COMPOSITIO MATHEMATICA

Twisted gamma filtration of a linear algebraic group

Kirill Zainoulline

Compositio Math. 148 (2012), 1645-1654.
doi:10.1112/S0010437X11007494

LONDON
MATHEMATICAL
SOCIETY

Twisted gamma filtration of a linear algebraic group

Kirill Zainoulline

Abstract

In the present paper we introduce and study the twisted γ-filtration on $K_{0}\left(G_{s}\right)$, where G_{s} is a split simple linear algebraic group over a field k of characteristic prime to the order of the center of G_{s}. We apply this filtration to construct nontrivial torsion elements in γ-rings of twisted flag varieties.

1. Introduction

Let X be a smooth projective variety over a field k. Consider the Grothendieck γ-filtration on $K_{0}(X)$. It is given by subgroups (see [SGA6, §2.3] and [Kar98, §2])

$$
\gamma^{i} K_{0}(X)=\left\langle c_{n_{1}}\left(b_{1}\right) \cdots c_{n_{m}}\left(b_{m}\right) \mid n_{1}+\cdots+n_{m} \geqslant i, b_{1}, \ldots, b_{m} \in K_{0}(X)\right\rangle, \quad i \geqslant 0
$$

generated by products of characteristic classes in K_{0}. Let $\gamma^{i}(X)$ be the i th subsequent quotient and let $\gamma^{*}(X)=\bigoplus_{i \geqslant 0} \gamma^{i}(X)$ be the associated graded ring called the γ-ring of X.

The ring $\gamma^{*}(X)$ was invented by Grothendieck to approximate the topological filtration on K_{0} and, hence, the Chow ring $\mathrm{CH}^{*}(X)$ of algebraic cycles modulo rational equivalence. Indeed, by the Riemann-Roch theorem (see [SGA6, §2]) the i th Chern class c_{i} induces an isomorphism with \mathbb{Q}-coefficients, that is, $c_{i}: \gamma^{i}(X ; \mathbb{Q}) \xlongequal{\leftrightharpoons} \mathrm{CH}^{i}(X ; \mathbb{Q})$. Moreover, in some cases the ring $\gamma^{*}(X)$ can be used to compute $\mathrm{CH}^{*}(X)$, for example $\gamma^{1}(X)=\mathrm{CH}^{1}(X)$, and there is a surjection $\gamma^{2}(X) \rightarrow \mathrm{CH}^{2}(X)$ (see [Ful98, Example 15.3.6]).

In the present paper, we provide a uniform lower bound for the torsion part of $\gamma^{*}(X)$, where $X=\xi \mathfrak{B}_{s}$ is a twisted form of the variety of Borel subgroups \mathfrak{B}_{s} of a split simple linear algebraic group G_{s} by means of a G_{s}-torsor ξ. Note that the groups $\gamma^{2}(X)$ and $\mathrm{CH}^{2}(X)$ had been studied for $G_{s}=P G L_{n}$ in [Kar98] and for strongly inner forms in [GZ10]. In particular, it was shown in [GZ10, $\S \S 3$ and 7] that in the strongly inner case the torsion part of $\gamma^{2}(X)$ determines the Rost invariant.

Our main tool is the twisted γ-filtration on $K_{0}\left(G_{s}\right)$, where G_{s} is a split simple linear algebraic group. Roughly speaking, it is defined to be the image (see Definition 4.3) of the γ-filtration on K_{0} of the twisted form X under the composition $K_{0}(X) \rightarrow K_{0}\left(\mathfrak{B}_{s}\right) \rightarrow K_{0}\left(G_{s}\right)$, where the first map is given by the restriction and the second map is induced by taking the quotient. The associated graded ring γ_{ξ}^{*} of the twisted γ-filtration has the following properties.
(i) It can be explicitly computed (see Theorem 4.5). Observe that $\gamma_{\xi}^{0}=\mathbb{Z}, \gamma_{\xi}^{1}=0$ and γ_{ξ}^{i} is torsion and finitely generated for $i>1$.

[^0]
K. Zainoulline

(ii) There is a surjective ring homomorphism $\gamma^{*}(X) \rightarrow \gamma_{\xi}^{*}$. Hence, γ_{ξ}^{*} provides a uniform lower bound for the torsion part of the γ-ring of X.
(iii) The assignment $\xi \mapsto \gamma_{\xi}^{*}$ respects the base change and, therefore, can be viewed as an invariant of a torsor ξ.

In the last section, we use these properties to construct nontrivial torsion elements in $\gamma^{2}(X)$ for some twisted flag varieties X (see Examples 5.2 and 5.4). In particular, we establish the connection between the indexes of the Tits algebras of ξ and the order of the special cycle $\theta \in \gamma^{2}(X)$ constructed in [GZ10].

2. Preliminaries

In the present section, we recall several basic facts concerning linear algebraic groups, characters and the Grothendieck K_{0} (see [KMRT98, § 24] and [GZ10, §1B and §6]).

Let G_{s} be a split simple linear algebraic group of rank n over a field k. We assume that the characteristic of k is prime to the order of the center of G_{s}. We fix a split maximal torus T and a Borel subgroup B such that $T \subset B \subset G_{s}$.

Let Λ_{r} and Λ be the root and the weight lattices of the root system of G_{s} with respect to $T \subset B$. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of simple roots (a basis of Λ_{r}) and let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be the respective set of fundamental weights (a basis of Λ), that is, $\alpha_{i}^{\vee}\left(\omega_{j}\right)=\delta_{i j}$. The group of characters T^{*} of T is an intermediate lattice $\Lambda_{r} \subset T^{*} \subset \Lambda$ that determines the isogeny class of G_{s}. If $T^{*}=\Lambda$, then the group G_{s} is simply connected and if $T^{*}=\Lambda_{r}$ it is adjoint.

Let $\mathbb{Z}\left[T^{*}\right]$ be the integral group ring of T^{*}. Its elements are finite linear combinations $\sum_{i} a_{i} e^{\lambda_{i}}$, $\lambda_{i} \in T^{*}$. Let \mathfrak{B}_{s} denote the variety of Borel subgroups G_{s} / B of G_{s}. Consider the characteristic map for K_{0} (see [Dem74, § 2.8])

$$
\mathfrak{c}: \mathbb{Z}\left[T^{*}\right] \rightarrow K_{0}\left(\mathfrak{B}_{s}\right)
$$

defined by sending $e^{\lambda}, \lambda \in T^{*}$, to the class of the associated line bundle $[\mathcal{L}(\lambda)]$. Observe that the ring $K_{0}\left(\mathfrak{B}_{s}\right)$ does not depend on the isogeny class of G_{s} while the group of characters T^{*} and, hence, the image of \mathfrak{c} does.

