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In the study of three-dimensional gapped models, two-dimensional gapped states should be considered as a

free resource. This is the basic idea underlying the notion of “foliated fracton order” proposed in Shirley et al.

[Phys. Rev. X 8, 031051 (2018)]. We have found that many of the known type-I fracton models, although they

appear very different, have the same foliated fracton order, known as “X-cube” order. In this paper, we identify

three-dimensional fracton models with different kinds of foliated fracton order. Whereas the X-cube order

corresponds to the gauge theory of a simple paramagnet with subsystem planar symmetry, the different orders

correspond to twisted versions of the gauge theory for which the system prior to gauging has nontrivial order

protected by the planar subsystem symmetry. We present constructions of the twisted models and demonstrate

that they possess nontrivial order by studying their fractional excitation contents.
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I. INTRODUCTION

The discovery of various “fracton” models [1–21] has

greatly expanded our understanding of gapped phases in

three-dimensional systems. A salient feature characterizing

this set of models is the existence of gapped fractional point

excitations with restricted mobility. Gapped fracton models1

are divided into two major classes according to how the

motion of point excitations is constrained: type I and type

II. In type-II models, fractional point excitations can only

move in coordination as a set and individually they cannot

move at all. These excitations are said to be immobile and

are called “fractons.” In type-I models, on the other hand,

apart from fracton excitations, there can also exist lineons and

planons, fractional excitations which can move by themselves

within a plane or along a line. The restricted mobility of the

point excitations leads to various new features in the fracton

models: a slow thermalization process [22–26], stable exten-

sive ground-state degeneracy, unusual entanglement scaling

[27–30], etc. [31–37].

Among the type-I fracton models, we have found that many

of them have a hidden “foliation” structure and are said to

have “foliated fracton order” (FFO) [27,38]. That is, starting

from a model with a larger system size, we can apply a

finite depth local unitary transformation and map the model

to a smaller system size together with decoupled layers of

two-dimensional (2D) gapped states, as illustrated in Fig. 1(a).

As there should be no fundamental change in the order of the

system simply due to the change in system size, we should

think of the 2D gapped states as free resources in the study of

these three-dimensional (3D) fracton models even though the

1There are also gapless U(1) fracton models which will not be

addressed in this work (see Refs. [65–77]).

2D gapped states can have highly nontrivial topological order

of their own. Correspondingly, we define two foliated fracton

models to have the same foliated fracton order if they can

be related through a finite depth local unitary transformation

upon the addition of decoupled stacks of 2D layers of gapped

states, as shown in Fig. 1(b).

Using this definition, we have found that many of the

type-I fracton models with a foliation structure actually have

the same foliated fracton order. In particular, we have shown

explicitly that the spin checkerboard model, the Majorana

checkerboard model, and the semionic X-cube model all have

the same FFO as the X-cube model (or multiple copies of it)

[39–41]. The untwisted string-membrane-net model discussed

in Ref. [42] was also shown to be equivalent to the X-cube

model. As the X-cube model [3] can be obtained by gauging

the intersecting planar subsystem symmetries of a trivial

3D paramagnet [3,43], the X-cube FFO is considered to be

untwisted. It is similar to the toric code model as an untwisted

Z2 gauge theory which can be obtained by gauging the global

Z2 symmetry of a trivial 2D paramagnet. It is known that

2D Z2 gauge theory can also be “twisted” where the gauge

flux becomes a semionic excitation. It can be obtained from

gauging the 2D symmetry-protected topological order with

Z2 symmetry as shown in Ref. [44]. It is then natural to ask

whether there exists twisted FFO.

In this paper, we identify three-dimensional fracton models

with a twisted FFO. That is, these models have an FFO that is

different from that of the X-cube model. Moreover, they can

be obtained by gauging a 3D model with subsystem planar

symmetries that is not a trivial paramagnet. In other words, the

ungauged model has (strong) symmetry-protected topological

order with subsystem planar symmetries. Note that although

twisted fracton models have already appeared in the literature

[45–47], they have not been studied in terms of their foliated

fracton order. We discuss two (sets of) examples in detail. One
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FIG. 1. Foliated fracton order: (a) In a model with FFO, different

system sizes are related through the addition or removal of 2D layers

and finite depth local unitary transformations. (b) Two models have

the same FFO if they are related through the addition of decoupled

stacks of 2D layers and finite depth local unitary transformation.

is 3-foliated, meaning that we can decouple 2D topological

layers in three different directions using finite depth local

unitary transformations. The X-cube model is also 3-foliated

in this sense and we can consider this new model as the

twisted version of two copies of the X-cube model. The other

example is 1-foliated, meaning that we can only decouple

2D topological layers in one direction from the model. The

untwisted version of a 1-foliated model with Z2 symmetries

would simply be a decoupled stack of 2D toric codes.

The paper is organized as follows: In Sec. II, we discuss the

3-foliated model by presenting the construction of the model,

demonstrating its foliation structure and then showing that its

FFO is different from that of the X-cube model. In Sec. III, we

do the same for the 1-foliated model. We discuss in Sec. IV

how to “ungauge” the models into models with subsystem

symmetry-protected topological order before summarizing in

Sec. V.

II. TWISTED 3-FOLIATED MODEL

In this section, we describe a model that is foliated in the x,

y, and z directions by layers of a twisted 2D Z2 × Z2 gauge

theory. We will see that its foliated fracton order (FFO) is

twisted in the sense that its FFO is distinct from that of the

X-cube model or copies of it. (A brief review of the X-cube

model is given in Appendix A.) Ungauging this fracton model

results in a paramagnetic model with (strong) subsystem

symmetry-protected topological (SSPT) order under three sets

of intersecting planar subsystem symmetries.

The model is constructed by strongly coupling intersecting

layers of a set of three perpendicular stacks of twisted 2D

Z2 × Z2 gauge theories, in a manner akin to the construction

of the X-cube and semionic X-cube models from stacks of 2D

toric code layers and 2D double-semion layers, respectively.

These constructions are discussed in Refs. [4,11]. Like the

semionic X-cube model, the 3-foliated model constructed in

this section belongs to the class of exactly solvable twisted

fracton models considered in Ref. [46]. Here, we are able to

extend our understanding by studying the model through the

lens of the coupled-layer construction and as an FFO. Unlike

the semionic X-cube model, this Z2 × Z2 model has twisted

FFO; thus, there is a distinction between a fracton model being

twisted in the sense of Ref. [46], and a model having twisted

FFO.

A. Model construction

1. 2D Z2 × Z2 twisted gauge theory

First, we briefly review the properties of Z2 × Z2 twisted

gauge theories in 2D, and describe an exactly solvable model

for one such theory. Twisted gauge theories may be thought of

as Hamiltonian realizations of (2+1)-dimensional [(2+1)D]

Dijkgraaf-Witten models [48], or as the result of gauging

global symmetries in paramagnets with nontrivial symmetry-

protected topological (SPT) order [44]. For Z2 × Z2 symme-

try, there are 23 = 8 distinct SPT phases in 2D, corresponding

to the eight elements of H3(Z2 × Z2, U(1)) [49]. They are

characterized by the topological invariants N1, N2, and N12,

each of which takes values 0 or 1. Upon gauging, the exchange

statistics of the gauge fluxes are given by iN1 and iN2 , whereas

the braiding statistics between the two fluxes is iN12 . In all

cases, the statistics between gauge charge and corresponding

gauge flux is −1 [50].

Here, we will focus on the twisted gauge theory obtained

from the SPT phase with N12 = 1 and N1 = N2 = 0. In this

case, the elementary gauge charges eA and eB and bosonic

gauge fluxes mA and mB obey the following fusion rules:

e2
A = e2

B = 1, m2
A = eB, m2

B = eA. (1)

Thus, as an intrinsic topological order, this theory is equiva-

lent to the Z4 toric code, with mA and mB mapping onto the ẽ

and m̃ Z4 anyons of the Z4 toric code, respectively.

There is a convenient isomorphism between the Z4 clock

and shift algebra and the two-qubit operator algebra, Z̃ →

X ASB, X̃ → X BCZAB, where Z̃ and X̃ are the clock and shift

generators of the Z4 operator algebra with Z̃X̃ = iX̃ Z̃ , Z and

X are the clock and shift (Pauli) operators of the Z2 algebra,

S is the one-qubit phase gate diag(1, i), CZ is the two-qubit

controlled-Z operator diag(1, 1, 1,−1), and A and B label the

two qubits. Applied to the Z4 toric code degrees of freedom,

this mapping naturally allows one to write the Z2 × Z2 twisted

gauge theory as a Z2 × Z2 string-net model, such that the

gauge charges correspond to violations of the plaquette terms.

