D-module with a regular singularity at the Θ-divisor. The partition

function plays the role of a flat section of that D-module. Recall that the D-module

structure on conformal blocks is simply the statement that we can change the U(1) bundle

infinitesimally by inserting a U(1) current in the partition function, decomposing it into

the OPE of two symplectic bosons and use the Ward identities to re-express that in terms

of the original partition function.

The discussion in appendix A makes it clear that such a description, though, is danger-

ously simplistic. The space of conformal blocks should really be thought of as a complex of

(infinite-dimensional) vector bundles with a D-module structure. The cohomology of that

complex away from the Θ-divisor is the naive one-dimensional space of conformal blocks,

but a lot of structure and hidden components may be present at the Θ-divisor itself.

There is a simple trick which produces examples of such non-trivial components of

the space of conformal blocks: start from the standard partition function and correlation

functions and take a discontinuity across the Θ-divisor, transforming the poles into delta

functions. Equivalently, we can act on the standard conformal blocks with a ∂† operator

along Bun0(U(1), C), which again transforms poles into delta functions. This agrees with

the expectation from finite-dimensional analogue systems in appendix A that extra non-

trivial components may be found in cohomological degree −1 at loci where a pair of dual

zeromodes appear.

The example of genus 1 conformal blocks is already rather instructive. For a generic

point in Bun0(U(1), Eτ ) parameterized by the variable x, the partition function and cor-

relation functions take the form4

〈1〉 =
η(τ)

θ(x, τ)

〈X(z)Y (w)〉 = 2πi
η(τ)4

θ(x, τ)2
θ(z − w + x, τ)

θ(z − w, τ)

· · · (3.10)

Taking the discontinuity at x = 0 we get our candidate hidden conformal block:

〈1〉 =
1

η2(τ)
δ(x)

〈X(z)Y (w)〉 =
1

η2(τ)
δ′(x) +

1

η2(τ)

θ′(z − w, τ)

θ(z − w, τ)
δ(x)

· · · (3.11)

4To check this formulae, observe that 〈X(z)Y (w)〉 is the unique meromorphic section with a single pole

or residue 〈1〉 and that it gives the correct stress-tensor 1-pt function proportional to ∂τ 〈1〉.
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The “partition function” is a natural regularization of the naive path integral, with zero-

modes removed. The correlation function may appear worrisome because θ′(z−w,τ)
θ(z−w,τ) shifts

by a constant as z → z − τ . This compensates, though, the fact that e2πixδ′(x) = δ′(x)−

2πiδ(x). Thus the correlation function is still a section of the correct bundle.

Similar considerations apply in higher genus, though new components in even lower

cohomological degree may appear at special loci in the Θ divisor.

If the U(1) line bundle has degree greater than 0, Y (z) will generically have d zeromodes

while the equations of motion for X(z) will be obstructed. The opposite occurs in negative

degree. Solving the Ward identities will simply be generically impossible and the (coho-

mology of the complex of) conformal blocks will be generically trivial. The D-module of

conformal blocks, though is still non-trivial: the finite-dimensional example in appendix A

suggests that non-trivial solutions of Ward identities appear at the co-dimension d+1 locus

Θd where X(z) acquires at least one zeromode and thus Y (z) has d+ 1 zeromodes.

Concretely, the correlation functions are expected to vanish unless we have d more X

insertions than Y insertions. At the co-dimension d+ 1 locus Θd in Bund(U(1), Eτ ) where

X(z) has some zeromode ρ(z), we can postulate

〈X(z1) · · ·X(zd)〉 = ρ(z1) · · · ρ(zd)δ
(d)
Θd

(3.12)

Because of the existence of d + 1 obstructions for the equations of motion of X, we can

only find the Green’s function if we allow for logarithmic monodromies in d directions, as

on the degree 0 case. We expect to be able to compensate for that using the d normal

derivatives of the δΘd
, as before. Thus the next non-trivial correlation function will have a

schematic form

〈X(z1) · · ·X(zd)X(zd+1)Y (w)〉 =
∑

a

∏

b 6=a

ρ(zb)
(
G(za, w)δ

(d)
Θd

+ g(za, w) · ∂δ
(d)
Θd

)
(3.13)

etcetera.

Notice that both the Θ-divisor and the Θd loci for g− 1 > d > 0 can be parameterized

nicely by the divisor given by the g−1−d zeroes of the X(z) zeromode. At degree d = g−1

the locus Θg−1 consists of the trivial bundle only and the X zeromode is constant. For d

greater than g−1 we do not expect any interesting conformal blocks. This agrees with the

classical picture described in [1]. Similar considerations apply for negative d.

3.2.1 Twisted modules

In the presence of a background U(1) connection one can consider twisted sectors for the

symplectic boson, where the mode expansion is shifted appropriately

X(z) =
∞∑

n=−∞

Xn+α− 1
2

zn+α
Y (z) =

∞∑

n=−∞

Yn−α− 1
2

zn−α
(3.14)

For α 6= 1
2 we have natural highest weight modules annihilated by the positive modes.

These modules will appear, say, when we sew up a Riemann surface in a gauge where
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X and Y have non-trivial periodicity around the handles. For future reference, we can

compute

〈α|X(z)Y (w)|α〉 =
wα

zα
1

z − w
(3.15)

leading to the U(1) charge and scaling dimension of the highest weight vectors

〈α|J(z)|α〉 = −
α

z
〈α|T (z)|α〉 = −

α2

2z2
(3.16)

These twisted modules can be obtained from the standard vacuum module by a singular

gauge transformation.

At α = 1
2 we need to consider the various possible Ramond sector modules. Approach-

ing α = 1
2 from above or below one gets the |R,±〉 modules. Instead the general Ramond

modules give us

〈R, λ|X(z)Y (w)|R, λ〉 =
w

1
2

z
1
2

1

z − w
+

λ

z
1
2w

1
2

(3.17)

and thus

〈R, λ|J(z)|R, λ〉 =

(
λ−

1

2

)
1

z
〈R, λ|T (z)|R, λ〉 = −

1

8z2
(3.18)

This module is not obtained by a singular gauge transformation of the vacuum module.

We expect it to play an important role in the sewing construction of the non-standard

conformal blocks described above. It also plays an important role in the bosonization of

the XY system, which will be a crucial ingredient in the study of Abelian mirror symmetry

and S-duality.

For example, the characters and traces over the modules generated from |α〉 or |R,±〉 all

essentially give the same η(τ)
θ(x,τ) torus partition function and associated correlation functions,

with x = τ(α − 1
2) + β and β being the U(1) fugacity. On the other hand, the characters

and traces of the modules generated from |R, λ〉 give the 1
η2(τ)

δ(x) torus partition function

and associated correlation functions.

3.2.2 Current subalgebras: SU(2)
−

1

2

The symplectic boson vertex algebra actually contains a full set of SU(2)− 1
2
WZW currents:5

J− =
1

2
X2 J3 =

1

2
XY J+ =

1

2
Y 2 (3.20)

5We can verify the level from the OPEs:

J
3(z)J3(w) ∼ −

1

4

1

(z − w)2

J
3(z)J±(w) ∼ ±

J±

z − w

J
−(z)J+(w) ∼

1

2

1

(z − w)2
+

2J3

(z − w)
. (3.19)

– 16 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
1

Notice that X and Y can be identified with the spin 1
2 primaries Zα for the SU(2) cur-

rent algebra: the dimension of a spin 1
2 primary is precisely 1

2 . Furthermore, the Sugawara

stress tensor can be computed from

: J3J3 :=
1

4
X2Y 2 +

1

4
X∂Y −

1

4
Y ∂X (3.21)

and

: J−J+ :=
1

4
X2Y 2 + Y ∂X : J+J− :=

1

4
X2Y 2 −X∂Y (3.22)

so that

: J3J3 : −
1

2
: J−J+ : −

1

2
: J+J− :=

3

2
T (3.23)

Thus T coincides with the Sugawara stress tensor for SU(2)− 1
2
.

The currents of integral spin in the symplectic boson current algebra can be organized

into the vacuum module of SU(2)− 1
2
, while the currents of half-integral spin can be orga-

nized into the spin 1
2 module of SU(2)− 1

2
. Thus we can envision the symplectic boson VOA

as an extension of the SU(2)− 1
2
WZW VOA.

