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TWISTED KUMMER AND KUMMER-ARTIN-SCHREIER THEORIES
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Abstract. We discuss an analogue of the Kummer and Kummer-Artin-Schreier theo-
ries, twisting by a quadratic extension. The argument is developed not only over a field but
also over a ring, as generally as possible.

Introduction. The Kummer theory is an important item in the classical Galois theory to
describe explicitly cyclic extensions of a field. Nowadays it is common to deduce the Kummer
theory from an exact sequence of algebraic groups over a field K:

0 −→ µn,K −→ Gm,K
n−→ Gm,K −→ 0 .(1)

If n is invertible in K and all the n-th roots of unity are contained in K , the group scheme
µn,K is isomorphic to the constant group scheme Z/nZ. Hence it follows from the Hilbert
90 that the exact sequence (1) yields an isomorphism

K×/n
∼−→ H 1(K,Z/nZ) = Homcont(ΠK,Z/nZ) ,

where ΠK denotes the absolute Galois group of K .
However, if the field K does not contain all the n-th roots of unity, the Kummer theory

does not work any longer, which requires us to modify the theory. Recently Komatsu [6]
formulated a descent Kummer theory, twisting the Kummer theory by a quadratic extension.
In this article, we give a formulation and a generalization of the descent Kummer theory
developed in [6] in the framework of group schemes.

Now we explain the contents of the article. In Section 1, we recall the Kummer, Artin-
Schreier and Kummer-Artin-Schreier theories in the framework of group schemes. This shows
us a way to develop twisted Kummer and Kummer-Artin-Schreier theories. In Section 2, we
define group schemes UB/A and GB/A, which are needed to describe the twisted Kummer and
twisted Kummer-Artin-Schreier theories. The first half of the section is devoted to statements
on elementary facts concerning the group schemes UB/A and GB/A. In particular, we have
two exact sequences of group schemes

0 −→ UB/A −→
∏
B/A

Gm,B
Nr−→ Gm,A −→ 0(2)

2000 Mathematics Subject Classification. Primary 13B05; Secondary 14L15, 12G05.
Partially supported by Grant-in-Aid for Scientific Research No.16540040.



184 N. SUWA

and

0 −→ Gm,A
i−→

∏
B/A

Gm,B −→ GB/A −→ 0 ,(3)

where A is a ring, B is a quadratic extension of A and
∏

B/A denotes the Weil restriction
functor with respect to the extension B/A (cf. 2.1). The sequence (2) plays an important role
in the twisted Kummer theory, and the sequence (3) in the twisted Kummer-Artin-Schreier
theory. These two exact sequences enable us to calculate the cohomology groups with coeffi-
cients in UB/A and GB/A, notably to establish the Hilbert 90 for UB/A and GB/A (Proposition
2.6). We owe the description of the group scheme GB/A to Waterhouse-Weisfeiler [15].

In the latter half of Section 2, we construct equivariant compactifications ι : GB/A →
P 1

A and ι : UB/A → P 1
A. Our starting point is a commutative diagram with exact rows of

group schemes

0 −−→ Gm,A −−→
∏
B/A

Gm,B −−→ GB/A −−→ 0

�
�ρ

�ρ̃

1 −−→ Gm,A −−→ GL(2) −−→ PGL(2) −−→ 1 ,

where ρ : ∏
B/A Gm,B → GL(2, A) is a regular representaion.

Section 3 is devoted to a description of an exact sequence of group schemes over
Z[ω, 1/n]

0 −→ Z/nZ −→ UB/A
n−→ UB/A −→ 0 ,(4)

where n is a positive integer ≥ 3 and ω = e2πi/n + e−2πi/n (Theorem 3.2). Calculating
cohomology groups of the sequence (4) together with the Hilbert 90 for UB/A, we obtain the
following

COROLLARY 3.3. Let R be a local Z[ω, 1/n]-algebra. If n is odd, H 1(R,Z/nZ) is
isomorphic to UB/A(R)/n.

This was established by Komatsu [6] in a different manner when R is a field. Moreover,
using an equivariant compactification ι : UB/A → P 1

A, we arrive at the following assertion.

COROLLARY 3.12. Let R be a local Z[ω, 1/n]-algebra and S an unramified cyclic
extension of degree n. If n is odd, there exists a morphism Spec R → P 1

A such that the square
of rational maps

Spec S −−→ P 1
A� �ν

Spec R −−→ P 1
A

is cartesian.
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The cyclic covering ν : P 1
A → P 1

A is defined in Lemma 3.11. In a certain sence the
rational map ν is a geometric expression of the generic polynomial for cyclic extensions of
degree n, discovered by Rikuna [7].

Section 4 is devoted to a description of an exact sequence of group schemes over Z[ω]
0 −→ Z/pZ −→ GB/A

Ψ−→ GB̃/A
−→ 0 ,(5)

where p is an odd prime and ω = e2πi/p + e−2πi/p (Theorem 4.2). Calculating cohomology
groups of the sequence (5) together with the Hilbert 90 for GB/A, we obtain the following

COROLLARY 4.3. Let R be a local Z[ω]-algebra. Then H 1(R,Z/pZ) is isomorphic
to Coker[Ψ : GB/A(R) → GB̃/A(R)].

Furthermore, using an equivariant compactification ι : GB/A → P 1
A, we also arrive at

the following assertion.

COROLLARY 4.7. Let R be a local Z[ω]-algebra and S an unramified cyclic extension
of degree p. Then there exists a morphism Spec R → P 1

A such that the square

Spec S −−→ P 1
A�

�Ψ

Spec R −−→ P 1
A

is cartesian.

The cyclic covering Ψ : P 1
A → P 1

A is defined in Lemma 4.6. In a sence the morphism
Ψ is a geometric expression of the everywhere generic polynomial for cyclic extensions of
degree p, discovered by Komatsu [6].

The author expresses his gratitude to Boris Kunyavski for valuable discussions at Stel-
lenbosch under the Southern Cross. The author thanks also the referee for his careful reading
of the munuscript.

NOTATION. For a commutative ring R, the multiplicative group Gm(R) is denoted by
R×.

For a commutative group M and an endomorphim ϕ of M , ϕM and M/ϕ stand for
Ker[ϕ : M → M] and Coker[ϕ : M → M], respectively.

For a scheme X and a commutative group scheme G over X, H ∗(X,G) denotes the
cohomology group with respect to the fppf-topology. It is known that, if G is smooth over
X, the fppf-cohomology group coincides with the étale cohomology group (Grothendieck [4],
III.11.7).

LIST OF GROUP SCHEMES.
Ga,A: the additive group scheme over A

Gm,A: the multiplicative group scheme over A

µn,A: Ker[n : Gm,A → Gm,A]
GL(2): the general linear group scheme over A
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PGL(2): the projective linear group scheme over A

G(λ): recalled in 1.3
UB/A, GB/A: defined in 2.2 and in 2.3, respectively

LIST OF MORPHISMS AND RATIONAL MAPS.
α(λ) : G(λ) → Gm,A: recalled in 1.3
s : UB/A ⊗A B → Gm,B , σ : GB/A ⊗A B → G(λ): defined in 2.2
α : GB/A → UB/A, β : UB/A → GB/A: defined in 2.3
ι : GB/A → P 1

A: the open immersion defined in 2.9
ι : UB/A → P 1

A: defined in 2.11
σ : P 1

B → P 1
B , s : P 1

B → P 1
B : defined in 2.12

1. Recall: Kummer and Kummer-Artin-Schreier theories. In this section, we re-
call the Kummer, Artin-Schreier and Kummer-Artin-Schreier theories. We refer to [1] or [13]
on formalisms of affine group schemes, Hopf algebras and the cohomology with coefficients
in group schemes.

1.1. (Kummer theory). Let Gm = Spec Z[U, 1/U ] denote the multiplicative group
scheme. The multiplication is given by U �→ U ⊗ U .

Let n be an integer ≥ 2 and ζ a primitive n-th root of unity. Then µn = Ker[n : Gm →
Gm] is isomorphic to the constant group scheme Z/nZ over Z[ζ, 1/n]. Hence, if X is a
Z[ζ, 1/n]-scheme, the exact sequence of group schemes (called Kummer sequence)

0 −→ µn −→ Gm
n−→ Gm −→ 0

induces a long exact sequence

0 −→ H 0(X,Z/nZ) −→ H 0(X,Gm)
n−→ H 0(X,Gm)

−→ H 1(X,Z/nZ) −→ H 1(X,Gm)
n−→ H 1(X,Gm) −→ · · · .

Furthermore, we obtain an exact sequence

0 → Γ (X,O)×/n → H 1(X,Z/nZ) → nPic(X) → 0 ,

noting H 1(X,Gm) = Pic(X) (Hilbert 90).
In particular, if X = Spec K (K is a field), we have an isomorphism

K×/n
∼−→ H 1(K,Z/nZ) ,

which implies that tn − u ∈ K(u)[t] is a generic polynomial for Z/nZ-extensions of K .
1.2. (Artin-Schreier theory). Let Ga = Spec Z[T ] denote the additive group scheme.

The addition is defined by T �→ T ⊗ 1 + 1 ⊗ T .
Let p be a prime number. Then Ker[F − 1 : Ga,Fp → Ga,Fp ] is isomorphic to the

constant group scheme Z/pZ, where F denotes the Frobenius endomorphism. Hence, if X is
an Fp-scheme, the exact sequence of group schemes (called Artin-Schreier sequence)

0 −→ Z/pZ −→ Ga,Fp

F−1−→ Ga,Fp −→ 0
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induces a long exact sequence

0 −→ H 0(X,Z/pZ) −→ H 0(X,Ga,Fp )
F−1−→ H 0(X,Ga,Fp )

−→ H 1(X,Z/pZ) −→ H 1(X,Ga,Fp )
F−1−→ H 1(X,Ga,Fp ) −→ · · · .