In particular, consider the Z4 toric code Hamiltonian on a

square lattice:

HTC = −
∑

v

(

Av + A2
v
+ A3

v

)

−
∑

p

(

Bp + B2
p + B3

p

)

, (2)

where Av = Z̃
†
1 Z̃

†
5
Z̃6Z̃2 and Bp = X̃1X̃2X̃

†
3 X̃

†
4 per Fig. 2. The A2

v

and B2
p terms are redundant, but we keep them in the Hamil-

tonian so that the transformed Hamiltonian has a convenient

correspondence with the string-net formulation [51].

After mapping to qubit degrees of freedom and shifting

qubit A downward and to the left by half a lattice spacing

[as shown in Fig. 2(a)], HTC is transformed into the Z2 × Z2

twisted gauge theory Hamiltonian

H2D = −
∑

v

(

QA
v

+ QB
v

)

−
∑

p

(

OA
p + OB

p + H.c.
)

, (3)
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FIG. 2. (a) Transformation from Z4 qudit degrees of freedom to

two Z2 qubit degrees of freedom. (b) Operators Av , Bp, OA
p , and

OB
p . In the bottom figures, blue represents X A, red represents X B,

dashed yellow represents SB, dotted yellow represents (SB )†, green

represents ZA, and the black arrows represent CZAB from A to B. The

action of Z , S, and CZ gates precede the action of the X gates.

where Qμ
v

=
∏

l∈v
Z

μ

l
, and (see Fig. 2)

OA
p = X A

1 X A
2 X A

3 X A
4

(

SB
1

)†(

SB
5

)†
SB

6 SB
2 ,

OB
p = X B

1 X B
2 X B

3 X B
4 CZAB

32 CZAB
41 CZAB

73 CZAB
84 ZA

7 ZA
8 . (4)

In particular, Av → OA
p , A3

v
→ (OA

p )
†
, Bp → OB

p , B3
p →

(OB
p )

†
, A2

v
→ QA

v
, and B2

p → QB
v
. Note that (X BCZAB)

†
=

X BCZABZA.

As this transformation is an exact mapping, it is obviously

possible to carry through the following construction in terms

FIG. 3. Cube operators of H3D. Here, blue represents X A, red

represents X B, dashed yellow represents SB, dotted yellow represents

(SB )†, green represents ZA, and the black arrows represent CZAB from

A to B. The action of Z , S, and CZ gates precede the action of the

X gates.

of the original Z4 degrees of freedom. As we will see, how-

ever, the Z2 × Z2 degrees of freedom provide a more natural

language to analyze the emergent fracton order.

2. Coupled-layers construction

The construction of the 3-foliated fracton model is a

straightforward generalization of the construction of the X-

cube and semionic X-cube models in Ref. [11]. We first start

with three mutually perpendicular intersecting stacks of the

Z2 × Z2 twisted gauge theory model H2D, oriented as in Fig. 3.

Recall that H2D contains two qubit degrees of freedom (A and

B) on each edge of a square lattice. Each edge of the 2D layers

coincides with another edge from an orthogonal layer to form

a cubic lattice, with each edge containing four qubits. Then,

couplings of the form ZAZA and ZBZB between qubits on the

same edge are added to the Hamiltonian.

In the strong-coupling limit, the four qubits at each edge

merge into two. The following effective Hamiltonian emerges

at lowest order in perturbation theory:

H3D = −
∑

v

∑

σ=x,y,z

(

QA
v,σ + QB

v,σ

)

−
∑

c

(

OA
c + OB

c + H.c.
)

,

(5)

where v runs over vertices of the cubic lattice and c runs

over the elementary cubes. Qμ
v,σ are vertex terms equal to

products of Pauli Zμ operators over the links adjacent to v

in the plane normal to σ . The cube operators OA
c and OB

c are

depicted graphically in Fig. 3. The terms of H3D are mutually

commuting and unfrustrated and thus the model is exactly

solvable. It bears striking similarity to (two copies of) the

X-cube model: the vertex terms are identical, and the cube

terms are similar in that they involve products of Pauli X

operators over the edges of the cube. However, they contain

additional phase factors not present in the X-cube terms.

As in the X-cube model, excitations of the vertex con-

straints are lineons whereas excitations of the cube terms are

fractons. Lineons are created at the end points of open rigid

string operators, whereas fractons are created at the corners of

membrane operators. Examples of these operators are given in
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the discussion of interferometric operators in Sec. II C 2. Like

the X-cube model, planons also exist as fracton dipoles and

lineon dipoles, as will be discussed in detail below.

B. Fractional excitations

In the intermediate-coupling regime, the transition to the

strong-coupling phase can be thought of as a condensation of

A and B type charge loops; correspondingly, the ground state

of H3D may be viewed as a condensate of charge loops. This

mechanism has been studied in detail and dubbed p-string

condensation in Ref. [11]. The structure of excitations in the

condensed phase can be understood in terms of the degrees of

freedom of the precondensed stacks of twisted Z2 × Z2 gauge

theories. Similar to the case of the X-cube model discussed

in Ref. [11], the 2D gauge charges of the original decoupled

stacks fractionalize into fracton dipoles (a pair of adjacent

fractons whose axis is normal to the 2D layer), and remain

as Z2 planons. These planons will be labeled eA
μν,i and eB

μν,i

where μν, i refers to the plane of mobility (μ and ν the

planar axes and i the coordinate in the normal direction). In

the charge loop picture, individual fractons correspond to end

points of open charge strings above the condensate. They will

be denoted as f A
i jk and f B

i jk , where i jk denotes spatial location,

and likewise inherit Z2 fusion rules:
(

f A
i jk

)2
=

(

f B
i jk

)2
=

(

eA
μν,i

)2
=

(

eB
μν,i

)2
= 1. (6)

As in the X-cube coupled-layers construction, individual

gauge fluxes of the original stacks are confined upon conden-

sation due to their statistical interaction with the charge loops.

However, composites of an A (B) flux and an A (B) antiflux in

orthogonal planes have trivial statistics with the charge loops,

and thus survive the condensation. These composites become

A and B type lineons of the condensed phase, labeled as lA
μ,i j

and lB
μ,i j with μ the axis of mobility and i and j the normal

coordinates. By convention lA
μ,i j (lB

μ,i j) consists of a flux in the

μν plane and an antiflux in the ρμ plane. They inherit the

fusion rules from the 2D gauge fluxes, and therefore obey

(

lA
μ,i j

)2
= eB

μν,i × eB
ρμ, j,

(

lB
μ,i j

)2
= eA

μν,i × eA
ρμ, j,

(

lA
μ,i j

)4
=

(

lB
μ,i j

)4
= 1.

(7)

In these equations, the fracton dipoles’ planes of mobility

intersect along the lineon axis. There are also triple fusion

rules between intersecting lineons along orthogonal axes (co-

ordinate labels have been suppressed):

lA
x × lA

y × lA
z = lB

x × lB
y × lB

z = 1. (8)

Whereas individual lineons are restricted to move along a

line, adjacent lineon antilineon pairs, called lineon dipoles,

are free to move in a plane normal to the axis of separation,

and are hence planons. This is because lineons arise as bound

states of flux-antiflux pairs in orthogonal planes. A lineon

dipole therefore contains four original flux (or antiflux) ex-

citations. However, the flux-antiflux pair in the plane shared

by the two lineons annihilate one another, leaving behind a

flux-antiflux pair in adjacent parallel planes. Lineon dipoles

will be denoted mA
μν,i,i+1 and mB

μν,i,i+1 where μν refers to

the plane of mobility and i and i + 1 are the coordinates in

the normal direction of the parallel planes containing the flux

and antiflux, respectively. The following fusion rules hold by

definition:

mA
μν,i,i+1 = lA

μ,i j × l̄A
μ,i+1, j = lA

ν,ki × l̄A
ν,k,i+1,

mB
μν,i,i+1 = lB

μ,i j × l̄B
μ,i+1, j = lB

ν,ki × l̄B
ν,k,i+1, (9)

where l̄ refers to the antilineon of l . Combining Eqs. (7) and

(9) yields the rules

(

mA
μν,i,i+1

)2
= eB

μν,i × eB
μν,i+1,

(

mB
μν,i,i+1

)2
= eA

μν,i × eA
μν,i+1. (10)

The statistics of excitations in the condensed phase can

also be inferred from the anyon statistics of the decoupled

stacks. In particular, the fracton dipole eA
μν,i (eB

μν,i) exhibits a

−1 braiding statistic when wound around type A (B) lineons

mobile within the dipole’s plane of movement. In particular,

these lineons are lA
ν,i j (lB

ν,i j) and lA
μ, ji (lB

μ, ji). Moreover, coplanar

lineons of opposite species lA
μ,i j and lB

ν,ki inherit the i braiding

statistic between gauge fluxes mA and mB; thus, they exhibit an

i statistical phase upon crossing. This property, along with the

lineon fusion rules, are the essential features that distinguish

the twisted 3-foliated model from the untwisted version, i.e.,

two copies of the X-cube model.