Since $K_{0}\left(\mathfrak{B}_{s}\right)$ is generated by the classes $\left[\mathcal{L}\left(\omega_{i}\right)\right], i=1, \ldots, n$, the characteristic map \mathfrak{c} is surjective if G_{s} is simply connected. If G_{s} is adjoint, then the image of \mathfrak{c} is generated by the classes $\left[\mathcal{L}\left(\alpha_{i}\right)\right]$, where

$$
\alpha_{i}=\sum_{j} c_{i j} \omega_{j} \quad \text { and therefore } \quad \mathcal{L}\left(\alpha_{i}\right)=\otimes_{j} \mathcal{L}\left(\omega_{j}\right)^{\otimes c_{i j}}
$$

and $c_{i j}=\alpha_{i}^{\vee}\left(\alpha_{j}\right)$ are the coefficients of the Cartan matrix of G_{s}.
The Weyl group W of G_{s} acts on weights via simple reflections $s_{\alpha_{i}}$ as

$$
s_{\alpha_{i}}(\lambda)=\lambda-\alpha_{i}^{\vee}(\lambda) \alpha_{i}, \quad \lambda \in \Lambda .
$$

For each element $w \in W$, we define (cf. [Ste75, § 2.1]) the weight $\rho_{w} \in \Lambda$ as

$$
\rho_{w}=\sum_{\left\{i \in 1, \ldots, n \mid w^{-1}\left(\alpha_{i}\right)<0\right\}} w^{-1}\left(\omega_{i}\right) .
$$

In particular, for a simple reflection $w=s_{\alpha_{j}}$, we have

$$
\rho_{w}=\sum_{\left\{i \in 1, \ldots, n \mid s_{\alpha_{j}}\left(\alpha_{i}\right)<0\right\}} s_{\alpha_{j}}\left(\omega_{i}\right)=s_{\alpha_{j}}\left(\omega_{j}\right)=\omega_{j}-\alpha_{j} .
$$

Twisted gamma filtration of a linear algebraic group

Observe that the quotient Λ / Λ_{r} coincides with the group of characters of the center of the simply connected cover of G_{s}. Since W acts trivially on Λ / Λ_{r}, we have

$$
\bar{\rho}_{w}=\sum_{\left\{i \in 1, \ldots, n \mid w^{-1}\left(\alpha_{i}\right)<0\right\}} \bar{\omega}_{i} \in \Lambda / T^{*},
$$

where $\bar{\rho}_{w}$ denotes the class of $\rho_{w} \in \Lambda$ modulo T^{*}. In particular, $\bar{\omega}_{i}=\bar{\rho}_{s_{\alpha_{i}}}$.
Let $\mathbb{Z}[\Lambda]^{W}$ denote the subring of W-invariant elements. Then the integral group ring $\mathbb{Z}[\Lambda]$ is a free $\mathbb{Z}[\Lambda]^{W}$-module with the basis $\left\{e^{\rho_{w}}\right\}_{w \in W}$ (see [Ste75, Theorem 2.2]). Now let $\epsilon: \mathbb{Z}[\Lambda] \rightarrow$ $\mathbb{Z}, e^{\lambda} \mapsto 1$ be the augmentation map. By the Chevalley theorem, the kernel of the surjection \mathfrak{c} is generated by elements $x \in \mathbb{Z}[\Lambda]^{W}$ such that $\epsilon(x)=0$. Hence, there is an isomorphism

$$
\mathbb{Z}[\Lambda] \otimes_{\mathbb{Z}[\Lambda]^{W}} \mathbb{Z} \simeq \mathbb{Z}[\Lambda] / \operatorname{ker}(\mathfrak{c}) \simeq K_{0}\left(\mathfrak{B}_{s}\right)
$$

So, the elements

$$
\left\{g_{w}=\mathfrak{c}\left(e^{\rho_{w}}\right)=\left[\mathcal{L}\left(\rho_{w}\right)\right]\right\}_{w \in W}
$$

form a \mathbb{Z}-basis of $K_{0}\left(\mathfrak{B}_{s}\right)$ called the Steinberg basis.
Following [Tit71], we associate with each $\chi \in \Lambda / T^{*}$ and each cocycle $\xi \in Z^{1}\left(k, G_{s}\right)$ the central simple algebra $A_{\chi, \xi}$ over k called the Tits algebra. This defines a group homomorphism

$$
\beta_{\xi}: \Lambda / T^{*} \rightarrow \operatorname{Br}(k) \quad \text { with } \beta_{\xi}(\chi)=\left[A_{\chi, \xi}\right] .
$$

Let $\mathfrak{B}=\xi \mathfrak{B}_{s}$ denote the twisted form of the variety of Borel subgroups \mathfrak{B}_{s} by means of ξ. Consider the restriction map on K_{0} over the separable closure $k_{\text {sep }}$:

$$
\text { res : } K_{0}(\mathfrak{B}) \rightarrow K_{0}\left(\mathfrak{B} \times_{k} k_{\mathrm{sep}}\right)=K_{0}\left(\mathfrak{B}_{s}\right),
$$

where we identify $K_{0}\left(\mathfrak{B} \times_{k} k_{\text {sep }}\right)$ with $K_{0}\left(\mathfrak{B}_{s}\right)$. By [Pan94, Theorem 4.2], the image of the restriction can be identified with the sublattice

$$
\left\langle\imath_{w} \cdot g_{w}\right\rangle_{w \in W}
$$

where $g_{w}=\left[\mathcal{L}\left(\rho_{w}\right)\right]$ is an element of the Steinberg basis and $\imath_{w}=\operatorname{ind}\left(\beta_{\xi}\left(\bar{\rho}_{w}\right)\right)$ is the index of the respective Tits algebra. Observe that if G_{s} is simply connected, then all indexes \imath_{w} are trivial and the restriction map becomes an isomorphism.

3. The K_{0} of a split simple (adjoint) group

In the present section, we provide an explicit description of the ring $K_{0}\left(G_{s}\right)$ in terms of generators and relations for every simple split linear algebraic group G_{s}.
Definition 3.1. Let $\mathfrak{c}: \mathbb{Z}[\Lambda] \rightarrow K_{0}\left(\mathfrak{B}_{s}\right)$ be the characteristic map for the simply connected cover of G_{s}. We define the ring \mathfrak{G}_{s} to be the quotient

$$
\mathfrak{G}_{s}:=\mathbb{Z}\left[\Lambda / T^{*}\right] / \overline{(\operatorname{ker} \mathfrak{c})}
$$

and the surjective ring homomorphism q to be the composite

$$
q: K_{0}\left(\mathfrak{B}_{s}\right) \xrightarrow{\mathfrak{c}^{-1}} \mathbb{Z}[\Lambda] /(\operatorname{ker} \mathfrak{c}) \longrightarrow \mathbb{Z}\left[\Lambda / T^{*}\right] / \overline{(\operatorname{ker} c)}=\mathfrak{G}_{s} .
$$

Observe that if G_{s} is simply connected, then $\mathfrak{G}_{s}=\mathbb{Z}$.