Furthermore, we obtain an exact sequence

0 → Γ (X,O)/(F − 1) → H 1(X,Z/pZ) → F−1H
1(X,O) → 0 ,

noting H 1(X,Ga) = H 1(X,O).
In particular, if X = Spec K (K is a field), we have an isomorphism

K/(F − 1)
∼−→ H 1(K,Z/pZ) ,

which implies that tp − t − u ∈ K(u)[t] is a generic polynomial for Z/pZ-extensions of K .

DEFINITION 1.3. Let A be a ring and λ ∈ A. We define a group A-scheme G(λ) by

G(λ) = Spec A

[
T ,

1

λT + 1

]

with
(1) the multiplication: T �→ T ⊗ 1 + 1 ⊗ T + λT ⊗ T ;
(2) the unit: T �→ 0;

(3) the inverse: T �→ − T

1 + λT
.

Moreover, we define a homomorphism of group A-schemes

α(λ) : G(λ) = Spec A

[
T ,

1

λT + 1

]
→ Gm,A = Spec A

[
U,

1

U

]

by

U �→ λT + 1 .

If λ is invertible, α(λ) is an isomorphism. On the other hand, if λ = 0, G(λ) is nothing but
Ga,A.

Let B be an A-algebra. It is known that H 1(B,G(λ)) = 0 if B is a local ring or if λ is
nilpotent in B ([10], 1.3 and 1.4).

1.4. (Kummer-Artin-Schreier theory). Let p be a prime number and ζ a primitive p-th
root of unity. Put A = Z[ζ ], K = Q(ζ ) and λ = ζ − 1. Then we have

(λT + 1)p − 1

λp
∈ A[T ]

and
(λT + 1)p − 1

λp
≡ T p − T mod λ .

A homomorphism of group A-schemes

Ψ : G(λ) = Spec A

[
T ,

1

λT + 1

]
→ G(λp) = Spec A

[
T ,

1

λpT + 1

]
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is defined by

T �→ (λT + 1)p − 1

λp
.

Then it is verified that Ker[Ψ : G(λ) → G(λp)] is isomorphic to the constant group scheme
Z/pZ. We obtain an exact sequence of group schemes

0 −→ Z/pZ −→ G(λ) Ψ−→ G(λp) −→ 0 .(#)

Furthermore, the sequence (#) ⊗A K is isomorphic to the Kummer sequence

0 −→ µp,K −→ Gm,K
p−→ Gm,K −→ 0 .

On the other hand, the residue ring A/(λ) is isomorphic to the finite field F p, and the sequence
(#) ⊗A Fp is isomorphic to the Artin-Schreier sequence

0 −→ Z/pZ −→ Ga,Fp

F−1−→ Ga,Fp −→ 0 .

Let X be an A-scheme. Then the exact sequence of group schemes (#) induces a long
exact sequence

0 −→ H 0(X,Z/pZ) −→ H 0(X,G(λ))
Ψ−→ H 0(X,G(λp))

−→ H 1(X,Z/pZ) −→ H 1(X,G(λ))
Ψ−→ H 1(X,G(λp)) −→ · · · .

In particular，if X = Spec B (B is a local A-algebra), we have an isomorphism

Coker[Ψ : G(λ)(B) −→ G(λp)(B)] ∼−→ H 1(B,Z/pZ) .

One may say that {(λt + 1)p − 1}/λp − u ∈ A[u][t] is a generic polynomial for Z/pZ-
extensions of A.

REMARK 1.5. The exact sequence (#) was discovered independently by Waterhouse
[14] and [11]. The equation

(λt + 1)p − 1

λp
= a

ascends to the work of Furtwängler [2, 3].

2. Group schemes. In this section, we fix a ring A, r, s ∈ A and B = A[t]/(t2 − rt +
s).

2.1. Let A be a ring and r, s ∈ A. Put D = r2 − 4s and B = A[t]/(t2 − rt + s). Let ε

denote the image of t in B. Then B = A[ε] and ε2−rε+s = 0. The functor R �→ (R⊗AB)×
is represented by the group scheme (the Weil restriction of Gm,B to B/A)

∏
B/A

Gm,B = Spec A

[
U,V,

1

U2 + rUV + sV 2

]

with
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(a) the multiplication

U �→ U ⊗ U − sV ⊗ V , V �→ U ⊗ V + V ⊗ U + rV ⊗ V ;
(b) the unit

U �→ 1 , V �→ 0 ;
(c) the inverse

U �→ U + rV

U2 + rUV + sV 2
, V �→ −V

U2 + rUV + sV 2
.

Moreover, the canonical injection R× → (R ⊗A B)× is represented by the homomor-
phism of group schemes

i : Gm,A = Spec A

[
T ,

1

T

]
→

∏
B/A

Gm,B = Spec A

[
U,V,

1

U2 + rUV + sV 2

]
,

defined by

U �→ T , V �→ 0 .

On the other hand, the norm map Nr : (R⊗AB)× → R× is represented by the homomorphism
of group schemes

Nr :
∏
B/A

Gm,B = Spec A

[
U,V,

1

U2 + rUV + sV 2

]
→ Gm,A = Spec A

[
T ,

1

T

]
,

defined by

T �→ U2 + rUV + sV 2 .

It is readily seen that
(1) i : Gm,A → ∏

B/A Gm,B is a closed immersion;
(2) Nr : ∏

B/A Gm,B → Gm,A is faithfully flat;
(3) Nr ◦ i : Gm,A → Gm,A is the square map.

DEFINITION 2.2. Put

UB/A = Ker

[
Nr :

∏
B/A

Gm,B → Gm,A

]
.

Then

UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1)

with
(a) the multiplication

U �→ U ⊗ U − sV ⊗ V , V �→ U ⊗ V + V ⊗ U + rV ⊗ V ;
(b) the unit

U �→ 1 , V �→ 0 ;
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(c) the inverse

U �→ U + rV , V �→ −V .

If D is invertible in A, UB/A is a torus over A. More generally, if D is not nilpotent in
A, UB/A ⊗A A[1/D] is a torus over A[1/D], splitting over B[1/D]. In fact, T �→ U + εV

defines a homomorphism

σ : UB/A ⊗A B = Spec B[U,V ]/(U2 + rUV + sV 2 − 1) → Gm,B = Spec B

[
T ,

1

T

]
,

inducing an isomorphism over B[1/D]. The inverse of σ ⊗A B[1/D] is given by

U �→ 1

2ε − r

{
(ε − r)T + ε

T

}
, V �→ 1

2ε − r

(
T − 1

T

)
.

DEFINITION 2.3 (Waterhouse-Weisfeiler [15]). We define a group scheme GB/A over
A by

GB/A = Spec A[X,Y ]/(X2 + rXY + sY 2 − Y )

with
(a) the multiplication

X �→ X ⊗ 1 + 1 ⊗ X − rX ⊗ X − 2sX ⊗ Y − 2sY ⊗ X − rsY ⊗ Y ,

Y �→ Y ⊗ 1 + 1 ⊗ Y + (r2 − 2s)Y ⊗ Y + rX ⊗ Y + rY ⊗ X + 2X ⊗ X ;
(b) the unit

X �→ 0 , Y �→ 0 ;
(c) the inverse

X �→ −X − rY , Y �→ Y .

Then GB/A is smooth over A.
Furthermore, a homomorphism of group schemes

γ :
∏
B/A

Gm,B = Spec A

[
U,V,

1

U2 + rUV + sV 2

]

→ GB/A = Spec A[X,Y ]/(X2 + rXY + sY 2 − Y )

is defined by

X �→ UV

U2 + rUV + sV 2 , Y �→ V 2

U2 + rUV + sV 2 .

It is readily seen that the sequence

0 −→ Gm,A
i−→

∏
B/A

Gm,B
γ−→ GB/A −→ 0

is exact.
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The two group schemes UB/A and GB/A are related by a homomorphism

α : GB/A = Spec A[X,Y ]/(X2 + rXY + sY 2 − Y )

→ UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1)

defined by

U �→ 1 − rX − 2sY , V �→ 2X + rY .

If D is invertible in A, α is an isomorphism. More generally, if D is not nilpotent in A, α is
isomorphic over A[1/D]. Indeed, the inverse of α ⊗A A[1/D] is given by

X �→ r − rU − 2sV

D
, Y �→ −2 + 2U + rV

D
.

We define also a homomorphism

β : UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1)

→ GB/A = Spec A[X,Y ]/(X2 + rXY + sY 2 − Y )

as the composite

UB/A −→
∏
B/A

Gm,B
γ−→ GB/A.

Then β is given by

X �→ UV , Y �→ V 2 ,

and therefore,

α ◦ β : UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1)

→ UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1)

is given by

U �→ 1 − rUV − 2sV 2 = U2 − sV 2 , V �→ 2UV + rV 2 ,

that is, α ◦ β is the square map.
Put λ = 2ε − r ∈ B. Then

T �→ X + εY ,
1

1 + λT
�→ 1 − λ{X + (r − ε)Y }

defines an isomorphism over B

σ : GB/A ⊗A B = Spec B[X,Y ]/(X2 + rXY + sY 2 − Y )

∼−→ G(λ) = Spec B

[
T ,

1

1 + λT

]
.