C. Foliation structure

In this section, we first show that the model described

in the last section indeed has a foliated fracton order. That

is, one can decouple 2D topological layers out of the model

while shrinking the system size as shown in Fig. 1(a). Then,

we are going to look at some of the universal quantities of

foliated fracton orders, including the quotient superselection

sectors and the entanglement signatures that we discussed in

Refs. [27,41]. It turns out that this model is trivial (the same

as two copies of the X-cube model) in both aspects. However,

it is not equivalent to two copies of the X-cube model as an

FFO, which we will show in Sec. II D.

1. Resource layers

In this section, we demonstrate the 3-foliated structure of

the model. We show that resource layers consisting of bilayer

2D Z2 × Z2 twisted gauge theories can be decoupled from the

model in all three directions. Rather than finding an exact local

unitary transformation, we arrive at this conclusion by exam-

ining the structure of fractional excitations in an Lx × Ly × Lz

size 3D model, and find that it can be decomposed into

two parts: one corresponding to a reduced Lx × Ly × (Lz − 2)

size 3D model, and the other corresponding to two layers

of the twisted gauge theory described by H2D. That is, the

superselection sectors of the larger 3D model are identical to

those of the smaller 3D model together with the decoupled 2D

layers. We may then conclude the presence of such a foliation

structure.

In gapped Abelian phases, the superselection sectors form

an Abelian group under fusion. Decomposing this structure

therefore amounts to finding a generating set of the fusion

group which can be bipartitioned into sets A and B such that
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there are no statistical interactions between sectors of A and

sectors of B.

For the model in question, S contains fractons, lineons, and

planons. However, the elementary planons are either fracton

dipoles or lineon dipoles (lineon-antilineon pairs). Therefore,

fusion with the appropriate planon effectively transports li-

neons or fractons in their directions of immobility. Hence,

a generating set of S need only one lineon of each type in

each direction, one fracton of each type, and a generating

set of the planon subgroup P � S (i.e., the subgroup of S

generated by the set of all planons), which decomposes as

P = Pxy × Pyz × Pzx for the three different planes of mobility.

This phenomenon also occurs in all of the stabilizer code

models with FFO that have been previously studied. In fact,

this observation is the basis of the notion of quotient super-

selection sectors (QSS), which are elements of the quotient

group Q = S/P to be discussed below.

Suppose we wish to disentangle a resource layer in the

z direction from the twisted 3-foliated model. Due to the

above observation, a decomposition S = S2D × S′, where S2D

represents a single 2D resource layer and S′ is the re-

duced 3D model, amounts to a decomposition P = P2D ×

P′ = (P2D × P′
xy) × Pyz × Pzx, such that P2D has no statistical

interaction with P′. Moreover, P2D must have trivial inter-

actions with the generating lineons and fractons. However,

these generators can always be chosen to lie away from the

support of the P2D string operators; thus, this latter condition

is essentially vacuous.

Let us now consider Pxy, the subgroup of S consisting of

planons mobile in the x and y directions. A generating set of

Pxy is given by the set of elementary (minimally separated)

fracton and lineon dipoles with z-oriented dipolar axis. It is

possible to find an equivalent generating set that decouples

into two subsets: one generates P′
xy, a reduced version of Pxy;

the other generates P2D, which corresponds to two copies of

the 2D Z2 × Z2 twisted gauge theory modeled by H2D. To

illustrate this decomposition, it is convenient to use a graph-

ical notation, as shown in Fig. 4. In Fig. 4(a), (part of) the

generating set of elementary dipoles is depicted. Figure 4(b)

contains an equivalent but different generating set. In this set,

the quasiparticles represented by rows 5–12 are completely

decoupled from the remaining planons, in the sense that they

form a closed group under fusion and have trivial braiding

statistics with the other planons. These quasiparticles repre-

sent a generating set of the anyon sectors of two copies of

the Z2 × Z2 twisted gauge theory, i.e., a bilayer (rows 5–8

and rows 9–12). The remaining planons constitute a reduced

version of the original planon group with two fewer lattice

spacings in the z direction.

Importantly, this mapping of generating planons preserves

the locality of the excitations in the z direction. In other words,

each element of the generating set moves within a finite region

in z before and after the mapping. Therefore, we expect that

this mapping of excitations can be realized by a finite depth

local unitary transformation with support in the vicinity of the

decoupled resource bilayer.

Having established the foliation structure in the 3-foliated

model, we now ask if it has the same FFO as the X-cube

model (or copies of it). As defined in Refs. [27,38], two

gapped models have the same foliated fracton order (FFO)

FIG. 4. Disentangling an xy-plane Z2 × Z2 twisted gauge theory

resource bilayer from the twisted 3-foliated model, in terms of a

generating set of the planon excitations. In this notation, the z axis

lies along the horizontal direction, with the grid representing the

lattice spacing. Each row represents one planon in the generating set.

Lineon dipoles mA
xy,i,i+1 and mB

xy,i,i+1 are represented as, respectively,

blue and red boxes spanning between z coordinates i and i + 1,

with a solid edge to represent the lineon and a triple edge to

represent the antilineon. Conversely, fracton dipoles eA
xy,i and eB

xy,i

are represented as blue and red dots at coordinate i. (a) Depicts a

generating set consisting of all elementary fracton dipoles and lineon

dipoles. The generating set of (b) is decomposed into two copies of

the Z2 × Z2 twisted gauge theory between the dashed lines and a

reduced generating set for the remaining planons outside the lines,

which constitutes a smaller version of the original planon group.

Note that there are no nontrivial braiding statistics between the three

components.

if they can be related by a local unitary transformation upon

the possible addition of 2D topological order resource states.

While this is a rather coarse equivalence relation, previous

works have identified the structure of QSS and interferometric

statistics, as well as the entanglement signatures discussed

prior, as universal characteristics of FFO [27,41]. As we

are going to see in Secs. II C 2 and II C 3, based on these

properties alone it is plausible that the 3-foliated model has

the same FFO as two copies of the X-cube model. However,

as we are going to show in Sec. II D, the 3-foliated model

actually has a different FFO from two copies of the X-cube

model. The QSS and entanglement signature hence provide

an insufficient characterization of the universal properties of a

foliated fracton phase.

2. Quotient superselection sectors and interferometric statistics

Consider the QSS fusion group Q = S/P. To reiterate, the

essential idea behind QSS is that by modding out the planon

subgroup P, we obtain a finite group which is characteristic of

the foliated fracton order of a given model. Since lineon and

fracton dipole sectors belong to P for the twisted 3-foliated

model, it follows that all lineon superselection sectors lA
μ,i j

(lB
μ,i j) belong to one quotient sector, denoted lA

μ (lB
μ). More-

over, all fracton sectors f A
i jk ( f B

i jk) belong to a single quotient
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sector, denoted f A ( f B). These quotient sectors generate the

entire group Q.

However, lineon and fracton quotient sectors also obey

some relations. First, since eA
μν,i × eA

ρμ, j and eB
μν,i × eB

ρμ, j

belong to P, the lineon fusion rules (7) imply that (lA
μ )

2
=

(lB
μ )

2
= 1 as quotient sectors. In other words, the lineon

quotient sectors obey Z2 fusion rules while the lineon supers-

election sectors obey Z4 fusion rules. Second, the lineon triple

fusion rules are inherited by the quotient group as

lA
x × lA

y × lA
z = lB

x × lB
y × lB

z = 1.

Finally, the fracton sectors obey ( f A)
2

= ( f B)
2

= 1. There-

fore, altogether Q ∼= (Z2)×6, with the generators f A, f B, lA
x ,

lB
x , lA

y , and lB
y . This QSS structure is isomorphic (in terms

of fusion and particle mobility) to that of two copies of the

X-cube model, one corresponding to each of the A and B

sectors of Q. Recall that the X-cube model has QSS group

(Z2)×3 with generators f , lx, and ly, and triple fusion rule

lx × ly × lz = 1.

Interferometric operators for foliated orders, as introduced

in Ref. [41], are unitary operators with support outside the re-

gion R, where a point excitation is located, that yield nontrivial

statistical phases when acting on excitations belonging to

nontrivial elements of Q, but act as the identity on excitations

in P. As discussed in Ref. [41], for the X-cube model, there

are eight classes of such operators, which have a Z2 × Z2 × Z2

group structure. They include a wire-frame operator W which

yields a −1 phase on the quotient sector f , and cylindrical

membrane operators Mx, My, and Mz. The operator Mx yields

a −1 phase on the ly and lz sectors, and similarly for My

and Mz.