We can use the SU(2)− 1
2
WZW symmetry to couple the symplectic boson system to

SU(2) bundles. Again, it is actually most natural to couple the symplectic boson to an

SU(2) version of a SpinC structure: rather than picking an SU(2) bundle E and combining

it with a spin structure, we can give the product E⊗K
1
2 an intrinsic meaning. This should

correspond to E being a section of a certain gerbe.

From the four-dimensional perspective, this is due to the Z2 anomaly of a single half-

hypermultiplet coupled to SU(2) gauge fields, which is cancelled by anomaly inflow from a

non-trivial discrete theta angle in the four-dimensional bulk. The bulk theory with such a

discrete theta angle is conventionally denoted as Sp(1)′ and is mapped to itself by S-duality.

Correspondingly, the space of solutions of Hitchin equations twisted by that gerbe should

be self-mirror.

The partition function of the symplectic boson coupled to the twisted SU(2) bundle is

ZC,E =
1√

det ∂̄
E⊗K

1
2

(3.24)

and has square-root singularities at the co-dimension 1 locus ΘSU(2) where a zeromode

appears. Notice that there is a Z2 symmetry mapping Zα(z) → −Zα(z) and solutions of

Ward identities built from this partition function involve correlation functions with an even

number of Zα insertions.

At that locus ΘSU(2) we expect to also find a second conformal block (in cohomological

degree 0, see examples in appendix A) which has zero partition function, but non-zero

1-point function

〈Zα(z)〉 = ρα(z)δΘSU(2)
(3.25)

proportional to the zeromode ρα(z) and more general correlation functions of an odd num-

ber of fields involving the δ function at ΘSU(2) and its derivatives.
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3.3 Free hypermultiplets in a fundamental representation, H-twist

As a preparation for later sections, we should discuss briefly some features of the VOA

Sb[C2N ] obtained as the product of N copies symplectic boson VOAs.

The vertex algebra has 2N bosonic generators, Xa(z) and Y
a(z), with OPE

Xa(z)Y
b(w) ∼

δba
z − w

(3.26)

and all other OPE trivial. All fields have conformal dimension 1/2.

The stress tensor can be taken to be

T =
1

2
Xa∂Y

a −
1

2
Y a∂Xa (3.27)

with central charge −N .

The current algebra contains a WZW Sp(N)− 1
2
current subalgebra:

J−
ab =

1

2
XaXb Jba =

1

2
XaY

b Jab+ =
1

2
Y aY b (3.28)

Here Jba are the currents for an U(N)−1 current subalgebra and J−
ab, J

ab
+ the remaining cur-

rents in Sp(N)− 1
2
. Furthermore, T coincides with the Sugawara stress tensor for Sp(N)− 1

2
.6

The central charge matches as well. Thus Sb[C2N ] can be interpreted as an extension of

an Sp(N)− 1
2
VOA. The (Xa, Y

a) fields can be identified with the Sp(N)− 1
2
primaries in

the fundamental representation.

We can also focus on the U(N)−1 currents Notice also that

: JaaJ
b
b :=

1

4
XaXbY

aY b +
1

4
Xa∂Y

a −
1

4
Y a∂Xa (3.32)

and thus

T =
2

N − 1
: JbaJ

a
b : −

2

N − 1
: JaaJ

b
b := TSU(N)−1

+ TU(1) (3.33)

Thus T also coincides with the Sugawara stress tensor for U(N)−1.The central charge

matches as well.

The Xa and Y a fields can be identified with the U(N)−1 primaries in the fundamental

or anti-fundamental representation. Notice that the dimension 1/2 receives a contribution

1/2 + 1/(2N) from SU(N)−1 and −1/(2N) from U(1).

6In detail,

: Jb
aJ

a
b :=

1

4
XaXbY

a
Y

b +
N

4
Xa∂Y

a −
N

4
Y

a
∂Xa (3.29)

and

: J−

abJ
ab
+ :=

1

4
XaXbY

a
Y

b +
N + 1

2
Y

a
∂Xa : Jab

+ J
−

ab :=
1

4
XaXbY

a
Y

b −
N + 1

2
Xa∂Y

a (3.30)

so that

: Jb
aJ

a
b : −

1

2
: J−

abJ
ab
+ : −

1

2
: Jab

+ J
−

ab :=

(

N +
1

2

)

T . (3.31)
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The vertex algebra of N symplectic bosons should contain infinitely many U(N)−1 pri-

maries. For example, the symmetric polynomials Xa1 · · ·Xan should be U(N)−1 primaries

labelled by the symmetric powers of the fundamental representation, and Y a1 · · ·Y an should

be U(N)−1 primaries labelled by the symmetric powers of the anti-fundamental represen-

tation. There may be other primaries as well, hidden deeper into the symplectic bosons

Verma module.

The current algebras we identified imply that the VOA of N symplectic bosons will

give D-modules on Bun(Sp(N), C) (or better, the modification of that which parameterizes

bundles of the form ESp(N)⊗K
1
2 ) or on Bun(U(N), C) (or better, the modification of that

which parameterizes bundles of the form EU(N) ⊗K
1
2 ).

These D-modules encode the BAA branes associated to certain boundary conditions

for the corresponding four-dimensional gauge theories.

The S-dual of these boundary conditions is known. For the Sp(N)′ boundary condition

(here the prime indicates the presence of a discrete θ angle, which makes the Sp(N)′ theory

self-S-dual) that is a maximal Nahm pole. For the U(N) boundary condition that is a sub-

regular Nahm pole, breaking the gauge group to a U(1) subgroup, which is gauged at

the boundary. The BBB image of Nahm pole boundary conditions is poorly understood,

though. It would be very interesting to test this expectation, say by computing Hecke

modifications of the symplectic bosons D-module.

Another setup involving fundamental hypermultiplets is that of a D5 interface between

two U(N) theories or a half-D5 between an Sp(N) and an Sp(N)′ theory. The BAA image

of that is a D-module on the product of two copies, say, of Bun(U(N), C) localized on the

diagonal. It can also be interpreted as a functor mapping D-modules on, say, Bun(U(N), C)

to D-modules on the same space. The functor consists simply of taking a tensor product

with the D-module defined by the VOA of N symplectic bosons.

The S-dual of (half-)D5 interfaces are (half-)NS5 interfaces, which we will discuss

momentarily [2, 16].

More general D5 interfaces can be defined between U(N) and U(M) gauge groups with

different ranks M < N (or symplectic groups or orthogonal with different ranks) but they

are simpler and do not involve boundary degrees of freedom, only certain Nahm poles.

They give D-modules on the product of Bun(U(N), C) and Bun(U(M), C) localized on the

image of the block-diagonal embedding of U(M) bundles into U(N) bundles.

3.4 Bi-fundamental free hypermultiplets, H-twist

We now organizeNM symplectic bosons into twoN×M blocks, Xi
a(z) and Y

a
i (z), with OPE

Xi
a(z)Y

b
j (w) ∼

δbaδ
i
j

z − w
(3.34)

and all other OPE trivial. All fields have conformal dimension 1/2.

The stress tensor can be taken to be

T =
1

2
Xi
a∂Y

a
i −

1

2
Y a
i ∂X

i
a (3.35)

with central charge −NM .
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We can define SU(N)−M × SU(M)−N ×U(1) currents

Jba =
1

2
Xi
aY

b
i −

δba
2N

Xi
cY

c
i J ij =

1

2
Xi
aY

a
j −

δij
2N

Xk
aY

a
k J =

1

2
Xi
aY

a
i (3.36)

and denote for convenience as J̃ba and J̃ ij the bilinear currents without traces removed,

which generate U(N)−M and U(M)−N current algebras.

We can compute

: J̃baJ̃
a
b :=

1

4
Xi
aX

j
bY

a
j Y

b
i +

N

4
Xi
a∂Y

a
i −

N

4
Y a
i ∂X

i
a (3.37)

and

: J̃ ij J̃
j
i :=

1

4
Xi
aX

j
bY

a
j Y

b
i +

M

4
Xi
a∂Y

a
i −

M

4
Y a
i ∂X

i
a (3.38)

and thus

T =
2

N −M
: J̃baJ̃

a
b : −

2

N −M
: J̃ ij J̃

j
i := TSU(N)−M

+ TSU(M)−N
+ TU(1) (3.39)

Thus T also coincides with the Sugawara stress tensor for the SU(N)−M×SU(M)−N×U(1)

currents. The central charge matches as well. This is a non-unitary analogue of level-rank

duality.