K. Zainoulline

Remark 3.2. By [Mer05, Corollary 33] applied to $X=G_{s}$ and to the simply connected cover $G=\hat{G}_{s}$ of G_{s}, there is an isomorphism

$$
K_{0}\left(G_{s}\right) \simeq \mathbb{Z} \otimes_{R\left(\hat{G}_{s}\right)} K_{0}\left(\hat{G}_{s}, G_{s}\right)
$$

where $R\left(\hat{G}_{s}\right) \simeq \mathbb{Z}[\Lambda]^{W}$ is the representation ring. By [Mer05, Corollary 5] applied to $G=\hat{G}_{s}$, $X=\operatorname{Spec} k$ and $G / H=G_{s}$, there is an isomorphism

$$
K_{0}\left(\hat{G}_{s}, G_{s}\right) \simeq R(H)
$$

where $R(H) \simeq \mathbb{Z}\left[\Lambda / T^{*}\right]$ is the representation ring. Therefore,

$$
K_{0}\left(G_{s}\right) \simeq \mathbb{Z} \otimes_{\mathbb{Z}[\Lambda]^{W}} \mathbb{Z}\left[\Lambda / T^{*}\right] \simeq \mathfrak{G}_{s} .
$$

Lemma 3.3. The ideal $\overline{(\operatorname{ker} \mathfrak{c})} \subset \mathbb{Z}\left[\Lambda / T^{*}\right]$ is generated by the elements

$$
d_{i}\left(1-e^{\bar{\omega}_{i}}\right), \quad i=1, \ldots, n,
$$

where d_{i} is the number of elements in the W-orbit of the fundamental weight ω_{i}.
Proof. By the Chevalley theorem, the subring of invariants $\mathbb{Z}[\Lambda]^{W}$ can be identified with the polynomial ring $\mathbb{Z}\left[\rho_{1}, \ldots, \rho_{n}\right]$, where

$$
\rho_{i}=\sum_{\lambda \in W\left(\omega_{i}\right)} e^{\lambda},
$$

where $W\left(\omega_{i}\right)$ denotes the W-orbit of the fundamental weight ω_{i}. Since $d_{i}=\epsilon\left(\rho_{i}\right)$, we have ker $\mathfrak{c}=\left(d_{1}-\rho_{1}, \ldots, d_{n}-\rho_{n}\right)$. To finish the proof, note that $\overline{\left(d_{i}-\rho_{i}\right)}=d_{i}\left(1-e^{\bar{\omega}_{i}}\right)$.

Remark 3.4. Observe that by definition and Lemma 3.3, we have $\mathfrak{G}_{s} \otimes \mathbb{Q} \simeq \mathbb{Q}$.
In the following examples, we compute the ring $\mathfrak{G}_{s} \simeq K_{0}\left(G_{s}\right)$ for every simple split linear algebraic group G_{s}. We refer to [KMRT98, §24] for the description of Λ / T^{*}. Note that in most of the examples provided below, ω_{i} corresponds to a minuscule representation; in this case d_{i} is the dimension of the respective fundamental representation that can be found in [Bou05, ch. 8, Table 2].

Λ / T^{*}	$G_{s}, m \geqslant 1$	Example
$\mathbb{Z} / m \mathbb{Z}, m \geqslant 2$	$S L_{n+1} / \mu_{m}$	(3.5)
$\mathbb{Z} / 2 \mathbb{Z}$	$O_{m+4}^{+}, P S p_{2 m+2}, \operatorname{HSpin}_{4 m+4}, E_{7}^{\text {ad }}$	(3.6)
$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$	$\mathrm{PGO}_{4 m+4}^{+}$	(3.7)
$\mathbb{Z} / 3 \mathbb{Z}$	$E_{6}^{\text {ad }}$	(3.8)
$\mathbb{Z} / 4 \mathbb{Z}$	$\mathrm{PGO}_{4 m+2}^{+}$	(3.9)

Example 3.5. Consider the case $G_{s}=S L_{n+1} / \mu_{m}, m \geqslant 2$. The group G_{s} has type A_{n} and $\Lambda / T^{*}=\langle\sigma\rangle$ is cyclic of order m. The quotient map $\Lambda / \Lambda_{r} \rightarrow \Lambda / T^{*}$ sends $\bar{\omega}_{i} \in \Lambda / \Lambda_{r}, i=1, \ldots, n$, to $(i \bmod m) \sigma \in \Lambda / T^{*}$. By Definition 3.1 and Lemma 3.3, we have

$$
\mathfrak{G}_{s} \simeq \mathbb{Z}[y] /\left(1-(1-y)^{m}, a_{1} y, \ldots, a_{m-1} y^{m-1}\right)
$$

where $y=\left(1-e^{\sigma}\right)$ and $a_{j}=\operatorname{gcd}\left\{\left.\binom{n+1}{i} \right\rvert\, i \equiv j \bmod m, i=1, \ldots, n\right\}$. In particular, for $G_{s}=$ $S L_{p} / \mu_{p}=P G L_{p}$, where p is a prime, we obtain

$$
\left.\mathfrak{G}_{s} \simeq \mathbb{Z}[y] /\binom{p}{1} y,\binom{p}{2} y^{2}, \ldots,\binom{p}{p-1} y^{p-1}, y^{p}\right) .
$$

Twisted gamma filtration of a linear algebraic group

Example 3.6. Assume that $\Lambda / T^{*}=\langle\sigma\rangle$ has order two. Then