The inverse of σ is given by

X �→ T − (r − ε)T 2

1 + λT
, Y �→ T 2

1 + λT
.
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Furthermore the diagram of group B-schemes

GB/A ⊗A B
∼−−→
σ

G(λ)

α⊗IB

� �α(λ)

UB/A ⊗A B −−→
σ

Gm,B

is commutative.

REMARK 2.4.1. It is verified without difficulty that the composite β ◦ α : GB/A →
GB/A is the square map.

REMARK 2.4.2. Assume that D is not invertible in A, and put A0 = A/(D). If 2 is
invertible in A0, the group scheme GB/A ⊗A A0 is isomorphic to the additive group scheme
Ga,A0 . Indeed,

GB/A ⊗A A0 = Spec A0[X,Y ]/(X2 + rXY + sY 2 − Y )

= Spec A0[X,Y ]/
((

X + r

2
Y

)2 − Y
)

,

and X �→ S − (r/2)S2, Y �→ S2 defines a isomorphism

Ga,A0 = Spec A0[S] ∼→ GB/A ⊗A A0 = Spec A0[X,Y ]/
((

X + r

2
Y

)2 − Y
)

.

Furthermore, if D is a non zero divisor in A, we have an exact sequence

0 −→ GB/A(A)
α−→ UB/A(A) −→ UB/A(A0) .

Indeed, let u, v ∈ A with u2 + ruv + sv2 = 1, and assume that u ≡ 1 mod D, v ≡ 0
mod D. Putting u = 1 + Dα, v = Dβ (α, β ∈ A), we obtain

(2α + rβ) + D(α2 + rαβ + sβ2) = 0 .

Put now x = −rα − 2sβ, y = 2α + rβ. Then we see that

(x2 + rxy + sy2) − y = −D(α2 + rαβ + sβ2) − (2α + rβ) = 0

and

α(x, y) = (1 + Dα,Dβ) .

2.5. Let X be an A-scheme. Then the exact sequence of group schemes

0 −→ UB/A −→
∏
B/A

Gm,B
Nr−→ Gm,A −→ 0
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induces a long exact sequence

0 −→ Γ (X,UB/A) −→ Γ (X ⊗A B,Gm)
Nr−→ Γ (X,Gm)

−→ H 1(X,UB/A) −→ Pic(X ⊗A B)
Nr−→ Pic(X)

−→ H 2(X,UB/A) −→ H 2(X ⊗A B,Gm)
Nr−→ H 2(X,Gm) −→ · · · .

On the other hand, the exact sequence of group schemes

0 −→ Gm,A
i−→

∏
B/A

Gm,B −→ GB/A −→ 0

induces a long exact sequence

0 −→ Γ (X,Gm)
i−→ Γ (X ⊗A B,Gm) −→ Γ (X,GB/A)

−→ Pic(X)
i−→ Pic(X ⊗A B) −→ H 1(X,GB/A)

−→ H 2(X,Gm)
i−→ H 2(X ⊗A B,Gm) −→ H 2(X,GB/A) −→ · · · .

If X = Spec R, we obtain exact sequences

0 −→ UB/A(R) −→ (R ⊗A B)× Nr−→ R×

−→ H 1(R,UB/A) −→ Pic(R ⊗A B)
Nr−→ Pic(R)

−→ H 2(R,UB/A) −→ H 2(R ⊗A B,Gm)
Nr−→ H 2(R,Gm) −→ · · ·

and

0 −→ R× i−→ (R ⊗A B)× −→ GB/A(R)

−→ Pic(R)
i−→ Pic(R ⊗A B) −→ H 1(R,GB/A)

−→ H 2(R,Gm)
i−→ H 2(R ⊗A B,Gm) −→ H 2(R,GB/A) −→ · · · .

In particular, we have

PROPOSITION 2.6 (Hilbert 90). Let R be a local A-algebra. Then we have exact se-
quences

(R ⊗A B)× Nr−→ R× −→ H 1(R,UB/A) −→ 0

and

0 −→ H 1(R,GB/A) −→ H 2(R,Gm)
i−→ H 2(R ⊗A B,Gm) .

Furthermore, H 1(R,UB/A) and H 1(R,GB/A) are annihilated by 2.

PROOF. Since R ⊗A B is a semi-local ring, we obtain the first asserion, noting that
Pic(R ⊗A B) = 0. The second assetion follows from the fact that the composite Nr ◦ i is the
square map.
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Hereafter we devote ourselves to constructing equivariant compactifications ι : GB/A →
P 1

A and ι : UB/A → P 1
A.

2.7. Let GL(2) denote the general linear group scheme of degree 2. Then

GL(2) = Spec Z

[
T11, T12, T21, T22,

1

T11T22 − T12T21

]

with the multiplication(
T11 T12
T21 T22

)
�→

(
T11 ⊗ T11 + T12 ⊗ T21 T11 ⊗ T12 + T12 ⊗ T22
T21 ⊗ T11 + T22 ⊗ T21 T21 ⊗ T12 + T22 ⊗ T22

)
.

The regular representation(∏
B/A

Gm,B

)
(R) = (R ⊗A B)× → GL(2, R) : u + εv �→

(
u −sv

v u + rv

)

is represented by a homomorphism of group A-schemes

ρ : UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1) → GL(2)A

defined by (
T11 T12
T21 T22

)
�→

(
U −sV

V U + rV

)
.

It is readily seen that ρ is a closed immersion. Moreover, we have a cartesian square

UB/A
ρ−−→ SL(2)A�

�∏
B/A

Gm,B −−→
ρ

GL(2)A ,

where the right vertical arrow is the canonical closed immersion.
Now put ∆ = T11T22 − T12T21, and let Z[T11/∆, T12/∆, T21/∆, T22/∆](2) denote the

subring of Z[T11, T12, T21, T22, 1/∆] generated by the fractions Tij Tkl/∆, 1 ≤ i, j, k, l ≤ 2.
Then Z[T11/∆, T12/∆, T21/∆, T22/∆](2) is a Hopf subalgebra of Z[T11, T12, T21, T22, 1/∆],
and

PGL(2) = Spec Z

[
T11

∆
,
T12

∆
,
T21

∆
,
T22

∆

](2)

.

The kernel of the canonical surjection GL(2) → PGL(2) is isomorphic to the multiplicative
group Gm, and the canonical injection

Gm = Spec Z

[
T ,

1

T

]
→ GL(2) = Spec Z

[
T11, T12, T21, T22,

1

∆

]

is given by (
T11 T12
T21 T22

)
�→

(
T 0
0 T

)
.
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The commutative diagram

Gm,A
i−−→

∏
B/A

Gm,B

∥∥∥ �ρ

Gm,A −−→ GL(2)A

is extended to a commutaive diagram with exact rows of group A-schemes

0 −−→ Gm,A
i−−→

∏
B/A

Gm,B
γ−−→ GB/A −−→ 0

∥∥∥ �ρ

�ρ̃

1 −−→ Gm,A −−→ GL(2)A −−→ PGL(2)A −−→ 1 .

Furthermore, the homogeneous space of PGL(2)A by the upper triangular subgroup is
identified to the projective line P 1

A. The multiplication on PGL(2) induces an action by
PGL(2) on P 1, that is to say, we have a commutatice diagram

PGL(2) × PGL(2)
multiplication−−−−−−−→ PGL(2)�

�
PGL(2) × P 1 −−−→

action
P 1 .

We denote by ι the composite GB/A
ρ̃→ PGL(2)A → P 1

A. Then we have gotten a commuta-
tive diagram

GB/A ×A GB/A
multiplication−−−−−−−→ GB/A

ρ̃×ι

�
�ι

PGL(2)A ×A P 1
A −−−→

action
P 1

A .

REMARK 2.7.1. The surjective morphism PGL(2) → P 1 mentioned above is de-
scribed explicitly as follows.

Let P 1 = Proj Z[T1, T2], and put T = T1/T2. Then the projective line P 1 is covered by
affine open subsets Spec Z[T ] and Spec Z[1/T ]. Define now morphisms

Spec Z

[
T11, T12, T21, T22,

1

∆

][
1

T21

]
→ Spec Z[T ]

and

Spec Z

[
T11, T12, T21, T22,

1

∆

][
1

T11

]
→ Spec Z

[
1

T

]
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by T �→ T11/T21 and 1/T �→ T21/T11, respectively. Gluing the two morphisms, we obtain a
morphism

GL(2) = Spec Z

[
T11, T12, T21, T22,

1

∆

]
→ P 1 ,

since we have (T11, T21) = Z[T11, T12, T21, T22, 1/∆]. It is readily seen that GL(2) → P 1 is
factorized as GL(2) → PGL(2) → P 1.

Let R be a local ring. Then the map PGL(2, R) → P 1(R) is given by
(

a b

c d

)
�→ (a : c) ,

and the action of PGL(2, R) on P 1(R) is given by
(

a b

c d

)
(α : β) = (aα + bβ : cα + dβ) ,

as is well-known.

PROPOSITION 2.8. The homomorphism of group A-schemes

ρ̃ : GB/A = Spec A[X,Y ]/(X2 + rXY + sY 2 − Y )

→ PGL(2)A = Spec A

[
T11

∆
,
T12

∆
,
T21

∆
,
T22

∆

](2)

is given by

(
T11 T12
T21 T22

)
�→




2 − rX − 2sY√
4 + DY

−2sX + rsY√
4 + DY

2X + rY√
4 + DY

2 + rX + (r2 − 2s)Y√
4 + DY


 .