The Xi
a and Y a

i fields can be identified with the SU(N)−M × SU(M)−N × U(1) pri-

maries in the bi-fundamental representation. The symmetric polynomials Xi1
a1 · · ·X

in
an can

be decomposed into sums of products of irreducible irreps of the permutation group, which

will be primaries of SU(N)−M × SU(M)−N × U(1) in the corresponding representations,

and so on.

In a similar manner, the N × M hypermultiplets can be re-organized in terms of

Sp(N)−M
2

and SO(M)−N WZW current sub-algebra, i.e. transforming as the ortho-

symplectic version of a bi-fundamental field. We will discuss the N = 1 case momentarily.

Bi-fundamental hypermultiplets are the basic building blocks for NS5 and half-NS5

interfaces. They can give us D-modules on products of spaces of bundles or functors

mapping D-modules on a space of bundles to another. These BAA objects will be dual to

the BBB objects built from D5 and half-D5 interfaces.

3.5 N free hypermultiplets as SU(2) doublets, H-twist

It is interesting to take N copies of the symplectic boson and look at the properties of the

SU(2)−N/2 current algebra which acts diagonally on them. We can organize the fields into

SO(N) fundamentals:

Xi(z)Yj(w) ∼
δij

z − w
(3.40)

The SU(2)−N/2 currents take the form

J− =
1

2
XiXi J3 =

1

2
XiYi J+ =

1

2
YiYi (3.41)
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We also have an SO(N)−2 current algebra (we normalize them in the same way as a

level 1 currents ψiψj in a theory of N free fermions).

Jij =
1

2
XiYj −

1

2
XjYi (3.42)

The central charge at such level is cSO(N)−2
= −N(N−1)

N−4 , which combines with the central

charge of the SU(2) algebra cSU(2)−N/2
= 3N

N−4 to give the total central charge −N of the

symplectic bosons. The total stress tensor is actually the sum of the Sugawara stress

tensors for the two current algebras.7

3.6 C-twist of a single hypermultiplet

The vertex algebra Fc[C2] has two fermionic generators, x(z) and y(z), with OPE

x(z)y(w) ∼
1

(z − w)2
(3.47)

and conformal dimension 1. We can denote them as “fermionic currents”. They can be

also thought of a PSU(1|1) current algebra.

The stress tensor can be taken to be

T = −xy (3.48)

and gives cxy = −2.8

This vertex algebra can be found in several free CFTs, but in these realizations either

x or y or both are derivatives of some dimension 0 operator. These realizations clearly

produce some (sections of the sheaf of) conformal blocks, but not necessarily all of them.

7Indeed

: J3
J
3 :=

1

4
(X · Y )2 +

1

4
X · ∂Y −

1

4
Y · ∂X (3.43)

and

: J−
J
+ :=

1

4
X

2
Y

2 + Y · ∂X : J+
J
− :=

1

4
X

2
Y

2 −X · ∂Y (3.44)

On the other hand,

: JijJ
ij :=

1

2
X

2
Y

2 −
1

2
(X · Y )2 −

N − 1

2
X · ∂Y +

N − 1

2
Y · ∂X (3.45)

so that

: J3
J
3 : −

1

2
: J−

J
+ : −

1

2
: J+

J
− : +

1

2
: JijJ

ij :=
4−N

2
T . (3.46)

8Indeed, we have OPE

T (z)x(w) ∼
x(w)

(z − w)2
+

∂x(w)

(z − w)
T (z)y(w) ∼

y(w)

(z − w)2
+

∂y(w)

(z − w)
(3.49)

and

T (z)T (w) ∼ −
1

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
. (3.50)
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3.6.1 Coupling to flat bundles

Although the algebra has an SU(2)o outer automorphisms rotating x and y, it has no

corresponding current algebra. When working in an SU(2)o covariant way, we can denote

the currents as zα.

The vertex algebra can be coupled to an SU(2)o complexified local system and the

dependence on the holomorphic part of the connection will not drop out. We expect

conformal blocks to define a sheaf on Loc(SU(2), C). (We denote the group with the

compact form, but we refer to local systems for the complexified group).

It is convenient to represent the local system as a D-module, i.e. prescribe an SU(2)o
bundle E equipped with an holomorphic SU(2)o connection Aαβ(z). The connection mod-

ifies the OPE to

zα(z)zβ(w) ∼
ǫαβ

(z − w)2
+

Aαβ
z − w

(3.51)

In order to find conformal blocks we need to solve the Ward identities associated to these

OPE with currents which are sections of E on C.

The space of conformal blocks for a generic local system has dimension 22g−2 and can

be identified with the Fock space built from the (2g − 2) holomorphic sections ωaα(z) of

E ⊗K. Essentially, we can postulate that correlation functions with less than n insertion

vanish and correlation functions with exactly n insertions are

〈Zα1(z1) · · ·Zαn(zn)〉 ∼ ω[a1
α1

(z1) · · ·ω
an]
αn

(zn) (3.52)

Other correlation functions are determined from the Ward identities.

3.7 Free hypermultiplets in fundamental or bi-fundamental representations,

C-twist

A collection of N fermionic currents xa(z) and ya(z), with OPE

xa(z)yb(w) ∼
δab

(z − w)2
(3.53)

give a VOA Fc[C2N with an Sp(N)o group of outer automorphisms, with an obvious U(N)o
subgroup. It can be coupled to an Sp(N) or U(N) bundles equipped with a holomorphic

connection.

A collection of N ×M fermionic currents xai (z) and y
i
a(z), with OPE

xai (z)y
j
b(w) ∼

δab δ
j
i

(z − w)2
(3.54)

has an obvious action of U(N)×U(M). It can be coupled to U(N)×U(M) bundles equipped

with a holomorphic connection. Similar considerations apply to Sp(N)× SO(M) actions.

These VOA will appear when one studies the BBB images of D5 and NS5 interfaces.
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4 Abelian examples

Mirror symmetry is well understood for Abelian gauge theories. This provides us with

some important checks of our proposal.

Notably, a U(1) gauge theory (SQED) coupled to a single hypermultiplet of charge 1

is mirror to a single free hypermultiplet. All other Abelian mirror symmetries follow from

repeated applications of this simple duality relationship. Another important example is

SQED coupled to two hypermultiplets of charge 1, which gives a UV description of T [SU(2)]

and is self-mirror.

Furthermore, S-duality for a 4d U(1) gauge theory acts in a very simple manner on

boundary degrees of freedom: a 3d theory T with a U(1) factor in GH considered as a

boundary condition for a 4d U(1) gauge theory is mapped to a S-dual theory T ′ obtained

from T by gauging the U(1). The theory T ′ has an obvious U(1)C factor in GC . Applying

mirror symmetry to T ′ we obtain a new theory ∨T with a U(1)H factor in GH , the S-dual

to T .

If T is associated to a VOA A, then T ′ is associated to the coset A

U(1) . It should

be possible to argue in general that the conformal blocks for A and A

U(1) give Geometric

Langland dual objects for a U(1) gauge group, by matching the coset construction (possibly

in the BRTS formalism) with an appropriate Fourier-Mukai transformation.

4.1 SQED with one flavor, H-twist

Following our prescription, we need to take the coset of the XY system by the U(1) current

algebra generated by J3. The coset will be endowed with a GC = U(1)o global symmetry.

If our prescription is correct, we should obtain the same VOA as in the C-twist of a single

free hypermultiplet.

Taking cosets by Abelian current algebras is a relatively simple procedure: we take

primary operators of charge q under J3 and strip off a U(1) vertex operator of charge q.

For the XY model, this is essentially the standard bosonization of a βγ system: we write

J3 =
1

2
∂φ X = e−φx Y = eφy (4.1)

The notation x and y is completely intentional: x and y are fermionic currents of

conformal dimension 1, charge ±1 under U(1)o and free OPE

x(z)y(w) ∼
1

(z − w)2
(4.2)

Notice that the central charges match: cXY = cxy + cJ3 = −2 + 1.