$$
\mathfrak{G}_{s} \simeq \mathbb{Z}[y] /\left(y^{2}-2 y, d y\right),
$$

where $y=\left(1-e^{\sigma}\right)$ and d denotes the greatest common divisor (g.c.d.) of the d_{i} corresponding to the ω_{i} with $\bar{\omega}_{i}=\sigma$. The integer d can be determined as follows.
B_{n}. We have $\Lambda / \Lambda_{r}=\left\{0, \bar{\omega}_{n}\right\} \simeq \mathbb{Z} / 2 \mathbb{Z}$, which corresponds to the adjoint group $G_{s}=O_{2 n+1}^{+}$. Since $\bar{\omega}_{i}=0$ for each $i \neq n$, we have $d=d_{n}=2^{n}$.
C_{n}. We have $\Lambda / \Lambda_{r}=\left\{0, \sigma=\bar{\omega}_{1}=\bar{\omega}_{3}=\cdots\right\} \simeq \mathbb{Z} / 2 \mathbb{Z}$, that is, $G_{s}=P S p_{2 n}$. Since $\bar{\omega}_{i}=0$ for even i, we have $d=$ g.c.d. $\left(d_{1}, d_{3}, \ldots\right)$.
D_{n}. If n is odd, then $\Lambda / \Lambda_{r}=\left\{0, \bar{\omega}_{n-1}, \bar{\omega}_{1}, \bar{\omega}_{n}\right\} \simeq \mathbb{Z} / 4 \mathbb{Z}$, where $\bar{\omega}_{1}=2 \bar{\omega}_{n-1}=2 \bar{\omega}_{n}$. Therefore, $\Lambda / T^{*} \simeq \mathbb{Z} / 2 \mathbb{Z}$ if it is a quotient of Λ / Λ_{r} modulo the subgroup $\left\{0, \bar{\omega}_{1}\right\}$. In this case, $\Lambda / T^{*}=$ $\left\{0, \sigma=\bar{\omega}_{n-1}=\bar{\omega}_{n}\right\}$, which corresponds to the special orthogonal group $G_{s}=O_{2 n}^{+}$. Since $\bar{\omega}_{s}=s \bar{\omega}_{1}$ for $2 \leqslant s \leqslant n-2$ and $\bar{\omega}_{1}=0$ in Λ / T^{*}, we have $d=$ g.c.d. $\left(d_{n-1}, d_{n}\right)=2^{n-1}$.

If n is even, then $\Lambda / \Lambda_{r}=\left\{0, \bar{\omega}_{n-1}\right\} \oplus\left\{0, \bar{\omega}_{n}\right\} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, where $\bar{\omega}_{1}=\bar{\omega}_{n-1}+\bar{\omega}_{n}$. In this case, we have two cases for Λ / T^{*}.
(i) It is the quotient of Λ / Λ_{r} modulo the diagonal subgroup $\left\{0, \bar{\omega}_{n-1}+\bar{\omega}_{n}\right\}$. Then $\Lambda / T^{*}=$ $\left\{0, \sigma=\bar{\omega}_{n-1}=\bar{\omega}_{n}\right\}, G_{s}=O_{2 n}^{+}$and d is the same as in the odd case, that is, $d=2^{n-1}$.
(ii) It is the quotient modulo one of the factors, for example $\Lambda / T^{*}=\left\{0, \sigma=\bar{\omega}_{n-1}\right\}$, where $\bar{\omega}_{n}=0$. Then $G_{s}=\operatorname{HSpin}_{2 n}, \bar{\omega}_{1}=\bar{\omega}_{3}=\cdots=\bar{\omega}_{n-1}$ and $\bar{\omega}_{i}=0$ if i is even. Therefore, $d=$ g.c.d. $\left(d_{1}, d_{3}, \ldots, d_{n-1}\right)=2^{v_{2}(n)+1}$, where $v_{2}(n)$ denotes the 2 -adic valuation of n.
E_{7}. We have $\Lambda / \Lambda_{r}=\left\{0, \sigma=\bar{\omega}_{7}=\bar{\omega}_{5}=\bar{\omega}_{2}\right\} \simeq \mathbb{Z} / 2 \mathbb{Z}$ with $\bar{\omega}_{1}=\bar{\omega}_{3}=\bar{\omega}_{4}=\bar{\omega}_{6}=0$. Therefore, $d=$ g.c.d. $\left(d_{7}, d_{5}, d_{2}\right)=8$.

Example 3.7. Assume that $\Lambda / T^{*}=\left\langle\sigma_{1}\right\rangle \oplus\left\langle\sigma_{2}\right\rangle$, where σ_{1} and σ_{2} are of order two. In this case, $G_{s}=\mathrm{PGO}_{2 n}^{+}$is an adjoint group ($T^{*}=\Lambda_{r}$) of type D_{n} with n even. We have $\sigma_{1}=\bar{\omega}_{n-1}$ and $\sigma_{2}=\bar{\omega}_{n}, \bar{\omega}_{s}=s \bar{\omega}_{1}, 2 \leqslant s \leqslant n-2,2 \bar{\omega}_{1}=0$ and $\bar{\omega}_{1}=\bar{\omega}_{n-1}+\bar{\omega}_{n}$. Then

$$
\mathfrak{G}_{s} \simeq \mathbb{Z}\left[y_{1}, y_{2}\right] /\left(y_{1}^{2}-2 y_{1}, y_{2}^{2}-2 y_{2}, a_{1} y_{1}, a_{2} y_{2}, a\left(y_{1}+y_{2}-y_{1} y_{2}\right)\right),
$$

where $y_{1}=\left(1-e^{\sigma_{1}}\right)$ and $y_{2}=\left(1-e^{\sigma_{2}}\right) ; a_{1}$ (respectively $\left.a_{2}\right)$ is the greatest common divisor of the d_{i} with $\bar{\omega}_{i}=\bar{\omega}_{n-1}$ (respectively $\bar{\omega}_{i}=\bar{\omega}_{n}$), that is, $a_{1}=a_{2}=2^{n-1}$; and $a=\operatorname{gcd}\left(d_{1}, d_{3}, \ldots, d_{n-3}\right)$. In particular, for $G_{s}=\mathrm{PGO}_{8}^{+}$, we obtain

$$
\mathfrak{G}_{s} \simeq \mathbb{Z}\left[y_{1}, y_{2}\right] /\left(y_{1}^{2}-2 y_{1}, y_{2}^{2}-2 y_{2}, 8 y_{1}, 8 y_{2}\right)
$$

Example 3.8. Assume that $\Lambda / T^{*}=\langle\sigma\rangle$ has order three. Then

$$
\mathfrak{G}_{s} \simeq \mathbb{Z}[y] /\left(y^{3}-3 y^{2}+3 y, a_{1} y, a_{2} y^{2}\right),
$$

where $y=\left(1-e^{\sigma}\right)$ and a_{1} (respectively a_{2}) is the greatest common divisor of the d_{i} with $\bar{\omega}_{i}=\sigma$ (respectively $\bar{\omega}_{i}=2 \sigma$). For the adjoint group of type E_{6}, we have $\Lambda / \Lambda_{r}=\left\{0, \sigma=\bar{\omega}_{1}=\bar{\omega}_{5}, 2 \sigma=\right.$ $\left.\bar{\omega}_{3}=\bar{\omega}_{6}\right\}$ with $\bar{\omega}_{2}=\bar{\omega}_{4}=0$. Therefore, $a_{1}=a_{2}=27$.