PROOF. The homomorphism of Hopf A-algebras

A[X,Y ]/(X2 + rXY+sY 2 − Y ) → A

[
U,V,

1

U2 + rUV + sV 2

]
:

X �→ UV

U2 + rUV + sV 2 , Y �→ V 2

U2 + rUV + sV 2

gives correspondences

2 − rX − 2sY �→ U(2U + rV )

U2 + rUV + sV 2
, 2X + rY �→ V (2U + rV )

U2 + rUV + sV 2
,

4 + DY �→ (2U + rV )2

U2 + rUV + rV 2 ,
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and therefore 


2 − rX − 2sY√
4 + DY

−2sX + rsY√
4 + DY

2X + rY√
4 + DY

2 + rX + (r2 − 2s)Y√
4 + DY




�→




U√
U2 + rUV + sV 2

− sV√
U2 + rUV + sV 2

V√
U2 + rUV + sV 2

U + rV√
U2 + rUV + sV 2


 .

This implies the commutativity of the diagram

A

[
T11

∆
,
T12

∆
,
T21

∆
,
T22

∆

](2)
inclusion−−−−→ A

[
T11, T12, T21, T22,

1

∆

]
�

�ρ

A[X,Y ]/(X2 + rXY + sY 2 − Y ) −−→ A

[
U,V,

1

U2 + rUV + sV 2

]
,

since ∣∣∣∣∣∣∣∣

2 − rX − 2sY√
4 + DY

−2sX + rsY√
4 + DY

2X + rY√
4 + DY

2 + rX + (r2 − s)Y√
4 + DY

∣∣∣∣∣∣∣∣
= 1

in A[X,Y ]/(X2 + rXY + sY 2 − Y ). Here the left vertical arrow is defined by

(
T11 T12
T21 T22

)
�→




2 − rX − 2sY√
4 + DY

−2sX + rsY√
4 + DY

2X + rY√
4 + DY

2 + rX + (r2 − 2s)Y√
4 + DY


 .

We obtain the conclusion, noting that the homomorphism γ : ∏
B/A Gm,B → GB/A is faith-

fully flat.

REMARK 2.8.1. It appears that the matrix



2 − rX − 2sY√
4 + DY

−2sX + rsY√
4 + DY

2X + rY√
4 + DY

2 + rX + (r2 − 2s)Y√
4 + DY




does not have the entries in the affine ring A[X,Y ]/(X2 + rXY + sY 2 − Y ). However, we
can verify that the image of the Hopf algebra A[T11/∆, T12/∆, T21/∆, T22/∆](2) by ρ̃ is
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contained in A[X,Y ]/(X2 + rXY + sY 2 − Y ), noting that

(2 − rX − 2sY )2 = (1 − rX − sY )(4 + DY) + r2(X2 + rXY + sY 2 − Y ) ,

(2 − rX − 2sY )(2X + rY ) = X(4 + DY) − 2r(X2 + rXY + sY 2 − Y ) ,

(2X + rY )2 = Y (4 + DY) + 4(X2 + rXY + sY 2 − Y ) .

COROLLARY 2.9. The morphism

ι : GB/A = Spec A[X,Y ]/(X2 + rXY + sY 2 − Y ) → P 1
A = Proj A[T1, T2]

is given by

T = T1

T2
�→ 2 − rX − 2sY

2X + rY
.

Moreover, ι : GB/A → P 1
A is an open immersion with image P 1

A − V (T 2
1 + rT1T2 + sT 2

2 ),
and the inverse of the birational map ι is given by

X �→ T

T 2 + rT + s
, Y �→ 1

T 2 + rT + s
.

PROOF. Combining Proposition 2.8 and Remark 2.7.1, we obtain the first assertion.
Put now ∆̃ = T 2

1 + rT1T2 + sT 2
2 , and let A[T1/∆̃, T2/∆̃](2) denote the subring of

A[T1/∆̃, T2/∆̃] generated by the fractions TiTj /∆̃. Then Spec A[T1/∆̃, T2/∆̃](2) is isomor-
phic to the open subscheme P 1

A − V (T 2
1 + rT1T2 + sT 2

2 ). Moreover, it is verified without
difficulty that

A

[
T1

T 2
1 + rT1T2 + sT 2

2

,
T2

T 2
1 + rT1T2 + sT 2

2

](2)

= A

[
T1T2

T 2
1 + rT1T2 + sT 2

2

,
T 2

2

T 2
1 + rT1T2 + sT 2

2

]
.

and that

X �→ T1T2

T 2
1 + rT1T2 + sT 2

2

, Y �→ T 2
2

T 2
1 + rT1T2 + sT 2

2

induces an isomorphism of rings

A[X,Y ]/(X2 + rXY + sY 2 − Y )
∼−→ A

[
T1T2

T 2
1 + rT1T2 + sT 2

2

,
T 2

2

T 2
1 + rT1T2 + sT 2

2

]
.

This implies the second assertion. �

REMARK 2.9.1. Let R be a local A-algebra. Then the map ρ̃ : GB/A(R) →
PGL(2, A) is given by

(a, b) �→
(

2 − ra − 2sb −2sa − rsb

2a + rb 2 + ra + (r2 − 2s)b

)
,

and the map ι : GB/A(R) → P 1(R) by

(a, b) �→ (2 − ra − 2sb : 2a + rb) .
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2.10. The homomorphism of group A-schemes.

α : GB/A = Spec A[X,Y ]/(X2 + rXY + rY 2 − Y )

→ UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1)

defined by

U �→ 1 − rX − 2sY , V �→ 2X + rY

is birational, since α induces an isomorphism over A[1/D], as remarked in 2.3. Then we
obtain rational maps

UB/A
α−1−→ GB/A

ρ̃−→ PGL(2)A

and

UB/A
α−1−→ GB/A

ι−→ P 1
A ,

which we also denote by ρ̃ and ι, respectively.

PROPOSITION 2.11. The rational maps

ρ̃ : UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1)

→ PGL(2)A = Spec A

[
T11

∆
,
T12

∆
,
T21

∆
,
T22

∆

](2)

and

ι : UB/A = Spec A[U,V ]/(U2 + rUV + sV 2 − 1) → P 1
A = Proj A[T1, T2]

are given by

(
T11 T12
T21 T22

)
�→




1 + U√
2 + 2U + rV

− sV√
2 + 2U + rV

V√
2 + 2U + rV

1 + U + rV√
2 + 2U + rV


 ,

and

T = T1

T2
�→ 1 + U

V
= rU + sV

1 − U
,

respectively. Moreover, ι : UB/A → P 1
A induces an open immersion over A[1/D], and the

inverse of the birational map ι is given by

U �→ T 2 − s

T 2 + rT + s
, V �→ 2T + r

T 2 + rT + s
.

PROOF. We can conclude the assertion immediately from the definition of ρ̃ : UB/A →
PGL(2)A and ι : UB/A → P 1

A, referring to Proposition 2.8 and Corollary 2.9, and noting
that the birational maps α−1 : UB/A → GB/A and α : GB/A → UB/A are given by

X �→ r − rU − 2sV

D
, Y �→ −2 + 2U + rV

D
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and

U �→ 1 − rX − 2sY , V �→ 2X + rY ,

respectively.

REMARK 2.11.1. Let R be a local A-algebra. Then the map ρ̃ : UB/A(R) →
PGL(2, A) is given by

(a, b) �→
(

1 + u −2sv

v 1 + u + rv

)
,

and the map ι : GB/A(R) → P 1(R) by

(u, v) �→ (1 + u : v) = (ru + sv : 1 − u) ,

if defined.

REMARK 2.12.1. We have a commutative diagram with exact rows of group schemes
over A[1/D]

1 −−→ µ2,A −−→ UB/A
square−−−→ UB/A −−→ 1∥∥∥

�ρ

�ρ̃

1 −−→ µ2,A −−→ SL(2)A −−→ PGL(2)A −−→ 1 .

REMARK 2.12.2. Define an automorphism

σ : P 1
B = Proj B[T1, T2] → P 1

B = Proj B[T1, T2]
by

(T1, T2) �→ (T2, T1 + (r − ε)T2) .

Then we have a cartesian square of B-schemes

GB/A ⊗A B
ι−−→ P 1

B

σ

��
�� σ

G(λ) −−→
ι

P 1
B ,

where the horizontal arrow below is defined by the inclusions

G(λ) = Spec B

[
T ,

1

λT + 1

]
⊂ Spec B[T ] ⊂ P 1

B = Proj B[T1, T2] , T = T1/T2 .

REMARK 2.12.3. Define a rational map

s : P 1
B = Proj B[T1, T2] → P 1

B = Proj B[T1, T2]
by

(T1, T2) �→ (T1 + εT2, T1 + (r − ε)T2) .
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Then we have a commutative diagram of birational maps

UB/A ⊗A B
ι−−→ P 1

B

s

� �s

Gm,B −−→
ι

P 1
B ,

where the horizontal arrow below is defined by the inclusions

Gm,B = Spec

[
T ,

1

T

]
⊂ Spec B[T ] ⊂ P 1

B = Proj B[T1, T2] , T = T1/T2 .

3. Twisted Kummer theory. In this section, we fix an integer n ≥ 3 and a primitive
n-th root of unity ζ .

3.1. Let n be an integer ≥ 3 and ζ a primitive n-th root of unity. Put ω = ζ + ζ−1 and
D = (ζ − ζ−1)2. Let A = Z[ω] and B = Z[ζ ]. Then B is isomorphic to A[t]/(t2 − ωt + 1),
and therefore, we have a commutaive group scheme over A

UB/A = Spec A[U,V ]/(U2 + ωUV + V 2 − 1)

with the multiplication

U �→ U ⊗ U − V ⊗ V , V �→ V ⊗ U + U ⊗ V + ωV ⊗ V .