Taking the coset of the XY system by the algebra generated by J3 leaves us with

the algebra of x and y. This is beautifully consistent with the mirror symmetry relation

between SQED with one flavor and a theory of a free hypermultiplet. Notice that the

U(1)o global symmetry of the coset coincides with the U(1)o global symmetry of the x and

y fermionic currents. The bosonization relation can be stated as

Fc[C2] =
Sb[C2]

Û(1)−1

(4.3)
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i.e.

AH [SQED1] = AC [Free hyper] (4.4)

It is also straightforward, but rather non-trivial, to verify that the characters of the

vacuum module for the symplectic bosons decomposes appropriately into free bosons char-

acters and characters for the fermionic currents: we can expand

χXY =
1∏∞

n=0(1− qn+1)2

∞∑

n=0

n∑

m=−n

zm(−1)n−mq
n(n+1)−m2

2 (4.5)

The replacement

χU(1)
m (q, z) =

zmq−
m2

2∏∞
n=0(1− qn+1)

→ tm (4.6)

corresponds to stripping off the free boson Verma module, while keeping track of the U(1)o
charge. It would map

χXY →
1∏∞

n=0(1− qn+1)

∞∑

n=0

q
n(n+1)

2
tn+1/2 + t−n−1/2

t1/2 + t−1/2
(4.7)

which can be rewritten as

χXY →
1∏∞

n=0(1− qn+1)

1

t1/2 + t−1/2

∞∑

n=−∞

q
n(n+1)

2 tn+1/2 (4.8)

and then

χXY →
∞∏

n=0

(1− tqn+1)(1− t−1qn+1) (4.9)

The right hand side id the character for the fermionic current algebra, graded by the

U(1)o charge. Thus we can write

χXY =
∞∑

n=−∞

χU(1)
n χxyn (4.10)

where χxyn is the charge n part of the character of the xy fermionic current algebra.9

9The bosonization relation between X,Y and x, y is simple, but already for correlation functions on the

sphere it leads to intricate identities between rational functions. As an example, we can look at a four-point

function:

〈X(z)X(z′)Y (w)Y (w′)〉 =
1

(z − w)(z′ − w′)
+

1

(z − w′)(z′ − w)
(4.11)

The U(1) part of the correlation function is (z−w)(z−w′)(z′−w)(z′−w′)
(z−z′)(w−w′)

. Stripping it off we get the rational

function
(z − z′)(w − w′)

(z − w)2(z′ − w′)2(z − w′)(z′ − w)
+

(z − z′)(w − w′)

(z − w)(z′ − w′)(z − w′)2(z′ − w)2
(4.12)

which can be reorganized to

〈x(z)x(z′)y(w)y(w′)〉 =
1

(z − w′)2(z′ − w)2
−

1

(z − w)2(z′ − w′)2
. (4.13)
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4.1.1 Twisted sector

We have observed that generic U(1) twisted sectors |α〉 for the symplectic bosons have a

U(1) charge proportional to the U(1) twist. Indeed, it is well-known that such twisted

sectors can be bosonized to the basic vertex operators eαφ. The conformal dimensions

match and these vertex operators induce the correct monodromy in e±φ. In particular,

they are mapped back to the vacuum module under bosonization.

In order to find twisted sectors for the fermionic current VOA, we need to look at the

|R, λ〉 general Ramond modules for the symplectic bosons. Indeed, these have U(1) charge

λ − 1
2 and the corresponding U(1) vertex operator e(λ−

1
2
)φ would induce a monodromy

−e±2πλ on the e±φ vertex operators which appear in the symplectic bosons. Thus the

|R, λ〉 general Ramond modules should contain a twisted sector with monodromy e±2πλ for

the fermionic currents.

Because of the role the |R, λ〉 general Ramond modules play in defining the hidden

conformal blocks of the symplectic boson VOA, this fact also suggests that the hidden

blocks should bear some relationship to the conformal blocks for the fermionic currents

VOA coupled to general U(1) local systems.

4.1.2 Coset vs BRST reduction

If we are given a vertex algebra which has a level 0 U(1) current J , a nice BRST construction

becomes available: we can add a system of bc ghosts of dimensions (1, 0) and define the

BRST charge

Q =

∮
cJ (4.14)

This will have the effect of removing from the theory J and all operators which are charged

under J . Operators in the original VOA which have trivial OPE with J will remain as

BRST-closed operators.

In our setup, the symplectic bosons have a U(1) current of level −1. We can add to

them a standard system of complex fermions

ψ(z)χ(w) ∼
1

z − w
(4.15)

which have a single conformal block and a U(1) current at level 1 and then take the BRST

reduction with respect to J = XY + ψχ.

The result of this BRST reduction appears to be the same as the coset we discuss in

this section, including the sectors of non-trivial U(1)o charge: operators of charge n in the

theory of symplectic bosons can be dressed with charge n primaries of the free fermion VOA

in order to give BRST cohomology classes, which have the same dimension and properties

as the corresponding operators in the coset.

For example, we would identify the basic BRSt closed operators with the fermionic

currents

X(z)ψ(z) → x(z) Y (z)χ(z) → y(z) (4.16)

The BRST reduction is a bit more systematic than the coset. In particular, it gives a

more precise way to built conformal blocks of the coset theory, rather than attempting an
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expansion of symplectic boson correlation functions into a product of U(1)−1 conformal

blocks and coset blocks.

Notice the OPE

X(z)ψ(z)Y (w)χ(w) ∼
1

(z − w)2
+
J(w)

z − w
(4.17)

As the U(1)o symmetry is identified with the global symmetry of the ψ and χ fermions,

we can couple the system naturally to an U(1)o bundle by coupling the fermions them-

selves. Furthermore, we can add a coupling to an U(1)o holomorphic connection A0(z) by

deforming the BRST operator to

Q =

∮
dzc(z) (J(z)−Ao(z)) (4.18)

This allows us to couple the coset theory to a full U(1)o local system.

The bc system has an anomaly, which forces us to introduce at least g insertions of

b(z) and one insertion of c(z). The corresponding correlation function is

〈b(z1) · · · b(zg)c(w)〉 ∼ det
ij
ωai(zj) (4.19)

where ωai(zj) is a basis of holomorphic differentials.

The b(z) insertions are not BRST closed! Rather,

{Q, b(z)} = J(z)−Ao(z) (4.20)

If we contract the b(z) insertion with an anti-holomorphic differential δĀ then the first

term in the right hand side
∫
dzdz̄J(z)δĀ is a total derivative along Bun(U(1), C).

In the absence of Ao(z), that means that we can identify the correlation functions of the

combined system of symplectic bosons, complex fermions and ghosts as a top holomorphic

form in Bun(U(1), C), mapped to an exact form by Q. Integrating the correlation function

over a middle-dimensional cycle Bun(U(1), C) gives a BRST-invariant answer, which we

plan to identify with a conformal block for the coset theory, the fermionic currents:

〈x(z1) · · · y(w1) · · · 〉Fc[C2],Ā0;Γ

=

∮

Γ∈Bun(U(1),C)
DĀ〈X(z1) · · ·Y (w1) · · · 〉Sb[C2],Ā〈ψ(z1) · · ·χ(w1) · · · 〉ψχ,Ā+Āo

(4.21)

where the measure DĀ is given by the bc system correlation function (4.19).

In the presence of Ao(z), the BRST transformation of the measure involves an extra

constant 1-form
∫
dzdz̄Ao(z)δĀ on the Bun(U(1), C) torus. That means that the correla-

tion function becomes BRST closed when the measure (4.19) is multiplied by an appropriate

Fourier kernel eS[Ao,Ā] such that δS
δĀ

= Ao(z).

This seems a rather reasonable way to do a Fourier-Mukay-like transformation mapping

the D-module of conformal blocks for symplectic bosons to the sheaf of conformal blocks for

the fermionic currents. This should be a direct manifestation of the fact that S-duality for
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U(1) gauge theory maps the boundary condition associated to a single free hypermultiplet

back to itself.

It would be nice to mimic in this setup the classical mirror symmetry relationship

described in [1]. A crucial role there was played by the 2g − 2 points on the surface where

the U(1) Higgs field vanishes and by the 22g−2 ways they could be distributed between the

X and Y classical sections.

The symplectic boson theory has conformal blocks which are localized on the Θd locus

in Bund(U(1), C) where zeromodes appear, which is parameterized by the g− 1− d zeroes

of the negative charge zeromode for positive d and by the g − 1 + d zeroes of the positive

charge zeromode for non-positive d.