Example 3.9. Assume that $\Lambda / T^{*}=\langle\sigma\rangle$ has order four. Then

$$
\mathfrak{G}_{s} \simeq \mathbb{Z}[y] /\left(y^{4}-4 y^{3}+6 y^{2}-4 y, a_{1} y, a_{2} y^{2}, a_{3} y^{3}\right),
$$

K. Zainoulline

where $y=\left(1-e^{\sigma}\right)$. For the group $\mathrm{PGO}_{2 n}^{+}$where n is odd, we have $\sigma=\bar{\omega}_{n-1}, 2 \sigma=\bar{\omega}_{1}$ and $3 \sigma=\bar{\omega}_{n}$. Therefore, $a_{1}=a_{3}=2^{n-1}$ and $a_{2}=$ g.c.d. $\left(d_{1}, d_{3}, \ldots, d_{n-2}\right)$.

4. The twisted γ-filtration

In the present section, we introduce and study the twisted γ-filtration.
Let $\gamma=\operatorname{ker} \epsilon$ denote the augmentation ideal in $\mathbb{Z}[\Lambda]$. It is generated by the differences

$$
\left\langle\left(1-e^{-\lambda}\right), \lambda \in \Lambda\right\rangle .
$$

Consider the γ-adic filtration on $\mathbb{Z}[\Lambda]$:

$$
\mathbb{Z}[\Lambda]=\gamma^{0} \supseteq \gamma \supseteq \gamma^{2} \supseteq \cdots .
$$

The i th power γ^{i} is generated by products of at least i differences.
Definition 4.1. We define the filtration on $K_{0}\left(\mathfrak{B}_{s}\right)$ (respectively on \mathfrak{G}_{s}) to be the image of the γ-adic filtration on $\mathbb{Z}[\Lambda]$ via \mathfrak{c} (respectively via q), that is,

$$
\gamma^{i} K_{0}\left(\mathfrak{B}_{s}\right):=\mathfrak{c}\left(\gamma^{i}\right) \quad \text { and } \quad \gamma^{i} \mathfrak{G}_{s}:=q\left(\gamma^{i} K_{0}\left(\mathfrak{B}_{s}\right)\right), \quad i \geqslant 0 .
$$

So, we have a commutative diagram of surjective group homomorphisms.

Lemma 4.2. The γ-filtration on $K_{0}\left(\mathfrak{B}_{s}\right)$ coincides with the filtration introduced in Definition 4.1.

Proof. Since $K_{0}\left(\mathfrak{B}_{s}\right)$ is generated by the classes of line bundles,

$$
\gamma^{i} K_{0}\left(\mathfrak{B}_{s}\right)=\left\langle c_{1}\left(\left[\mathcal{L}_{1}\right]\right) \cdots c_{1}\left(\left[\mathcal{L}_{m}\right]\right) \mid m \geqslant i, \mathcal{L}_{j} \in K_{0}\left(\mathfrak{B}_{s}\right)\right\rangle
$$

where c_{1} is the first characteristic class in K_{0}. Moreover, each line bundle \mathcal{L} is the associated bundle $\mathcal{L}=\mathcal{L}(\lambda)$ for some character $\lambda \in \Lambda$. Therefore, $c_{1}([\mathcal{L}])=1-\left[\mathcal{L}^{\vee}\right]=\mathfrak{c}\left(1-e^{-\lambda}\right.$) (see [Dem74, § 2.8]).

Definition 4.3. Given a $G_{s^{\prime}}$-torsor $\xi \in H^{1}\left(k, G_{s}\right)$ and the respective twisted form $\mathfrak{B}=\xi \mathfrak{B}_{s}$, we define the twisted filtration on \mathfrak{G}_{s} to be the image of the γ-filtration on $K_{0}(\mathfrak{B})$ via the composite res $\circ q$, that is,

$$
\gamma_{\xi}^{i} \mathfrak{G}_{s}:=q\left(\operatorname{res}\left(\gamma^{i} K_{0}(\mathfrak{B})\right)\right), \quad i \geqslant 0 .
$$

Let $\gamma_{\xi}^{i / i+1} \mathfrak{G}_{s}=\gamma_{\xi}^{i} \mathfrak{G}_{s} / \gamma_{\xi}^{i+1} \mathfrak{G}_{s}$ denote the i th subsequent quotient. The associated graded ring $\bigoplus_{i \geqslant 0} \gamma_{\xi}^{i / i+1} \mathfrak{G}_{s}$ will be called the γ-invariant of the torsor ξ and will be denoted simply as γ_{ξ}^{*}.

Remark 4.4. Note that the Chern classes commute with restrictions; therefore, the restriction map res: $\gamma^{i} K_{0}(\mathfrak{B}) \rightarrow \gamma^{i} K_{0}\left(\mathfrak{B}_{s}\right)$ is well defined. By definition, there is a surjective ring homomorphism

$$
\gamma^{*}(\mathfrak{B}) \rightarrow \gamma_{\xi}^{*} .
$$

Twisted gamma filtration of a linear algebraic group

Theorem 4.5. The twisted filtration $\gamma_{\xi}^{i} \mathfrak{G}_{s}$ can be computed as follows:

$$
\gamma_{\xi}^{i} \mathfrak{G}_{s}=\left\langle\left.\prod_{j=1}^{m}\binom{\operatorname{ind}\left(\beta_{\xi}\left(\bar{\rho}_{w_{j}}\right)\right)}{n_{j}}\left(1-e^{\bar{\rho}_{w_{j}}}\right)^{n_{j}} \right\rvert\, n_{1}+\cdots+n_{m} \geqslant i, w_{j} \in W\right\rangle .
$$

Proof. Since the characteristic classes commute with restrictions, the image of the restriction res : $\gamma^{i} K_{0}(\mathfrak{B}) \rightarrow \gamma^{i} K_{0}\left(\mathfrak{B}_{s}\right)$ is generated by the products

$$
\left\langle c_{n_{1}}\left(\imath_{w_{1}} g_{w_{1}}\right) \cdots c_{n_{m}}\left(\imath_{w_{m}} g_{w_{m}}\right) \mid n_{1}+\cdots+n_{m} \geqslant i, w_{1}, \ldots, w_{m} \in W\right\rangle,
$$

where $\left\{\imath_{w_{j}}\right\}$ are the indexes of the respective Tits algebras. Applying the Whitney formula for the characteristic classes [Ful98, §3.2], we obtain

$$
c_{j}\left(\imath_{w} g_{w}\right)=\binom{\imath_{w}}{j} c_{1}\left(g_{w}\right)^{j} .
$$