In the twisted 3-foliated model, the structure of interfer-

ometric operators is identical to that of two copies of the

X-cube model, in terms of the geometry of the operators

and their statistical interactions with the QSS. In particular,

there are operators W A, W B, MA
x , MB

x , MA
y , MB

y , MA
z , and MB

z .

The microscopic form of these operators may be computed

by taking products of all the Hamiltonian terms of one kind

within a large cubic region: the wire-frame operators W A and

W B correspond to products of cube operators OA
c and OB

c ,

whereas the membrane operators correspond to products of

the vertex terms. Thus, the membrane operators are simply

products of Pauli ZA or ZB operators over the support of the

membrane, as in (two copies of) the X-cube model, whereas

the wire-frame operators are more complicated.

The rigid string and membrane operators, which create

and transport lineons and fractons, have the identical form

as these interferometric operators away from the excitations.

The statistical interactions between interferometric operators

and QSS can be verified by considering the commutation

relations of these microscopic operators. One may also view

the interferometric operators as planon loop operators for

lineon or fracton dipoles with a macroscopic dipolar length.

3. Ground-state degeneracy and entanglement signatures

To efficiently calculate the entanglement properties of the

3-foliated model, we consider a Z4 Calderbank-Shor-Steane

(CSS) stabilizer code formulation of the model. That is, the

Hamiltonian can be expressed as a sum of products of either Z̃

(the clock operator) or X̃ (the shift operator) where all terms in

the Hamiltonian commute with each other and each term has

eigenvalue −1 in the ground state. This form of Hamiltonian is

useful for doing computations, and will allow us to efficiently

calculate ground-state degeneracy and entanglement entropy.

In Appendix C, we will also express this model in the string-

membrane-net and foliated field-theory formulations.

To obtain a CSS version of the model, we can repeat

the coupled-layer construction from Sec. II A 2, but continue

using the Z4 clock and shift operators instead of mapping to

pairs of qubits. The coupled-layer construction was performed

by adding Pauli ZAZA and ZBZB terms to couple the Z2 × Z2

twisted gauge theory layers together. The ZA and ZB operators

are written in terms of Z̃2 and X̃ 2, as in Fig. 2(a). Thus, the

ZAZA term that couples Z2 × Z2 twisted gauge theory layers

is mapped back to a Z̃2Z̃2 term to couple Z4 toric code layers

together. Unmapping the ZBZB term is similar, although note

that the X̃ 2 operator is not on the same edge as the ZB operator.

Therefore, the ZBZB term is mapped back to a X̃ 2X̃ 2 operator,

but where each X̃ 2 is on a different link. The strong-coupling

limit is described by the CSS code Hamiltonian in Fig. 5.

Since the model is a stabilizer code, we can efficiently cal-

culate its ground-state degeneracy and entanglement entropy

(see Appendix B for details). The ground-state degeneracy of

an Lx × Ly × Lz system with periodic boundary conditions is

GSD = 24Lx+4Ly+4Lz−6. (11)

Two-dimensional topological orders can be characterized

by their topological entanglement entropy [52,53]. Refer-

ence [27] discussed a generalization for foliated fracton

orders given by the entanglement quantities I (A; B|C) and

I (A; B;C; D|E ) computed from subsystems with the wire-

frame geometries shown in Fig. 6. For the 3-foliated Hamilto-

nian [Eq. (5)], we find that

I (A; B|C) = I (A; B;C; D|E ) = log(4). (12)

These entanglement signatures, as well as the ground-state

degeneracy, are equivalent to that of two copies of the X-cube

model.2

D. Twisted foliated fracton order

While the 3-foliated model appears the same as two copies

of the X-cube model in terms of QSS and entanglement

signatures, they actually have different FFO. In this section

we will demonstrate this difference in two separate ways.

1. Lineon fusion rules

First, we will show that the Z4 fusion rules of the lineon

superselection sectors preclude a transformation to two copies

of the X-cube model through local unitary and addition of

2D layers. It will be helpful to establish some terminology.

2In Ref. [27], logarithms were evaluated in base 2. With this

convention, the entanglement quantities in Eq. (12) are I (A; B|C) =

I (A; B;C; D|E ) = log2(4) = 2. The X-cube model has I (A; B|C) =

I (A; B;C; D|E ) = log2(2) = 1.
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FIG. 5. A graphical depiction of the terms in the CSS stabilizer version of the 3-foliated model in Eq. (5). Each picture above denotes a

term in the stabilizer Hamiltonian. There are two Z4 qudits on each edge, which will be denoted by two (out of three) different colors. Straight

colored lines denote Z̃ clock operators, while zigzag colored lines denote X̃ shift operators. A conjugate transpose is taken for operators on

edges with arrows that point in the negative x, y, or z direction. Double lines denote a Z̃2 or X̃ 2 operator. Above each column of pictures, we

write the product of operators involved.

A superselection sector that is a fusion product of planons

in orthogonal planes, such that the mobility is restricted to

the line of intersection of the two planes, will be referred

to as a superficial lineon. Conversely, a lineon sector that

cannot be decomposed as the fusion product of two planons

is referred to as an intrinsic lineon [9]. While intersecting

stacks of decoupled 2D topological orders exhibit superifical

lineon superselection sectors, only truly fractonic models host

intrinsic lineon excitations.

The key to the argument is that all of the intrinsic lineons

in the twisted 3-foliated model are order 4 under fusion

(although they square to superficial lineons, hence, the QSS

FIG. 6. The wire-frame geometries used to calculate the entan-

glement quantities in Eq. (12).

has order 2), whereas the X-cube model contains intrinsic

lineons of order 2. By adding stacks of 2D topological orders,

it is possible to modify the superselection sector group to

include new intrinsic lineons of a higher order than the already

existing intrinsic lineons. However, the fusion rules of the

original intrinsic lineons are immutable, and moreover it is

not possible to create a new intrinsic lineon of a lower order

than the already existing sectors. Therefore, even after the free

addition of 2D topological order resource states, the twisted

3-foliated model can never contain intrinsic lineons of order

2. Conversely, the X-cube model, and any number of copies

of it, will always retain such a intrinsic lineon. Thus, the two

models must have different FFO.

2. Redundancies among planons

Another way to see that the FFO of the 3-foliated model

is different from that of two copies of the X-cube model is by

looking at the planons. In fact, this can be a useful and generic

way to study foliated fracton models. In the following, we are

going to show that by examining the planons, we can deduce,

first, that the X-cube model is different from a stack of 2D

layers and second, that the 3-foliated model is different from

the X-cube model (or two copies of it).

Consider a dimensional reduction procedure from a 3D

model to a 2D model where the x and y directions remain

infinite while the z direction is made finite. Such a “com-

pactification” process has been used in Ref. [54] to study
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fracton models. We consider the situation where the system

has periodic boundary condition in all three directions. As

the model is now finite in the z direction, any string operator

that extends around the z direction becomes finite and can

be added to the Hamiltonian. The ground-state degeneracy

is reduced and the model becomes a 2D model with anyons

moving in the 2D plane. Here, we consider what happens

upon this compactification process in three different fracton

models: a decoupled stack of 2D layers, the X-cube model,

and the 3-foliated model.

We start with a decoupled stack of 2D layers in the xy

plane. In the 3D model, there is no string operator in the

z direction, therefore, after dimensional reduction no extra

term can be added. All the planons in the xy planes survive

the dimensional reduction. The number of planons grows

exponentially with the height of the system in the z direction.

We can choose a generating set of all the planons by choosing

a generating set for each plane. Such a generating set satisfies

the following properties:

(i) Each element in the generating set is constrained to

move within a finite segment in z as they come from the 2D

layers. We say that the generator planons are “local.”

(ii) All other planons that are local can be generated by a

subset of the generators that are within a finite distance in z.

We say that the generating set is “locally complete.”

(iii) Moreover, we can make sure the full generating set

is not redundant. That is, no element in the generating set

(or copies of it) can be generated by other elements in the

generating set.

For the X-cube model and the 3-foliated model, these

properties can no longer be satisfied at the same time.

Now, we consider the X-cube model. A brief review of

the X-cube model is given in Appendix A. Upon dimensional

reduction in the z direction, the string operators in the z

direction can be added to the Hamiltonian. Among all the

fractional excitations, only the planons in the xy planes sur-

vive the dimensional reduction procedure and we can choose

a generating set for them consisting of the fracton dipoles ei

centered around plane i and the lineon dipoles mi,i+1 living

across planes i and i + 1. Such a generating set is local

and locally complete as we defined above. However, it is

redundant as the product of all fracton dipoles and the product

of all lineon dipoles are both trivial anyons:

∏

i

ei = 1,
∏

i

mi,i+1 = 1. (13)

That is, there exists global constraints among the planons.