We expect these conformal blocks to map to the conformal blocks of fermionic currents

which have a U(1)o anomaly d. A possible explanation would be that for a general point on

Loc(C,U(1)) the integrand of (4.21) is not single-valued on Bun(U(1), C). Good integration

cycles would consist of a small loop around Θd times a contour integral over Θd. It would

be nice to give a detailed derivation of this relationship.

We can give a toy demonstration of this for a torus partition function. The contour

integral for a partition function is

∮
daη2(τ)e2πiab0

η(τ)

θ(a, τ)

θ(a+ ao, τ)

η(τ)
(4.22)

Here the first factor is the bc partition function, followed by the Fourier kernel, the XY

partition function and the ψχ partition functions.

If we take the contour to run around the pole at a = 0 we get

∮

0
daη2(τ)e2πiab0

η(τ)

θ(a, τ)

θ(a+ ao, τ)

η(τ)
=
θ(a0, τ)

η(τ)
(4.23)

which is the character for the fermionic currents in a general U(1)o background, with no

zeromodes.

On the other hand, if b0 is 0 (or an integer n) we can take a contour integral on the A

cycle of the torus and the calculation mimics the character computations done earlier int

he section, yielding the vacuum character χxy(a0, τ). Contour integrals along other cycles

of the torus impose other linear constraints on b0 and a0 and give other modular images of

χxy(a0, τ).

4.2 SQED with N flavors, H-twist

We start from N copies of the symplectic bosons and take a coset by the diagonal U(1)

current. According to our prescription

AH [SQEDN ] =
Sb[C2N ]

Û(1)−N
(4.24)

The coset operation will strip U(1) vertex operators of appropriate charge from the symplec-

tic bosons Xa and Y
a. The resulting fields Aa, B

a can be thought as SU(N)−1 primaries in
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the fundamental or anti-fundamental representation, of conformal dimension 1/2+1/(2N)

and charge ±1 under U(1)o.

More generally, symmetric polynomials of Xa or symmetric polynomials of Y a will be-

come WZW primaries of conformal dimension n/2+n2/(2N) with charge ±n under U(1)o.

The coset vertex algebra contains an SU(N)−1 current algebra and the stress tensor

is the Sugawara stress tensor. The coset current algebra, though, is larger than SU(N)−1.

It includes, for example, the fields which arises from the N -th symmetric powers of Xa

and Ya, which have dimension N and U(1)o charge 1. It also includes operators with no

U(1)o charge, such as an operator Oba of dimension 2 in the adjoint of SU(N)−1, built by

removing the U(1) contributions from Xa∂Y
b − Y b∂Xa.

As the dimension 3 operators with no U(1)o charge seem to be accounted fully by

currents or derivatives of Oba, it would appear that the SU(N)−1 currents, together with

Oba, have a closed set of OPE, with the OO OPE involving bilinears and derivatives of the

currents themselves. The existence of such a self-consistent, associative OPE is typically

rather non-trivial and could be taken perhaps as an alternative definition of the subsector

with no U(1)o charge in the coset VOA.

It is interesting to mimic the basic trick of Abelian mirror symmetry: apply the basic

mirror symmetry operation to all hypermultiplets. We can apply the bosonization formula

to each symplectic boson:

XaY
a = ∂φa Xa = e−φaxa Y a = eφaya (4.25)

This bosonization hides the U(N)−1 current algebra, leaving only a Cartan subalgebra

manifest.

The coset by the diagonal U(1) current is now elementary: we simply impose the

constraint
∑

a φa = 0. This gives a free field realization of the coset vertex algebra in

terms of Fc[C2N ] and N − 1 free bosons.

The N = 2 example is rather special and deserves a separate treatment. We will come

back to that momentarily.

Finally, we can consider a BRST reduction which should reproduce the coset VOA:

we couple the N symplectic bosons to a U(1)N current algebra in order to get a level 0

current J . Adding a set of bc ghosts gives us a BRST current cJ and we can pass to BRST

cohomology. Again, the extra U(1) current, the ghosts and the U(1)−N currents will cancel

out and leave the coset fields behind.

The conformal blocks for the coset VOA will define a D-module on Bun(SU(N), C)

which is also a sheaf on Loc(U(1)o, C). If this theory is used to define a boundary condition

for a 4d SU(N) gauge theory, the result is the S-dual of the sub-regular Nahm pole boundary

condition breaking the gauge group to a U(1) subgroup, which has Dirichlet b.c. and whose

background connection is the point in Loc(U(1)o, C). This statement should have a direct

interpretation in terms of Hecke modifications of the D-module on Bun(SU(N), C). It

would be nice to understand this better.
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4.3 The T [SU(2)] theory, H-twist

This is a self-mirror theory with an enhancement to SU(2)o of the naive U(1)o tri-

holomorphic isometry of the Coulomb branch. We would like to see if the symmetry

enhancement is manifest in our proposed current algebra. If so, this will be a strong test

of our proposal. Furthermore, this theory plays a role in S-duality for four-dimensional

N = 4 SYM with an SU(2) gauge group. The corresponding vertex algebra should be a

duality kernel in Geometric Langlands for the group SU(2).

A computation of the character for the coset of two symplectic bosons by the diagonal

U(1) current algebra produces a very pleasing result:

χAH [T [SU(2)]] =
∞∑

j=0

(tj + tj−1 + · · ·+ t−j)χj [SU(2)−1] (4.26)

where t is the fugacity for the U(1)o global symmetry.

We can recast the character as

χAH [T [SU(2)]] =
∞∑

j=0

χj [SU(2)o]χj [SU(2)−1] (4.27)

This is a clearly compatible with the idea that the outer U(1) global symmetry has been

promoted to an outer SU(2)o global symmetry, in such a way that the spin j primaries of

the SU(2)−1 WZW current algebra transform in a spin j representation of SU(2)o. The

SU(2)o enhancement seems to be previously known to experts in the subject.

We can give a bosonized description of the coset as follows:

J = XaY
a = ∂φ

Xa = e−φAa Y a = eφBa (4.28)

The fields Aa and Ba have dimension 3/4. The outer SU(2)o global symmetry will rotate

among each other Aa and Ba ≡ ǫabB
b.

We can make the SU(2)o global symmetry manifest if we look at the free field

realization:

A1 = e−φ̃x1 B1 = eφ̃y1

A2 = eφ̃x2 B2 = e−φ̃y2 (4.29)

The SU(2)o global symmetry is a subgroup of the automorphism group of the four fermionic

currents xa, y
a, which rotates the doublets (x1, y

2) and (x2,−y
1).

In a better notation, we can write the parameterization as

Cα1 = e−φ̃zα1 Cα2 = eφ̃zα2 (4.30)

with OPE

zα1 (z)z
β
2 (w) ∼

ǫαβ

(z − w)2
(4.31)
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with SU(2)o-invariant WZW currents

J3 =
1

2
∂φ̃

J− = e−2φ̃zα1 z
β
1 ǫαβ

J+ = e2φ̃zα2 z
β
2 ǫαβ (4.32)

Going back to the symplectic bosons, we can use a notation

Xa(z)Yb(w) ∼
ǫab
z − w

(4.33)

The coset current algebra includes SU(2)−1 WZW currents and also a SU(2)o triplet of

operators of dimension 2. The triplet consists of the operator O0
ab built from X(a∂Yb) −

Y(a∂Xb) and the two operators

O+
ab = (XaXb) O−

ab = (YaYb) (4.34)

where the parenthesis denotes removing the U(1) primary.

Again, it seems likely that the OIab operators form a closed OPE with the current

algebra fields. The OPE is actually manifestly SU(2)o invariant [17]. This offers a potential

rout to study conformal blocks coupled to SU(2)o local systems by algebraic methods. It

would be very interesting to do so.

Thus our proposal is that the kernel for Geometric Langlands with gauge group SU(2):

AH [T [SU(2)]] =
Sb[C4]

Û(1)−2

(4.35)

4.4 The Ak−1 theory, H-twist

Another natural example to consider is the linear quiver of k− 1 U(1) nodes, with a single

flavor at each end. This theory is expected to have an enhancement of the Coulomb branch

symmetry from U(1)k−1
C to SU(k)C : it is the mirror of SQED with k flavors.