Therefore, $q\left(\binom{2 w}{j} c_{1}\left(g_{w}\right)^{j}\right)=\binom{\imath_{w}^{w}}{j}\left(1-e^{-\bar{\rho}_{w}}\right)^{j}$, where $\imath_{w}=\operatorname{ind}\left(\beta_{\xi}\left(\bar{\rho}_{w}\right)\right)$.
Example 4.6. Since $\gamma^{0}(X) \simeq \mathbb{Z}$ and $\gamma^{1}(X)=\operatorname{Pic}(X)$ is torsion free for every smooth projective X, we obtain that $\gamma_{\xi}^{0} \simeq \mathbb{Z}$ and $\gamma_{\xi}^{1}=0$ for any ξ.
Example 4.7 (Strongly inner case). If $\beta_{\xi}=0$, then $\binom{2_{w_{j}}}{n_{j}}=1$ and $\gamma_{\xi}^{i} \mathfrak{G}_{s}=\gamma^{i} \mathfrak{G}_{s}$.
Example 4.8 ($\mathbb{Z} / 2 \mathbb{Z}$-case). As in Example 3.6, assume that $\Lambda / T^{*}=\langle\sigma\rangle$ has order two and $\beta_{\xi} \neq 0$. Then there is only one non-split Tits algebra $A=A_{\sigma, \xi}$ and it has exponent 2. Let $\mathrm{i}_{A}=v_{2}(\operatorname{ind}(A))$ denote the 2 -adic valuation of the index of A. By definition, we have

$$
\gamma_{\xi}^{i} \mathfrak{G}_{s}=\left\langle\left.\binom{ 2^{\mathrm{i}_{A}}}{n_{1}} \cdots\binom{2^{\mathrm{i}_{A}}}{n_{m}} 2^{n_{1}+\cdots+n_{m}-1} y \right\rvert\, n_{1}+\cdots+n_{m} \geqslant i\right\rangle
$$

in $\mathbb{Z}[y] /\left(y^{2}-2 y, d y\right)$, where $y=1-e^{\sigma}$ and d is given in Example 3.6. Observe that modulo the relation $y^{2}=2 y$ these ideals are generated by (for $j \geqslant 1$)

$$
\begin{array}{ll}
\gamma_{\xi}^{2 j-1} \mathfrak{G}_{s}=\gamma_{\xi}^{2 j} \mathfrak{G}_{s}=\left\langle 2^{2 j-1} y\right\rangle & \text { if } \mathrm{i}_{A}=1, \\
\gamma_{\xi}^{4 j-3} \mathfrak{G}_{s}=\gamma_{\xi}^{4 j-2} \mathfrak{G}_{s}=\left\langle 2^{4 j-2} y\right\rangle, \gamma_{\xi}^{4 j-1} \mathfrak{G}_{s}=\gamma_{\xi}^{4 j} \mathfrak{G}_{s}=\left\langle 2^{4 j-1} y\right\rangle & \text { if } \mathrm{i}_{A}=2, \\
\gamma_{\xi}^{1} \mathfrak{G}_{s}=\gamma_{\xi}^{2} \mathfrak{G}_{s}=\left\langle 2^{\mathrm{i}_{A}} y\right\rangle, \gamma_{\xi}^{3} \mathfrak{G}_{s}=\gamma_{\xi}^{4} \mathfrak{G}_{s}=\left\langle 2^{i_{A}+1} y\right\rangle, \gamma_{\xi}^{5} \mathfrak{G}_{s}=\left\langle 2^{\mathrm{i}_{A}+4} y\right\rangle, \ldots & \text { if } \mathrm{i}_{A}>2 .
\end{array}
$$

Taking these generators modulo the relation $d y=0$, we obtain the following formulas for the second quotient γ_{ξ}^{2} :

$$
\begin{aligned}
& \text { if } \mathrm{i}_{A}=1, \text { then } \gamma_{\xi}^{2}= \begin{cases}0 & \text { if } v_{2}(d) \leqslant 1, \\
\mathbb{Z} / 2 \mathbb{Z} & \text { if } v_{2}(d)=2, \\
\mathbb{Z} / 4 \mathbb{Z} & \text { if } v_{2}(d) \geqslant 3,\end{cases} \\
& \text { if } \mathrm{i}_{A}>1 \text {, then } \gamma_{\xi}^{2}= \begin{cases}0 & \text { if } v_{2}(d) \leqslant \mathrm{i}_{A}, \\
\mathbb{Z} / 2 \mathbb{Z} & \text { if } v_{2}(d)>\mathrm{i}_{A} .\end{cases}
\end{aligned}
$$

Example $4.9\left(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}\right.$ case). Following Example 3.7, we assume that $\Lambda / T^{*}=\left\langle\sigma_{1}\right\rangle \oplus\left\langle\sigma_{2}\right\rangle$, where σ_{1}, σ_{2} have order two. This is the case for the adjoint group $\mathrm{PGO}_{2 n}^{+}$where n is even [KMRT98, § 25]. Assume that $n=4$, which corresponds to the group of type D_{4}, that is, PGO_{8}^{+}. Let C^{+}and C^{-}denote the Tits algebras corresponding to the generators $\sigma_{1}=\bar{\omega}_{3}$ and $\sigma_{2}=\bar{\omega}_{4}$.

K. Zainoulline

Let A denote the Tits algebra corresponding to the sum $\sigma_{1}+\sigma_{2}$. (Note that $C^{+} \times C^{-}$is the even part of the Clifford algebra of the algebra with involution A and $[A]=\left[C^{+} \otimes C^{-}\right]$in $\operatorname{Br}(k)$.)

By definition, we have in $\mathbb{Z}\left[y_{1}, y_{2}\right]$ that

$$
\gamma_{\xi}^{i} \mathfrak{G}_{s}=\left\langle\left.\binom{\operatorname{ind} C_{+}}{n_{1}} y_{1}^{n_{1}} \cdot\binom{\operatorname{ind} C_{-}}{n_{2}} y_{2}^{n_{2}} \cdot\binom{\operatorname{ind} A}{n_{3}}\left(y_{1}+y_{2}-y_{1} y_{2}\right)^{n_{3}} \right\rvert\, n_{1}+n_{2}+n_{3} \geqslant i\right\rangle .
$$

Modulo the relations ($y_{1}^{2}-2 y_{1}, y_{2}^{2}-2 y_{2}, 8 y_{1}, 8 y_{2}$), we obtain that

$$
\gamma_{\xi}^{2} \mathfrak{G}_{s} \simeq \frac{\left(\text { ind } C_{+}\right) \mathbb{Z}}{8 \mathbb{Z}} \oplus \frac{\left(\text { ind } C_{-}\right) \mathbb{Z}}{8 \mathbb{Z}} \oplus \frac{(\text { ind } A) \mathbb{Z}}{8 \mathbb{Z}}
$$

5. Torsion in the γ-filtration

In the present section, we show how the twisted γ-filtration can be used to construct nontrivial torsion elements in the γ-ring of the twisted form \mathfrak{B} of a variety of Borel subgroups. For simplicity, we consider only the case of G_{s} (see Examples 3.6 and 4.8) with $\Lambda / T^{*}=\langle\sigma\rangle$ of order two.