The group scheme UB/A ⊗A A[1/D] is a torus of dimension 1 over A[1/D] as remarked in
2.2.

REMARK 3.1.1. Assume that n is odd. Then −ζ is a primitive 2n-th root of unity.
Moreover, U �→ U, V �→ −V gives rise to an isomorphism

Spec A[U,V ]/(U2 + ωUV + V 2 − 1)
∼−→ Spec A[U,V ]/(U2 − ωUV + V 2 − 1) .

REMARK 3.1.2. It is well-known that
(1) if n = 2r , (D)2r−2 = (4) in A;
(2) if n = pr or n = 2pr (p is an odd prime), (D)(p−1)pr−1/2 = (p) in A, that is, (D)

is a prime ideal of A, totally ramified over p;
(3) otherwise, D is invertible in A.
On the other hand, it holds that
(1) if n = 4, ω = 0;
(2) if n = 2r (r ≥ 3), (ω)2r−2 = (2) in A, that is, (ω) is a prime ideal of A, totally

ramified over 2;
(3) otherwise, ω is invertible in A.

The assertions follow from the following well-known formulae on the cyclotomic poly-
nomial Φn(t):

Φn(1) =
{

p n = pr , where p is a prime and r ≥ 1 ,

1 n is not a prime power ,
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and

Φn(−1) =
{

p n = 2pr , where p is a prime and r ≥ 1 ,

1 n is not twice a prime power .

In particular, it follows that, if n is not a prime power nor twice a prime, UB/A is a torus
over A.

REMARK 3.1.3. If n = pr , p being an odd prime, UB/A is smooth over A. More
precisely, UB/A ⊗ A[1/p] is a torus over A[1/p]. Put now A0 = A/(D). Then UB/A ⊗A A0

is isomorphic to Ga × µ2. Indeed,

UB/A ⊗A A0 = Spec A0[U,V ]/(U2 + ωUV + V 2 − 1)

= Spec A0[U,V ]/((U + (ω/2)V )2 − 1
)
,

and U + (ω/2)V is a group-like element of A0[U,V ]/((U + (ω/2)V )2 − 1
)
, and therefore

T �→ U + (ω/2)V defines a homomorphism

π : UB/A ⊗A A0 = Spec A0[U,V ]/((U + (ω/2)V )2 − 1
)

→ µ2,A0
= Spec A0[T ]/(T 2 − 1) .

Moreover, U �→ 1 − (ω/2)S, V �→ S defines a homomorphism

Ga,A0 = Spec A0[S] → UB/A ⊗A A0 = Spec A0[U,V ]/(U + (ω/2)V )2 − 1
)
,

and we have obtain an exact sequence of group schemes

0 −→ Ga,A0 −→ UB/A ⊗A A0
π−→ µ2,A0

−→ 0 .

Moreover, U �→ T , V �→ 0 defines a homomorphism

s : µ2,A0 = Spec A0[T ]/(T 2 − 1)

→ UB/A ⊗A A0 = Spec A0[U,V ]/((U + (ω/2)V )2 − 1
)
.

It is easily verified that s : µ2,A0
→ UB/A ⊗A A0 is a section of π : UB/A ⊗A A0 → µ2,A0

.

THEOREM 3.2 (twisted Kummer theory). The homothety by n on UB/A ⊗ A[1/n] is
finite and étale with the kernel isomorphic to the constant group scheme Z/nZ.

PROOF. The homothety by n on UB/A ⊗A A[1/D] is finite and flat with the kernel
locally isomorphic to the group scheme µn, since the group scheme UB/A ⊗A A[1/D] is a
torus of dimension 1 over A[1/D]. It follows that the homothety by n on UB/A ⊗A A[1/n]
is finite and étale. Furthermore, Ker[n : UB/A → UB/A] ⊗A A[1/n] is isomorphic to the
constant group scheme Z/nZ, since the A-valued point of UB/A defined by (U, V ) �→ (0, 1)

is of order n.

REMARK 3.2.1. The theorem can be restated as follows. The isogeny of commutative
group schemes n : UB/A ⊗A A[1/n] → UB/A ⊗A A[1/n] is an étale covering with Galois
group Z/nZ, whose generator is given by U �→ −V , V �→ U + ωV .
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We shall call the exact sequence of group schemes over Z[ω, 1/n]
0 −→ Z/nZ −→ UB/A

n−→ UB/A −→ 0

the twisted Kummer sequence.

COROLLARY 3.3. Let R be a local Z[ω, 1/n]-algebra. If n is odd, H 1(R,Z/nZ) is
isomorphic to UB/A(R)/n.

PROOF. From the twisted Kummer sequence over Z[ω, 1/n]
0 −→ Z/nZ −→ UB/A

n−→ UB/A −→ 0 ,

we obtain a long exact sequence

UB/A(R)
n−→ UB/A(R) −→ H 1(R,Z/nZ) −→ H 1(R,UB/A)

n−→ H 1(R,UB/A) .

By Proposition 2.6, H 1(R,UB/A) is annihilated by 2. Then the homothety by n on
H 1(R,UB/A) is bijective, since n is odd.

COROLLARY 3.4. Let R be a local Z[ω, 1/n]-algebra and S an unramified cyclic
extension of R of degree n. If n is odd, there exists a morphism Spec R → UB/A such that the
square

Spec S −−→ UB/A�
�n

Spec R −−→ UB/A

is cartesian.

We can give a more concrete description of the statement mentioned above.

LEMMA 3.5. Let l be an integer ≥ 2. The homothety by l on the commutative group
scheme UB/A = Spec A[U,V ]/(U2 + ωUV + V 2 − 1) is given by

U �→ ζ−1(U + ζV )l − ζ(U + ζ−1V )l

ζ−1 − ζ
, V �→ (U + ζV )l − (U + ζ−1V )l

ζ − ζ−1 .

PROOF. Let l̃ denote the ring endomorphism of A[U,V ]/(U2 +ωUV +V 2 −1) which
defines the homothety by l on UB/A. As remarked in 2.2,

T �→ U + ζV ,
1

T
�→ U + ζ−1V

defines an isomorphism of group schemes over B[1/n]

s : UB/A ⊗A B

[
1

n

]
= Spec B

[
1

n

]
[U,V ]/(U2 + ωUV + V 2 − 1)

∼−→ Gm,B[1/n] = Spec B

[
1

n

][
T ,

1

T

]
.
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Then we obtain

l̃(U + ζV ) = (U + ζV )l , l̃(U + ζ−1V ) = (U + ζ−1V )l ,

which implies the assertion.
Combining Corollay 3.4 with Lemma 3.5, we obtain:

COROLLARY 3.6. Let R be a local Z[ω, 1/n]-algebra and S an unramified cyclic
extension of R of degree n. If n is odd, there exist u, v ∈ R such that u2 + ωuv + v2 = 1 and
that S is isomorphic to

R[U,V ]/
(

ζ−1(U + ζV )n − ζ(U + ζ−1V )n

ζ−1 − ζ
− u,

(U + ζV )n − (U + ζ−1V )n

ζ − ζ−1
− v

)
.

Moreover, the map

U �→ −V , V �→ U + ωV

yields a generator of Gal(S/R).

Hereafter we establish a one-parameter version of Corollaries 3.4 and 3.6, using the
equivariant compactification ι : UB/A → P 1

A.
3.7. As is shown in Proposition 2.8 and Corollary 2.9, the rational maps

ρ̃ : UB/A = Spec A[U,V ]/(U2 + ωUV + V 2 − 1)

→ PGL(2)A = Spec A

[
T11

∆
,
T12

∆
,
T21

∆
,
T22

∆

](2)

and

ι : UB/A = Spec A[U,V ]/(U2 + ωUV + V 2 − 1) → P 1
A = Proj A[T1, T2]

are defined by

(
T11 T12
T21 T22

)
�→




1 + U√
2 + 2U + ωV

− V√
2 + 2U + ωV

V√
2 + 2U + ωV

1 + U + ωV√
2 + 2U + ωV




and

T = T1

T2
�→ 1 + U

V
= ωU + V

1 − U
,

respectively. The inverse of the birational map ι : UB/A → P 1
A is given by

U �→ T 2 − 1

T 2 + ωT + 1
, V �→ 2T + ω

T 2 + ωT + 1
.

Let R be a local A-algebra. Then the map ρ̃ : UB/A(R) → PGL(2, R) is given by

(u, v) �→
(

1 + u −v

v 1 + u + ωv

)
,
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and ι : UB/A(R) → P 1(R) by

(u, v) �→ (1 + u : v) = (ωu + v : 1 − u) ,

if defined.

PROPOSITION 3.8. The rational map ρ̃ : UB/A → PGL(2)A is defined
(1) everywhere if n is not a prime power nor twice a prime power;
(2) outside the locus defined by the ideal (2 + 2U + ωV,p) if n = pr or 2pr , where p

is an odd prime;
(3) outside the locus defined by the ideal (2) if n = 2r .

PROOF. By the definition, the rational map ρ̃ : UB/A → PGL(2)A is defined outside
the locus defined by the ideal (D). If n is not a power of a prime nor twice a power of a prime,
D is invertible, which implies the assertion (1). In the cases (2) and (3), the rational map
ρ̃ : UB/A → PGL(2)A is defined outside the locus defined by the ideal (p) by Remark 3.1.2.
Moreover, the rational map ρ̃ is defined outside the locus defined by the ideal (2+2U +ωV ),
which follows from the description of ρ̃ mentioned in 3.7.