If we use bosonization of the k symplectic bosons, the enhancement is automatic: the

coset removes all U(1) currents except for the diagonal combination, leaving behind

Aa = e−φxa Ba = eφya (4.36)

with SU(k)o global symmetry and U(1) current algebra, as expected

4.5 The C-twist of general Abelian gauge theories

Abelian mirror symmetry is rather well understood and reduces to the basic mirror sym-

metry of SQED with one flavor.

If we start from a general Abelian theory, build the mirror Abelian theory and H-twist

it, we should have the same result as if we C-twist the original theory. Furthermore, if we

bosonize all the symplectic bosons in the mirror theory, the bosonized coset algebra can

be expressed directly in terms of the original Abelian theory: we take a set of fermionic
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currents xa, ya for each of the original hypermultiplets, add a free boson for each factor in

the gauge group and dress the fermionic currents with gauge symmetry q by a free boson

vertex operator of charge q.

The resulting candidate AC [T ] vertex algebra has an Abelian current algebra gener-

ated by the free bosons, which we identify with the current algebra for GC , and a global

symmetry algebra GH .

It would be very interesting to find a non-Abelian generalization of this construc-

tion. Perhaps one can associate WZW currents to vectormultiplets and build some VOA

by dressing WZW primary fields with the fermionic currents associated to the matter

hypermultiplets.

5 Non-Abelian examples: SU(2) gauge theories

5.1 The SU(2) SQCD theory with four flavors (GH = SO(8)), H-twist

This theory is a building block for several other examples in this paper. It is the dimensional

reduction of a four-dimensional superconformal theory, a fact which allows us do some

comparisons with the four-dimensional chiral algebras. It also inherits from four dimensions

a non-trivial triality symmetry: in the IR, it becomes invariant under discrete symmetry

transformations which act as triality on SO(8)H This symmetry is not a manifest symmetry

in the UV gauge theory description.

The coset vertex algebra must consist of a collection of modules for the SO(8)−2 current

algebra. Remember that the coset stress tensor coincides with the Sugawara tensor for the

SO(8)−2 current algebra. The BRST procedure used in the 4d setup produces directly the

irreducible vacuum module for the SO(8)−2 current algebra itself, which is triality invariant.

In order to understand the coset procedure, we can begin to experiment with charac-

ters, decomposing the character of the symplectic bosons into characters for Verma modules

of the SU(2)−4 current algebra. This is likely too naive, but it is a reasonable starting point.

We can write

χSb[C16] =
∑

j

χSU(2)[Vj ]χj (5.1)

The tentative character for the vacuum representation χ0 is not invariant under triality

acting on the SO(8) fugacities. Thus it is likely not the right answer for the coset vacuum

character. In particular, it does not coincide with the SO(8)−2 vacuum character.

On the other hand, something surprising happens: the combination

χ̃0 = χ0 − χ1 + χ2 − · · · (5.2)

appears to be triality invariant and to coincide with the SO(8)−2 vacuum character. It is

natural to expect this is the correct answer for the AH vertex algebra for this theory.

A possible justification of this answer is that the SU(2)−4 modules inside the symplectic

bosons current algebra may be larger than Verma modules. For example, if the symplectic

bosons current algebra involves the spin 0 module and an extension built out of the spin 0

and spin 1 SU(2)−4 Verma modules, the coefficient of the spin 0 module would have to be

smaller than the naive answer and an expression such as χ̃0 may appear.
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In order to seek illumination, we can look at concrete expressions for operators in the

coset. We may start from SU(2) invariant operators. Denoting the symplectic bosons as Zαi
with i being the SO(8) index and α the SU(2) index, the SO(8)−2 currents are ǫαβ : Zαi Z

β
j :.

At level 2, we have ǫαβ : Zαi ∂Z
β
j :, which includes both a symmetric and an anti-

symmetric tensors of SO(8), and ǫαβǫγδ : Z
α
i Z

β
j Z

γ
kZ

δ
t :. The symmetric traceless tensor is

mapped under triality to the self-dual and anti-selfdual 4-forms, which are not present in

the field built from four Zs. Thus the symmetric traceless tensor at level 2 is potentially

problematic. This is also the representation which appears in the leading term in χ1, from

: Z
(α
i Z

β)
j :.

Acting with SU(2)−4 current algebra operators onto : Z
(α
i Z

β)
j : we find indeed that we

can produce ǫαβ : Zαi ∂Z
β
j :, which is thus secretly an SU(2)−4 descendant. this verifies the

presence of indecomposable representations built from the vacuum and symmetric traceless

tensor Verma modules.

This supports the conjecture that

Sb[C16]

ŜU(2)−4

= ŜO(8)−2 (5.3)

5.1.1 The T [SU(3)] theory, H-twist

This theory is a two node quiver, with U(1)×U(2) gauge group and 3 extra flavors at the

U(2) gauge node.

This is a self-mirror theory with an enhancement to SU(3)C of the naive U(1)2C tri-

holomorphic isometry of the Coulomb branch. We would like to see if the symmetry

enhancement is manifest in our proposed current algebra. If so, this will be a very strong

test of our proposal. Furthermore, this theory plays a role in S-duality for four-dimensional

N = 4 SYM with an SU(3) gauge group. The corresponding vertex algebra should be a

duality kernel in Geometric Langlands for the group SU(3).

Conveniently, this theory is obtained by gauging two U(1) symmetries of the SU(2)

SQCD theory with four flavors. This will help our analysis. A naive computation of the

character runs into the same type of trouble we encountered with this ancestor theory: if

we decompose

χSB =
∑

j,n,m

χSU(2)[Vj ]χ
U(1)
n χU(1)′

m χj,n,m (5.4)

then the naive characters

χj =
∑

n,m

tn1 t
m
2 χj,n,m (5.5)

do not manifest any enhancement of the U(1)2o naive global symmetry of the coset.

On the other hand, if we take the same combination of naive characters as before,

χ̃0 = χ0 − χ1 + χ2 − · · · (5.6)

we get a striking result:

χ̃0 =
∑

λ

χλ[SU(3)
o](t1, t2)χλ[SU(3)−2] (5.7)
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where χλ[SU(3)
o] are the characters of finite-dimensional irreps of the SU(3)o global sym-

metry group and χλ[SU(3)−2] are the characters of the Verma modules for the SU(3)−2

current algebra.

This is a clearly compatible with the idea that the outer U(1)2o global symmetry has

been promoted to an outer SU(3)o global symmetry, in such a way that the primaries of the

SU(3)−2 WZW current algebra transform in the corresponding representation of SU(3)o.

A simple way to build currents for the coset is to start from SU(2)-invariant expressions.

In terms of elementary fields Xa, Ya, Xi,a, Y
i
a , for example, we can write the three fields

in the 3 representation as

Xi,aXbǫ
ab Xi,aYbǫ

ab ǫijkY
j
a Y

k
b ǫ

ab (5.8)

of dimension 4/3.

In order to find the conjectural SU(3)o octet of adjoint currents, we need to go to

level 3. We can combine pairs of the fields above and their conjugate. Again, these octet

currents should form a closed current algebra OPE.

According to the discussion of the previous section, we can describe the coset as a

U(1)2 coset of the SO(8)−2 vacuum module. These are the Abelian factors in the subgroup

U(1)×U(3) ⊂ U(4) ⊂ SO(8). The triality symmetry leaves the SU(3) subgroup unaffected,

while rotating the two U(1) into each other.

This description is very invaluable, as it makes the promotion of U(1)2o to SU(3)o
evident: triality acts on the U(1)2o charges of coset operators as the Weyl group, and the

promotion of the U(1)o associated to the U(1) node of the quiver to an SU(2)o was made

manifest by bosonization.

This supports the conjecture that

AH [T [SU(3)]] =
ŜO(8)−2

U(1)−2 ⊗U(1)−6
(5.9)

where U(1) ⊗ U(1) is the subgroup of SO(8) which commutes with an SU(3) subgroup

under which the fundamental of SO(8) decomposes as 8 = 3 + 3̄ + 1 + 1.

6 Non-Abelian examples: unitary quivers

6.1 T [SU(N)], H-twist

This theory is defined by a linear quiver of U(1) × U(2) × · · · × U(N − 1) gauge groups,

with N flavors for the last node.