Let d denote the greatest common divisor of dimensions of fundamental representations corresponding to σ. Given a G_{s}-torsor $\xi \in H^{1}\left(k, G_{s}\right)$, let i_{A} denote the 2-adic valuation of the index of the Tits algebra $A=A_{\sigma, \xi}$. Let $\mathfrak{B}=\xi_{\mathfrak{B}}$ denote the twisted form of the variety of Borel subgroups of G_{s} by means of ξ. Consider the respective twisted filtration $\gamma_{\xi}^{i} \mathfrak{G}_{s}$ on \mathfrak{G}_{s}.
Proposition 5.1. Assume that $v_{2}(d)>\mathrm{i}_{A} \geqslant 3$. Then, for each $\lambda \in \Lambda$ such that $\bar{\lambda}=\sigma$, there exists a nontrivial torsion element of order two in $\gamma^{2}(\mathfrak{B})$. Moreover, its image in $\gamma_{\xi}^{2}=\mathbb{Z} / 2$ (via q) is nontrivial and in $\gamma^{2}\left(\mathfrak{B}_{s}\right)$ (via res) is trivial.

Proof. The proof of this result was inspired by the proof of [Kar98, Proposition 4.13].
Let $g=[\mathcal{L}(\lambda)]$ denote the class of the associated line bundle. Using the formula for the first Chern class of a tensor product of line bundles for K_{0}, we obtain

$$
c_{1}(g)^{2}=2 c_{1}(g)-c_{1}\left(g^{2}\right) .
$$

Hence,

$$
c_{1}(g)^{4}=\left(2 c_{1}(g)-c_{1}\left(g^{2}\right)\right)^{2}=4 c_{1}(g)^{2}-4 c_{1}(g) c_{1}\left(g^{2}\right)+c_{1}\left(g^{2}\right)^{2} .
$$

Therefore,

$$
\eta=4 c_{1}(g)^{3}-c_{1}(g)^{4}=4 c_{1}(g)^{2}-c_{1}\left(g^{2}\right)^{2} \in \gamma^{3} K_{0}\left(\mathfrak{B}_{s}\right) .
$$

We claim that the class of $2^{i_{A}-3} \eta$ gives the desired torsion element.
Indeed, $c_{1}\left(g^{2}\right)=c_{1}([\mathcal{L}(2 \lambda)])$. Since $2 \lambda \in T^{*}, \quad[\mathcal{L}(2 \lambda)] \in \mathfrak{c}\left(T^{*}\right)$ and, therefore, by [GZ12, Corollary 3.1], $c_{1}\left(g^{2}\right) \in \gamma^{1} K_{0}(\mathfrak{B})$. Moreover, we have $2^{\mathrm{i}_{A}-1} c_{1}(g)^{2}=c_{2}\left(2^{\mathrm{i}_{A}} g\right)$, where $2^{\mathrm{i}_{A}} g \in K_{0}(\mathfrak{B})$. Hence, $2^{\mathbf{i}_{A}-1} c_{1}(g)^{2} \in \gamma^{2} K_{0}(\mathfrak{B})$. Combining these together, we obtain that $2^{\mathbf{i}_{A}-3} \eta \in \gamma^{2} K_{0}(\mathfrak{B})$.

Now, since $2^{\mathrm{i}_{A}-3} \eta \in \gamma^{2} K_{0}(\mathfrak{B})$, its image in $\gamma_{\xi}^{2} \mathfrak{G}_{s}$ can be computed as

$$
q\left(2^{\mathbf{i}_{A}-3} \eta\right)=2^{\mathbf{i}_{A}-3} q(\eta)=2^{\mathbf{i}_{A}-1} q\left(c_{1}(g)^{2}\right)=2^{\mathbf{i}_{A}-1}\left(1-e^{-\sigma}\right)^{2}=2^{\mathbf{i}_{A}} y .
$$

But $q\left(2^{i_{A}-3} \eta\right) \notin \gamma_{\xi}^{3} \mathfrak{G}_{s}=\left\langle 2^{i_{A}+1} y\right\rangle$. Therefore, $2^{i_{A}-3} \eta \notin \gamma^{3} K_{0}(\mathfrak{B})$.
Since $2^{\mathrm{i}_{A}-2} \eta=2^{\mathrm{i}_{A}} c_{1}(g)^{3}+2^{\mathrm{i}_{A}-2} c_{1}(g)^{4}$ is in $\gamma^{3} K_{0}(\mathfrak{B})$, the class of $2^{\mathrm{i}_{A}-3} \eta$ gives the desired torsion element of order two.

Example 5.2. Let $G_{s}=\operatorname{HSpin}_{2 n}$ be a half-spin group of rank $n \geqslant 4$. So, G_{s} is of type D_{n}, where n is even, $\Lambda / T^{*}=\left\langle\sigma=\bar{\omega}_{1}\right\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$ and, according to Example 3.6, we have $d=2^{v_{2}(n)+1}$.

Twisted gamma filtration of a linear algebraic group

Let $\xi \in H^{1}\left(k, G_{s}\right)$ be a nontrivial torsor. Then there is only one Tits algebra $A=A_{\sigma, \xi}$; it has exponent 2 and index $2^{\mathrm{i}_{A}}$ such that $\mathrm{i}_{A} \leqslant v_{2}(n)+1$.

Recall that each such torsor corresponds to an algebra with orthogonal involution (A, δ) with trivial discriminant and trivial component of the Clifford algebra. The respective twisted form $\mathfrak{B}=\xi^{\mathfrak{B}}$ then corresponds to the variety of Borel subgroups of the group $\mathrm{PGO}^{+}(A, \delta)$. Applying Proposition 5.1 to this situation, we obtain that for any such algebra (A, δ) where $8 \mid \operatorname{ind}(A)$ and A is non-division, there exists a nontrivial torsion element of order two in $\gamma^{2}(\mathfrak{B})$ that vanishes over a splitting field of (A, δ).

Lemma 5.3. The γ-filtration on $K_{0}\left(\mathfrak{B}_{s}\right)$ is generated by the first Chern classes $c_{1}\left(\left[\mathcal{L}\left(\omega_{i}\right)\right]\right)$, $i=1, \ldots, n$, that is,

$$
\left.\gamma^{i} K_{0}\left(\mathfrak{B}_{s}\right)=\left\langle\prod_{j \in 1, \ldots, n} c_{1}\left(\left[\mathcal{L}\left(\omega_{j}\right)\right]\right)\right| \text { the number of elements in the product } \geqslant i\right\rangle .
$$

In particular, the second quotient $\gamma^{2}\left(\mathfrak{B}_{s}\right)$ is additively generated by the products

$$
\gamma^{2}\left(\mathfrak{B}_{s}\right)=\left\langle c_{1}\left(\left[\mathcal{L}\left(\omega_{i}\right)\right]\right) c_{1}\left(\left[\mathcal{L}\left(\omega_{j}\right)\right]\right) \mid i, j \in 1, \ldots, n\right\rangle .
$$

Proof. Each $b \in K_{0}\left(\mathfrak{B}_{s}\right)$ can be written as a linear combination $b=\sum_{w \in W} a_{w} g_{w}$. Therefore, any Chern class of b can be expressed in terms of $c_{1}\left(g_{w}\right)$.