REMARK 3.8.1. Let n = pr or 2pr , where p is an odd prime, and put A0 = A/(D).
Then UB/A ⊗A A0 is a disjoint union of Spec A0[U,V ]/(2 + 2U + ωV ) and Spec A0[U,V ]/
(2 − 2U − ωV ). Also Spec A0[U,V ]/(2 − 2U − ωV ) is isomorphic to the additive group
scheme Ga,A0 , as remarked in 3.1.3. The restriction of ρ̃ : UB/A → PGL(2)A to
Spec A0[U,V ]/(2 − 2U − ωV ) ⊂ UB/A ⊗A A0 is given by

(
T11 T12
T21 T22

)
�→




1 + U

2
−V

2

V

2

1 + U + ωV

2


 .

PROPOSITION 3.9. The birational map ι : UB/A → P 1
A is defined

(1) outside the locus defined by the ideal (U − 1, V , 2) if n is a power of 2;
(2) everywhere otherwise.

PROOF. By the definition, the rational map ι : UB/A → P 1
A is defined outside the locus

defined by D. If n is not a power of a prime nor twice a power of a prime, D is invertible.
Hence ι is defined everywhere.

By the assertion in 3.7, we can conclude that the rational map ι : UB/A → P 1
A is defined

outside the locus (1−U,V ). The locus (1−U,V ) is nothing but the unit section of the group
A-scheme UB/A. It follows from Proposition 3.8 that, if n = pr or 2pr (p is an odd prime),
the rational map ι : UB/A → P 1

A is defined outside the locus (2 + 2U + ωV,p). Hence it is
sufficient to note that (2 + 2U + ωV,p) is disjoint with the unit section of UB/A over A.

If n = 2r , the rational map ι : UB/A → P 1
A is defined outside the locus (2), which

implies the first assertion.

REMARK 3.10. Let K be a field. Assume that 1/n ∈ K and ω ∈ K . Komatsu [6]
established the twisted Kummer theory, introducing a commutative group TK = P 1(K) −
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{ζ, ζ−1} with the multiplication

(t, t ′) �→ tt ′ − 1

t + t ′ − ω
.

It is easily verified that (u, v) �→ −(1 + u)/v gives rise to an isomorphism UB/A(K)
∼→ TK .

On the other hand, the rational map ι : UB/A → P 1
A defines a map UB/A(K) → P 1(K)

by (u, v) �→ (1 + u)/v, and ι(K) = P 1(K) − {−ζ,−ζ−1}. Under this identification, the
multiplication of P 1(K) − {−ζ,−ζ−1} is given by

(t, t ′) �→ tt ′ − 1

t + t ′ + ω
.

LEMMA 3.11. Define a rational map ν : Proj A[T1, T2] → Proj A[T1, T2] by

(T1, T2) �→
(

ζ−1(T1 + ζT2)
n − ζ(T1 + ζ−1T2)

n

ζ−1 − ζ
,− (T1 + ζT2)

n − (T1 + ζ−1T2)
n

ζ−1 − ζ

)
.

Then the diagram of rational maps

UB/A
ι−−→ P 1

A

n

� �ν

UB/A −−→
ι

P 1
A

is commutative.

PROOF. We have a commutative diagram of birational maps

UB/A ⊗A B
ι⊗IB−−→ P 1

B

s

��
�� s

Gm,B −−→
ι

P 1
B ,

as remarked in 2.12.3. Here the birational map s : P 1
B → P 1

B is defined by

(T1, T2) �→ (T1 + ζT2, T1 + ζ−1T2) : B[T1, T2] → B[T1, T2] .

Then the birational map s−1 : P 1
B → P 1

B is given by

(T1, T2) �→
(

ζ−1T1 − ζT2

ζ−1 − ζ
,− T1 − T2

ζ−1 − ζ

)
.

Defining the morphism n : P 1
B → P 1

B by

(T1, T2) �→ (T n
1 , T n

2 ) : B[T1, T2] → B[T1, T2] ,

we can verify that the composite of rational maps P 1
B

s→ P 1
B

n→ P 1
B

s−1→ P 1
B is given by

(T0, T1) �→
(

ζ−1(T0 + ζT1)
n − ζ(T0 + ζ−1T1)

n

ζ−1 − ζ
,− (T0 + ζT1)

n − (T0 + ζ−1T1)
n

ζ−1 − ζ

)
.
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Hence we have gotten a commutative diagram of rational maps

UB/A ⊗A B
s−−→ Gm,B

ι−−→ P 1
B

s−1−−→ P 1
B�n

�n

�n

�ν⊗IB

UB/A ⊗A B −−→
s

Gm,B −−→
ι

P 1
B −−→

s−1
P 1

B .

This implies the commutativity of the diagram

UB/A
ι−−→ P 1

A

n

�
�ν

UB/A −−→
ι

P 1
A ,

since B is faithfully flat over A.

COROLLARY 3.11.1. The rational map ν : P 1
A → P 1

A is defined
(a) everywhere if n is not a prime power nor twice a prime power;
(b) outside the locus defined by the ideal (T1 + T2, p) if n = pr , where p is a prime;
(c) outside the locus defined by the ideal (T1 − T2, p) if n = 2pr , where p is a prime.

PROOF. By the definition, the rational map s−1 : P 1
B → P 1

B is defined outside the
locus defined by the ideal (D). Hence the rational map ν : P 1

A → P 1
A is defined outside

the locus defined by the ideal (D). If n is not a prime power nor twice a prime power, D is
invertible in A. Hence the rational map ν : P 1

A → P 1
A is defined everywhere. If n = pr or

n = 2pr (p is a prime), ν : P 1
A → P 1

A is defined outside the locus defined by the ideal (p).
We obtain the second and third assertions from the following congruence relations:

ζ−1(T1 + ζT2)
pr − ζ(T1 + ζ−1T2)

pr

ζ−1 − ζ

=
pr∑

j=0

ζ j−1 − ζ−j+1

ζ−1 − ζ

(
pr

j

)
T

n−j

1 T
j

2 ≡ (T1 + T2)
pr

mod p ,

(T1 + ζT2)
pr − (T1 + ζ−1T2)

pr

ζ−1 − ζ
=

pr−1∑
j=1

ζ j − ζ−j

ζ−1 − ζ

(
pr

j

)
T

n−j

1 T
j

2 ≡ 0 mod p

and

ζ−1(T1 + ζT2)
2pr − ζ(T1 + ζ−1T2)

2pr

ζ−1 − ζ

=
2pr∑
j=0

ζ j−1 − ζ−j+1

ζ−1 − ζ

(
2pr

j

)
T

n−j

1 T
j

2 ≡ (T1 − T2)
2pr

mod p ,
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(T1 + ζT2)
2pr − (T1 + ζ−1T2)

2pr

ζ−1 − ζ
=

2pr−1∑
j=1

ζ j − ζ−j

ζ−1 − ζ

(
2pr

j

)
T

n−j

1 T
j

2 ≡ 0 mod p .

COROLLARY 3.11.2. The morphism ν : P 1
A[1/D] → P 1

A[1/D] is finite flat, and un-

ramified outside the locus defined by (T 2
1 + ωT1T2 + T 2

2 ). Moreover, the finite covering
ν : P 1

A[1/D] → P 1
A[1/D] is cyclic of degree n, and the Galois group of ν is generated by

(T1, T2) �→ (T1 − T2, T1 + (1 + ω)T2) .

PROOF. The morphism n : P 1
A[1/D] → P 1

A[1/D] is finite flat and unramified outside the

locus defined by (T1T2). Hence the morphism ν = s−1 ◦ n ◦ s : P 1
B[1/D] → P 1

B[1/D] is finite

flat, and unramified outside the locus defined by (T1+ζT2)(T1+ζ−1T2) = (T 2
1 +ωT1T2+T 2

2 ).
We obtain the first assertion, since B is faithfully flat over A.

Furthermore, under the identification Ker[n : UB/A → UB/A] ⊗A A[1/D] = Z/nZ, the
commutative diagram

UB/A ×A UB/A
multiplication−−−−−−−→ UB/A

ρ̃×ι

�
�ι

PGL(2)A ×A P 1
A −−−→

action
P 1

A

yields over A[1/D] a commutative diagram

Z/nZ ×A UB/A
multiplication−−−−−−−→ UB/A

ρ̃×ι

�
�ι

Z/nZ ×A P 1
A −−−→

action
P 1

A .

It follows that the rational map ν : P 1
A → P 1

A is isomorphic to the canonical surjection
P 1

A → P 1
A/(Z/nZ) over A[1/D].

Now, let ξ denote the A-valued point of UB/A defined by (U, V ) �→ (0, 1). Then ξ is of
order n, and we have

ρ̃(ξ) =
(

1 −1
1 1 + ω

)
.

It follows that the Galois group of ν is generated by (T1, T2) �→ (T1 − T2, T1 + (1 + ω)T2).

COROLLARY 3.12. Let R be a local Z[ω, 1/n]-algebra and S an unramified cyclic
extension of degree n. If n is odd, there exists a morphism Spec R → P 1

A such that the square
of rational maps

Spec S −−→ P 1
A�

�ν

Spec R −−→ P 1
A
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is cartesian. More precisely, there exists c ∈ R such that S is isomorphic to

R[T ]/
(

ζ−1(T + ζ )n − ζ(T + ζ−1)n

ζ−1 − ζ
− c

(T + ζ )n − (T + ζ−1)n

ζ−1 − ζ

)
.

Moreover,

T �→ T − 1

T + (1 + ω)

defines a generator of Gal(S/R).