These global constraints cannot be removed without violating

the “locally complete” condition. If we remove e1 and m1 from

the generating set, the set is no longer redundant, but e1 and

m1 can not be locally generated. Therefore, the X-cube model

is different from a stack of 2D layers.

Finally, we turn to the 3-foliated model and see how it is

different from both the stack of 2D layers and the X-cube

model. Upon dimensional reduction, all other superselection

sectors are removed except planons in the xy plane, which are

the fracton dipoles eA,B
i and lineon dipoles mA,B

i,i+1. The eA,B
i ’s

and mA,B
i,i+1 sectors form a locally complete generating set, but

it is highly redundant. First, there are local redundancies of

the form
(

mA,B
i,i+1

)2
= eB,A

i × eB,A
i+1. (14)

Moreover, there are global redundancies of the form
∏

i

mB,A
i,i+1 =

∏

i

eA,B
i = 1. (15)

The global redundancies are similar to that of the X cube, but

the local ones show that the 3-foliated model is different from

the X cube. Note that it is possible to have local redundancy

in a locally complete generating set of the X-cube model.

For example, if aside from all the ei’s and and mi,i+1’s we

add ψi = ei × mi,i+1 to the generating set, it will have a local

redundancy. However, such local redundancies can be locally

removed. That is, if we use the relation ψi = ei × mi,i+1 and

eliminate ψi from the generating set, we can remove the

redundancy. On the other hand, this is not true for the local

redundancies in the 3-foliated model. In the 3-foliated model,

we can start from the redundancy relation (mA,B
1,2 )

2
= eB,A

1 ×

eB,A
2 and remove it by eliminating eB,A

2 from the generating set.

Next, we move on to eliminate eB,A
3 from the generating set

using the redundancy relation (mA,B
1,2 × mA,B

2,3 )
2

= eB,A
1 × eB,A

3 .

We can keep doing this, but the redundancy relation that we

need to use involves more and more m sectors, and eventually

it becomes a nonlocal relation. We say that the local redun-

dancy relations cannot be locally removed. In fact, a locally

complete generating set always has to contain a finite density

of e particles and all the m particles, therefore, it is always

redundant and the redundancy cannot be removed locally.

Because of the existence of redundancy relations, especially

local redundancy relations that cannot be locally removed, the

3-foliated model is different from both the stack of 2D layers

and the X-cube model.

III. TWISTED 1-FOLIATED MODEL

In this section, we discuss a model which is nontrivially

1-foliated. That is, growing the model in the z direction

requires the addition of 2D topological order resource layers

(Z2 × Z2 twisted gauge theories for the model we study),

whereas growing the model in the x or y directions simply

requires product state resources. At the same time, the model

is not local unitarily equivalent to a decoupled stack of 2D

topological orders. Nonetheless, all of the fractional exci-

tations of the model are planons, which are mobile in the

xy directions; upon compactification in the z direction,3 the

model reduces to a “giant” 2D topological order where

the number of superselection sectors grows exponentially with

the original height in the z direction.

A. Model construction

1. Boson condensation

The model is constructed by condensing bosons in a decou-

pled stack of 2D Z2 × Z2 twisted gauge theories (equivalently,

3That is, a dimensional reduction from a 3D system to a 2D system

with a large unit cell.
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a stack of Z4 toric codes, as discussed in Sec. II A 1), stacked

in the z direction. The quasiparticle sectors of the stack consist

of Z2 × Z2 gauge charges eA
i and eB

i and gauge fluxes mA
i and

mB
i . Composites of gauge charges in neighboring layers eA

i eB
i−1

are then condensed to yield a new phase, whose fractional

excitations can be understood in the conventional framework

of 2D boson condensation in topological phases [55,56].

In particular, charges eA
i and eB

i−1 are identified as a new

sector ei. Moreover, individual fluxes are confined due to

their nontrivial statistics with the condensed bosons, but flux

pairs mA
i mB

i−1 survive the condensation as sectors labeled mi.

Sectors ei and mi have a mutual −1 braiding statistic, and

adjacent fluxes mi and mi+1 inherit the i braiding statistic.

Therefore, the fluxes obey the fusion rules

m2
i = ei−1 × ei+1. (16)

Upon compactification, the model may be thought of as a

2D
∏L

i=1 Z2 twisted gauge theory with type-II twists between

adjacent fluxes.

2. Giant K matrix

In 2D, Abelian topological orders can be generically un-

derstood in terms of the K-matrix Chern-Simons formalism

[57]. In this description, N species of U(1) gauge fields, aI

with I = 1, . . . , N , are governed by the Lagrangian

L =
1

4π
KIJǫ

μνρaI
μ∂νaJ

ρ, (17)

where K is an N × N symmetric integer matrix, with even

integers along the diagonal for bosonic systems. The quasi-

particles are represented by integer vectors l = (l1, . . . , lN ) ∈

Z
N , and have exchange statistics

θl = π lT K−1l, (18)

whereas their mutual braiding statistics are given by

θll ′ = 2π lT K−1l ′. (19)

Quasiparticles of the form Kl for l ∈ Z
N have trivial statistics

with all other quasiparticles and thus correspond to local

excitations. It is important to note that two K matrices, K and

K ′, are physically equivalent if there is a unimodular matrix

W (i.e., with det W = 1) such that K ′ = W T KW . Such a

transformation corresponds to a change of quasiparticle basis.

Here, we will employ the K-matrix formalism to describe

the excitation content of the 3D condensed phase of the prior

section. In particular, the structure of planons is captured by

a “giant” N × N K matrix, whose dimension is extensive in

the height of the system, and in which spatial locality of

excitations in the z direction is encoded in the indices of the

vector l . In other words, the quasiparticle represented by l =

(. . . , 0, 1, 0, . . .), with nonzero value at index I , is a planon

constrained to move near the xy plane with z coordinate equal

to I units of the lattice spacing.

We consider the K matrix with the following form in the

bulk (where we have labeled the columns in the anyon basis)

K =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e1 m1 e2 m2 e3 m3 e4

. . .

0 2 −1

2 0

−1 0 2 −1

2 0

−1 0 2 −1

2 0

−1 0
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (20)

The inverse matrix K−1 has the following form:

K−1 =
1

4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m0 e1 m1 e2 m2 e3 m3

. . .

0 1

0 2

1 2 0 1

0 2

1 2 0 1

0 2

1 2 0
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (21)

The quasiparticle statistics can be read off from K−1. Denot-

ing by lI the unit vector with all entries equal to 0 except the

entry at index I , the giant K matrix corresponds precisely to

the excitation content of the boson-condensed phase under

the assignment l2i−1 = ei and l2i = mi. In Appendix C 3, we

describe a lattice model realization of the above K matrix.

B. Foliation structure

The foliation structure of the model can be easily under-

stood in the K-matrix formalism. A single layer of Z2 × Z2

twisted gauge theory may be disentangled from the bulk via

a local unitary transformation represented by the following W

matrix, which maps the ei and mi anyon basis to a new ẽi and

m̃i basis:

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ẽ1 m̃1 ẽA m̃A ẽB m̃B ẽ2 m̃2 ẽ3

. . .

e1 1

m1 1 1

e2 1 −1

m2 1

e3 −1 1

m3 1

e4 1

m4 −1 1 1

e5 1
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (22)
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This W matrix transforms the K matrix as follows:

W T KW =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ẽ1 m̃1 ẽA m̃A ẽB m̃B ẽ2 m̃2 ẽ3

. . .

0 2 −1

2 0

0 2 −1 0

2 0 0 0

−1 0 0 2

0 0 2 0

−1 0 2 −1

2 0

−1 0
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Evidently, the transformed K matrix is block diagonal. The

4 × 4 block (for anyons ẽA through m̃B), which we will call

K2D, represents a disentangled copy of 2D Z2 × Z2 twisted

gauge theory. To see that this is the case, note that K2D has

inverse

K−1
2D =

1

4

⎛

⎜
⎜
⎝

ẽA m̃A ẽB m̃B

0 2 0 0

2 0 0 1

0 0 0 2

0 1 2 0

⎞

⎟
⎟
⎠

. (23)

On the other hand, it can easily be seen that the remaining

rows and columns represent a smaller version of the original

3D model.

Because the ground-state degeneracy of the system only

grows with linear system size in the z direction but not in the

x and y directions, the model is 1-foliated. That is, growing

the model in the z direction requires the addition of 2D

topological order resource layers, whereas growing the model

in the x or y directions simply requires product state resources.