AH [T [SU(N)]] =
Sb[C2N(N−1)]× Sb[C2(N−1)(N−2)] · · · × Sb[C2]

Û(N − 1)2−2N · · · Û(1)−2

(6.1)

The GH current algebra is thus SU(N)1−N . Notice that all nodes have level twice the

critical level for the non-Abelian gauge fields. If we remove the Abelian factors, the resulting

theory has a four-dimensional superconformal ancestor. Let’s denote the quiver without

Abelian factors as T̃ [SU(N)].
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Both physically and at the level of the four-dimensional chiral algebra, the T̃ [SU(N)]

quiver has an enhanced symmetry which generalizes the triality relation we encountered

for N = 2. The enhanced symmetry acts on the U(1)N−1
H symmetries in the same way

as the Weyl group acts on the Cartan torus of SU(N). This is inherited from the class

S description. Furthermore, the four-dimensional current algebra consists of a sum or

products of modules for the SU(N)1−N WZW currents tensored with modules for the

U(1)N−1
H WZW currents.

Under the assumption that our coset operation produces the same answer as the

BRST reduction which gives the four-dimensional chiral algebra, we immediately learn

that AH [T [SU(N)]] has an enhanced SU(N)o global symmetry! Indeed, the triality-like

global symmetry of AH [T̃ [SU(N)]] will persist in AH [T [SU(N)]], acting on the U(1)N−1
o

charges as a Weyl group. This symmetry, combined with the known symmetry enhance-

ment at the U(1) node of AH [T [SU(N)]], implies the enhancement of U(1)N−1
o to SU(N)o.

We furthermore conjecture a character

χAH [T [SU(N)]] =
∑

λ

χλ[SU(N)o](t)χλ[SU(N)1−N ] (6.2)

6.2 General global symmetry enhancement

We can now formulate a general strategy to argue that the H-twist current algebra for a

general unitary quiver gauge theory has the expected enhancement of GC .

In the UV, GC consists of a product of U(1) factors, one for each unitary group in the

quiver. At “balanced” nodes where the total number of flavors, including bifundamental

hypers to nearby nodes and fundamental hypers to a framing node, equals twice the rank of

the unitary group, the U(1) global symmetry is enhanced to SU(2). The SU(2) symmetry

groups at nearby balanced nodes combine into larger groups: SU(k + 1) for a chain of

k balanced nodes and more generally an ADE group GΓ for an ADE sub-graph Γ of

balanced nodes.

The potential symmetry enhancement of the current algebra associated to a quiver

gauge theory can also be studied “node by node”: we can first take the coset by the

unitary group at a balanced node, and then by the remaining gauge groups. If the first

step produces VOA with enhanced global symmetry SU(2)o commuting with the WZW

symmetry used in the next step of the coset, that SU(2)o will persist at the next step of

the calculation.

We do not know how to demonstrate directly that the VOA for the U(N) gauge theory

with 2N flavors has an outer SU(2)o, though the conjectural relation with 4d calculations

would make the Z2 Weyl group of SU(2)o manifest. Perhaps a direct bootstrap of the VOA

from a finite set of generators demonstrating SU(2)o would be possible.

On the other hand, the VOA for the U(N) gauge theory with 2N flavors can be used

in the calculation of the VOA for T [SU(N + k)] quivers. There the U(1)×Z2 symmetry of

the U(N) node is embedded into an SU(2)o after the coset, which involves WZW currents

which commute with U(1) × Z2. This makes it at least very plausible that the VOA for

the U(N) gauge theory with 2N flavors does indeed have SU(2)o global symmetry.
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With that assumption, the Sk+1 Weyl group symmetry for chain of k balanced nodes

follow from the conjectural relation to the 4d calculations and combines with the SU(2)o
at individual nodes to give the expected Coulomb branch symmetry enhancement.

A D-modules and Ward identities

A.1 Examples in T ∗
C

As a first toy example, consider the contour integral defining an Airy function

Ai(x) =

∮
e

z3

3
+xzdz (A.1)

The differential equation for the Airy function follows from some integration by parts:

∂xAi(x) =

∮
ze

z3

3
+xzdz ∂2xAi(x) =

∮
z2e

z3

3
+xzdz = −xAi(x) (A.2)

The two solutions to the differential equation can be obtained by selecting different inte-

gration contours. The differential equation can be cast as an holomorphic connection

∂x −

(
0 1

−x 0

)
(A.3)

One could consider the whole vector space of correlation functions

fn(x) =

∮
zne

z3

3
+xzdz (A.4)

subject to the Ward identity

fn+2(x) + xfn(x) =

∮
zn∂z

(
e

z3

3
+xz

)
dz = −nfn−1(x) (A.5)

with the differential acting as ∂xfn(x) = fn+1(x). Of course, the Ward identity allows one

to reduce the whole tower to f0(x) and f1(x) and the action of the differential to the 2× 2

connection above.

Finally, in order to package the Ward identity in a better format, we can think about

it as the differential on a complex. The complex consists of holomorphic differential forms

on the complex plane parameterized by z. The differential is

d : ω → ∂(z)ω + (z2 + x)ω (A.6)

where ∂(z) acts on the z direction only. Forms closed under the differential can be used in

contours integrals of the form

fω(x) =

∮
ωe

z3

3
+xzdz (A.7)

and exact forms integrate to zero. The differential commutes with the holomorphic

connection

∂xfω(x) = f∂xω+zω(x) (A.8)
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The description of the Airy function D-module as an infinite-dimensional complex may

seem rather redundant compared to the simple 2 × 2 holomorphic connection we started

with. It may be better suited, though, if one needs to describe the D-module as an object

in some derived category of D-modules.

This may appear to be only a matter of mathematical formalization, but it is likely

to become a bit more physical if we want to use this setup in order to define a complex

Lagrangian (BAA) brane in T ∗
C ≃ C

2 supported on p2 + x = 0 as a deformation of

elementary BAA branes of the form p = z.

Turning z into a dynamical 1d chiral multiplet with a z3

3 boundary superpotential

defines a BAA boundary condition supported p2 + x = 0 which we expect to precisely

correspond to the above D-module. The infinite-dimensional complex is simply the Chan-

Paton bundle defined by these auxiliary 1d degrees of freedom.

As the support of the D-brane is smooth, we could of course directly define the cor-

responding p2 + x = 0 BPS boundary condition in the (4, 4) sigma model with target

C
2. Converting the physical boundary condition into the data of a D-module, would then

require extra work, such as computing the space of A-type morphisms from the brane to

the elementary BAA branes supported on the constant x fibers of T ∗
C and the parallel

transport along the space of fibers.

In order to appreciate better the relative usefulness of different D-module descriptions,

we can look at more singular examples. It is convenient to include a formal ~ quantization

variable in our formulae to help with semi-classical limits.

We will look at D-modules modelled on general integrals of the form

∮
ω(z, x)e

W (x,z
~ (A.9)

with ω(z) being a holomorphic form on some auxiliary space Z parameterized by z.

The differential on the complex of holomorphic forms on Z will be

d : ω → ~∂Zω + ∂ZW ∧ ω (A.10)

and the holomorphic connection

p̂ = ~∂xω + ∂xWω (A.11)

It is useful to shift the degrees of forms so that the top form has degree 0.

Recall that the brane wrapping p = 0 is described by the trivial D-module consisting

of polynomials of x acted upon by p̂ = ~∂x. The brane wrapping x = 0 is described by the

Fourier transform of that, modelled on the contour integral

δ(x) =

∮
exzdz (A.12)

Here the complex is generated by the forms xnzm and xnzmdz, with differential

xnzm
d
−→
(
~mxnzm−1 + xn+1zm

)
dz (A.13)
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The cohomology consists of vectors of the form zndz with multiplication by x acting as

−~∂z and p̂ acting as multiplication by z, as expected.

A simple but non-trivial example is modelled on the Gaussian integral
∮
ω(z, x)e

1
~
xz2 (A.14)

The complex is generated by the forms xnzm and xnzmdz, with differential

xnzm
d
−→
(
~mxnzm−1 + 2xn+1zm+1

)
dz (A.15)

and action (with or without an overall dz)

p̂(xnzm) = ~nxn−1zm + xnzm+2 (A.16)

The cohomology consists of vectors of the form xndz and vectors of the form zmdz.