PROOF. Combining Corollary 3.4 with Lemma 3.11, we obtain the first assertion. Now,
take an R-valued point (u, v) ∈ UB/A(R) such that the square

Spec S −−→ UB/A� �n

Spec R −−→ UB/A

is cartesian. Let m denote the maximal ideal of R. If v ∈ R − m, we can take c = (1 + u)/v.
Assume now that 1 + u ∈ A − m and v ∈ m. We have (−1, 0) = (0,−1)n in UB/A(R), since
n is odd. Hence, replacing (u, v) by (−u,−v), we can take c = (−ωu − v)/(1 + u). The last
assertion follows from Corollary 3.11.2.

REMARK 3.13. Replacing T by −T , we obatian the generic polynomial for cyclic
extensions of degree n

{ζ−1(T − ζ )n − ζ(T − ζ−1)n} − Y {(T − ζ )n − (T − ζ−1)n}
ζ−1 − ζ

,

discovered by Rikuna [7].

REMARK 3.14. Kida [5] established Kummer theories for norm tori over a field. It is
not so difficult to generalize the arranged arguments in [5] as is done here.

4. Twisted Kummer-Artin-Schreier theory. In this section, we fix an odd prime p

and a primitive p-th root of unity ζ .
4.1. Let p be a prime number > 2 and ζ a primitive p-th root of unity. Put ω =

ζ + ζ−1. Let A = Z[ω] and B = Z[ζ ]. Then we have a commutative group scheme

GB/A = Spec A[X,Y ]/(X2 + ωXY + Y 2 − Y )

with the multiplication

X �→ X ⊗ 1 + 1 ⊗ X − ωX ⊗ X − 2X ⊗ Y − 2Y ⊗ X − ωY ⊗ Y ,

Y �→ Y ⊗ 1 + 1 ⊗ Y + (ω2 − 2)Y ⊗ Y + ωX ⊗ Y + ωY ⊗ X + 2X ⊗ X .

Put now

λ = ζ − ζ−1



210 N. SUWA

and

Θ(T ) =
(p−1)/2∑

i=0

(
p

i

)
(−1)iT p−2i .

Then we have

λp = Θ(ζ ) − Θ(ζ−1) .

Furthermore, put

θ = Θ(ζ ) , B̃ = A[θ ] ⊂ B

and

ω̃ = TrB/A θ = Θ(ζ ) + Θ(ζ−1) , η̃ = NrB/A θ = Θ(ζ )Θ(ζ−1) .

Then B̃ = A[θ ] is a quadratic extension of A defined by θ2 − ω̃θ + η̃ = 0. Then we have a
commutative group scheme

GB̃/A = Spec A[X,Y ]/(X2 + ω̃XY + η̃Y 2 − Y )

with
(a) the multiplication

∆ :
{

X �→ X ⊗ 1 + 1 ⊗ X − ω̃X ⊗ X − 2η̃X ⊗ Y − 2η̃Y ⊗ X − ω̃η̃Y ⊗ Y ,

Y �→ Y ⊗ 1 + 1 ⊗ Y + (ω̃2 − 2η̃)Y ⊗ Y + ω̃X ⊗ Y + ω̃Y ⊗ X + 2X ⊗ X ,

(b) the unit

ε :
{

X �→ 0 ,

Y �→ 0 ,

(c) the inverse

S :
{

X �→ −X − ω̃Y ,

Y �→ Y .

THEOREM 4.2 (twisted Kummer-Artin-Schreier theory). A homomorphism of group
A-schemes

Ψ : GB/A = Spec A[X,Y ]/(X2 + ωXY + Y 2 − Y )

→ GB̃/A = Spec A[X,Y ]/(X2 + ω̃XY + η̃Y 2 − Y )

is defined by

X �→ Ξ(X, Y ) = 1

λ2p
[−Θ(ζ−1)(1 + λ(X + ζY ))p + ω̃ − Θ(ζ )(1 − λ(X + ζ−1Y ))p] ,

Y �→ Υ (X, Y ) = 1

λ2p
[(1 + λ(X + ζY ))p − 2 + (1 − λ(X + ζ−1Y ))p] .

Moreover, Ψ is finite and étale, and Ker Ψ is isomorphic to the constant group scheme Z/pZ.
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PROOF. Define homomorphisms of group schemes

σ : GB/A ⊗A B = Spec B[X,Y ]/(X2 + ωXY + Y 2 − Y )

→ G(λ) = Spec B

[
T ,

1

1 + λT

]

and

σ̃ : GB̃/A ⊗A B = Spec B[X,Y ]/(X2 + ω̃XY + η̃Y 2 − Y )

→ G(λp) = Spec B

[
T ,

1

1 + λpT

]

by

T �→ X + ζY ,
1

1 + λT
�→ 1 − λ(X + ζ−1Y )

and

T �→ X + Θ(ζ )Y ,
1

1 + λpT
�→ 1 − λp{X + Θ(ζ−1)Y } ,

respectively. Then σ and σ̃ are isomorphisms, as remarked in 2.4. Moreover we have gotten
a commutative diagram of group schemes over B

GB/A ⊗A B
Ψ ⊗B−−−→ GB̃/A ⊗A B

σ

��
�� σ̃

G(λ) −−→
ΨB

G(λp) .

Here the homomorphism

ΨB : G(λ) = Spec B

[
T ,

1

1 + λT

]
→ G(λp) = Spec B

[
T ,

1

1 + λpT

]

is defined by

T �→ (λT + 1)p − 1

λp
.

The homomorphism ΨB : G(λ) → G(λp) is surjective and Ker[ΨB : G(λ) → G(λp)] is iso-
morphic to the constant group scheme Z/pZ, as recalled in 1.4. Hence Ψ : GB/A → GB̃/A

is finite and étale, since B is faithfully flat over A. Moreover, the map (X, Y ) �→ (0, 1) de-
fines an A-valued point of Ker[Ψ : GB/A → GB̃/A], which is of order p. It follows that
Ker[Ψ : GB/A → GB̃/A] is isomorphic to Z/pZ.

REMARK 4.2.1. The theorem can be restated as follows. The isogeny Ψ : GB/A →
GB̃/A is an étale covering with Galois group Z/pZ, whose generator is given by

X �→ −X − ωY , Y �→ 1 + ωX + (ω2 − 1)Y .
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We shall call the exact sequence of group schemes over Z[ω]
0 −→ Z/pZ −→ GB/A

Ψ−→ GB̃/A −→ 0

the twisted Kummer-Artin-Schreier sequence.

REMARK 4.2.2. Define homomorphisms of group schemes over A

α : GB/A = Spec A[X,Y ]/(X2 + ωXY + Y 2 − Y ) → A[U,V ]/(U2 + ωUV + V 2 − 1)

and

α̃ : GB̃/A
= Spec A[X,Y ]/(X2 + ω̃XY + η̃Y 2 − Y ) → A[U,V ]/(U2 + ωUV + V 2 − 1)

by

U �→ 1 − ωX − 2Y , V �→ 2X + ωY

and

U �→ 1 − D(p−1)/2ωX − D(p−1)/2{ζ−1Θ(ζ ) + ζΘ(ζ−1)}Y ,

V �→ 2D(p−1)/2X + D(p−1)/2ω̃Y ,

respectively. Then we have a commutative diagram with exact rows of group schemes over A

0 −−→ Z/pZ −−→ GB/A
Ψ−−→ GB̃/A

−−→ 0�
�α

�α̃

0 −−→ µp,A −−→ UB/A −−→
p

UB/A −−→ 0 .

Hence

(0 −→ Z/pZ −→ GB/A
Ψ−→ GB̃/A −→ 0) ⊗A A[1/D]

is isomorphic to the twisted Kummer sequence

(0 −→ Z/pZ −→ UB/A
p−→ UB/A −→ 0) ⊗A A[1/D] .

On the other hand,

(0 −→ Z/pZ −→ GB/A
Ψ−→ GB̃/A −→ 0) ⊗A A/(D)

is isomorphic to the Artin-Schreier sequence

0 −→ Z/pZ −→ Ga,Fp

F−1−→ Ga,Fp −→ 0 .

PROPOSITION 4.3. Let R be a local Z[ω]-algebra. Then H 1(R,Z/pZ) is isomorphic
to Coker[Ψ : GB/A(R) → GB̃/A(R)].

PROOF. We obtain the assertion from the exact sequence

GB/A(R)
Ψ−→ GB̃/A(R) −→ H 1(R,Z/pZ) −→ H 1(R,GB/A)

Ψ−→ H 1(R,GB̃/A) ,

noting that H 1(R,GB/A) is annihilated by 2.
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COROLLARY 4.4. Let R be a local Z[ω]-algebra and S an unramified cyclic extension
of degree p. Then there exists a morphism Spec R → GB̃/A such that the square

Spec S −−→ GB/A� �Ψ

Spec R −−→ GB̃/A

is cartesian. More precisely, there exist a, b ∈ R such that a2 + ωab + b2 = b and that S is
isomorphic to

R[X,Y ]/(Ξ(X, Y ) − a, Υ (X, Y ) − b) .

Moreover, the map

X �→ −X − ωY, Y �→ 1 + ωX + (ω2 − 1)Y

yields a generator of Gal(S/R).

EXAMPLE 4.5. Let p = 3. Then we have

ζ = −1 + √−3

2
, ω = −1 ,

and therefore

GB/A = Spec A[X,Y ]/(X2 − XY + Y 2 − Y )

with multiplication

X �→ X ⊗ 1 + 1 ⊗ X + X ⊗ X − 2X ⊗ Y − 2Y ⊗ X + Y ⊗ Y ,

Y �→ Y ⊗ 1 + 1 ⊗ Y − Y ⊗ Y − X ⊗ Y − Y ⊗ X + 2X ⊗ X .