C. Nontrivial foliated fracton order

By examining the structure of the planon fusion group,

we will demonstrate in this section that the 1-foliated model

is not local unitarily equivalent to any decoupled stack of

2D topological orders, nor can it be made equivalent by

adding any number of 2D topological order resource layers.

In other words, the model represents a nontrivial foliated

fracton phase. It is twisted in the sense that ungauging the

model yields a nontrivial SSPT phase with one set of planar

subsystem symmetries.

The situation is very similar to that of the 3-foliated model

after dimension reduction. We can choose a locally complete

generating set for the planons as {ei, mi, i = 1, . . . , L}. This

generating set is redundant with local redundancy relations

m2
i = ei−1 × ei+1. (24)

We can start to remove the redundancy relations by elim-

inating the e’s from the generating set. However, the re-

dundancy relations necessarily get longer into the form

(m2 × m4 × · · · × m2n)2 = e1 × e2n+1. Therefore, the redun-

dancy relations cannot be locally removed and we conclude

that the 1-foliated model is not equivalent to a stack of 2D

layers and is hence twisted.

IV. MAPPING TO SUBSYSTEM SPT PHASES

The 3-foliated and 1-foliated models introduced in the

previous two sections can be “ungauged” into subsystem

symmetry-protected topological (SSPT) models [58–60]. As

the fracton models have twisted foliated fracton order, corre-

spondingly, the ungauged model has nontrivial SSPT order.

In this section, we first demonstrate how the mapping works,

then explain in detail our definition of SSPT order, especially

a subtle difference from that given in Refs. [58,59].

A. Mapping

As the 3-foliated model has a “cage-net” type construction

[9] as discussed in Sec. II A, it can be “ungauged” through a

duality transformation similar to that described in Ref. [45]

(see also Refs. [3,61]). In particular, the “matter” degrees of

freedom σ A and σ B live at the center of the cubes in the

cubic lattice. The σ ’s can be chosen as spin- 1
2

degrees of

freedom with onsite symmetry generated by σ A
x and σ B

x . Upon

“ungauging,” the fracton Hamiltonian in Eq. (5) gets mapped

to a model of the σ ’s with planar subsystem symmetry. The

Hamiltonian is

HSSPT = −
∑

c

(

ÕA
c + ÕB

c + H.c.
)

, (25)

where ÕA
c and ÕB

c are obtained from OA
c and OB

c of Eq. (5) in

the following way: (1) Replace the tensor product of 12 X A

(X B) on the edges around the cube c in OA
c (OB

c ) with the

matter DOF σ A
x,c (σ B

x,c) at the center of the cube. (2) Replace

ZA
e (ZB

e ) on each edge with the tensor product of 4 σ A
z,c’s

(σ B
z,c’s) in the cubes containing the edge. Note that the phase

factors in the OA and OB terms can always be expanded in the

basis of ZA and ZB operators.4 Therefore, these replacement

steps completely determine the Õ terms from the O terms.

Moreover, as the σ A
z and σ B

z terms always appear as the tensor

product of four around each edge, the new Hamiltonian terms

are invariant under subsystem planar symmetries

U α
Pμν

=
∏

c∈Pμν

σ α
x,c with

α = A, B,

μν = xy, yz, zx,
(26)

where Pxy, Pyz, Pzx denote planes in the xy, yz, zx direction,

respectively.

For the 1-foliated model, which is obtained by condensing

eB
i−1eA

i charge pairs in a stack of Z2 × Z2 twisted gauge theory

models, the corresponding SSPT can be obtained from a stack

of Z2 × Z2 twisted SPT [49,50] by condensing eB
i−1eA

i charge

pairs. In the SSPT model, condensing charge pairs simply

means that the ZB
2 symmetry of the (i − 1)th layer is combined

with ZA
2 symmetry of the ith layer into a single symmetry

generator. That is, the Hamiltonian of the system is the same

as that of a decoupled stack of Z2 × Z2 twisted SPT, while

the planar symmetry generators are tensor products of planar

symmetry generators of the B part in layer i − 1 and the A part

in layer i.

4For example, S = 1+i

2
+ 1−i

2
Z and CZ = 1

2
(1 ⊗ 1 + Z ⊗ 1 + 1 ⊗

Z − Z ⊗ Z ).
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B. Definition of SSPT order

As the SSPT models are obtained by ungauging twisted
fracton models, we expect the SSPT to be twisted as well. To
be more precise, a 3D system is said to have planar subsystem

symmetry-protected topological (SSPT) order if the following
applies:

Definition 1. The model has a unique symmetric gapped
ground state on any closed 3D manifold, which in the absence
of symmetry can be mapped to a product state using a finite
depth quantum circuit.

Two SSPT models with the same subsystem symmetry are
said to have the same SSPT order if the following applies:

Definition 2. The two models can be mapped to each other
by adding 2D SPT layers with independent planar symmetries
to each model and applying a symmetric finite depth quantum
circuit.

Note that there is some subtlety in comparing the subsys-
tem symmetry group of two models as the total symmetry
group depends on system size. We consider two subsystem
symmetry groups to be the same if they can be made the same
by adding independent planar symmetry generators to either
side.

Accordingly, note the following:
Definition 3. An SSPT model has nontrivial or twisted

SSPT order if it does not have the same SSPT order as a
trivial paramagnet (a product state) with the same subsystem
symmetry.

It is easy to see that once the planar symmetries are
gauged, this definition of SSPT order matches the definition
of foliated fracton order illustrated in Fig. 1. This definition
can be generalized to models and subsystem symmetries in
other dimensions in a straightforward way.

Our definition is similar but also different from that in
Refs. [58,59]. The definition of Refs. [58,59] makes use of
a “linearly symmetric local unitary circuit” while we use
only symmetric finite depth circuits but allow the addition
of SPT layers. That is, we require each unitary gate in the
circuit to be symmetric while the definition in Refs. [58,59]
allows the individual gates to break symmetry and requires
only a subsystem (linear or planar) composite of them to be
symmetric. A common consequence of these two definitions
is that a pure stack of lower-dimensional SPTs, where the
subsystem symmetry acts as a global symmetry on each of
them, is considered to be a trivial SSPT. On the other hand,
the “linearly symmetric local unitary” equivalence is stronger.
In particular, in our definition we require the added SPT
to come with their own independent symmetry generators.
After they are added to the total system, the total subsystem
symmetry group is always enlarged. The effect of the linearly
symmetric local unitary can also be interpreted as allowing the
addition of subsystem SPTs. But, once added, the symmetry
generator of the SPT can be identified with one of the original
symmetry generators of the system, hence directly changing
the SPT signature associated with that generator. Our defini-
tion of equivalence is weaker (e.g., our definition classifies
more models as nontrivial) and we have chosen it so that it
matches with our definition of foliated fracton order once the
subsystem symmetries are gauged.

Upon gauging, the equivalence condition in Refs. [58,59]

is different from the foliated fracton equivalence we used in

this paper. Compared to the foliated fracton equivalence, it

amounts to allowing charge condensation in fracton models

because prior to gauging the symmetry group does not nec-

essarily become larger when SPT layers are added. Both the

1-foliated and 3-foliated models discussed above are trivial

SSPTs phase under their definition [62], while they are non-

trivial under our definition.

V. SUMMARY

To summarize, in this paper we demonstrate the existence

of twisted foliated fracton order, i.e., 3D gapped fracton

models with a foliation structure but which are inequivalent

to (copies of) the X-cube model. In particular, we discussed

a 3-foliated model in Sec. II and a 1-foliated model in

Sec. III. We demonstrated the nontriviality of the models

by studying the fractional excitations, the lineons and the

planons, of the models. In particular, we used a dimensional

reduction procedure to reduce the 3D model to a 2D model

while keeping track of the locality of the planons along the

reduced dimension. By studying the group structure of the

local planons, we can discern the differences between stacks

of 2D layers, the X-cube model, and the twisted models. By

using an ungauging procedure, we further mapped the twisted

fracton models to nontrivial subsystem symmetry-protected

topological models.

An interesting future direction is to understand the anyon

condensation procedure in layers of 2D topological orders

in more generality. For example, given such a condensation

transition, how can one determine what the emergent phase

is? More coarsely, one can ask if the phase is equivalent to a

decoupled stack of 2D models, a liquid 3D topological order,

or a nontrivial planon model. This question can be asked

more generally in the context of topological defect network

constructions [63,64].
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APPENDIX A: X-CUBE MODEL

The X-cube model, as first discussed in Ref. [3], is defined

on a cubic lattice with qubit degrees of freedom on the edges.