The multiplication by x acts as

x̂(xndz) = xn+1dz x̂(zmdz) = −
~

2
(m− 1)zm−2dz (A.17)

and p̂ acts as

p̂(xndz) = ~

(
n−

1

2

)
xn−1dz p̂(zmdz) = zm+2dz (A.18)

We thus find the direct sum of two modules for the x̂, p̂ Heisemberg algebra: one consisting

of vectors of the form xndz and z2ndz and one consisting of the vectors of the form z2n+1dz.

The latter summand represents a copy of the trivial brane wrapping x = 0. This is evident

under the change of variables z2 → z. The former summand represents a single brane

supported classically on xp = 0, distinct from the simple sum of the two components.

If we were to avoid looking too closely at x = 0, we may describe the D-module as a

meromorphic connection with a regular singularity at the origin, something like ~
(
∂x +

1
2x

)
.

This would hide a whole extra brane sitting at x = 0!

A simple way to understand the existence of the extra component is to observe that

the measure allows for a change of variables
∮
z2n+1xme

1
~
xz2 =

1

2

∮
d(z2)(z2)nxme

1
~
x(z2) (A.19)

making the identification with a x = 0 brane obvious.

The system admits an interesting deformation, modelled on
∮
ω(z, x)e

1
~
(xz2+2az) (A.20)

This integral maps dz to x−
1
2 e−

a2

~x which suggests a single smooth brane supported on

p = a2

x2
. The deformation makes it quite clear that in the a → 0 limit the brane wraps

twice the x = 0 plane and once the p = 0 plane.

Next, consider the following example with two auxiliary fields, modelled on
∮
ω(u, v, x)e

1
~
xuv (A.21)
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Notice immediately that the system has an additional U(1)uv symmetry rotating u and v

in opposite directions. The symmetry implies that the cohomology is U(1)uv-invariant, as

the Lie derivative of a form along the U(1)uv vector field equals the anti-commutator of d

with the operation of contraction with the U(1)uv vector field. Concretely, the integrand

must preserve the U(1)uv for the integral to be non-zero.

The cohomology in degree 0 is intuitive: it consists of forms xndudv and (uv)ndudv.

The multiplication by x acts as

x̂(xndudv) = xn+1dudv x̂(unvndudv) = ~n(uv)n−1dudv (A.22)

and p̂ acts as

p̂(xndudv) = ~ (n− 1)xn−1dudv p̂(unvndudv) = (uv)n+1dudv (A.23)

This module is a non-trivial extension of the basic x = 0 and p = 0 modules: the forms with

positive powers of x form a sub-module, but dudv is mapped to xdudv by multiplication

by x.

It is important to observe that there is also cohomology in degree −1, generated by

udv + vdu. It corresponds to the integral
∮
d(uv)e

1
~
xuv (A.24)

which is related to an x = 0 brane by the obvious change of variable. Indeed, the module

consists of forms (uv)nd(uv) with p̂ acting as multiplication by uv and multiplication by

x as derivative by uv. Thus the full system involves two branes, one in degree 0 and one

in degree −1. Although the two branes live in different degrees, they can communicate by

morphisms of degree 1, i.e. extensions.

Next, we can consider a system involving N auxiliary variables zi, modelled on
∮
ω(z, x)e

1
2~

∑
i(x−ai)z

2
i (A.25)

If we assume that the ai constants are all different, the cohomology appears to consist

of N + 1 separate modules. One module is generated by the top form
∏
i dzi. It is a

complicated module, supported on p
∏
i(x− ai) = 0. The other modules are generated by

zk
∏
i dzi and are isomorphic to the basic module associated to x = ai.

This system is a particular case of the general
∮
ω(z, x)e

1
2~
zt(x−A)z (A.26)

where the N ×N constant symmetric matrix A is taken to have N distinct eigenvalues.

This general model, perhaps re-written as
∮
ω(z, x)e

1
2~
ztM(x)z (A.27)

for some N × N matrix M(x) which depends linearly on x, is a reasonable toy model

to describe the D-modules one can encounter along one-dimensional slices of a parameter
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space. It shows how one can get interesting extra cohomology supported on the locus where

M(x) has zeromodes.

In the U(1)-invariant version of this problem, i.e.

∮
ω(u, v, x)e

1
2~
utM(x)v (A.28)

we can model the effect of an action which has k zeromodes for generic values of x, simply

by taking M to be an N × N + k matrix. Notice that the U(1) symmetry requires the

integrand to have k more u’s than v’s

A.2 An extra examples in T ∗
C
2

Consider the D-module on C
2 modelled on
∮
ω(u, v, w, x, y)e

1
~
(xuv+yuw) (A.29)

with x, y coordinates on C
2 in T ∗

C
2.

This is a toy model for a situation where generically the path integral has a bosonic

zeromode of charge 1 (here xv+yw) but at a special co-dimension 2 locus has 2 zeromodes

of charge 1 and one of charge −1.

Because of the generic zeromode, dudvdw is not a good measure of integration:

dudvdwe
1
~
(xuv+yuw) = d

(
(−udvdw − vdudw + wdudv)e

1
~
(xuv+yuw)

)
(A.30)

Instead, we can find non-trivial cohomology in degree −1:

∮
d(uv)d(uw)e

1
~
(xuv+yuw) (A.31)

simply represents the standard brane at x = y = 0.

This example has obvious higher dimensional generalizations.

A.3 Matrix examples

It is instructive to look at a more general family of problems with bosonic zeromodes.

A.4 Symplectic bosons conformal blocks

The simple finite-dimensional examples we considered in the previous section are actu-

ally quite close to our main subject of interest: conformal blocks for symplectic bosons

transforming in a representation M of some group G, coupled to some G-bundle E with

associated bundle ME .

The path integral is holomorphic, with action 〈Z, ∂̄EZ〉. General correlation functions

can be written as ∮
ω[Z]e〈Z,∂̄EZ〉 (A.32)

with ω[Z] including the path integral measure and the fields inserted in the correlation

function.
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In analogy to the finite-dimensional case, one can consider a D-module on Bun(G,C)

built as a complex of possible ω[Z], with a differential

d : ω → ~∂Zω +

∫

C
〈δZ, ∂̄EZ〉 ∧ ω (A.33)

which guarantees that the overall path integral is at least formally a closed form and Ward

identities are satisfied.

In other words, the cohomology of the complex is what we would usually call a confor-

mal block: a collection of correlation functions which solve the Ward identities. As in the

finite-dimensional examples, the space of conformal blocks will jump in complicated ways

at loci where the number of zeromodes of the ∂̄E operator changes.

Because of that, rather than passing to the cohomology it is natural to define formally

the space of conformal blocks and its D-module structure in a derived sense as the whole

complex, at least formally.

In order to give a somewhat less formal definition, one could seek some sort of inter-

mediate description, which integrates out most of the degrees of freedom in the Z fields

but still leaves a finite-dimensional path integral undone and describes conformal blocks as

a non-trivial complex which does not jump wildly as we move along Bun(G,C).

A suggestion may come from the standard sewing construction of Riemann surfaces

and conformal blocks. In a gauge where the symplectic bosons are single-valued around

the sewing fixtures, the conformal block is assembled from n-point functions of vacuum

descendants on spheres. The latter are fully and easily determined by the Ward identities.

The data of the bundle and all the subtleties which concern us arise in the gluing operation.

The whole data of the three-point functions can be expressed as a Gaussian functional

of the Fourier modes Z
(i)

−n− 1
2

of the symplectic bosons at the punctures. The gluing maps

are also encoded into Gaussian functionals of the modes at the pairs of punctures being

sewn together. Thus the whole conformal block becomes a Gaussian integral over the

modes of the symplectic bosons at the punctures being sewn together.

This Gaussian integral is still infinite-dimensional, but it is simpler than the original

path integral: effectively, we have integrated out all modes which are not holomorphic

away from the sewing fixtures and we are only left with the work of imposing the gluing

constraints. The D-module of conformal block should be well represented by this reduced

Gaussian integral.

In order to simplify the problem further, we could try to integrate out non-holomorphic

modes everywhere except than at a few selected points on the Riemann surface. That means

adding sources to the equations of motion at these points and then requiring these sources

to vanish by adding Lagrange multipliers.

Alternatively, it should be possible to give local descriptions in the neighbourhood

of a point in Bun(G,C) by computing the action at nearby points for the modes which

are zeromodes at the point and modelling the conformal blocks on the resulting zeromode

path integral.
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