On the other hand, we have

θ = Θ(ζ ) = 5 − 3
√−3

2
, ω̃ = 5 , η̃ = 13 ,

and therefore

GB̃/A
= Spec A[X,Y ]/(X2 + 5XY + 13Y 2 − Y )

with multiplication

X �→ X ⊗ 1 + 1 ⊗ X − 5X ⊗ X − 26X ⊗ Y − 26Y ⊗ X − 65Y ⊗ Y ,

Y �→ Y ⊗ 1 + 1 ⊗ Y − Y ⊗ Y + 5X ⊗ Y + 5Y ⊗ X + 2X ⊗ X .

Moreover, the homomorphism

Ψ : GB/A = Spec A[X,Y ]/(X2 − XY + Y 2 − Y )

→ GB̃/A = Spec A[X,Y ]/(X2 + 5XY + 13Y 2 − Y )

is defined by

X �→ −X − 2Y + 4XY + 3Y 2 − 3XY 2 − Y 3 , Y �→ Y − 2Y 2 + Y 3 .
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A generator of the Galois group of the étale covering Ψ : GB/A → GB̃/A is given by

X �→ −X + Y , Y �→ 1 − X .

Hereafter we establish a one-parameter version of Corollary 4.4, using the equivariant
compactification ι : GB/A → P 1

A.

LEMMA 4.6. Define a morphism Ψ : Proj A[T0, T1] → Proj A[T0, T1] by

(T0, T1) �→
(
Θ(ζ−1)(T0+ζT1)

p − Θ(ζ )(T0+ζ−1T1)
p

p(ζ − ζ−1)
,− (T0+ζT1)

p − (T0 + ζ−1T1)
p

p(ζ − ζ−1)

)
.

Then the diagram of A-schemes

GB/A
ι−−→ P 1

A

Ψ

� �Ψ

GB̃/A −−→
ι

P 1
A

is cartesian.

PROOF. We have a commutative diagram

GB/A ⊗A B
ι⊗IB−−→ P 1

B

σ

��
�� σ

G(λ) −−→
ι

P 1
B ,

as remarked in 2.12.2. Here the open immersion

ι : GB/A = Spec A[X,Y ]/(X2 + ωXY + Y 2 − Y ) → P 1
A = Proj A[T1, T2]

is defined by

T = T1

T2
�→ 2 − ωX − 2Y

2X + ωY
,

and the automorphism σ : P 1
B → P 1

B is given by

(T1, T2) �→ (T2, T1 + ζ−1T2) : B[T1, T2] → B[T1, T2] .

Moreover, we have a commutative diagram

GB̃/A ⊗A B
ι⊗IB−−→ P 1

B

σ̃

��
�� σ̃

G(λp) −−→
ι

P 1
B .

Here the open immersion

ι : GB̃/A
= Spec A[X,Y ]/(X2 + ω̃XY + η̃Y 2 − Y ) → P 1

A = Proj A[T1, T2]
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is defined by

T = T1

T2
�→ 2 − ω̃X − 2η̃Y

2X + ω̃Y
,

and the automorphism σ̃ : P 1
B → P 1

B is given by

(T1, T2) �→ (T2, T1 + Θ(ζ−1)T2) : B[T1, T2] → B[T1, T2] .

Then the automorphism σ̃−1 : P 1
B → P 1

B is defined by

(T1, T2) �→ (−Θ(ζ−1)T1 + T2, T1) .

Define now a morphism ΨB : P 1
B → P 1

B by

(T1, T2) �→
(

(λT1 + T2)
p − T

p

2

λp
, T

p

2

)
: B[T1, T2] → B[T1, T2] .

Then it is verified that the composite of morphisms P 1
B

σ→ P 1
B

ΨB→ P 1
B

σ̃−1→ P 1
B is given by

(T0, T1) �→
(

Θ(ζ−1)(T0+ζT1)
p − Θ(ζ )(T0+ζ−1T1)

p

p(ζ − ζ−1)
,− (T0+ζT1)

p − (T0+ζ−1T1)
p

p(ζ − ζ−1)

)
.

Hence we obtain a commutative diagram

GB/A ⊗A B
σ−−→ G(λ) ι−−→ P 1

B

σ−1−−→ P 1
B�Ψ ⊗IB

�ΨB

�ΨB

�Ψ ⊗IB

GB̃/A ⊗A B −−→̃
σ

G(λp) −−→̃
ι

P 1
B −−→

σ̃−1
P 1

B ,

which implies the commutativity of the diagram

GB/A
ι−−→ P 1

A

Ψ

�
�Ψ

G
B̃/A

−−→̃
ι

P 1
A ,

since B is faithfully flat over A.

COROLLARY 4.6.1. The morphism Ψ : P 1
A → P 1

A is finite flat, and unramified out-
side the locus defined by (T 2

1 + ω̃T1T2 + η̃T 2
2 ). Moreover, the finite covering Ψ : P 1

A → P 1
A

is cyclic of degree p, and the Galois group of Ψ is generated by

(T1, T2) �→ (T1 − T2, T1 + (1 + ω)T2) .

PROOF. The morphism Ψ : P 1
A → P 1

A is finite flat, and unramified outside the locus
defined by (T1T2). Hence the morphism Ψ ⊗IB = σ−1 ◦ΨB ◦σ : P 1

B → P 1
B is finite flat, and

unramified outside the locus defined by (T1 + Θ(ζ )T2)(T1 + Θ(ζ−1)T2) = (T 2
1 + ω̃T1T2 +

η̃T 2
2 ). We obtain the first assertion since B is faithfully flat over A.
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Furthermore, under the identification Ker[Ψ : GB/A → GB̃/A] = Z/pZ, the commuta-
tive diagram presented in 2.7

GB/A ×A GB/A
multiplication−−−−−−−→ GB/A

ρ̃×ι

�
�ι

PGL(2)A ×A P 1
A −−−→

action
P 1

A

yields a commutative diagram

Z/pZ ×A GB/A
multiplication−−−−−−−→ GB/A

ρ̃×ι

�
�ι

Z/pZ ×A P 1
A −−−→

action
P 1

A .

It follows that the morphism Ψ : P 1
A → P 1

A is isomorphic to the canonical surjection P 1
A →

P 1
A/(Z/pZ).

Now, let ξ denote the A-valued point of GB/A defined by (X, Y ) �→ (0, 1). Then ξ is of
order p, and we have

ρ̃(ξ) =
(

1 −1
1 1 + ω

)
.

It follows that the Galois group of Ψ is generated by (T1, T2) �→ (T1 − T2, T1 + (1 + ω)T2).

COROLLARY 4.7. Let R be a local Z[ω]-algebra and S an unramified cyclic extension
of degree p. Then there exists a morphism Spec R → P 1

A such that the square

Spec S −−→ P 1
A�

�Ψ

Spec R −−→ P 1
A

is cartesian. In particular, if the extension S/R does not split completely at the maximal ideal
of R, there exists c ∈ R such that S is isomorphic to

R[T ]/
(

Θ(ζ−1)(T + ζ )p − Θ(ζ )(T + ζ−1)p

p(ζ − ζ−1)
− c

(T + ζ )p − (T + ζ−1)p

p(ζ − ζ−1)

)
.

Moreover,

T �→ T − 1

T + (1 + ω)

defines a generator of Gal(S/R).
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PROOF. Combining Corollary 4.4 with Lemma 4.6, we obtain the first assertion. Now,
take an R-valued point (a, b) ∈ GB̃/A(R) such that the square

Spec S −−→ GB/A� �n

Spec R −−→ GB̃/A

is cartesian. Let m denote the maximal ideal of R. If the extension S/R does not split com-
pletely at m, we have 2a + ω̃b ∈ A − m. Hence we can take c = (2 − ω̃a − 2η̃b)/(2a + ω̃).
The last assertion follows from Corollary 4.6.1.

REMARK 4.8. By a slight modification, we obtain again the everywhere generic poly-
nomial for cyclic extensions of degree p

{ζ−1(T − ζ )p − ζ(T − ζ−1)p} − Y {(T − ζ )p − (T − ζ−1)p}
p(ζ−1 − ζ )

,

discovered by Komatsu [6].

EXAMPLE 4.9. Let p = 3. Then the morphism Ψ : P 1
A → P 1

A is defined by

(T0, T1) �→ (T 3
0 + T 2

0 T1 − 4T0T
2
1 + T 3

1 , T 2
0 T1 − T0T

2
1 ) .

Moreover, a generator of the Galois group of finite covering Ψ : P 1
A → P 1

A is given by

(T0, T1) �→ (T0 − T1, T0) .

REMARK 4.10. In [12, Ch. VI], Serre formulated the existence of a normal basis in a
Galois extension of a field in the framework of algebraic groups, deducing the Kummer theory
and Artin-Schreier-Witt theory. At the end of Section 9, he remarked:

Lorsqu’on ne suppose plus que k contienne ε, la théorie de Kummer ne s’applique plus.
Toutefois, on peut encore, dans certains cas, réduire la dimension de G(N). Lorsque n = 3
par exemple, on peut prendre pour quotient de G(N) le groupe orthogonal G pour la forme
quadratique x2−xy+y2; on voit facilement que ce groupe contient un sous-groupe N cyclique
d’ordre 3 formé de points rationnels sur le corps premier, et que l’isogénie G → G/N vérifie
la propriété universelle de la prop. 7.

It is possible also to formulate the twisted Kummer and twisted Kummer-Artin-Schreier
theory in the manner of [12], as done for the Kummer-Artin-Schreier-Witt theories of degree
p and p2 in [9] and [10].
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