The Hamiltonian

H = −
∑

v

(

Ax
v
+ Ay

v
+ Az

v

)

−
∑

c

Bc (A1)

contains two types of terms: cube terms Bc which are products

of the 12 Pauli X operators around a cube c, and cross terms
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FIG. 7. (a) Cube and (b) cross operators of the X-cube model

Hamiltonian on a cubic lattice.

Aμ
v

which are products of the four Pauli Z operators at a vertex

v in the plane normal to the μ direction where μ = x, y, or z

(Fig. 7).

Consider an Lx × Ly × Lz cubic lattice with periodic

boundary conditions. The ground-state degeneracy (GSD)

scales linearly with the size of the system in all three direc-

tions:

log2 GSD = 2Lx + 2Ly + 2Lz − 3. (A2)

There are hence a large number of “logical operators” that

commute with all of the terms in the Hamiltonian and map

one ground state to another [30,78]. An overcomplete set of

X -type logical operators is given by the set of closed stringlike

operators W
μ

i j , which is a product of X operators over all

μ-oriented edges with coordinates (i, j) in the plane normal

to μ (see Fig. 8). This set is overcomplete in the sense that

products of the form W
μ

i j W
μ

il
W

μ

kl
W

μ

k j
are equal to a product of

some Bc cube operators, and thus act trivially on the ground-

state manifold (here the four sets of coordinates lie about the

corners of a rectangle in the plane normal to μ, as shown in

Fig. 8). There are LxLy + LyLz + LzLx − 2Lx − 2Ly − 2Lz + 3

such relations corresponding to unique products of cube oper-

ators, thus implying Eq. (A2).

Logical operators correspond to processes where particle-

antiparticle pairs are created out of the vacuum, wound around

the torus, and then annihilated. Straight open string operators

W
μ

i j (μ1, μ2) anticommute with the vertex Hamiltonian terms

at the end points μ1 and μ2, corresponding to excitations

which live on the vertices of the lattice. Here, W
μ

i j (μ1, μ2)

is defined to be the product of X operators over μ-oriented

FIG. 8. Visualization of logical operators in the X-cube model.

The green string corresponds to W z
mn. The product of the four

operators corresponding to the blue strings is equal to the identity,

as described in the main text.

FIG. 9. Visualization of particle creation operators in the X-cube

model. The red links correspond to a membrane geometry on the

dual lattice. The product of Z operators over these edges excites

the (darkened) cube operators at the corners. The product of X

operators over the links comprising the straight open blue string

creates excitations at its end points (black dots).

edges between μ = μ1 and μ = μ2 with coordinate (i, j) in

the plane normal to μ (see Fig. 9). Conversely, acting with

bent string operators introduces additional energetic costs at

the corners. Therefore, the particles living at the end points

of straight open strings are energetically confined to live

on a line; in this sense, they are dimension-1 particles [3].

These particles obey an unconventional fusion rule: triples

of particles living along x-, y-, and z-oriented lines may

annihilate into the vacuum. On the other hand, acting with a

closed string operator around a rectangle creates an excitation

at each corner of the rectangle. A pair of particles at adjacent

corners may be viewed as a single dipolelike object which is

itself a dimension-2 particle and is mobile in the plane normal

to the edges connecting the two corners.

In addition to these stringlike operators, there are mem-

branelike operators which are products of Z operators over

qubits corresponding to a membrane geometry on the dual

lattice (see Fig. 9). A rectangular membrane operator anti-

commutes with the cube Hamiltonian terms at its corners. A

pair of adjacent corner excitations created by a rectangular

membrane operator is likewise a dimension-2 dipolar particle,

free to move in a plane perpendicular to its moment. A process

whereby a pair of such membrane dipoles is created, sepa-

rated, wound around the torus, and annihilated corresponds to

a stringlike Z-type logical operator.

APPENDIX B: GROUND-STATE DEGENERACY

In this Appendix, we review algorithms to compute the

ground-state degeneracy and entanglement entropy of a ZD

qudit stabilizer code [79–81].

Consider a stabilizer code of the form

H = −

k
∑

α=1

(sα + s†
α ), (B1)

sα = ωpα

n
∏

i=1

X
Sα,i

i Z
Sα,i+n

i . (B2)
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FIG. 10. The four kinds of excitations (circled in green) that can

be created locally in the 3-foliated string-membrane net.

Each sα is a product of ZD clock and shift operators Z and X

where ZX = ωXZ and ω = e2π i/D. Note that H is completely

determined by the k-component integer vector pα and k × 2n

integer matrix S. Since we require that H is a stabilizer code,

any product of sα that results in a multiple of the identity

operator must be the identity operator exactly; i.e., H must

be frustration free.

Multiplying one stabilizer by another or applying unitary

Clifford operators to H roughly corresponds to multiplying

S on the left or right by an invertible integer matrix, along

with some additional modifications to pα . Analogous to the

singular value decomposition, the Smith decomposition diag-

onalizes an integer matrix using invertible integer matrices.

Therefore, we can compute the Smith normal form of S to

obtain a new integer matrix S′ which is diagonal, and the

Hamiltonian H ′ defined by S′ will have the same ground-

state degeneracy as H . Since S′ is diagonal, H ′ consists of

decoupled qudits, and the ground-state degeneracy of H ′ is

trivial to calculate (and the new phases ωp′
α do not affect the

degeneracy). For the special case of ZD qudits with D prime,

the degeneracy can instead be calculated from the rank of S

over the field ZD.

An algorithm to compute the entanglement of a qubit

stabilizer code is discussed in Ref. [80]. Similar to the ground-

state-degeneracy calculation, the entanglement entropy is

computed in terms of the rank of a matrix SAB over the field

ZD when the qudit dimension D is prime. For nonprime D, the

algorithm generalizes similarly to the degeneracy calculation

and the entanglement entropy is calculated from the Smith

diagonals of the same matrix.

APPENDIX C: STRING-MEMBRANE-NET REALIZATION

The 3-foliated model in Sec. II C 3 can also be written

as a string-membrane net (SMN) [42] or topological defect

network [63,64]. The string-membrane net consists of two 3D

Z2 toric codes coupled to 2D Z4 toric code (TC) layers. The

coupling modifies the set of local excitations along the 2D

layers, which in turn modifies the mobility of the excitations:

(1) When a pair of charges e
(1)
3D (e

(2)
3D) of the first (or second)

3D TC is created across a layer, a pair of charge 2e2D (flux

2m2D) excitations is also created on the 2D TC layer.

(2) When a pair of oppositely charged Z4 charge ±e2D (or

flux ±m2D) excitations is created on a 2D TC layer, an open π -

flux string excitation of the second (first) 3D TC is also created

with end points on the two oppositely charged 2D excitations.

See Fig. 10 for pictures of these local excitations.

Note that the mobility of particles is determined by the

set of local excitations since charges can move by creating

and annihilating local excitations, such as a pair of slightly

displaced excitations of opposite charge. However, exotic sets

of local excitations lead to more interesting mobility rules.

For example, due to the first effect above, the 3D toric code

(TC) charges (e
(1)
3D and e

(2)
3D) are fractons since they must leave

behind 2D TC excitations when they pass through layers. The

second effect implies that an odd number of 2D TC charges

(e(2D)) or fluxes (m(2D)) must be attached to the end points of

3D TC flux strings, which implies that an odd number of 2D

TC charges or fluxes are linearly confined. However, a pair of

2D TC charges (or fluxes) from two intersecting layers is a

lineon because this pair is confined to the intersection of the

two layers by the 3D TC flux strings.

The Hamiltonian of the string-membrane net can be written

on very general lattices. In particular, it is possible to consider

lattices where there are many qubits between the toric code

layers so that one can indeed think of the Hamiltonian as 2D

toric codes coupled to two 3D toric codes. In Fig. 11, we

depict the simplest example where the Hamiltonian is defined

on a cubic lattice in which the toric code layers are placed a

single lattice spacing apart from one another.

1. Unitary mapping

To show that the string-membrane-net Hamiltonian

(Fig. 11) is equivalent to the cage-net Hamiltonian in Fig. 5,

we will show that there is a unitary mapping between the

ground spaces of the two Hamiltonians (augmented with some

extra decoupled degrees of freedom).