Each ρ_{w} can be written uniquely as a linear combination of fundamental weights $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$. Therefore, by the formula for the Chern class of the tensor product of line bundles [CPZ10, 8.2], each $c_{1}\left(g_{w}\right)$ can be expressed in terms of $c_{1}\left(\left[\mathcal{L}\left(\omega_{i}\right)\right]\right)$.

Example 5.4. Let G_{s} be an adjoint group of type E_{7} and let $\xi \in H^{1}\left(k, G_{s}\right)$ be a nontrivial $G_{s^{-}}$ torsor. Then there is only one non-split Tits algebra $A=A_{\sigma, \xi}$ of exponent 2 and $\mathrm{i}_{A} \leqslant 3$. Let $\mathfrak{B}=\xi^{\mathfrak{B}_{s}}$ be the respective twisted flag variety.

By Lemma 5.3, any element of $\gamma^{2}(\mathfrak{B})$ can be written as

$$
x=\sum_{i j} a_{i j} c_{1}\left(\left[\mathcal{L}\left(\omega_{i}\right)\right]\right) c_{1}\left(\left[\mathcal{L}\left(\omega_{j}\right)\right]\right) \in \gamma^{2}(\mathfrak{B})
$$

for certain coefficients $a_{i j} \in \mathbb{Z}$. Since $\sigma=\bar{\omega}_{7}=\bar{\omega}_{5}=\bar{\omega}_{2}$ and $\bar{\omega}_{1}=\bar{\omega}_{3}=\bar{\omega}_{4}=\bar{\omega}_{6}=0$, we obtain that

$$
q(x)=C \cdot 2 y \in \gamma_{\xi}^{2}, \quad \text { where } C=a_{25}+a_{27}+a_{57}+a_{22}+a_{55}+a_{77} .
$$

Therefore, $q(x) \neq 0$ in γ_{ξ}^{2} if and only if $4 \nmid C$ and $\mathrm{i}_{A} \leqslant 2$.
Consider the class $\mathfrak{c}(\theta) \in \gamma^{2} K_{0}\left(\mathfrak{B}_{s}\right)$ of the special cycle θ constructed in [GZ10, Definition 3.3]. Note that the image of θ in $C H^{2}(\mathfrak{B})$ can be viewed as a generalization of the Rost invariant for split adjoint groups (see [GZ10, §6]).

If $\mathrm{i}_{A}=1$, then, by [GZ10, Proposition 6.5], we know that $\mathfrak{c}(\theta) \in \gamma^{2}(\mathfrak{B})$ is a nontrivial torsion element. If $\boldsymbol{i}_{A}=2$, then, following the proof of [GZ10, Proposition 6.5], we obtain that $2 \mathfrak{c}(\theta) \in \gamma^{2}(\mathfrak{B})$.

We claim that if $\mathbf{i}_{A} \leqslant 2$, then $x=2 \mathfrak{c}(\theta)$ is nontrivial. Indeed, in this case $4 \nmid C=a_{22}+a_{55}+$ $a_{77}=6$; therefore, we have $q(x) \neq 0$, and $x \neq 0$ in $\gamma^{2}(\mathfrak{B})$. In particular, this shows that for $\mathrm{i}_{A}=1$ the order of the special cycle θ in $\gamma^{2}(\mathfrak{B})$ is divisible by 4 .

Example 5.5. Let $\xi \in H^{1}\left(k, \mathrm{PGO}_{8}^{+}\right)$. Applying the same arguments as in Example 5.4 to Example 4.9, we obtain that if $\operatorname{ind}(A), \operatorname{ind}\left(C_{+}\right), \operatorname{ind}\left(C_{-}\right) \leqslant 4$, then $2 \mathfrak{c}(\theta) \in \gamma^{2}(\mathfrak{B})$ is nontrivial.

K. Zainoulline

Acknowledgements

I am grateful to Alexander Merkurjev for pointing out Remark 3.2. This work has been supported by NSERC Discovery 385795 , DAS 396100 and ERA grants.

References

Bou05 N. Bourbaki, Lie groups and Lie algebras, in Elements of Mathematics (Springer, Berlin, 2005), chs 7-9.
CPZ10 B. Calmès, V. Petrov and K. Zainoulline, Invariants, torsion indices and oriented cohomology of complete flags, Preprint (2010), arXiv:0905.1341.
Dem74 M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. Éc. Norm. Supér. 7 (1974), 53-88.
GZ10 S. Garibaldi and K. Zainoulline, The γ-filtration and the Rost invariant, Preprint (2010), arXiv.org 1007.3482.

GZ12 S. Gille and K. Zainoulline, Equivariant pretheories and invariants of torsors, Transform. Groups 17 (2012), 471-498.
SGA6 A. Grothendieck, Exposé 0 , in Théorie des intersections et théorème de Riemann-Roch (SGA6), Lecture Notes in Mathematics, vol. 225 (Springer, 1971).
Ful98 W. Fulton, Intersection theory, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Springer, Berlin, 1998).
Kar98 N. Karpenko, Codimension 2 cycles on Severi-Brauer varieties, K-Theory J. 13 (1998), 305-330.
KMRT98 M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The book of involutions, American Mathematical Society Colloquium Publications, 44 (American Mathematical Society, Providence, RI, 1998).
Mer05 A. Merkurjev, Equivariant K-theory, in Handbook of K-theory, vols. 1, 2 (Springer, Berlin, 2005), 925-954.

Pan94 I. Panin, On the algebraic K-theory of twisted flag varieties, K-Theory J. 8 (1994), 541-585.
Ste75 R. Steinberg, On a theorem of Pittie, Topology 14 (1975), 173-177.
Tit71 J. Tits, Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-220.

Kirill Zainoulline kirill@uottawa.ca
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward,
Ottawa, ON K1N6N5, Canada

[^0]: Received 3 June 2011, accepted in final form 18 October 2011, published online 25 July 2012. 2010 Mathematics Subject Classification 20G15 (primary), 14C25, 14L30 (secondary).
 Keywords: torsor, linear algebraic group, gamma filtration, twisted flag variety.
 This journal is © Foundation Compositio Mathematica 2012.