To begin, it is convenient to replace the Z2 qubits of the

two 3D toric codes with Z4 qudits. This will be achieved

by making the following operator replacement in the string-

membrane-net Hamiltonian (Fig. 11):

σ z
p →

(

σ̃ z
p

)2
, σ x

p → σ̃ x
p ,

τ x
e →

(

τ̃ x
e

)2
, τ z

e → τ̃ z
e (C1)

and adding the following terms to the Hamiltonian:

−
∑

p

(

σ̃ x
p

)2
−

∑

e

(

τ̃ z
e

)2
. (C2)

We have replaced the Pauli operators σμ and τμ with clock

and shift operators σ̃μ and τ̃μ, which have the algebra σ̃ zσ̃ x =

iσ̃ xσ̃ z and τ̃ zτ̃ x = iτ̃ x τ̃ z. The above replacement does not

change the ground state since the new terms in the Hamil-

tonian will enforce σ̃ = ±1 and τ̃ = ±1, and the modified

Hamiltonian does not have any σ z or τ x operators, only (σ̃ z )2

and (τ̃ x )2 operators. Thus, its ground state is still effectively

described by qubits.

The next step is to act with the unitary shown in Fig. 12,

which is composed of the Z4 controlled-X operators:

CX =
1

4

3
∑

a=0

3
∑

b=0

iabZa ⊗ X b,

CX(Z ⊗ 1)CX† = Z ⊗ 1, CX(X ⊗ 1)CX† = X ⊗ X −1,

CX(1 ⊗ Z )CX† = Z ⊗ Z, CX(1 ⊗ X )CX† = 1 ⊗ X.

(C3)
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FIG. 11. A depiction of the terms in the string-membrane-net Hamiltonian H = −
∑

e A(SMN)
e −

∑

p B(SMN)
p −

∑

e C(SMN)
e −

∑

p D(SMN)
p −

∑

v
E (SMN)

v
−

∑

c F (SMN)
c . The Hamiltonian consists of three stacks of Z4 2D toric codes coupled to two Z2 3D toric codes. The 2D toric codes

consist of Z4 qudits on the edges of stacks of 2D square lattices. The operators of the 2D toric codes on the xy, yz, and zx planes will be

colored red, green, and blue. A straight red, green, or blue line denotes a Z4 clock operator Z̃ , while a zigzag line denotes a Z4 shift operator X̃

with the algebra Z̃X̃ = iX̃ Z̃ . When, e.g., two red lines appear on the same edge, this denotes a Z̃2 operator. A conjugate transpose is taken for

operators on edges with arrows that point in the negative x, y, or z direction. The first 3D toric code consists of Z2 qubits on the plaquettes of

the cubic lattice, for which purple and orange plaquettes denote Z2 Pauli σ z and σ x operators, respectively. The second 3D toric code consists

of Z2 qubits on the links of the cubic lattice, which are denoted by dashed back lines; again, straight and zigzag lines denote Pauli τ z and τ x

operators. Thus, there are two Z4 qudits and one Z2 qubit on each edge, and a single Z2 qubit on each plaquette. The Hamiltonian consists of

these 14 different operators, along with their Hermitian conjugates. Above each column of operators are written the name of the corresponding

excitation and the individual Pauli, clock, and shift operators that the operators are composed of.

FIG. 12. After applying the mapping in Eq. (C1), the unitary

depicted above maps the string-membrane-net model in Fig. 11 to

the cage-net Hamiltonian in Fig. 5. The unitary is given by the

composition of a unitary operator at each edge (left) and plaquette

(right). These smaller unitary operators commute with each other.

The operators on the left are products of four controlled-X operators

[one for each line, defined in Eq. (C3)] that are controlled by the 2D

toric code qudit of the appropriate color at the colored dot, and act on

the 3D toric code qudit at the end of the black arrow. The operators

on the right are controlled-X operators that are controlled by the 3D

toric code qudit at the center of the plaquette, and act on the 2D toric

code qudit of the appropriate color at the end of the arrow.

The replacement in Eq. (C1) and unitary in Fig. 12 map the

operators of the string-membrane-net Hamiltonian (Fig. 11) to

those of the cage-net Hamiltonian (Fig. 5) as follows:

A(SMN)
e → τ z

e , C(SMN)
e → C(cage)

e , E (SMN)
v

→ E (cage)
p ,

B(SMN)
p → σ x

p , D(SMN)
p → D(cage)

p , F (SMN)
v

→ F (cage)
v

.

(C4)

The A(SMN)
e and B(SMN)

p operators are mapped to τ z
e and σ x

p .

This sets τ z
e = σ x

p = 1 in the ground state of the new Hamil-

tonian. We also had to add two new terms to the Hamiltonian

in Eq. (C2). These new terms are mapped to

(

τ̃ z
e

)2
→

(

τ̃ z
e

)2
A(cage)

e ,
(

σ̃ x
p

)2
→

(

σ̃ x
p

)2
B(cage)

p . (C5)

But, since τ z
e = σ x

p = 1 in the ground state, the new terms are

effectively mapped to A
(cage)
e and B

(cage)
p . Therefore, the string-

membrane-net Hamiltonian (Fig. 11) and cage-net Hamilto-

nian (Fig. 5) both have the same ground state (up to trivial

decoupled degrees of freedom).

2. Field theory

It is also possible to describe this model using a foliated

field theory. Foliated field theories, which were introduced in
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Ref. [42], are field theories that explicitly couple to a foliation

structure via foliation fields ek
μ.5

The Lagrangian is

L =

2D Z4 TC layers
︷ ︸︸ ︷

4

2π

∑

k

ek ∧ Bk ∧ dAk +

2× 3D Z2 TC
︷ ︸︸ ︷

2

2π
b ∧ da +

2

2π
b′ ∧ da′

−
4

2π

∑

k

ek ∧ (b ∧ Ak + a′ ∧ Bk )

︸ ︷︷ ︸

coupling

, (C6)

where Ak , Bk , a, and b′ are 1-form gauge fields, b and a′ are

2-form gauge fields, ek are static foliation fields that describe

the geometry of the foliations, and k = 1, 2, . . . , n f indexes

the different foliation layers. The n f = 3 foliation structure of

a cubic lattice is described by ek
μ = λδk

μ where μ = 0, 1, 2, 3

indexes the space-time indices and λ is the density of foliation

layers.

The Lagrangian has the following gauge invariance:

Ak → Ak + dζ k + α′ + μkek, Bk → Bk + dχ k + β + νkek,

a → a + dα −
∑

k

2ζ kek, b → b + dβ, (C7)

a′ → a′ + dα′, b′ → b′ + dβ ′ −
∑

k

2χ kek,

where ζ k , χ k , μk νk , α, and β ′ are arbitrary scalars and β

and α′ are arbitrary 1-forms. The Lagrangian is also self-dual

under

Ak ↔ Bk, a ↔ b′, a′ ↔ b. (C8)

This self-duality interchanges the two 3D toric codes and

interchanges the 2D toric code charge and flux sectors.

3. 1-foliated model

In this Appendix, we write a CSS code lattice model

that can describe the twisted 1-foliated K-matrix model in

Eq. (20). One option would be to consider the 1-foliated

version of the string-membrane-net model in Fig. 11. This

appears to work, but the second toric code does not have

5The X-cube field theory in Ref. [78] was written as a foliated field

theory in Ref. [42].

FIG. 13. A depiction of the terms in the string-membrane-net

Hamiltonian realization of the 1-foliated K matrix in Eq. (20). The

Hamiltonian consists of a single stack of Z4 toric codes coupled to

a Z2 3D toric code. The 2D toric codes consist of Z4 qudits on the

edges of a stack of 2D square lattices. The pictoral notation is similar

to that of Fig. 11. A straight red line denotes a Z4 clock operator Z̃ ,

while a zigzag line denotes a Z4 shift operator X̃ with the algebra

Z̃X̃ = iX̃ Z̃ . The 3D toric code consists of Z2 qubits on the plaquettes

of the cubic lattice, for which purple and orange operators denote Z2

Pauli σ z and σ x operators, respectively. Thus, there are two Z4 qudits

on each x-axis or y-axis edge, no qudits on the z-axis edges, and a

single Z2 qubit on each plaquette.

any effect in this 1-foliated case. Thus, we will consider the

simpler case of a stack of 2D Z4 toric codes coupled to a 3D

Z2 toric code. This model is a special case of the generalized

string-membrane-net model in Appendix A of Ref. [42]. The

model is summarized in Fig. 13.

The anyon labels in Eq. (20) have the following correspon-

dence with the excitations of the 1-foliated string-membrane

net:

K-matrix anyon String-membrane net

e2z+1 Pair of 2D fluxes

m2z+1 2D charge

e2z+2 3D charge

m2z+2 2D fluxes-3D flux-2D flux

The anyon m2z+2 is equivalent to a pair of 2D fluxes on

neighboring layers where the fluxes are attached to two ends

of a 3D flux string. It is straightforward to check that the above

anyons have the same braiding statistics as those defined in the

K−1 matrix in Eq. (21). Therefore, the lattice model in Fig. 13

is a lattice realization of the K matrix in Eq. (20).
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